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Abstract 

A functional calculus on the space of (generalized) connections was 
recently introduced without any reference to a background metric. It 
is used to continue the exploration of the quantum Riemannian geom- 
etry. Operators corresponding to volume of three-dimensional regions 
are introduced rigorously. It is shown that there are two natural reg- 
ularization schemes, each of which leads to a well-defined operator. 
Both operators can be completely specified by giving their action on 
states labelled by graphs. The two final results are closely related but 
differ from one another in that one of the operators is sensitive to the 
differential structure of graphs at their vertices while the second is sen- 
sitive only to the topological characteristics. (The second operator was 
first introduced by Rovelli and Smolin and De Pietri and Rovelli using a 
somewhat different framework.) The difference between the two opera- 
tors can be attributed directly to the standard quantization ambiguity. 
Underlying assumptions and subtleties of regularization procedures are 
discussed in detail in both cases because volume operators play an im- 
portant role in the current discussions of quantum dynamics. 
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1    Introduction 

Riemannian geometry provides the mathematical framework for general rel- 
ativity and other modern theories of gravity. One therefore expects that 
a non-perturbative formulation of quantum gravity would require a corre- 
sponding quantum theory of geometry, and, at the same time, provide point- 
ers for constructing this theory. Familiar Riemannian geometry would then 
emerge only as an approximation on coarse graining of the semi-classical 
states. In a specific non-perturbative approach based on canonical quantiza- 
tion, these expectations are being borne out in detail. The goal of this series 
of papers is to present the resulting quantum theory of geometry. Basic tech- 
niques used in this series were developed in [1] and applied to the problem 
of constructing area operators. The purpose of this paper is to carry out a 
similar construction of volume operators. 

Let us begin with a brief summary. In the canonical quantization ap- 
proach used here, the configuration variable is an SU(2) connection A^x) 
on a three-manifold S. (Indices a, 6, c,... refer to the tangent space of E 
and indices z,,;,&,... are the 5^(2) Lie-algebra indices.) The momentum 
variable is a vector density E^(x) with values in the 5^(2) Lie algebra (or, 
equivalently, a (pseudo) two-form eabi := rj^cE^ where 77^ is the Levi- 
Civita pseudo density). In the quantum theory, then, one is naturally led 
to consider the space A of (suitably generalized) connections on S as the 
(quantum) configuration space. To obtain the Hilbert space W, of quantum 
states and geometric operators thereon, one needs a functional calculus on 
A which also does not refer to a fiducial metric (or any other background 
field). 

The necessary tools were developed in a series of papers by a number 
of authors [2-11]. (Much of the motivation for this work came from the 
'loop representation' introduced earlier by Rovelli and Smolin [12].) It turns 
out that A admits a natural diffeomorphism invariant measure /i0 and the 
Hilbert space H can be taken to be the space L2(^4, d/i0) of square-integrable 
functions on A [3-8]. Physically, % represents the space of kinematic quan- 
tum states, i.e., the quantum analog of the full phase space. Using the 
well-developed differential geometry on A [7], one can then define physically 
interesting operators on T-L. In particular, one can introduce, in a systematic 
manner, operator-valued distributions E corresponding to the triads [1]. As 
in classical Riemannian geometry, these are the basic objects in the quantum 
case. Specifically, the idea is to construct geometric operators -e.g., those 
corresponding to area, volume and length- by regularizing the appropriate 
products of these triad operators. 

As remarked above, triads -being density weighted- can be naturally 
thought of as pseudo two-forms ea^. To obtain phase space functions, it is 
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natural to smear them against Lie-algebra-valued test fields fa with support 
on two-dimensional surfaces. Can the corresponding quantum operators be 
well-behaved? The answer is not a priori obvious: from Minkowskian quan- 
tum field theory, one would expect that well-defined operators will not result 
unless they are smeared in (at least) three dimensions. Somewhat surpris- 
ingly, however, for triads the answer is in the affirmative. More generally, 
in this approach to quantum geometry, there is a remarkable synergy be- 
tween geometry and analysis: in the regularization procedure, well-defined 
operators result when n-forms are integrated on n-manifolds. Thus, the op- 
erators that code information in connections are holonomies ft [a], obtained 
by integrating the connection one-forms along one-dimensional curves. The 
two-form triad operators are naturally regulated through a two-dimensional 
smearing. This feature is deeply intertwined with the underlying diffeo- 
morphism invariance of the theory. By contrast, in the quantum theory of 
Maxwell fields in Minkowski space-time, for example, one smears both con- 
nection one-forms and electric field two-forms in three dimensions, using the 
geometrical structures made available by the background metric. 

In [1], square-roots of appropriate products of triad operators were regu- 
larized to obtain area operators As associated with two-dimensional surfaces 
S without boundary. These are the quantum analogs of the area functions 
As defined on the classical phase space. We now wish to discuss the volume 
operator VR associated with a three-dimensional region R —the quantum 
analog of the function VR := JRd

3x ^/\detE\ on the classical phase space. 
Since V^ is a rather complicated, non-polynomial function of the triads, as 
one might imagine, the issue of regularization is quite subtle. Indeed, the 
problem turns out to be considerably more complicated than that for area 
operators. In particular (for the continuum theory) it appears that, so far, no 
regularization scheme has appeared in the literature which has the following 
rather basic property: If we denote by VR the regulated version of the volume 
operator, then (in the Hilbert space topology) the limit lime_>o(^R,^r) should 
exist for a dense subset of states ^ E H. We will rectify this situation. (In 
the process, we also spell out the underlying assumptions and point out some 
subtleties that are often overlooked.) Finally, in our treatment, the limit is 
achieved at a finite stage, i.e., for all e < e#. These properties make our 
regularization of volume operators consistent with that of the Hamiltonian 
constraint; there is thus a uniform scheme that is applicable to all operators 
of physical interest.1 

In the main body of the paper, we will discuss a regularization along the 
lines that led us to area operators in [1]. We will see that this operator is 
sensitive to the differential structure on the three-manifold S. In the ap- 
pendix, we will consider a different regularization scheme which is based on 

1For a further discussion of this point, see the first part of the Appendix. 
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a construction given by Rovelli and Smolin [13] in the loop representation. 
In a certain sense, this operator is not sensitive to the differential structure 
of S. We will see that both operators can be constructed through system- 
atic regularizations. They are well-defined, self-adjoint operators on H with 
purely discrete spectrum. The actual expressions of the two operators are 
rather similar and the difference between them can be interpreted simply 
as a 'quantization ambiguity'. Nonetheless, in various applications, e.g., to 
quantum dynamics [14], they can lead to important differences. To get a 
deeper understanding of the relation between them, one needs to further an- 
alyze their properties -e.g., their relation to the area and length operators. 
Such a systematic analysis has begun only recently. 

Several researchers have worked on geometric operators. A significant 
fraction of this work was presented only in seminars and informal discus- 
sions and is therefore difficult to document. The situation with the published 
material may be briefly summarized as follows. The simplest calculations, 
which are rather naive but nonetheless capture the germ of the basic idea, 
were first reported in [15]. A more detailed regularization procedure was 
developed in the cmulti-loop framework' by Smolin [16] and applied, in par- 
ticular, to area and volume operators. The final expression of this volume 
operator is closely related to that obtained in the main part of the present 
paper. Rovelli and Smolin [13] analyzed both area and volume operators in 
terms of spin networks. They found a part of the spectrum of area operators 
and gave, in the loop representation, an explicit expression of the volume 
operator on trivalent graphs. However, it was later realized that there was a 
computational error and that the correct volumeoperator in fact annihilates 
these trivalent states. The final closed-form expression of this operator was 
introduced by De Pietri and Rovelli in [17], and, in the framework discussed 
here, in [18]. A comprehensive treatment of area operators -including the 
complete spectrum- was given in [1] using the Hilbert space H of general- 
ized connections and the complete spectrum was then re-derived in the loop 
representation by Prittelli, Lehner and Rovelli [19]. The final form of the 
volume operator derived here in the main text was reported in [7, 18, 20] 
and its restriction to a lattice theory was discussed by Loll [21]. The opera- 
tor was also studied by Thiemann in [22]. Finally, the length operator was 
introduced by Thiemann in [23]. 

This paper is organized as follows. Section 2 is devoted to preliminaries. 
Regularization leading to the first operator is discussed in detail in Sections 
3 and 4 and, using techniques introduced by De Pietri [24], the regularization 
leading to the Rovelli-Smolin operator is discussed in the Appendix. Some 
properties of the volume operator are discussed in Section 5. Section 6 
summarizes the main results and compares the regularization procedures. 

For simplicity, in the main discussion, we have set c = 1, STTG = 1 and 
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h = 1 and chosen the real connection A1^ to be A^ = rl
a — K^ where ri

a is 
the spin connection compatible with the triad Ef and K^ is the extrinsic 
curvature. As pointed out by Immirzi [32] using earlier work of Barbero 
[31], unitarily inequivalent quantum theories result if one begins with the 
canonical pair TA^ = ri

a — jKl
a^ TEf = (I/7) Ef, where 7 is a non-zero real 

parameter. Thus, in the main discussion, we will work with the 7 = 1 sector. 
In Section 4.4, we will restore c, h and G and also state the main result in 
any Immirzi sector. 

2    Preliminaries 

In this section, we briefly recall the mathematical ideas that underlie the 
present approach to quantum Riemannian geometry. This discussion will 
also serve to fix notation. It turns out that some diversity has arisen in view- 
points and conventions in the recent literature on non-perturbative quantum 
gravity. To remove potential confusion, therefore, the corresponding issues 
will be discussed in detail. 

Fix ctn orientable, analytic2 three-manifold S and a principal SU(2) bun- 
dle B over S. Our configuration space C will consist of smooth connections 
on B. Since all SU(2) bundles over three-manifolds are trivial, we can fix 
a trivialization and regard each connection A on B as an sw(2)-valued one- 
form Aa on S, where a is the form index, and i the Lie-algebra index. (We 
will not specify boundary conditions on fields because they are irrelevant 
for the issues we wish to discuss here.) The 'conjugate momenta' are non- 
degenerate vector densities Ef of weight one — or, equivalently, pseudo two- 
forms 60^ := rjafcEf — with values in 5u(2), where rjabc is the Levi-Civita 
pseudo density. Thus, the action 

[ ^xEfSAi^ f SA* Ae» 
JE JE 

of the cotangent vector Ef on a tangent vector SA^ is invariant under the 
change of orientation of E. Although they are density weighted, for brevity, 
the Ef will be referred to simply as triads. 

