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Abstract 

We analyze the u-plane contribution to Donaldson invariants of a 
four-manifold X. For b^X) > 1, this contribution vanishes, but for 
b'z = 1, the Donaldson invariants must be written as the sum of a u- 
plane integral and an SW contribution. The w-plane integrals are quite 
intricate, but can be analyzed in great detail and even calculated. By 
analyzing the tz-plane integrals, the relation of Donaldson theory to 
J\f — 2 supersymmetric Yang-Mills theory can be described much more 
fully, the relation of Donaldson invariants to SW theory can be general- 
ized to four-manifolds not of simple type, and interesting formulas can 
be obtained for the class numbers of imaginary quadratic fields. We 
also show how the results generalize to extensions of Donaldson theory 
obtained by including hypermultiplet matter fields. 

1    Introduction 

Donaldson theory can be formulated [1] as a twisted version of J\f = 2 su- 
persymmetric Yang-Mills theory. Accordingly, new understanding of J\f = 2 
supersymmetric quantum field theory [2, 3] has led to new insights about 
Donaldson theory [4, 5]. In this paper we continue this development, the 
main goal being to apply the understanding of supersymmetric Yang-Mills 
theory to determine the Donaldson invariants of four-manifolds with 6J = 1. 
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Let X be a smooth, compact, oriented four-manifold with Riemannian 
metric g, and let E -> X be an 50(3) bundle over X (that is, a rank 
three real vector bundle with a metric). As originally formulated, the Don- 
aldson polynomials are polynomials on the homology of X with rational 
coefficients: 

VE:Ho(X,Q)®H2(X,Q) ^Q. (LI) 

Assigning degree 4 to p G Ho(XyQ) and 2 to S E i^p^Q), the degree 5 
polynomial may be expanded as: 

.VE(p,S)=   X   SnPtdn,t, (1.2) 
2n+4£=s 

where 5 is the dimension of the moduli space M of instanton connections 
on E. 

The numbers dnj were defined by Donaldson in terms of intersection 
theory on this moduli space [6, 7, 8] . It is useful to assemble the Donaldson 
polynomials into a generating function. To do so, one sums over all topo- 
logical types of bundle E with fixed £ = W2(E) but varying pi(^) (that is, 
varying instanton number), to define 

n>0,*>0 

This quantity is often the most useful way of organizing the dnjs. Here $£ 
depends on the characteristic class W2 (E) but not on the instanton number 
Pi(E) (as this has been summed over). 

If 62" > 1, $ is independent of the metric g and thus defines "topological 
invariants" of X (or more precisely invariants of the smooth structure of X). 
If 6^ = 1, $ is only piecewise constant as a function of g [6]; its detailed de- 
pendence on g will be analyzed in section 4. In [1], the Donaldson invariants 
were identified physically as the correlation functions of certain operators 
in a topologically twisted Af = 2 supersymmetric Yang-Mills (SYM) theory 
with gauge group 517(2) or 50(3). (The 517(2) theory can be regarded as 
the special case of the 50(3) theory in which one considers an 50(3) bundle 
E with W2(E) = 0.) One introduces the fundamental observable 

sV2 

where P is a point in X, and 0 is a complex scalar field, valued in the adjoint 
representation of 5C7(2), and related to the gauge field by supersymmetry.1 

0(P) = -^Tr<!>2(P), (1.4) 

1For gauge group 5C/(n), we mean by Tr simply the trace in the n-dimensional rep- 
resentation. Equivalently, for 50(3) or 5C/(2), Tr is 1/4 of the trace in the adjoint rep- 
resentation. With this normalization, O is related to the restriction to P x M of the 
second Chern class of the universal instanton bundle over X x M - in case there is such 
a universal bundle. 
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By a fairly standard "descent" procedure, one derives from (1.4) a family 
of A;-form valued observables for k = 1,..., 4. For X simply-connected, the 
important case is the two-form valued observable 

We will sometimes refer to O and I(S) as the zero-observable and two- 
observable, respectively. 

One of the main results of [1] is that 

$f'9(p,S) = (er°+IW)^ (1.6) 

where the right hand side is the path integral in a topologically twisted 
version of the supersymmetric Yang-Mills theory (summed over all 50(3) 
bundles E with a fixed value of £ = W2{E) and varying instanton number). 
This proves to be an effective approach to evaluating Donaldson invariants 
once one understands the vacuum structure of the supersymmetric gauge 
theory. 

The supersymmetric field theory in question has a family of vacuum 
states parametrized by a complex parameter u which is defined2 by 2u = (O) 
where here (O) denotes the expectation value computed in a normalized 
vacuum state on flat E4. As was shown in [2, 3], the complex w-plane can be 
identified as the modular curve of the subgroup r0(4) of SL(2, Z) consisting 
of integral unimodular matrices whose upper right entry is divisible by four. 
As such, the complex variable u parametrizes a family of elliptic curves that 
can be described by a Weierstrass equation3 

y2 = x (x2 -ux + - j   . (1.7) 

2The factor of two in this formula is meant to take care of a slight mismatch in con- 
ventions between the mathematical and physical literature on this problem. As written 
by Kronheimer and Mrowka [9], the "simple type" condition for X reads [Jp- — 4]$ =0, 
where p is the variable that appears in the definition of the generating functional $. This 
is an insertion of O2 — 4 in the correlator. In the physics literature, u is defined so that the 
discriminant of the elliptic curve that governs the J\f = 2 supersymmetric gauge theory is 
u2 — 1 (in other words, massless monopoles and dyons appear at the points u = ±1 where 
the discriminant vanishes). To reconcile a vanishing discriminant condition u2 — 1 = 0 
with a simple type condition O2 — 4 = 0, we require a factor of 2 in the relation between 
u and O. 

3This equation describes an elliptic curve with a distinguished subgroup of order four, 
generated by the points x = 1/2, y = ±^(1 - it)/2. Note that r0(4) is conjugate in 
GL(2, Q) to r(2), the subgroup of SL^, Z) consisting of matrices congruent to the identity 
modulo two. Hence the u-plane could be identified (as in [2]) as the modular curve of r(2), 
but we use instead (as in [3]) the r0(4) description (which differs by a two-isogeny), to 
make some formulas slightly more natural and to facilitate comparison to recent papers 
such as [10]. 
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The cusps of r0(4) are the points at u = oo, 1, and —1 where the elliptic 
curve Cu defined by (1.7) degenerates to a rational curve.4 

To compute Donaldson invariants of a four-manifold X - in other words, 
to compute certain correlation functions of the twisted M = 2 theory on X 
- one can use any Riemannian metric on X. It is convenient to consider 
the one-parameter family of metrics gt — t2go with t E M and some fixed 
go. If t is taken large, on general grounds one can compute the correlation 
functions using a knowledge of the infrared behavior in the various vacua of 
the theory. If there are only finitely many vacua, one writes the correlation 
functions as a sum of contributions of the different vacua. In the present case, 
there is a continuous family of vacua, and one should expect to represent 
the correlation functions as some sort of "integral" on the w-plane. 

We have put the word "integral" in quotes because this is not entirely 
a continuous integral; the measure on the ^x-plane has delta functions sup- 
ported at u = 1 and u = — 1. This occurs because [2] at u — ±1 there are 
massless monopoles (or dyons) transforming as hypermultiplets of the su- 
persymmetric theory; the twisted topological theory receives contributions 
from supersymmetric configurations (obeying the equations F+ = (MM)-!-, 
F • DM = 0, introduced in [4]) which are possible only at u = ±1. 

Moreover, for many and in some sense most four-manifolds, the contri- 
butions from u = ±1 are the only ones. This, as will become clear, is the 
physical interpretation of the "simple type" condition [9], which has played 
an important role in the mathematical analysis of Donaldson theory. In fact, 
let bi = bi(X) be the Betti numbers of X, and write 62 = b^ + b^, where bf 
are respectively the dimensions of the spaces of self-dual and anti-self-dual 
harmonic two-forms on X. For fcj" > 1, the i^-plane, away from u = ±1, does 
not contribute, as we will show in section 2.3. This is because there are "too 
many fermion zero modes." Hence for this very large class of four-manifolds, 
the Donaldson invariants can be written just in terms of monopole solutions, 
via a formula that is presented in [4] for four-manifolds of simple type, and 
which we will generalize in section 7 for arbitrary four-manifolds. 