Riemannian geometry of the three-manifold S is coded in the momenta 
Ef. To see this, note first that given vector densities Ef, we can define a 
triplet of vector fields ef via: 

771a 

ef =    /    *        , (2-1) 1 y/\6ME\' 

2In this work the assumption of analyticity is not essential; we make it for simplicity 
since it allows us to use previous results [1-4,6-9] directly. Our constructions can be made 
to go through for smooth manifolds and graphs. This point is discussed at the end of 
section 4. 
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where det E stands for the determinant of the matrix (Eia) with i, a = 1,2,3. 
Note that the phase space contains frame fields ef with both orientations. 
Given these fields, we can just define a contravariant, positive definite metric 
qab := eiebjkij where k = -2Tr is the Cartan-Killing metric on -516(2). If 
we denote by q the determinant of Qab (the inverse of ga6), we also have: 
Ef = y/qe? = |dete|e^. In terms of these Riemannian structures, the volume 
of a region R (covered, for simplicity, by a single chart) is given by: 

VR := [ d3xyfi = [ d*xy/\detE\ . (2.2) 
JR JR 

As noted in the Introduction, in quantum theory one is naturally led 
[2, 3] to consider the space A of (suitably generalized) connections as the 
configuration space. Thus, the Hilbert space H of (kinematic) quantum 
states is given by H = L2(A,dn0) where /i0 is a natural diffeomorphism 
invariant measure on A [3-8]. % contains a dense subspace Cyl of 'cylindrical 
functions' which turns out to be especially useful. These are constructed as 
follows. Each element A of A assigns to any oriented analytic path p in S 
an element A(p) of 517(2) (which can be regarded as the 'holonomy' of the 
generalized connection A) [7]. Fix a graph 7 with a finite number (say N) of 
edges3 e/, / = 1,..., N, and a complex-valued function ij) : [SU{2)}N -> C 
on [SU{2)]N. Then, we can define a function on A as follows: 

*7(Z)=V(3(ei),...,I(eAr)). (2.3) 

(Strictly, the function on the left side should be written as V?^. However, for 
notational simplicity, we will omit the subscript ij).) Note that \I>7 'knows' 
only about what the connection A does on the N edges of 7; it depends 
only on a finite number of 'coordinates' on A. Therefore, following standard 
terminology, \I/7 are called cylindrical functions. The space of cylindrical 
functions defined by a fixed graph 7 is infinite dimensional but 'rather small' 
in the sense that it can be thought of as the space of quantum states of a 
system with only a finite number of degrees of freedom. However, as we vary 
7 through all finite graphs on S, we obtain a space of functions on A which 
is very large. This is the space Cyl. Since it is dense in %, we can first define 
physically interesting operators on Cyl and then consider their self-adjoint 
extensions. This strategy turns out to be especially convenient in practice. 

Of special interest to us are 'angular momentum like' operators J* e, 
associated with a point x in S and an edge e which begins at x, where, as 

3By a graph 7 we mean a finite set {ei,... ,eAr} of oriented one-dimensional, analytic 
sub-manifolds of E such that each e/ has a (two point) boundary and for Ji / h the 
intersection e^ fl e/2 is contained in the boundaries. The elements ej of a graph are called 
edges, the points in their boundaries the vertices. 
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Figure 1: Illustration of the action of </£ e operator on \I/ 

before, i is an su(2) index. Given \I/7 which can be regarded as cylindrical — 
i.e., represented as in (2.3)— with respect to a graph which does not contain 
a segment of e with x as one of its end points, 

(4>etf7)(3)=0. (2.4) 

If on the other hand 7 has an edge ej which shares a finite segment with e 
originating at z, without loss of generality, we can assume that a; is a vertex 
of 7. Then, 

= i^[*(3(e1),...,A(ej)exp((ri) A(eN)] , (2.5) 

if ej is outgoing at rr.4 Here, r1 are su(2) matrices, satisfying 

-2TrrV^ = kij    and    [r\ Tj] = eijkTk , 

where kij is the Killing form on SU(2). 
These operators are well-defined: If an element of Cyl is cylindrical with 

respect to two distinct graphs 7 and 7', Wy = \I/7, then JJ C\P7' = Jx^i- 
Denote by Cyl^1^ the space of all cylindrical functions on A for which i/; in 
(2.3) is C1. One can show that J^e is essentially self-adjoint on the domain 

Cyl^.   (For general results on essential self-adjointness of such operators, 

4The operator on the right side of (2.5) is just the (Lie derivative by the) left-invariant 
vector field L1 of the copy of SU(2) associated with the J-th edge. It is in this sense that 
J£iC are angular momentum-like operators. If a; is the end-point of the edge ej rather than 
the beginning-point, Li should be replaced by the right invariant vector field —R\ For 
details, see Eq. (3.9) - (3.11) in Ref. [1]. 
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See [7].) Next, given a point x € S let us introduce an equivalence relation 
for the edges sharing x as one of the ends: e ~ e' if and only if there is 
a neighborhood of x on which e and e' overlap modulo orientation. Then, 
Jx,e — Jx* e' ^ ancl only ifx = x\ i = if and e ~ e'. Finally, the commutation 
relations between these operators are given by: 

[Jkei j3x',e'} = i6x,x' <5[e],[e'] ^3kJ^e > (2-6) 

where [e] denotes the equivalence class of edges defined by the above equiva- 
lence relation and e1^ are the structure constants of su(2). In what follows, 
[e] will be referred to as the germ of an edge e starting at x. 

Finally, let us recall from [1] the definition of the smeared triad operators, 
the quantum analogs of the classical expressions Eg := ^ fs r]ai)CE

ldxa A dxb, 
where S' is an analytic two-surface without boundary. (Note that the action 
of El

s depends on the relative orientation of S and S which naturally defines 
the notion of 'up' and 'down' with respect to S). A careful regularization 
leads to the following result: 

^EE^Ke, (2-7) 
xeS    [e] 

where the first sum ranges over all the points x of S and, for every #, [e] 
runs through the set of germs starting at rr, and where 

{1,       if e lies above 5, 

-1,    if e lies below 5, (2.8) 

0,       otherwise. 

The sums in (2.7) are infinite. However, when we act with the right side 
on any cylindrical function, the result is well-defined because the sums have 
only a finite number of non-vanishing terms. Given a function $ G Cyl it is 
convenient to represent it by (2.3) using a graph 7 such that every isolated 
intersection point between the range of 7 and S is a vertex of 7. Then, the 
action of El

s on ^ = \I/7 reads 

®s *7 = \ E E «5([e/]) Jj.e, *7 , (2-9) 
1    v      I 

where v runs through the vertices of 7 contained in S, and / through the 
(labels of) the edges of 7 intersecting v. The operator 

&s : CyP\A)-*CylM(A) 

turns out to be essentially self-adjoint [1], 
This concludes our discussion of mathematical preliminaries. In the re- 

mainder of the paper, the operators J^e and Eg on Cyl^ will be used 
repeatedly. 
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3    'Internal' or 'Intrinsic' Regularization 

We can now introduce the first regularization of the volume operators. This 
discussion will be divided into three parts. In the first, we consider the classi- 
cal theory and introduce an approximate expression of the volume functional 
by dividing the region under consideration into small cells. In the second, 
we take over this 'regulated5 expression to the quantum theory. In the last 
part, we let the cells shrink and show that the limit yields a well-defined 
operator. However, this operator carries a memory of the background struc- 
ture (namely, coordinates) introduced in the intermediate steps. To obtain a 
covariant operator, we need to 'average' over the relevant background struc- 
tures. The averaging procedure is carried out in Section 4. 

Fix an open region R in S. We wish to construct the operator VR corre- 
sponding to the function 

VR{E) := / d3x\detE\* (3.1) 
JR 

on the classical phase space. For the regularization procedure, it will be 
necessaxy to assume that R can be covered by a single coordinate system 
(xa). However, it turns out that this assumption is not overly restrictive. 
To see this, note first that given any region i?, we can cover it by a family 
U of neighborhoods such that each U G U is covered by a single coordinate 
system. Let {^U)UGA be a partition of unity associated to U. Then, if we 
set 

VR^ = / (PxfoldetEl* 
JR 

we have 

VR = Y, vR,tv , (3.2) 
ueu 

where the final answer is independent of the specific choice of the partition of 
unity. It turns out that the same reasoning holds for the quantum operator 
VR. Hence, it will suffice to define the volume operators for regions R which 
can be covered by a single coordinate system. 

3.1    Classical Basis for the Regularization Pprocedure 

Fix global coordinates xa in a neighborhood in S containing R and cover it 
with a family C of closed cubes whose sides are parallel to the coordinate 
planes. (If a cube C is not contained in i?, consider only its intersection with 
R.)  Two different cells can share only points in their boundaries.   Within 
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each cell C € C consider an ordered triple s = (5i, 52,53) of oriented two- 
surfaces (without boundary) defined by 

za = consta,    a -1,2,3, 

which intersect in the interior of C (and whose orientation is induced by that 
of the coordinate axes). Such a family of pairs (C, 5), of cells and triples of 
surfaces s ('dual' to C), will be called a partition of R and denoted by V. 
Given V, for every C £ C and s = (5i, 52,53) we define a functional on the 
classical phase space 

qc[E] := ie**Vabc 4.4A . (3-3) 

where, as before, El
s = ^ Jse

L
abdxa A dxb is the '5-smeared triad'. Clearly, 

\qc{E)\/LQ, where Lc is the (coordinate) size of C, approximates the de- 
terminant q of the metric q^ (defined by the triad Ef) at any internal point 
of the cell-cube C. This approximate expression of q naturally provides an 
approximate expression V^ [i£] of the volume of the region i?, associated 
with the partition V 

Vg[l2\ := £ VMM ■ (3-4) 
cec 

Indeed, if we assume that, for some e > 0 Lc is bounded from above by e 
(i.e., Lc < e for every cell) and for each e we fix a partition Ve as above, 
then for every triad E we have: 

V£<[E\->VR{E)    as    e->0. 

Thus, in the classical theory, the phase space function VR(E) can be 
expressed in terms of the two-dimensionally smeared triads. Since we already 
have the quantum operators corresponding to smeared triads, in the next 
sub-section we will be able to construct regulated quantum operators qc> 
The removal of regulators will however be much more subtle. In particular, 
we will have to introduce a certain 'averaging' procedure. We will conclude 
this sub-section by justifying this procedure from a classical perspective. 

Let S denote an n-parameter family of coordinate systems, containing 
and smoothly related to xa. (As we will see in Section 4.1, in quantum 
theory one is led to a specific S. In the classical theory, however,we can keep 
S general.) Let us label the points of S by n parameters, say 0A. Then, 
repeating the steps given above, we obtain n-parameter families of regulated 
functionals of triads, qe

c[E] and V^e{0)[E]. For each (9, we obtain v£e{e)[E] 

such that Vfl '[E] -> VR(E) as e -> 0. Let us assume that the family 
of coordinate systems is such that the convergence is uniform in 6.  Then, 
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we can introduce a (rather trivial) averaging procedure as follows. Given a 
normalized function /i(0) on S (i.e., $sd

n6n(6) = 1), set 

VPIE] := £ ^jmi ■ (3-5) 
cec 

Then V^V[E] -> VR(E) as e -^ 0. Like all other steps in the regularization 
procedure, averaging is of course unnecessary in the classical theory. How- 
ever, we will see in Section 4 that it plays an important role in the quantum 
theory. 

This regularization is called 'internal' because the regulated volume func- 
tional is expressed in terms of triads which are smeared over two surfaces 
passing through the interior of cells (see the condition i) in Section 3.3). As 
a result, the final operator will turn out to be sensitive to the relation be- 
tween tangent vectors to the edges at vertices of graphs, i.e. to the intrinsic 
structure of the graph at vertices. In the Appendix, we discuss an 'external' 
regularization where the regulated volume functional is expressed in terms of 
triads smeared on the boundary of cells. This expression does not depend on 
the details of what happens inside any cell, whence the resulting quantum 
operator is sensitive only to the extrinsic structure which can be registered 
on the boundaries of cells surrounding vertices. 

3.2    Regularized Quantum Operators 

The regulated volume V^ of (3.4) depends on the classical phase space vari- 
ables only through (two-dimensionally) smeared triads. Since we already 
have the quantum analogs El

s of these (see (2.9)), it is straightforward to 
define the regulated volume operator. The operator qc corresponding to 
(3.3) is given simply by: 

QC = y£ijk'nabcElsaE
3

ShESc 

_   {_ 
— T^tijkVabc 

•EEE    E   *fl([ci])«6(NK([e3])4^4«Ji«. 
xieSa X2eSb xsESc [ei],[e2],[e3] 

(3.6) 

where we denoted 

A[e])--=*sdm (3-7) 
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and where [er] runs through the set of germs starting at av, r = 1,2,3. As 
in Section 2, although infinite sums are involved, the action of this operator 
on cylindrical functions is well-defined because the result has only a finite 

" (v) number of non-zero terms. To define the regulated volume operator V^   , we 
need to take the absolute value and square-root of qc- For this, it is necessary 
to show that qc is a self-adjoint operator. Now, we know that each J* e is an 
essentially self-adjoint operator. Furthermore, whenever [ei] = [62], we have 
7?abc^a([ei])^([e2])^c([e3]) = 0.   Therefore, the products on the right side 
of (3.6) contain operators associated with distinct edges.   These operators 
commute. Hence, the sum contains only products of commuting essentially 
self-adjoint operators.   It is easy to verify that the right side of (3.6) is 
therefore an essentially self-adjoint operator on the domain Cyr3^ of C3 

cylindrical functions.   Hence, we can take its self-adjoint extension and a 
well-defined regulated volume operator via: 

V£:=£|<M". (3-8) 
c 

By construction, V^ is a non-negative self-adjoint operator. This is the 
quantum analog of the approximate volume functional V^. It depends on 
our choice of partition V of the region R. 

3.3    Removing the Regulator 

In the classical theory, it is straightforward to remove the regulator. We can 
begin with any partition V and let the cells C shrink in any smooth fashion; 
in the limit e —> 0, we have V^e(E) —> VR(E). In the quantum theory, 
on the other hand, the limiting procedure involves certain subtleties. More 
precisely, now one has to 'streamline' the limiting procedure by specifying 
appropriate restrictions on how the partition V is to be refined as e tends to 
zero. Note however that such subtleties are a commonplace in quantum field 
theory. For example, in interacting scalar field theories in low dimensions one 
generally has to remove the regulators in a specific order and/or take limits 
keeping certain ratios of cut-offs and parameters of the theory constant. 
Similarly, in gauge theories based on lattices, to compute expectation values 
of Wilson loops in the continuum limit, one only allows rectangular lattices 
and the refinement of these lattices is often tailored to the Wilson loop 
in question. Indeed, some of these strategies seem so 'natural' that the 
restrictions involved often go unmentioned. 

To remove the regulator in the quantum theory, we will proceed as fol- 
lows. First, we will fix a graph 7 and consider the subspace Cy\R^ of Cyl 
consisting of all states ^y which are cylindrical with respect to a graph 7' 
whose range coincides with the range of 7. The regulated operators qc and 
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Vft leave this subspace invariant. Hence, we can meaningfully focus just on 
Cylfl(7) and specify how the regulator is to be removed to obtain the oper- 

ator Vft on Cyl#(7) from V^. For that we will use 7. However, we will see 
that the operators will stay unchanged if we choose another graph 7' which 
has the same range as 7. Moreover, the operators will in fact preserve the 
space Cyl7 of the cylindrical functions based on 7. By varying 7, we will 
thus obtain a family of operators on various Cyl7. Finally, we will verify that 
they axe compatible in the appropriate sense [7], i.e., together constitute a 
well-defined operator VR on H. 

Let us then begin with the first step. Fix a graph 7 and focus on CylR^y 
The allowed refinements of the partition of the region R will depend on the 
graph 7. More precisely, we will assume that (for sufficiently small e) the 
permissible partitions V satisfy the following three conditions (see fig.2): 

(i) every vertex of the graph 7 (within R) is contained in the interior of 
one of the cells, say C, and coincides with the intersection point of the 
triplet of two-surfaces 81,82, S3 assigned to C by the partition V; 

(ii) if a cell C does contain a vertex, say v, then v is the unique isolated 
intersection point between the union of the three two-surfaces Sa as- 
sociated to C and the range of 7; and, 

(in) if a cell C does not contain any of the vertices, then the triplet of 
surfaces Sa associated by V to C intersects 7 at most at two points. 

These requirements are quite easy to meet. Given any partition V in 
which the vertices of the graph 7 do not lie on the walls of the cells, the 
first condition can be met simply by choosing the surfaces Sa appropriately 
(within cells containing vertices). Given a partition satisfying the first con- 
dition, the second and third conditions can be generically5 satisfied by a 
permissible refinement of that partition. Furthermore, once a refinement 
satisfying these two conditions is achieved, subsequent refinements needed 
in the limiting procedure automatically satisfy them. Nonetheless, these con- 
ditions do restrict the allowed partitions. As we will see, they ensure that 
the limiting operator is well-defined; if refinements are taken arbitrarily, in 
general the limit fails to exist. 

Let us now suppose that the partition V satisfies these conditions and 
evaluate the action of the operator qc on an element \I/7/ in Cyl#(7). Note 
that because of the first condition on the partition, a cell C either contains 

5The fact that the edges are not allowed to lie in the surfaces Sa in any cell does impose 
a mild restriction on the permissible coordinate systems used to construct the partition 
V. However, this restriction is imposed only for simplicity of presentation. Because of the 
averaging procedure of Section 4, contributions from such non-generic partitions to the 
final result are negligible. 
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5, 

Figure 2: The figure illustrates the way cells C, C", C,f (the dashed lines) and 
2-surfaces 5a, S"^ 5'^ (the bold faced lines) of a partition V are adapted to 
a neighborhood of a vertex v of a graph 7 according to the conditions i)—iii) 
above. For simplicity, one dimension has been dropped. 

one vertex of 7 or no vertex at all. If it does not contain a vertex, then by 
condition (in) on the partition, due to anti-symmetrization forced by 77^, 
(3.6) reduces to 

qc *7 = 0 (3.9) 

If the cell C does contain a vertex, say i>, then (3.6) and condition (ii) on 
the partition implies: 

fc*? = i  E Wabc«a([ei])K%j]X^^^ % ,   (3.10) 
I,J,K 

where /, J, K label the edges of 7 passing through the vertex v. For simplic- 
ity, we will refer to tta[ej] as 'vectors'. The possible 'components' of these 
vectors are 0, ±1 and depend only on the octants defined by the two-surfaces 
(31,82,33) which contains the edge ej. To summarize, the conditions on 
permissible partitions have streamlined the calculation by reducing (3.6) to 
(3.9) and (3.10). 
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Let us now focus on the non-trivial case in which C contains a vertex 
v. The action of the operator qc depends on the three two-surfaces Sa only 
through the properties of these surfaces at v. Hence, it is unchanged as we 
refine the partition and shrink the cell C to v: 

Yimqc *7 = —   ][]  «([c/], [cj], [eK]) eijk Jl^Ji^J^ *7 , (3.11) 
I,J,K 

where the sum is over the edges passing through v and where 

Kfle/], [cj], [eK}) := e.^CM)/.^^])/.^^]). (3.12) 

(In particular, /^([e/], [ej], [CK]) vanishes if any two of the edges e/,ej,ex 
lie in the same or opposite octants.) Using the arguments used in the last 
sub-section, one can show that the limiting operator is well-defined and es- 
sentially self-adjoint on the Hilbert space i?7 obtained by Cauchy completing 
Cyl7. Now, if given the space Cyl#(7) we used in the above construction a 
different graph 7' whose range is the same as that of 7, the only difference is 
that 7' may have some extra bivalent vertices and/or some bivalent vertices 
of 7 may be missing in the set of vertices of 7'. However, for a bivalent 
vertex, the operator qc vanishes identically. Therefore the resulting volume 
operator derived in CylR^\ using 7' coincides with that for 7. 

Unfortunately, however, this limiting operator (3.11) carries a memory 
of our choice of partitions through the term tt([ej], [ej], [ej^]), i.e., on the 
background structure used in the regularization procedure. Hence, although 
the limit of the operator VR 

) of (3.8) is well-defined, it does not lead to a 
viable candidate for the volume operator. However, since the background 
dependence is of a rather simple type, one can eliminate it by suitably 'av- 
eraging' the regularized operator over relevant background structures. We 
will carry out this averaging in the next section. 

To conclude this sub-section, let us note two properties of the limiting 
operator (3.11) which follow by inspection. Irrespective of the choice of 
permissible partitions used in the regularization procedure, we have: 

(1) ^([e/], [ej], [CK]) depends only on the germs of the edges; and, 

(2) /s([ej], [ej], [ex]) is totally anti-symmetric in its three arguments. In 
particular therefore, if a graph has only bivalent6 vertices, the limit of 
the regularized operator qc annihilates all states in Cyl7. 

We will see that these properties are trivially preserved by averaging and 
are therefore shared by the final volume operator VR we will obtain in the 
next section. 

6If 7 has (at most) trivalent vertices, simple algebra shows that the action of the limiting 
operator on all gauge invariant states in Cyl7 also vanishes [21]. See Section 5. 
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4    Averaging 

To remove the background dependence, we need to appropriately average 
qc over the relevant background structures, use the resulting operator q^ in 
place of qc in (3.8,3.6), and then take the limit. Our discussion is divided into 
four parts. In the first, we spell out the basic strategy. In the second, we show 
that the desired symmetries of the final volume operator and the consistency 
requirement on the regularization procedure fix the form of the averaged 
quantity ftav([e/], [ej], [e#]) —and hence also of the final volume operator— 
uniquely up to a multiplicative constant. In the third, we establish the 
existence of certain measures that are needed for the averaging procedure. 
Finally, in the forth part, we collect results of the Sections 3 and 4.1 - 4.3 to 
arrive at the desired volume operator. 