Our main interest in the present paper is to explore what happens for 
62" = 1, where the u-plane definitely does contribute. (We actually will 
mainly limit ourselves to the case bi = 0, although the general case is similar, 
as we will briefly discuss in section 10. The 7i-plane will also contribute 
for ft^ = 0 and 61 odd, but this case has a very different flavor and will 
not be considered here.) The Donaldson invariants are therefore the sum 
of a continuous integral over the t^-plane plus delta function contributions 
from u — ±1. If we write Z^ for a Donaldson theory path integral or 
correlation function, Zsw for the analogous contribution from monopole 

4Some technical details about elliptic curves and their associated modular functions are 
collected in Appendix A. 
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solutions at u = ±1 (how to obtain the precise formula for Zsw in terms 
of the conventional monopole or SW invariants will be explained in section 
7), and Zu for the continuous integral over the iz-plane, then the general 
structure is 

ZD = Zsw + Zu . (1.8) 

We will show that for fcj" = 1, the contribution of the -u-plane to Donald- 
son invariants is given by quite complicated-looking integrals which never- 
theless, because of their interpretation as integrals over a modular domain, 
can be analyzed very effectively and even calculated. The integrals involved 
are similar to integrals that have been studied in work of R. Borcherds in 
representation theory [11] [12] (and were conjectured in [11] to be related 
to Donaldson invariants of four-manifolds of fcj" = 1) and also in analyses of 
one-loop threshold corrections in string theory (for example, in [13]). 

Once the i^-plane integrals have been constructed, our analysis of them 
will involve the following main ingredients: 

(i) Homotopy invariance. 
(ii) Wall crossing formula. 
(Hi) Vanishing in certain chambers. 
(iv) Behavior under blow-ups. 
(v) Explicit evaluation and verification of invariance. 
A fuller explanation of these points is as follows. 

Homotopy Invariance 
One of the first important points is that the u-plane integral Zw, despite 

its considerable complexity and subtlety, depends on only elementary topo- 
logical information. Zu is completely determined by the cohomology ring of 
X (in fact, by the intersection form on H2(X, Z) if X is simply-connected). 
This will be completely clear from the structure of the integrand in the 
u-plane integral. 

One therefore gets the same Zu if X is replaced by any four-manifold 
with the same cohomology ring. For X simply-connected, it follows, given 
what is known about the intersection pairing on H2(X,Z) for smooth four- 
manifolds X, that in the evaluation of Zu, X could be replaced by a rational 
algebraic surface, either P2 blown up at n points or P1 x P1. 

Wall Crossing Formula 
For 6^ = 1, the Donaldson "invariants" are not quite invariants [14, 6]; 

as the metric of X is varied, ZD generically is constant but "jumps" when 
certain "walls" are crossed in the space of metrics. Analogous wall-crossing 
is knov/n for the monopole or SW contributions Zsw- (1-8) clearly implies 
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that the wall-crossing of Zu is determined by the Donaldson and SW wall- 
crossing. If we denote the wall-crossing of Zp, Zsw, and Zu as SD, 5sw, 
and 6U, then (1.8) implies that 

5D = SSW + SU. (1.9) 

This can be better understood as follows. Prom a physical point of view, 
it is clear that wall-crossing in Zp must involve the behavior at u = oo. In 
fact, the proof of invariance under change of metric in the twisted topolog- 
ical field theory involves a fermionic symmetry whose validity depends on 
integration by parts in field space. Invariance can fail only due to a lack of 
compactness of field space, which, once one reduces to integration over the 
space of vacua, means lack of compactness of the ?x-plane. But compactness 
of the iA-plane fails only at u = oo. Thus one should aim to understand 5D 

in terms of the behavior near u = oo. 
On the other hand, as Zsw 1S supported at u = ±1, its wall-crossing ^5^ 

is likewise a contribution from u = ±1. The structure of 6U implied by (1.9) 
is therefore clear; the wall-crossing behavior of the w-plane integral must be 
a sum of a contribution from u = 00 (which in (1.9) will cancel dp) and a 
contribution from u = ±1 (which in (1.9) will cancel Ssw)- This is just the 
structure we will find. 

To be more precise, we will write 5U as a sum 

8u = <^,oo + 8u,i + fiu-i » (1-10) 

where the three terms are the contributions to wall-crossing from u = 00,1, 
and —1, respectively. SUj00 will be shown to coincide with the wall-crossing 
formula for Sp as determined in greatest generality in [15, 10]. As for 6Uii 
and <JM>-i, we will see, as expected, that these contributions to wall-crossing 
are supported exactly where wall-crossing occurs in the monopole or SW 
invariants. 

However, the details of the formulas for SUii and ^,-1 involve several 
universal functions of u (universal in the sense that they do not depend on 
the choice of four-manifold X) which have not been computed previously. 
As we will see in section 7, the same functions arise in expressing Donaldson 
invariants for hypothetical four-manifolds of b^ > 1 that are not of simple 
type in terms of monopole or SW invariants. A knowledge of the formulas 
for SUt±i will determine all the requisite universal functions and enable us 
to get the general formula for Zsw in terms of monopole or SW invariants, 
generalizing a formula presented in [4] in the simple type case. 

The analysis of Su is comparatively easy in that one can calculate the 
change in Zu upon crossing a wall much more easily than one can actually 
evaluate Zu] the change in Zu in crossing any given wall comes entirely from 
one relatively simple term in a complicated sum. 
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Vanishing in Certain Chambers 
Donaldson invariants of four-manifolds with b^ = 1 generally do not 

exhibit simple type behavior. But it is known mathematically that certain 
50(3) Donaldson invariants for certain four-manifolds X do exhibit such 
behavior in certain chambers. This occurs if X maps to a two-dimensional 
base B with generic fiber F a two-manifold. If E is an SO(3) bundle with 
(w2{E),F) T^ 0, then simple type behavior is found in a chamber in which 
the fiber has a very small area relative to the base. If moreover F has 
genus zero, in which case X is said to be a rational ruled surface, then 
the Donaldson invariants actually vanish because [17] there are no stable 
bundles. In this situation, the SW invariants also vanish (because there is 
a metric of positive scalar curvature), so the -M-plane integrals must vanish. 
(Simple type behavior, but not vanishing of the Donaldson or SW invariants, 
is also found for JP of genus one [18].) Simple examples are X = P1 x P1 or 
a Hirzebruch surface Fi. 

Vanishing of the u-plane integrals for X a rational ruled surface of very 
small fiber area and with (w2(E),F) ^ 0 is again an easy consequence of 
the qmntum field theory formulation. Simple type behavior (or at least 
generalized simple type behavior, the vanishing of (d2/dp2 — 4)7' for some 
integer r) is a consequence of vanishing of the t^-plane integral. (This will 
become clear in section 7.) Vanishing of the i^-plane integrals for X in the 
indicated situation follows from pointwise vanishing of the integrand, plus 
some analysis of behavior near u = 1,-1, and oo. The pointwise vanishing 
holds because on the u-plane, SO(3) is broken to J7(l), and the 50(3) bundle 
E with (W2(E),F) ^ 0 becomes a line bundle T with (ci(T),F) ^ 0. For 
any connection on such a line bundle, the "magnetic energy" diverges as the 
area of F goes to zero, causing the n-plane integrand to vanish. 

Blow-Up Formula 
By "blowing up" a point in a four-manifold X (or in topological language, 

taking the connected sum with a copy of F ), one gets a new four-manifold X. 
The Donaldson invariants of X (in a chamber in which the exceptional divisor 
b produced by the blow-up has a very small area) are related to those of X 
by a blow-up formula that has been much studied mathematically [19, 10]. 
There are two cases of the blow-up formula, involving 50(3) bundles E with 
(w2(E)ib) = 0 and with (w2(E),b) / 0. 

It is natural to expect that the u-plane integral will obey a similar blow- 
up formula. In fact, if there is a universal blow-up formula for Zu, it must 
precisely coincide with the blow-up formula for Zp, since it can be deter- 
mined by considering the special case that X is F2 with a small number 
of points blown up. Such an X admits a metric of positive scalar curva- 
ture, so Zsw vanishes in some chamber; and if b-(X) < 9, there is no SW 
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wall-crossing on X so Zsw actually vanishes everywhere. Hence for such 
manifolds Zp —■ Zu, so that, if Zu has a blow-up formula of the same gen- 
eral structure as Zp, it must be precisely the same formula with the same 
universal functions. 

In fact, we will see that blowing up a point (and assigning a very small 
area to the exceptional divisor) has a very simple effect on the i^-plane in- 
tegrand; by analyzing this effect, we get a blow-up formula for Zu that is 
in perfect agreement with the blow-up formula for ZJJ as presented in [10]. 
This result is easy in the sense that it can be seen before evaluating the 
iz-plane integrals; it comes from a relation between the integrands. 