4.1     Basic Strategy 

The background dependence in the limit of the regularized volume opera- 
tor (3.8,3.11) appears only through the factors «([ej], [ej], [e#]) associated 
with cells containing a vertex of 7. Therefore, let us first focus only on a 
single cell C containing a vertex v. Note that «([e/], [ej], [CK]) depends only 
on the relation between the three edges and the coordinate octants at the 
vertex v. Therefore, while there is an infinite-dimensional freedom in the 
choice of the background coordinates with which we began, the 'relevant' 
freedom for averaging turns out to be only finite-dimensional. To see this, 
let us regard two coordinate systems in C, centered at v, as equivalent if 
they yield the same «([ej], [ej], [CK]) for all triplets of edges of 7 passing 
through v. Then, given two equivalence classes and a coordinate system be- 
longing to the first, one can generically 7 find a system in the second which 
is related to the first by the action of GL+(3), the group of orientation- 
preserving general linear transformations at v. Furthermore, the diagonal 
subgroup diag of G?Z/+(3) merely rescales the coordinates and hence leaves 
each Ka[ei] unchanged. Hence, to get rid of the background dependence, it 
suffices to average /^([e/], [ej], [ej^]) only on the ,/mrte-dimensional coset-space 
GI/+(3)/diag. Topologically, this space S of 'relevant' background structures 
can be identified with an open subset of S2 x S2 x S2 and coordinatized by 
six angular coordinates, 6A say, with .A = 1,..., 6. 

Our task is to average the operator qc over the space S in such a way that 
the resulting volume operator VR is well-defined and covariant, i.e., has no 
memory of the background structures used in the regularization procedure. 
Fix a coordinate system xa in an open region U within E containing our 
region R and an adapted, permissible partition V of R as in Section 3.3. Fix 

7We can focus on the generic case because the averaging procedure involves integration 
and lets us ignore 'sets of measure zero'. 
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a vertex v of 7 and, as before, denote by C the cell containing v. Given a 
6A G <S, we obtain a second coordinate system xa(9), obtained from the first 
by the action of an element of GL+(3) corresponding to 6A (around some 
fixed origin in R). Using this coordinate system, we can again construct a 
permissible partition V(6) of R. Denote by C(6) the cell in this partition 
containing the vertex v. Replacing C by C(9) in Section 3.3, for each 6 G 5, 

we obtain an operator q^ on Cyl^y . We wish to average these operators with 
respect to a suitable probability measure on S. Now, given any normalized 
function /i(#), (i.e. satisfying fs d69 fi(9) = 1) the average q™ of CJQ is given 
by: 

/,J,K 

where 

Kav(N, [ci], [CAT]) = I d%(0)«([e/], [ej], [c«-],«) • (4.2) 

Thus, for any normalized measure /i, the averaged operators q™ are well- 
defined.. Using these in place of qc in (3.8), one can construct the regularized 
volume operator Vj^. As in Section 3, it is straightforward to remove the 
regulator. So far, for simplicity of presentation, we have focussed on a single 
cell C containing a vertex v. However, since the coordinate systems xa(9) 
were not adapted to any specific cell, (4.1) and (4.2) hold for all cells. 

To summarize, the basic idea is simply to repeat the procedure of section 
3 but now using averaged operators. Physical justification for this strategy 
comes from the fact that, as we saw in Section 3.1, the averaging procedure 
does yield the correct volume functional in the classical theory. 

The key question then is: what measure should we use for averaging? 
Unfortunately, the space S is non-compact and does not admit a canonical 
normalized measure. Can a suitable measure be perhaps selected by exam- 
ining the classical limit? The answer is in the negative: As we saw in Section 
3.1, although the averaging procedure is applicable classically, the averaged 
regulated volume tends to VR for any normalized ^(9). In the quantum the- 
ory, on the other hand, this is not the case and we need to find /i(0) for 
which the final volume operator is background independent. In Section 4.2 
we will assume that such measures exist and show that the requirement of 
covariance of the final volume operator determines ^av —and hence also the 
final volume operator— uniquely up to a multiplicative constant. Existence 
of measures of the required type will then be established in Section 4.3. 
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4.2    Uniqueness of ftav 

Let us suppose that there does exist a normalized measure // on S such that 
the resulting volume operator VR transforms covariantly under diffeomor- 
phisms of S. What can we say about the corresponding Kav([ej], [ej], [e^])? 
The purpose of this sub-section is to show that, given any cell containing a 
vertex v of any graph, the quantity must be of the type: 

^av([e/], [ej], [CK]) = rt(M) c(e/, ej, ejc) (4.3) 

for some (measure-dependent) constant K^, where €(e/, ej, e^) is the orien- 
tation function which equals 0 if the tangent directions8 to the three edges 
are linearly dependent at the vertex v, and ±1 if they are linearly inde- 
pendent and oriented positively or negatively. (Recall that E is oriented.) 
Thus, the measure dependence is contained in a single, overall multiplicative 
constant. 

The idea is to use symmetries of «av([e/], [ej], [ex]) implied by (3.12), 
(4.2), and the requirement that VR be diffeomorphism covariant, to constrain 
its form. We saw at the end of the last sub-section that K([ej], [ej], [CK]) has 
two properties irrespective of the choice of a permissible partition. It is 
trivial to verify that these properties are preserved by averaging. Thus, we 
have: 

(1) «av([e/], [ej], [CK]) depends only on the germs of the edges; and, 

(2) Kav([e/], [ej], [CK]) is totally anti-symmetric in its three arguments. 

Next, recall that a cylindrical function in Cyl7 is also cylindrical with 
respect to a graph 7' with 7' > 7, i.e., such that (the range of) 7 is contained 
in (the range of) 7'. Since we want the volume operator VR to be well-defined 
at the end, its action on a state should not depend on whether we regard 
the state as being cylindrical with respect to the first graph or the second. 
This implies that 

(3) the function (ej,ej,e/c) -* «av([e/], [ej], [e^]) defined by ttav([e/], 
[ej], [CK]) depends only on the germs of the three edges and not on 
the specific graph used in the computation. Thus, the averaging pro- 
cedure simply provides a function from germs of (ordered) triplets of 
edges intersecting at any point x in E to the reals. 

Next, the assumed diffeomorphism covariance of the volume operator 
implies that this function must have the following property: 

8 A germ [e] at a point x in E defines a unique oriented tangent direction at x. 
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(4) Given any two triplets (e/,ej,ei<:) and (e^e^e^) of edges related by 
an orientation-preserving diffeomorphism of S, 

Kav(M, M, M) - KTM], WJ}, [efK]) ■ (4.4) 

The next property follows immediately from (2)-(4). 

(5) Let the triplet be such that the tangent directions they define at x are 
linearly independent. Then, 

^([e/L M> [eK}) = K{n) e(ej, ej, eK) (4.5) 

since this is the only diffeomorphism invariant, totally anti-symmetric 
function of germs of ordered triplets of edges intersecting at x. 

On the other hand, if the three tangent directions are linearly depen- 
dent, other invariants exist, which depend on higher derivatives of edges at 
the intersection point. A priori, these are potential candidates for K:av([e/], 
[ej], [e^:]). However, they can be ruled out as follows. Consider two triplets 
with the same orientation, ([ei], [62], [ea]) and ([ei], [62], [e^]), such that 63 is 
tangent to 63 at x. For a point-0 G S such that none of the corresponding 
two-surfaces Sa passing through v is tangent to any of the germs ei, 62,63, the 
germs 63 and 63 are on the same side of each of the two-surfaces. Therefore, 
almost everywhere on 5, we have /^(es) — /^(e'a). Hence, whenever the 
three pairs of primed and unprimed germs define the same oriented tangent 
directions at z, the equality 

K([e/],[e.,],[Ctf],0) = «(&], [c'jMey.l?) (4.6) 

holds almost everywhere on <S.  In this case, integration with respect to a 
H{e)d&0 yields 

«av(N, [ej], [e*]) = ^{[e'j], [e'j], [e'K]) . (4.7) 

To summarize, we have shown that 

(6) given a point x in E, ftav([ej], [ej], [ejc]) can depend only on the oriented 
tangent directions at x defined by the three germs. 

We can now use this property to evaluate ^av([e/], [ej], [ejc]) in the case 
when the tangent directions are linearly dependent. If two of these direc- 
tions coincide, anti-symmetry immediately implies that Kav([e/], [ej], [e^]) 
must vanish. Next, note that (2.8) implies that Ksjej] = —Ksa[—ei]. Hence, 
«av([cj}>[ej],[eK]) = -«av([-e/],[ej],[eK]), which in turn implies that 
^(^/il^JJ6^]) vanishes if any two tangent directions are anti-parallel. 
Finally, consider the remaining case in which the three tangent directions 
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span a two-plane but are such that no two of these directions are tangential 
to each other. Then, modulo a possible diffeomorphism (to 'straighten out 
the edges'), there is a coordinate system in S in which (the point x lies at 
the origin and) the three germs coincide with straight lines (1,0,0), (0,1,0) 
and (1,1,0). Finally, there exists an orientation-preserving diffeomorphism 
-the rotation through TT along the third axis- which carries ([ei], [62], [es]) to 
([^L [ei], [ea]). Hence, by diffeomorphism invariance and anti-symmetry, we 
conclude «av([e/], [ej], [SK]) = 0 in this case as well. Thus, we have: 

(7) If the three tangent directions determined by the edges ([e/], [ej], [CK]) 

at x are linearly dependent, then ftav([ej], [ej], [ex]) — 0. 

Properties (5) and (7) imply that if there exists a measure /i on <S, aver- 
aging with respect to which provides a well-defined diffeomorphism covari- 
ant volume operator Vft, then that averaging determines ttav([e/], [ej], [CK]) 

uniquely, up to a multiplicative constant K^y It is given by (4.3). Finally, 
properties (3) and (6) imply that the constant K,^ can depend only on 
the averaging function /i(0) and not on the specific vertex or graph under 
consideration. 

4.3    Existence of Required Measures 

We now turn to the issue of existence: do there exist averaging functions 
//(#) which lead to volume operators VR that transform covariantly under 
diffeomorphisms? We just saw in Section 4.2 that the necessary and sufficient 
condition for VR to be well-defined and covariant is that Kav of (4.2) be given 
by (4.5). Therefore, we can rephrase the question as follows: Given any 
vertex v of any graph 7, does there exist a function 12(6) on S such that, for 
any triplet e/, ej, ex of edges of 7 at the vertex, 

/ ^MWtej], M, M, 0) = Ko€([ei], N, [ca])    and     / d%(0) = 
Js Js 

1 

for some constant K0? 