Computations 

The basic properties that have been explained up to this point completely 
determine Zu for all four-manifolds of b^ = 1 in all chambers, at least for 
the case that X is simply-connected. Indeed, if 7ri(X) = 0, one can use the 
homotopy invariance to reduce to the case that X is a rational surface. Any 
two rational surfaces, with any two given metrics, can be related to each 
other by a succession of blow-ups, blow-downs, and wall-crossings. (There 
is no obstruction to this involving W2(E) since one case of the wall-crossing 
formula involves a change in W2.) So one can reduce to the special case just 
described of X = Fi (or P1 x P1) in a chamber with Zu = Zsw = ZD =' 0. 

The most extensive mathematical computations of Donaldson invariants 
for four-manifolds of b^ = 1, such as those in [10], are based on the blow-up 
and wall-crossing formulas and the vanishing in certain chambers. We will 
establish all of these properties for the w-plane integrals, so we can assert 
without any detailed calculation that the n-plane integrals plus monopole 
contributions agree with Donaldson theory for rational surfaces. 

However, computations based only on blow-up and wall-crossing formu- 
las and reduction to Fi tend to be ineffective in the following sense. To 
determine any given Donaldson invariant of X by using wall-crossing and 
blow-up formulas to reduce to a vanishing invariant on Fi involves only 
finitely many steps. But as one considers Donaldson invariants of X associ- 
ated with 50(3) or SU(2) bundles of greater and greater instanton number, 
the number of walls that must be crossed diverges, and it can be hard to get 
a general and illuminating formula. 

One possibility to get effective formulas for Zu is simply to evaluate the 
integrals. It turns out that, despite their complexity, the integrals defining 
Zu have special modular properties that make this possible, though the 
calculations are certainly much harder than the ones alluded to so far. 

In this paper we will perform in detail two direct computations of Zu. The 
first is a general computation of Zu for any four-manifold whose intersection 
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form contains as a summand the lattice 

*=(!J). a...) 
This includes any rational surface except P2 or Fi. In this computation we 
consider bundles with W2{E) = 0, and certain chambers. This computation 
is performed using methods of [11, 13] together with the Rankin-Selberg 
method (familiar in string theory [20, 21, 22]) of "unwrapping" a modular 
integral, and certain additional tricks. In this computation, we will explicitly 
show that, for the chambers we consider, Zu is metric-independent within a 
chamber. Also, for the case that X = P1 x P1, we will recover formulas of 
Gottsche and Zagier [10]. 

The other computation we perform is for X = P2. This computation 
depends on techniques of a quite different sort. The main technical tool is a 
non-holomorphic modular form of weight 3/2, related to Eisenstein series of 
half-integral weight, that was introduced by Zagier [23, 24]. We will obtain a 
closed formula for Donaldson invariants of 517(2) bundles on P2, in terms of 
Hurwitz numbers (essentially class numbers of imaginary quadratic fields). 
The formula agrees with the special cases that have been computed previ- 
ously [25] and, when compared with the general expression obtained (via 
wall crossing and vanishing theorems) by Gottsche [15], yields interesting 
and perhaps even new formulas for class numbers. 

Other u-Plane Integrals 
The basic twisting procedure that relates Donaldson theory to the 50(3) 

super Yang-Mills theory can be applied to other theories with d = 4, Af — 2 
supersymmetry. In the case of the SU(2) theory with "quark" hypermulti- 
plets, the resulting topological field theory involves an integral on the w-plane 
for a family of curves described in [3]. The integral is similar to the case 
without matter, and can be studied using the techniques discussed above. 
The results are qualitatively similar for the asymptotically free theories with 
Nf < 4 flavors. There are some surprises for the asymptotically conformal 
theories, e.g., for Nf = 4. In this case, there is no wall-crossing for b^ = 1; 
a finite set of correlation functions in the theory turn out to be topological, 
and others vary continuously with the metric. 

Organization of the Paper 
This paper is organized as follows. In section two, we present essential 

physics background. In section three, we work out the detailed form of the 
iz-plane integral. In sections four, five, and six we derive the wall-crossing, 
vanishing, and blow-up properties of this integral. In section seven we use 
these results to derive the universal form of the SW contributions to the 
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Donaldson invariants. In section eight we perform the detailed computation 
of Zu for four-manifolds whose intersection form contains a summand H. In 
section nine, we compute the SU(2) Donaldson invariants of P2. In section 
ten we indicate briefly how the results generalize to nonsimply connected 
manifolds. In section eleven we describe the generalization of these results 
to topological theories arising from twisting SU(2) SYM with matter. Some 
technical details and definitions are collected in appendices A,B,C. 

Extension of the t^-plane integrals considered in the present paper to the 
case of higher-rank gauge groups (with I(S) still derived from the quadratic 
Casimir) is under investigation by M. Marino and G. Moore. Relations 
between integrable systems and contact terms such as T(u) and its general- 
izations will be addressed in [26]. 

2    Physics Background 

2.1    Generalities 

We begin with some generalities about M = 2 supersymmetric theories in 
four dimensions. We start out on flat M4, where the double cover Spin(4) 
of the rotation group is isomorphic to S,C/(2)_ x SU(2)+\ the two factors 
of SU(2) act respectively on the — and + spin representations of 6'pm(4), 
which we call S- and S+. The Af = 2 theories of interest here also possess 
an additional SU(2) group of R symmetries, which we call SU(2)R. Under 
SU{2)- x SU(2)+ x SU{2)R, the supersymmetries transform as (2,1,2) 0 
(1, 2,2), where 1 and 2 represent respectively the trivial representation and 
the two-dimensional representation of SU{2). We introduce SU{2)- indices 
A,B,C= 1,2, S77(2)+ indices A,B,C = 1,2, and 5^7(2)^ indices /, J, K = 
1,2, and write the supersymmetries as Q^ and Q^j- The coordinates of M4 

transform as (2,2,1) and will be called re'4'4. 
The non-zero anticommutators of the Q's (modulo central terms that 

will not be important here) are 

{QIA>QAj} = 4isIJpAA> (2-1) 

where PA^ = d/dxAA is the translation generator. 
To construct a twisted topological field theory, one introduces a diagonal 

subgroup 317(2)' of SU(2)+ x SU(2)R, and one introduces a new action of the 
Poincare group of E4 in which rotations act via not Spin(4) = 5[/(2)_ x 
577(2)+ but Spin(A)' = S77(2)_ x SU{2)'. Among the supersymmetries 

there is the Spin(4)'-invariant object Q = £
AB

QAB 
and the Spm(4)' vector 

K
AA = -\

S
AQAI- They obey 

Q2 = 0 (2.2) 
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and 

PAA = {Q,KAA}. (2.3) 

(2.3) is an integrated version of a formula that asserts locally that the stress 
tensor T is of the form 

T = {Q,L}, (2.4) 

for some L. Note that K obeys 

{^4A>*W = 
0
> (2:e) 

on gauge invariant quantities, as a consequence of (2.1). 
If the underlying J\f = 2 theory has a U(2)R group of R symmetries (and 

not just SU(2)R)^ then the center ^7(1)^ is a symmetry of the topologically 
twisted theory. Under this symmetry, Q has charge 1, and K has charge 
— 1. In Donaldson theory, the ^7(1)^ is a symmetry classically, but quantum 
mechanically has an anomaly proportional to the dimension of instanton 
moduli space and is conserved only modulo 8. The R (or U(1)R) charge is 
often called "ghost number" in the context of topological field theory. In the 
mapping from physical operators to differential forms on instanton moduli 
space, a,n operator of ghost number or R charge q is mapped to a g-form. 

Given a four-dimensional supersymmetric theory with the properties de- 
scribed above, one can aim to formulate the same theory on a general Rie- 
mannian four-manifold X in such a fashion that Q is still conserved and 
(2.2) and (2.4) still hold. This was done for the pure Af = 2 gauge theory 
(without hypermultiplets) in [1], and generalized to include hypermultiplets 
in [27, 28, 29]. The fact that Q is conserved means that one can consistently 
restrict to Q-invariant observables, and the fact that Q = 0 means that if 
one makes this restriction, only the Q cohomology class of a given observ- 
able is relevant. The fact that the stress tensor (which is the change in the 
integrand of the Feynman path integral under a change in metric) is of the 
form { Q, L} means that correlation functions of Q-invariant observables are 
invariant under a change in metric. The theory is therefore a topological 
field theory. 

In constructing the Q-invariant observables, an important step is the "de- 
scent" procedure, in which one starts with a Q-invariant zero-form operator 
O^. By inductively solving the equations 

dO® = {Q, 0«+i)}, for j = 0,..., 3 , (2.6) 

one then finds fc-form valued observables O^ for k = 1,..., 4 which are Q- 
invariant modulo exact forms. This property ensures that for E^ a fc-cycle 
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in Xr the integral 

J(EW) = /     O^ (2.7) 

is Q-invariant and depends only on the homology class of E^). 