Now, since /s([e/], [ej], [ex]) depends only on the oriented tangent di- 
rections of the three edges and since the integrals in the above equations 
represent the L2 inner product on (S,d66) (of /i with K, and 1 respectively) 
the required /i(#) is guaranteed to exist provided the following statement 
holds:   For any finite set of germs .{[ei],..., [CN]} at a point v, such that 

ej is not tangent to ej whenever I ^ J, the functions /^([e/], [ej], [ex]^), 
I < J < K and the constant function constitute a set of linearly independent 
functions on S. 

Let us therefore establish this statement. Recall first that the set of reg- 
ulators S can be identified with the set of triplets of oriented two-surfaces, 
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^ = (5a)a=i,2,3? intersecting at v. (These triplets are obtained by apply- 
ing the orientation preserving GL(3) linear transformations on the surfaces 
xa = const, the action of GL(3) being defined with respect to this initial 
coordinate system.) Now, given germs [ei],..., [e^} as in the statement, 
suppose that there exist constants a, ajjK, /, J, if = 1,..., iV such that 

a+   Yl   aiJKK([eiMej],[eK],0) = 0, (4.8) 
I<J<K 

for almost every 9 = (81,82, S3) E S. Pick a two-surface So which is tangent 
to [ei] but is not to any of the other germs. Consider the points of S where 
Si is near SQ. Then, as we slightly vary Si around So, the functions KsAej) 
remain unchanged if J ^ 1. On the other hand, /^(ei) does change. We 
can find two-surfaces S_ and 5+ near So such that 

Ks±(ei) = ±l . (4.9) 

Therefore, plugging into (4.8) 6L := (S_, S2, S3), and next (9+ = (S+, S2, S3) 
with any 82,83, and subtracting, we find 

aiJKeibcKsb(ej)Ksc(eK) = 0 , (4.10) 

for arbitrary 82,83. Repeating that argument for 62 and 63, say, we obtain 

ai23 = 0 . (4.11) 

Since this argument applies to any triple i, J, K, we conclude 

aIjK = 0 = a. (4.12) 

Thus, as asserted in the statement above, the constant function and the 
functions /c([e/], [ej], [e/r],0) are all linearly independent on S. 

This establishes the existence of averaging functions of the required type. 

4.4    Summary 

Let us now collect the results obtained in Section 3 and the previous three 
subsections. In Section 3, we began by recasting the volume function VR 

on the classical phase space such that the resulting 'regulated' form could 
be taken over to the quantum theory. We then showed that if the regulator 
is removed with due care, the limiting operator (3.8, 3.11) is well-defined. 
However, it carries a memory of the regulators used and therefore the re- 
sulting volume operator fails to be covariant under diffeomorphisms. To 
remedy this situation, in Section 4 we introduced a procedure to average 
over the 'relevant' background structures. It turns out that the requirement 
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that the final operator VR be well-defined and diffeomorphism covariant is 
so strong that it determines the form of the averaged operator except for 
an overall multiplicative constant K0. Finally, this form does result from 
averaging with respect to suitable measures, i.e., the averaging functions of 
the required type do exist. 

The final result is the following.   Given a region R in E, we have an 
operator Vft, whose action on any cylindrical function \I/7 is given by 

VRV7 = K0J2- 

where 

Qv *7 = 4gC«ib   J2   ^ ^ e'')4,e<e' J£e" *7 ■ (4-13) 
e,e',e" 

Here v runs over the set of vertices of 7; e, e', e,r over the set of edges of 7 
passing through the vertex v and e(e, e', e") is the orientation function, which 
equals 0 of the tangent directions of the three edges are linearly dependent 
and ±1 if they are linearly independent and oriented positively or negative 
with respect to the fixed orientation on E. The constant K0 remains unde- 
termined. As written, because of the explicit reference to the graph 7, the 
operator is defined in Cyl^ ^ (for any 7). Next, it is quite easy to check that 
for any pair of graphs, the corresponding operators agree on the intersection 
Cyl!y D Cyly . That is, the family of operators defined on various Cyl^' 
satisfy the 'cylindrical consistency' condition introduced in [7]). Therefore, 
(4.13) unambiguously defines an operator in Cyl^. 

We conclude with two remarks. 
1) Restoration of constants: Let us restore the factors of c, G, h and the 

Immirzi parameter 7 in the final expression. In the quantum representation 
labelled by 7, the volume operator is given by: 

SnGh-y 3 
VR% = K0(—^-!-)2 

where 

Qv *7 = ^eijk £ 6(e, e', e")j;e<e, J*,,,, *7 . (4.14) 
6,6',e" 

In the remainder of the paper, however, we return to the conventions c = 1, 
SnG = 1, h = 1 and 7 = 1. 

2) Extension to the smooth case: As we remarked in footnote 2, the an- 
alyticity of the graphs is not really essential for the results presented above. 
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We can begin with the vector space spanned by the set of cylindrical func- 
tions Cyloo given by all the smooth graphs, replacing 'analytic' by 'smooth' 
in the definition of a graph, following [28]. The work of Baez and Sawin [5] 
provides a natural extension of the integral f dn0 defined for elements of 
Cyl^. The Cauchy completion of this space then leads to a Hilbert space. 
In the regularization of volume, the only potential problem with this exten- 
sion is that the domain of the operator El

s smeared over a two-surface S 
(which may or may not be analytic) fails to be dense in the Hilbert space. 
This problem occurs because a smooth graph can intersect a given two- 
surface in an infinite number of isolated points. Therefore, to define the 
regulated operators (3.8,3.6) we need to start with a partition V that sat- 
isfies the conditions [i) — (Hi) of Section 3.3. Then, given a graph 7 the 
number of intersections between the two-surfaces 5a defined by V and 7 is 
finite by construction. Hence, the two-surface operators El

Sa are well defined 
in Cyl#(7) and the entire construction goes through. The resulting volume 
is given by the same formula (4.14) and has all the properties discussed be- 
low. One of them, the diffeomorphism invariance, is even easier to formulate 
because the action of the smooth diffeomorphisms is now well defined on 
the whole Hilbert space. (However, the arguments used should be modified: 
one has to use the spin-network decomposition from the beginning.) Using 
analogous modifications, the 'external' regularization of volume presented in 
the Appendix can also be extended to the smooth case. 

5    Properties of the Volume Operator 

Although the volume operators VR are not as well understood as their area 
counterparts, their basic properties have been explored. The purpose of this 
section is to summarize these. 

5.1    Preliminaries 

1) As with area operators, the expression of VR can be recast in an 'intrinsic' 
fashion that does not refer to any graphs. 

VR = Ko ^2 V^l ' 
xeR 

where 

*x = i&      2      €«*€(c»e'»e")4Ie4e'J*.«"' ^ 
[e],[e'],[e''] 

where each of [e], [e'] and [e"] runs through the set of germs of one- 
-dimensional submanifolds of S, bounded from one side by x.   As usual, 
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acting on a cylindrical function \I>7 the action is non-trivial only if re is a 
vertex of the graph and the germs [e], [e'], [e,f] overlap three edges of 7 inter- 
secting at #. In the terminology of [7] the operator qx is given by a cylindri- 
cally consistent family - labelled by all the graphs - of essentially self-adjoint 
operators Cyl^ -> Cyl^ . Hence, with domain Cy\^\ it is an essentially 
self-adjoint operator on T-L. Therefore the absolute value and square root of 
this operator used in the first equality of (5.1) are well defined and VR is 
essentially self-adjoint. 

2) In view of the above formulas it is meaningful to regard the operator 

y/q{x), representing the square root of the determinant of the metric, as an 
operator-valued distribution: 

V v leUe'Ue"] 
(5.2) 

By contrast, the determinant of the metric fails to exist even as an operator- 
valued distribution. This is completely analogous to the situation for deter- 
minants of 2-metrics that was encountered in the discussion of area operators. 

3) If i?(a;,e) is a family of neighborhoods which shrink to x as e ~-> 0, 
then given any C3 cylindrical state ^7, the limit 

lirni^^^ (5.3) 

exists but in general is not zero. This property plays an important role in the 
recent regularizations of various operators that arise in quantum dynamics 
[14,27]. 

5.2    The Gauge Invariance and DifFeomorphism Covariance. 

Both VR and qx are gauge invariant. Therefore, they naturally restrict to the 
operators in the space of gauge invariant cylindrical functions Cyl^3^(^4/^). 

Since the edges of our graphs are analytic, analytic diffeomorphisms on 
£ have a well-defined action on Cyl^3). The measure /i0 on A is invariant 
under this action. Hence the action of these diffeomorphisms preserves the 
inner product on Cyl^ and extends to a unitary action on all of H. The 
operators VR and qx transform covariantly under this action. 

There is however a larger group, Diff, of smooth diffeomorphisms of £ 
that one can consider. Given 0 G Diff, we obtain an operator on H whose 
domain9 is the linear span of all cylindrical functions \I/7 such that 7 is 

9If we work in the Hilbert space of [28] given by all the smooth graphs, then the domain 
of each diffeomorphism is the whole Hilbert space. 
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mapped by </> to an analytically embedded graph. For notational simplicity, 
we will denote these operators also by (f). Their action is given by 

0tt7(A) = V(^(ei)),...,^(ejv))) , (5.4) 

where ^ is the function on [SU(2)]N that determines \Er
7 (see (2.3)). The vol- 

ume operators transform covariantly with respect to these diffeomorphisms. 
That is, 

<I>VR% = %(R) (f>% , 

0gx$7 = q^x) </>% . (5.5) 

In particular if 0 preserves i?, we have [(/>, VR] = 0, and, if it preserves x, then 
[05 9x] — 0- Note, however, that the volume operators fail to be covariant 
with a similar action of an arbitrary homeomorphism. In particular, recall 
that VR annihilates \]/7 if the incident edges at every vertex of 7 are co- 
planar. However, for every graph there is a homeomorphism that can map 
it into a graph with the above property, which contradicts the covariance. 
How does this situation compare with that in the classical theory? Since 
densities fail to have a meaningful transformation property under general 
homeomorphisms, the image of the volume element under homeomorphisms 
may not even exist! 

If the region R is all of S, the total volume operator Vz is diffeomorphism 
invariant. Therefore it induces the operator in the space of diffeomorphism 
invariant states [9,28]). 

5.3    The Spectrum 

We will first show that irrespective of the choice of the open region i?, the 
volume operators VR have the same, discrete spectrum. Note first that, for 
every cylindrical function \I>7, VR\I/7 as well as Qx^-y tire cylindrical over the 
same graph 7. Let us therefore fix 7 and consider the restrictions of (5.1) 
to CyL, which define operators thereon for every region R C E and every 
point x G S. In Cyl7 each of the operators qv is a finite sum with constant 
coefficients of the products of triplets of the operators J* e. It follows from 
the well known properties of operators satisfying the angular momentum 
commutation relations (2.6) that the spectrum of qv in the completion Hy 
of Cyl7 is discrete. Therefore, so is the spectrum of the restriction of VR to 

Tij for VR is a finite sum of the commuting square roots of l^ls. If for each 
7 we denote the span of the eigenvectors in 'H7 by £7 then U7£7 is dense in 
Ti. Hence the full spectrum of VR is given by the union of the spectra on 
the spaces Hj. 