A Canonical Representative 
So far we have merely summarized standard facts about the construction 

of a certain class of topological field theories. Now we come to a point that is 
less well-known and is helpful in analyzing the ti-plane integrals in Donaldson 
theory.5 This is that there is actually a canonical solution of (2.6). That is 
because of (1.9), which in the twisted topological field theory becomes the 
statement that there is a one-form valued operator K such that 

d={Q,K}. (2.8) 

This means that we can solve (2.6) via 

0(j) = KJO(0) m (2.9) 

In interpreting the right hand side of (2.9), one understands that K acts 
on an operator O by conjugation, that is KO is shorthand for [if, O} = 
KO — {—l)0OK. For O a zero-form valued operator, the j-fold iterated 
action of K on O gives an operator, called KW in (2.9), that transforms as 
a j-form on X; the terms that are not completely antisymmetric (and so do 
not transform as a j-form) vanish according to (2.5). 

There are at least two reasons that in the present paper it is useful to 
have a canonical solution of the descent equations: 

(1) The choice of a concrete low energy Lagrangian to describe physics 
on the u-plane is not unique, but is subject to duality transformations that 
enter the theory in an important way. It is essential to have duality-invariant 
solutions of the descent equations. The canonical solution, since it can be de- 
scribed without committing oneself to any particular Lagrangian description 
of the low energy theory, is duality-invariant. 

(2) Having this canonical procedure simplifies the task of matching Q- 
invariant operators defined in a microscopic description with Q-invariant 
operators in a macroscopic description. For instance, in the case that the 
J\f = 2 theory we start with is an 5(7(2) or SO(3) gauge theory, the basic 
zero-form observable is O = gijTr</>2, where 0 is a complex field in the 
adjoint representation that is part of the J\f — 2 vector multiplet. (For gauge 
theory with a gauge group of rank higher than one, one must also include 
higher order Casimir invariants of 0.) The expectation value (O) — 2u is 
the basic order parameter in the low energy theory,6 so the operator in the 

5The use of the canonical solution was suggested in this context by N. Seiberg.  The 
existence of a canonical solution to the descent equations was also investigated in [30]. 

6The factor of 2 was explained in a footnote in the introduction. 
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low energy theory corresponding to the microscopic operator u is "known." 
Since one also knows what the microscopic supersymmetry generators, and 
in particular if, correspond to in the low energy theory, there is no problem 
in identifying the descendants Knu as computed in the microscopic theory 
with corresponding operators in the low energy or macroscopic theory. 

Auxiliary Fields 
The last preliminary that we wish to discuss concerns the utility of de- 

scribing the low energy theory on the u-plane in a formalism in which, by 
including auxiliary fields, the supersymmetry algebra is closed off shell. 

In this paper, we will mainly consider simply-connected four-manifolds, 
so we specialize to the case that the cycles E^ of the previous discussion 
are two-dimensional Riemann surfaces embedded in X. We will denote such 
a Riemann surface as S. The existence of a canonical solution of the descent 
equations enables one to associate with an operator I(S) = Js K

2u of the 

microscopic theory a corresponding operator I(S) = Js K
2u in the effective 

theory on the it-plane. 
Now we would like to make a similar correspondence for products 

I{81)1(82) - - - I(Sn) with distinct (though perhaps homologous) surfaces Si. 
It is not the case that if a microscopic operator I (Si) maps to an operator 
I(Si) in the low energyjiescription, then the product 1(81)1(82) ■ • • I(Sn) 
maps to 1(81)1(82) - • I(Sn). Rather, at intersections of the Si, "contact 
terms" will appear.7 One important simplification is that, as we can pick 
the Si to have only pairwise intersections, only pairwise contact terms will 
appear. Moreover, we can assume that the intersections of the Si are generic 
or "transverse." 

The basic structure therefore appears in a product of only two operators: 

i{sl)i{s2)->i{sl)i{s2)+   Y,  ePT(p)- (2-10) 
PeSinS2 

Here T is some operator, the sum over P runs over points in the intersection 
of Si and 52, and ep is ±1 depending on whether 5i and 52 meet with 
positive or negative orientation at P. The operator T(P) must be such that 
the right hand side of (2.10) is Q-invariant and duality-invariant and obeys 
some more detailed conditions that will be stated later. 