If we vary the graph 7, a priori it is possible that the spectra might 
change in a continuous manner. However, the spectrum of qx depends only on 
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the relative orientations of the triplets of oriented tangent directions defined 
by the edges at x. The set of possible characteristics is thus countable. 
Therefore, the full spectrum of qx is a countable union of the countable set 
of different spectra in each ^7. The same argument shows that the full 
spectrum of VR is countable. 

The fact that the spectrum of VR is independent of an open R is a 
simple consequence of the fact that the eigenvalues of qx depend only on the 
characteristics of a graph in an arbitrarily small neighborhood of x. This 
property is shared by the classical volume function VR (although in that case 
the allowed values of the function span the entire non-negative half-line for 
any open region R). 

It is also clear from the commutation relations (2.6) that there is a basis 
such that each of the operators J^e is of the form i times a skew-symmetric, 
real and block-diagonal matrix of finite dimensional blocks corresponding to 
graphs. (This is a spin-network basis [10,11]; see also [1] for an extension 
of the definition of spin-networks from the space of gauge invariant cylindri- 
cal functions to the space Cyl of all the cylindrical functions.) Since qx is 
constructed from the products of the commuting J* e operators, the same is 
true for qx. Therefore, if a real number A is an eigenvalue of qx then so is 
—A and the corresponding eigenvectors are related to each other by complex 
conjugation of the coefficients. 

Given a graph 7 and a vertex rr, qx commutes with each of the operators 
Jv,e provided v ^ x as well as with the Gauss constraint operator 

N 

G1 = V J* ^x        / j 0x,e.i') 

7=1 

where / in the sum labels the edges at x. From these, one can construct the 
following set of commuting operators. For each vertex v ^ x, number the 
edges at v in an arbitrary manner, say as ei,..., ejv, and for every k < N 
define the following operator: 

(E-CKE-C)^ £>.«')2- 
7=1 7=1 7=1 

These operators, together with Qlv for every vertex v of 7 and fixed iv for 
each v, form the required commuting set. Subspaces preserved by qx can be 
therefore labelled by the eigenvalues of these operators. Let us denote by 
Tx,idu...jn,M the subspace corresponding to the eigenvalue 1(1 + 1) of GXGX, 
the eigenvalues ji(jj + 1) of J^^Jl^, I labeling the edges at x and to M 
labeling the eigenvalues of the remaining operators. 

Whenever TxjLji,...jniM is one-dimensional it is necessarily an eigen- 
-direction of qx.  Furthermore, the corresponding eigenvalue must be zero. 
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In practice, this is a powerful argument to find the kernel of qx and was 
used by Loll [21] to show that the volume operator must annihilate all gauge 
invariant (I = 0) cylindrical functions \I/7 if all vertices of 7 are trivalent 
or have lower valency (i.e., if the number of edges meeting at any vertex is 
less than or equal to three). If Txiijly...jniM happens to be 2-dimensional, 
then the absolute value operator \qx\ relevant for the volume is automatically 
diagonal therein. Such a space, namely Tx 1 ^ „• j M, emerges in the eval- 
uation of the explicit formula for Thiemann's Hamiltonian operator acting 
on trivalent spin-networks [26]. In the general case, %:,iju...jn,M is finite di- 
mensional, which still reduces the eigen problem to diagonalization of finite 
dimensional matrices. 

The operator qx consists of terms of the form 

tijkJljJljJeK =: QiJK • (5.6) 

An intriguing property of this expression is that it can be written as 

QIJK - ^[(Jej +JeK)2(JeI + Jejf) ■ (5.7) 

This was observed and used by Thiemann to analyze the matrix of qx in a 
4-valent case [22]. That property is also related to the 'apparently anoma- 
lous' terms in the commutator of two area operators [25]. Several exam- 
ples of the eigenvalues and eigenvectors and other special cases were studied 
in [17,29,30]. Although the volume operator studied in [17] differs from ours, 
and thai of [29] is derived within the lattice framework, in the 4- (or lower) 
valent cases there is a simple relation between all these operators. In par- 
ticular, the lattice operator coincides with the above operator, restricted to 
the cylindrical functions given by the loops contained in a cubic lattice [18]. 

Finally, the spectrum of the volume is discrete in the sense that it has 
a countable number of elements. The complete spectrum is not known ex- 
plicitly (in contrast to the situation with area operators). Indeed, we do not 
even know how 'densely the eigenvalues are packed' on the real line, or even 
what the smallest non-zero eigenvalue is. 

5.4    Example: A Gauge Invariant 4-Valent Vertex, 

Since vertices at which three or fewer edges meet are 'trivial' as far as the 
operators qx and VR are concerned, the simplest non-trivial case is that of 
a gauge invariant 4-valent vertex. Therefore, to get a feel for the action of 
these operators, let us therefore discuss this case in some detail. 

Suppose # is a 4-valent vertex of a graph 7 and consider qx acting in the 
(3) corresponding subspace of gauge invariant elements of Cyl^ . Denote by e/, 

/ = 1,2,3,4, the edges intersecting at a vertex x. Gauge invariance of states 
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in this subspace is equivalent to the statement that the Gauss constraint 
vanishes identically on this subspace. Thus, at the vertex x we have: 

We use this equation to eliminate J* e   in favor of the remaining Js. Then, 
we have 

Qx = y ey* (€(61,62,63)4^^ 

+ e(ei,e4,e3)J£>c^|C4J^ .    (5.9) 

Using the Gauss constraint and the observation that 

cVkJiaJUVw +4,e2) = 0, (5.10) 

we find 

where 

Qx = -TTKiei, e2, 63,64)6^4,61 Jx,e2Jx,e3  v 

^(61,62,63,64) = 6(61,62,63) - 6(61,62,64) - 6(61,64,63) - 6(64,62,63)  . 

(5.11) 

Thus, modulo the geometric factor K(ei, 62,63,64), the action is the same as 
that at a trivalent, but non-gauge invariant, vertex between the edges ei, 
62 and 63. 10 (In a trivalent gauge invariant case, one can further express 
J* e3 as 4 es = —4 ei — 4 62- Then (5.10) implies that qx vanishes on this 
subspace.) 

The value of the diffeomorphism invariant factor K depends on the char- 
acteristics of the intersection between the ordered edges at x. Recall from 
Section 4.2 that it depends only on the oriented directions e/, / = 1,..., 4, of 
the vectors defined by the edges at x. If the intersection is planar (that is, the 
four edges are tangent to a two-plane), then qx is identically zero. Otherwise, 
we can always find coordinates, such that after a possible renumbering, 

ei - (1,0,0), 62 = (0,1,0), C3 = (0,0,1) . (5.12) 

Then the intersection character is determined by 64. One can see that every 
case (modulo renumbering) is diffeomorphic to one of the cases given by the 
following possible values of 64: 

64 = (1,1,1),  (-1,-1,-1),  (1,1,0),  (-1,-1,0),  63,  -63  • (5.13) 

10It follows from the same arguments that, in a 4-valent case, the Rovelli-Smolin counter- 
part (A.23) of our qx operator (5.11) coincides with \qx\ of (5.11) with «(ei, 62,63,64) = 4. 
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The corresponding values of ^(ei, 62,63,64) are 

«(ei,62,63,64) = -2, 4, -1, 3, 0, 2 . (5.14) 

Finally, the dimension of the corresponding invariant subspace TX,Q,J1,...J4,M 

is given by the number of different numbers j each of which satisfies simul- 
taneously: 

\Ji-J2\ <j< IJ1+J2I,     IJ3-J4I <j< \J3+h\ (5.15) 

and such that both j — \ji — J2\ and j - \js — j^l are integers. 

6    Discussion 

In the main body of the paper we presented a regularization scheme to ob- 
tain volume operators VR associated with open regions R of the 'spatial' 
3-manifolds E and discussed a few properties of these operators. As in any 
'quantization', the idea is to first express the classical observable of interest 
(in our case, functions VR on the classical phase space) in terms of 'ele- 
mentary' variables (in our case, two-dimensionally smeared triads) which 
have unambiguous quantum analogs, then promote this 'regulated' classical 
expression to quantum theory and finally remove the regulators. There is 
considerable freedom in the first step and we chose an 'internal' regulariza- 
tion in which the volume of an elementary cell is expressed in terms of triads 
smeared over three two-surfaces passing through the interior of the cell. It 
was relatively straightforward to carry over the classical expression to the 
quantum theory and remove the regulators. However, it turned out that the 
resulting operator carries a memory of the background structures used in 
the regularization procedure and fails to transform covariantly under diffeo- 
morphisms of E. To rectify this situation, we first averaged the regulated 
expressions over the 'relevant' background structures and then removed the 
regulators. The resulting operator VR is uniquely defined up to an overall 
(i?-independent) constant K0.\ It is a densely defined, positive, self-adjoint 
operator and transforms covariantly under the action of E-diffeomorphisms. 
Its spectrum is purely discrete. 

The central part of the paper is contained in Sections 3 and 4, which 
discuss the intricacies of the regularization procedure. The overall philoso- 
phy here is the same as that used in other quantum field theories and the 
subtleties involved in the continuum limit are of the same nature as those 
encountered there. In our case, a key simplification occurs because (a large 
class of) operators on the kinematical Hilbert space H can be naturally 
considered as a consistent family of operators on partial Hilbert spaces /H7 

associated with graphs 7 [7].   In the present case, in particular, we could 
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focus on the restrictions V^ of the desired operator VR to ?^7. In the reg- 
ularization procedure, therefore, we could refer to the graph 7. The key 
test of the procedure comes from the consistency requirement: the operators 
Vfi so regulated could have failed to be consistent. This did not happen11; 
our family turned out to be consistent and therefore defines a self-adjoint 
operator VR on Ti. 

The regularization procedure could, however, be improved in some re- 
spects. First, the regulated expressions (3.3, 3.4) are not gauge invariant. 
However, a cosmetic change can rectify this situation without affecting our 
arguments or the final result: it suffices to replace the simple integration of 
E in (3.3) over a two-surface with integration combined with the parallel 
transport along some fixed paths ending at a fixed point. This additional 
step does not affect the result which is already gauge invariant. It would 
be more difficult to make the regularization procedure manifestly diffeomor- 
phism covariant. However, this is largely an aesthetic issue since our final 
result does enjoy diffeomorphism covariance. Next, at least at first sight, 
the ambiguity of a multiplicative constant K0 appears to be an undesirable 
feature. Recall however from Section 4.4 that there is another ambiguity 
at the kinematical level, first pointed out by Immirzi [32] using earlier work 
of Barbero [31]. This arises from the existence of a canonical transforma- 
tion which fails to be unitarily implementable and leads to a one-parameter 
family of unitarily inequivalent representations of the holonomy-triad oper- 
ators. For volume operators, the net effect is that there is an ambiguity of a 
multiplicative constant in the spectrum which cannot be eliminated without 
additional input. Therefore, from a 'practical' viewpoint, the freedom in the 
choice of K0 does not worsen the situation. 

The Appendix discusses another regularization scheme, based on con- 
structions given by Rovelli, Smolin and De Pietri [17, 24] in the loop rep- 
resentation. This may be called an 'external' regularization because the 
starting point is an expression of the volume of an elementary cell in terms 
of triads smeared on the boundary of the cell. In the early discussions, it was 
believed that this regularization is free of the subtleties we encountered in 
Section 3.2 while taking the continuum limit in the quantum theory. How- 
ever, a careful treatment of the limit shows that this is not the case; the 
assumptions needed to ensure that a well-defined limit exists are completely 
analogous to those introduced in Section 3.2. The final result does differ from 
that presented in the main body of the paper. Because of the 'external' regu- 
larization, these regulated —and hence also the final— operators do not have 

11 In the initial stages, there was some concern because the regularization procedure 
seemed to be 'state-dependent'. Regarding VR as a consistent family of operators V^ 
clarifies the situation: it is as natural to use 7 to regulate an operator on Ti-y as it is 
to use the Fock space structure to normal order operators in Minkowskian quantum field 
theories. 
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any information about the details of the tangent vectors to the edges at ver- 
tices. Hence they transform covariantly not only under diffeomorphisms but 
also homeomorphisms on S in the sense spelled out in Section 5.3. However, 
in simple situations such as those considered in simplicial treatments [33], 
the two operators coincide (apart from a constant [18]). Finally, although it 
is often not explicitly stated, the ambiguity of an overall constant exists also 
in the 'external' regularization. There, it is buried in one's choice of 'rect- 
angular' cells. If one changes to tetrahedral cells, for example, the overall 
constant in front of that volume operator would change. Indeed, the situa- 
tion is parallel to that in the 'internal' approach of the main text. There, 
the tt0-ambiguity arose because, while the limit of the classical, averaged 
expression is insensitive to the choice of the measure used in the averaging, 
the limit of the quantum operator is unique only up to an overall constant. 
Similarly, in the 'external' approach, while the limit of the classical, regu- 
lated expression is insensitive to the details of the geometry of elementary 
cells, the corresponding quantum volume operators can differ by an overall 
constant. 

To conclude, we wish to emphasize that the existence of two distinct op- 
erators is a reflection only of quantization ambiguities. In both approaches, 
one begins by re-expressing the classical volume function VR in terms of 
two-dimensionally smeared triads and takes these 'regulated' classical ex- 
pressions over to quantum theory. The difference lies in the choice of the 
'regulated' classical expressions. In the classical theory, they both lead to 
the same function VR when the regulators are removed. In the quantum 
theory, there is a subtle difference in the corresponding operators VR. 
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Appendix: 'External' or 'Extrinsic' Regularization 

In this Appendix, we will provide a detailed derivation of the analytic for- 
mula of the volume operator (reported in [18]) which results from an 'exter- 
nal' regularization scheme. Key ideas behind this regularization are due to 
Rovelli and Smolin [13]. However, our treatment differs from theirs in some 
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ways. First, we work in the connection —rather than loop—representation. 
Second, as in Section 3, the removal of regulators is a subtle procedure also in 
this 'external' regularization and the limiting operator can carry a memory 
of the coordinate system used or may not even exist unless the permissible 
partitions are restricted suitably. These subtleties, discussed in Subsections 
A.3 and A.4 below, were overlooked in [13]. Finally, as is the case for the 
'internal' regularization discussed in the main text, our 'external' regular- 
ization is consistent with the treatment of the Hamiltonian constraint in the 
literature [14,28]. Let us discuss this point in some detail. Recall first that 
the domain of this constraint operator is the diffeomorphism invariant sub- 
space of the algebraic dual to the Hilbert space H [14], or an appropriate 
extension thereof [28]. The topology one uses to take the limit while remov- 
ing the regulator is defined as follows. If Oe denotes the regulated operator 
on 7i (where e symbolizes the regulator) and (5| a dual state, then the limit 
O as e -» 0 is defined via its action {OS\ on (51 by the following formula 

(dS\V) :=lim(S|0€tt) , (A.l) 
e-»0 

for every $ E H in the domain of (SG\. In the case of the volume operator 
now under consideration, it appears that the topology used implicitly in [13] 
is inequivalent to (A.l). (See [34] for the discussion of that topology.) Indeed, 
if in the derivation presented in [13], or in the one proposed in [22], we take 
the final limits using the topology corresponding to (A.l), the final result 
would be different from that given in [13,17,22] (see footnote 13). In our 
treatment, as in the main text, we will remove the regulator using the Hilbert 
space topology and obtain a densely defined operator VR on H. The dual 
action of this operator on the dual space coincides with the action defined 
by (A.l). Thus, while our final answer is equivalent to that of [13], our 
regularization provides a general procedure which is 'uniformly' applicable 
to the volume operator as well as the Hamiltonian constraint. Not only is 
this aesthetically pleasing but quite essential if, for example, one wishes to 
incorporate the cosmological constant in the Hamiltonian constraint. 

As before, one begins with a partition C of the open region R into cells 
but associates to each cell C extra paths to parallel transport the triads 
E to a fixed point. Let us choose an arbitrary partition C of R into cells. 
In particular, C may be the Rovelli-Smolin partition, obtained by fixing 
coordinates xa covering R and introducing a family of two-surfaces xa = ne, 
where a = 1,2,3 and n ranges over the integers, the cells being given by the 
coordinate cubes. We will see however that to remove the regulator in the 
quantum theory one cannot just shrink the size of these cells; unless the 
partition is restricted in a manner similar to that of Section 3, contributions 
from some cells may diverge in the limit e —> 0. Furthermore, even for such 
restricted partitions, to ensure that the limiting operator is well-defined, one 
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has to choose paths in a specific manner, following a prescription given by De 
Pietri [24]. Roughly speaking, these restrictions specialize the permissible 
partitions to the 'same extent' that the restrictions of Section 3 do in the 
'internal' regularization scheme. 

A.l    The Rovelli-Smolin Strategy 

In this sub-section will outline the overall strategy of Rovelli and Smolin 
using, however, the connection representation. 

Let R be an open subset of E as before. In general, one may not be 
able to cover R with a single chart. However, the argument presented in the 
beginning of Section 3 will continue to apply. We can therefore restrict our 
attention to a topologically trivial region on which a global chart does exist. 

As in Section 3.1, let us then cover R with a global coordinate system 
and let C be the partition of R into cubic cells. By DC we will mean the 
differential part of the topological boundary of the cell C G C. For every 
point z E dC which belongs to (the interior of) a face of C we wish to smear 
E over dC in a gauge covariant manner. For this purpose, to every z' E dC 
let us assign a path pztXo connecting it with a fixed point XQ in C. For later 
convenience, we will assume that the path assignment is such that, as we 
shrink the size of the cell, for every path pZXo we have: 

UXX0{A)-> 1 € SU{2) (A.2) 

uniformly with respect to z E <9C, for all the Cs in C. A cell partition C 
with such a path assignment will be denoted by V. Finally, let us introduce 
a non-negative two-point field f(z,z') on 9C, which is a density of weight 
one in z and a scalar in z', such that 

I   f{z{r,s),zf)drds = l . (A.3) 
JdC 

With this machinery at hand, the covariantly regularized classical mo- 
mentum EQCJ{

Z
) is defined as 

EecA*) = \l   f(*> Z')(
U

P,J~
1EC

(
Z
')

U
P^0 Vabc dz'a A dz'b .     (A.4) 

^ JdC 

The Rovelli-Smolin regularized, squared volume of C is given by12 

Qc{E) := -^ f       \Tr{Edcj{z1)Edcj{z2)Edcj{z3))\d2z1d
2Z2d2z3 , 

12 J{dC)z 
(A.5) 

12The use of the Rovelli-Smolin loop variables introduces some more freedom in the 
choice of the extra paths, but that won't be relevant for our arguments. Our aim is to 
make comparison with [13] easier by writing various formulas in the notation used there. 
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where by d2z we mean the parametrization dependent area element on dC 
given by any parametrization thereof. Since the gauge transformation law is 
EdCji*) •-> ^~1(^o)^C,/(^)5(^o)5 the trace is gauge invariant. Finally, set 

Vg(AE):=YlVqc(AE). (A.6) 
cec 

This is the Rovelli-Smolin regulated volume functional on the classical phase 
space. As we shrink cells, we have Vp(A,E) -> VR{E). The idea is again 

to promote the regulated expression VR to the quantum theory and then 
remove the regulators. 

A.2    Regulated Operators 

As in the main paper, we will first focus on a graph 7 and study the action 
of the regulated operators on the Hilbert space Hj. The overall procedure 
is parallel to the one adopted in Section 3: the main idea is to replace every 
Edcj{z) in the functional qc(A,E) by the operator'Eacj- 

Let us then begin with an arbitrary partition V and consider cylindri- 
cal functions Cyl7(^4) compatible with a graph 7. We will only assume 

that the partition is generic with respect to 7. The operator Tr(Edcj{zi) 
Edcj{z2)Edcj(z?>)) acts on elements of Cyl7 through the operators JJ,^ 
of (2.5), where wj are the intersection points of the edges ej of 7 with dC, 

ji
Wl--=\    E    «C(P/).4,P/, (A.7) 

pi at wi 

where p/ runs over the set of segments of edges of 7 intersecting wj e dC. 
Let pXoZ be the paths in the partition V and set 

UM^Up^U,^. (A.8) 

Then, 

Tr{Edc,f{zi)Edc,f{z2)Edcj(z3))ip 

wi,wj,WK€dC 

.^(T^WJ^JXA)^^ ,.   (A.9) 

where the points WI,WJ,WJ on dC contribute only if they simultaneously 
coincide with the isolated intersection points of 7 with dC. 

Let us denote the right side of of (A.9) by qZlz2z3. It we could show that 
it is self-adjoint, then the quantum version jd2zid2Z2d2zs\qZlZ2Z3\ of (A.5) 
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could be well-defined. We will carry out these steps in detail later. It turns 
out that even when these steps are completed, there are obstacles in removing 
the regulators. It is convenient to first discuss how they arise and how they 
can be overcome by appropriately restricting the limiting procedure. 

A.3    Ensuring the Convergence I: Restrictions on Cells 

Given \]/7 £ Cyl, it turns out that the shrinking of cells in V is not sufficient 

for the vector V^j to converge. Let us isolate the potential problems. Let 
7 be a graph compatible with \I/7. So far, we have only assumed that the 
partition V is generic, i.e., that no vertex of 7 intersects any dC. (This 
property can be ensured by assuming that V is shrunk in such a way that 
no segment of any cell remains fixed, the assumption being graph 7 inde- 
pendent.) Now, if we assume that the partition has been sufficiently refined, 
say by the rescaling the coordinates, the cells of V can be classified in the 
following way: 
Type (i): dC surrounds a vertex of 7 and intersects every edge which meets 
that vertex exactly once; 
Type (iia): dC does not surround any vertex of 7 and Intersects at most one 
edge of 7 in at most two points; 
Type (lib): dC does not surround any vertex of 7 and intersects more than 
one edge of 7. 

As the discussion of [13] and Section 3 suggests, it is only the type (i) 
cells tlmt should contribute non-trivially to the final result. Indeed, for a 
cell of type (iia), 

qp% = 0, (A.10) 

because, as we will see below, only wi ^ W2 ^ ws 7^ wi contribute to (A.9); 
cells of this type can be ignored. What may be easily overlooked is that 
one cannot get rid of cells of type (lib) so simply; these contributions can be 
coordinate dependent and may even diverge. To see this, suppose we just 
use the partition PL given by a cubic lattice of the size L defined by the 
fixed coordinate system on R. Consider a case when two edges ei and 62 
intersecting at v cross the same face of a cell Cv containing v (see Fig.3). 
The other cell C which shares that face is crossed by the edges ei and 62- 
This produces a non-zero term qc^-f- One may, of course, choose another 
coordinate system such that ei and 62 intersect disjoint faces of Cf

v and do 
not cross the same adjacent cell. But this simply serves to bring out the 
ambiguity caused by the coordinate dependence. Shrinking of V does not 
eliminate that ambiguity, which is sensitive to rotations of a given Cv rather 
than to its size. 

For similar reasons, the limiting procedure produces divergences when 
e-i and 62 are tangent to each other at v.  In this case, generically, as one 
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Figure 3: The size change of Cv and C does not change the fact that ei, 62 
intersect the neighboring cell C. 

shrinks the maximal size of cells, the number of cells crossed simultaneously 
by ei and 62 tends to infinity. One can check that the consequence is that 
the norm ||Vc^7|| diverges in the limit. 

To summarize, to ensure convergence, as in Section 3, one has to put 
restrictions on how the limit is taken using the graph 7. The choice we will 
make —which seems to be the only natural one available— is to restrict 
ourselves to partitions containing cells only of the types (i) and (iia). This 
restriction is very similar to that used in Section 3. 

A.4    Ensuring the Convergence II: Restrictions on Paths 

For a partition V satisfying the above restriction, the regulated volume op- 
erator is given by 

V£*n (A.ll) 

where v runs through the set of vertices of 7 and Cv is the cell containing 
v. The resulting vector V^^r

7 still depends on the partition V through path 
assignments and its limit as we shrink the cells may still not exist.13 Indeed, 
for a given vertex v and generic path assignment in P, the vector \/qcv ^7 

13In the original derivation [13]■ of this operator, the limit is taken [34] by setting 
limyTTT := Vlim...,' the limit under the square root being obtained by simply setting 
the holonomies corresponding to the shrunk paths to the identity matrix. Note however 
that diffeomorphism invariant dual states {S\ in (A.l) are not sensitive to the shrinking of 
paths, so they never disappear as far as the action of such states is concerned. This means 
that if one wishes to use the same topology (A.l) as in the definition of the Hamiltonian 
constraint operator, the final limit would be different from the one reported in [13]. 
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contains a component14 orthogonal to y/qcvi ^7 corresponding to any vertex 
V 7^ v of 7. So the problem of convergence reduces to the convergence of 
each ^qc^-y as we shrink Cv to v separately for every vertex v. But if we 
shrink Gv to a cell C'y containing v then for a generic paths assignment, the 
norm \\y/qcv^^ — y/qc'v^yW ls non-zero, independently of Cf

v. The main 
reason is that y/qcv ^7 has a non-zero component on a graph 71 obtained 
from 7 by introducing new vertices made at the intensection points wj with 
dC and adding new edges, the paths PWJXQ- The graph 7/

1 corresponding 
to y/^c"v^ry is (generically) different from 71. Moreover, the projection of 
^/qc'v^-j on the space corresponding to 7^ is, generically, diffeomorphism 
equivalent to the projection of y/qcv ^7 on the space corresponding to 71. 
Hence shrinking does not affect the norm of the projection. All this makes 
the sequence of vectors V^y highly non-convergent as V is refined. 

These problems obviously disappear if, given a graph 7, we choose a 
paths assignment such that for the above graphs we have 

71 = Vi = 7 • (A.12) 

for every cell. Such an assignment does exist and was pointed out to us by 
De Pietri [17]. It is defined as follows. Denote the edges of 7 that meet 
at v by e/, / = 1,..., fc, and orient them to be outgoing. Denote by ej 
the segment of ej contained inside Cv and by ef the remaining segment of 
e/. To each intersection point wj G e/ fl dCv set pWlV := ej and to a point 
z G dCv which is not intersected by an edge, assign any path pzv (such that 
the previous regularity assumption (A.2) is satisfied). 

With these restrictions on the partition P, the regulator can be removed 
unambiguously. We will evaluate the limit in the next two sub-sections. 
For the present, we will just comment on the similarity between the re- 
strictions on partitions used in the two regularization schemes: Given a cell 
containing a vertex v, making all the paths begin right at v is the 'external' 
regularization counter part of the 'internal' regularizsition assumption that 
the 2-surfaces Sa in C intersect exactly at v. 

To conclude this discussion let us note that the issue of path assignments 
did not arise in the 'internal' regularization because we worked not on the 
space A/G of generalized connections modulo gauge transformations but on 
the space A of generalized connections themselves. The loop representation 
used in [13], on the other hand, deals only with A/G and the extra paths 
become necessary to ensure gauge invariance of smeared triads. In the con- 
nection representation, there is a choice: We could have avoided the issue of 
path dependence entirely by carrying out the 'external' regularization on A. 
We did not do so to keep as close to the treatment of [13] as possible. 

14Here 'component' refers to the decomposition of Cyl(^l) into orthogonal subspaces 
associated to distinct graphs given by spin-networks [1,9-11]. 
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A.5    The Evaluation 

Let us now return to  (A.9)  and investigate the operator Tr(Edcj{zi) 
EdCj(z2)Edcj(z3))- One can show that only the terms wi ^ W2 ^ W3 ^ wi . 
contribute to the sum which is relevant for the self-adjointness of the entries 
of |... |.  To see this, note that, in terms of the segments ej, ef of 7 that 
meet at an intersection point wj G <9C, we have: 

A4(<+-<-). (A.13) 

In particular, restricted to Cyl7(v4), the operators associated with wj com- 
mute, 

[^,^1 = 0. (A.14) 

Hence the term corresponding to wj = wj 

il\TiTjU'WlWKTkUWKWl J JWK Jyjj Jyjj (A.lOj 

vanishes because the trace is antisymmetric in i, j. 
Let us now suppose that the partition V satisfies the restrictions of the 

last two sub-sections. Using De Pietri's path assignment, denote the parallel 
transports along ej, ej and e^ by [//, Uy and Uf respectively. The action 
of J^ on a cylindrical function *7(A) = ^(l7i(A),... ,Un(A)) is given by 

^^(^-(^/(^^(A))^^. (A.16) 
uUiB 

So that Eq (A.9) now reads 

Tr(Eac,/(^i)^c,/(^)^c,/(^3))*7(^) 

= Yl f(zuWi)f(Z2yWj)f(z3,WK) 

■ Tr^riUJ^TjUriU^TkU^Ur)-1) 

• {UtnUTtiiUtTiUjfiiU+TtUaf 

-w^^mA)-MA))' (A-17) 

The evaluation of the right hand side is considerably simplified by the fol- 
lowing property which is a consequence of (A.12). The operator Tr(Edcj{zi) 
Edcj{z2)Edcj{z3)) defines a map 

Cyl^^^Cyl^M), (A.18) 
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where 71 is the graph obtained from 7 by splitting the edges at the points 
where they intersect dC. However, since the operator is gauge invariant, it 
preserves the invariance of *7 with respect to the gauge transformations at 
the points of dC. Therefore, 

TriEecMEacMEacjiz*))  : Cyl^(A) -+ Cylf (A) .       (A.19) 

That means that the right hand side of (A. 17) is in fact a function of the 
entire parallel transports Ui = UfUJ so that one may make the substitution 
UJ = 1 and Uf = Ui to derive its general form. The result for the action 
of the operator in the space Cyl7(^4) is 

^(Edcj(zi)EdCj(z2)EdCj(z3)) 

= -4       X)       f^U^fi^^fi^W^eijkJlejjLjJyeK  .      (A-20) 

where /, J, K run through the set labelling the edges of 7 intersecting at v 
and, given /, wj is the intersection point of ej with dC. 

A.6    The Integral 

We can now turn to the quantum version of the full formula (A.5).  Thus, 
we want to evaluate 

fc *7 ^ h ( /    3 ^fiocMEdcA^EocA**) )d2^ d2z2 d2^ ) ^7 

(A.21) 

for vEr7 G Cy43)(^l).   The operator EdCj{z1)Edcj{z2)Edcj(z3) is defined 

by (A.20) in a subspace Cyl^' for every 7. It is easy to see that the result 

agrees on any Cyl^  (A) 0 Cyly (A) so the operator is consistently defined in 

Cyl(^4). Due to the self-adjointness of the J operators and the commutativity 
of operators associated with different edges, the total operator is essentially 
self-adjoint in Cyl^(A). Hence, it is meaningful to ta,ke its absolute value. 

A priori, the integral of an operator-valued function may not be well 
defined. However, in our case, the only zi, 22, ^3 dependence of the integrand 
comes from the functions / in (A.20). Given a graph 7 and a cell C choose 
fs such that for every two edges ej ^ ej intersecting C, the supports A/ 
and Aj of the functions /(w/,.) and f(wj,.) satisfy A/ U Aj — 0. Then in 
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(A.20) 

= E  /   /    /    /(^I^/)/(^2^J)/(^3,^)^|...|*7,    (A.22) 

where the last factor |... | is z independent and where, due to the normal- 
ization property, the /'s integrate out to 1. Finally, for a cylindrical function 
\l/7 compatible with a graph 7 and a cell Cv containing a vertex v, 

<ZC^7 = Tg     £     l^kJLjJLjJveJ^ , (A.23) 

where /, J, K label the edges at v. Now the situation is the same as that we 
encountered in Section 3: the formula is manifestly invariant with respect to 
the shrinking of of the cells Cv. Hence, for any partition V which satisfies 
the restrictions stated in the previous sub-sections, the volume operator is 
given by 

VR^ = ^2y/^%, (A.24) 
V 

where the sum extends over all the vertices of the graph. This is the formula 
that was reported in [18]. The final expression is insensitive to the intrinsic' 
structure of the graph at its vertices and depends only on the 'extrinsic5 

structure which can be registered at the boundary of sufficiently small cells 
surrounding the vertices. 
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