If auxiliary fields are included so as to close the supersymmetry algebra 
off-shell, then the condition for an operator, such as J(5i), to be Q-invariant 
is independent of the choice of a specific Lagrangian and in particular is 
invariant under adding a multiple of /(52) to the action. In that case, 
if 7(5i) and 7(52) are separately Q-invariant, so is their product.   If the 

7Such contact terms appeared in [31], for much the same reason, in using Af = 1 super 
Yang-Mills theory to compute Donaldson invariants of Kahler surfaces. 
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supersymmetry algebra is not closed off-shell, then the condition for I (Si) 
to be Q-invariant can change if 1(82) is added to the action - or, what is 
closely related, if one takes an operator product with /(S2). 

Thus, off-shell closure of the supersymmetry algebra makes 1(81)1(82) 
automatically Q-invariant, so that the operator T is separately Q-invariant. 
This is a major simplification, and for that reason we will use a formalism in 
which the supersymmetry algebra is closed off-shell. Of course, in a different 
formalism, one would obtain equivalent results after lengthier analysis! 

In the case of the ti-plane theory of Donaldson theory, Q-invariance of 
T means (after dropping an irrelevant term of the form {Q, •}) that T is a 
holomorphic "function" of u. We have put the words "function" in quotes 
for the following reason. We recall from [2] that one of the main points 
in the understanding of Af = 2 super Yang-Mills theory is that the low 
energy theory has many possible Lagrangian descriptions that differ from 
each other by duality transformations. No one such description is valid 
globally throughout the u-plane. As we will see, the product 1(81)1(82)1 
in a formalism with the supersymmetry algebra closed off shell, though Q- 
invariant, is not duality-invariant. As a result, though in any Lagrangian 
description of the low energy theory T corresponds to a holomorphic function 
T(u), in order to achieve duality-invariance of the right hand side of (2.10) 
one must require T to transform non-trivially under duality transformations. 
After determining the requisite transformation law, we will see that T can 
be readily and uniquely determined. 

Another benefit of holomorphy of T is that it means that in the topologi- 
cal field theory, the point P at which one inserts the operator T(P) (or more 
precisely T(u(P))) is irrelevant. As a result, once one has determined the 
object T, one can write the formulas in a much more convenient fashion. A 
useful way to proceed is as follows. Let S*, i = 1,..., 62(-X") be cycles repre- 
senting a basis of f^PO; let A^ be complex numbers; and let 8 be a formal 
sum 8 = ^iXiSi. Thus S represents an arbitrary element of H2(X,C). 
We let S'2 = Ylij ^i^jSi - Sj (where Si • Sj is the intersection number of 
Si and SJ; thus S2 is simply the square of S using the intersection pairing 

on F2(X,C)), and we set 1(8) = £< VX^t), 7(5) = £» V(#)- Then 
the formula (2.10), together with the absence of higher order contact terms 
and the separate Q-invariance of each term in the formula we are about to 
write, enables us to put the transformation from microscopic to macroscopic 
two-observables in its most convenient form: 

exp(/(5)) -* exp(I(5) + 52T(u)) . (2.11) 

Here the point at which T is inserted is irrelevant, given the Q-invariance, 
so we have written T(u) instead ofT(u(P)). 
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2.2    The Effective Theory on the u-Plane 

We have gotten about as far as we can with generalities. At this point it is 
time to describe in detail the theory of a single Af = 2 vector multiplet in 
four dimensions, of which a special case is the theory of the w-plane. (The 
physical, untwisted model with a general prepotential is described in [32]. 
The following formulas can be obtained by performing the 6 integrals to 
reduce to an ordinary Lagrangian and "twisting.") 

The bosons in the ftf — 2 vector multiplet are a f7(l) gauge field A and 
a complex scalar a (with its complex conjugate a). The fermions are, in the 
topologically twisted version of the theory, a zero-form 77, a one-form -0, and 
a self-dual two-form x- Under the ^(l)^ symmetry ("ghost number"), A 
has charge 0, a and a have charges 2 and —2, 77 and x have charge —1, and -0 
has charge 1. In order to close the supersymmetry algebra off-shell, one also 
introduces an auxiliary field D; in the topologically twisted theory, D is a 
self-dual two-form, of U(1)R charge zero. In what follows, given a two-form 
such as the U(l) field strength F = GL4, we write F = JF+ + F-, with F+ and 
F- the self-dual and anti-self-dual projections. Note that as D is self-dual, 
D = D+ and £>_ = 0. 

In the topologically twisted model, the Q or BRST transformations are 

[Q,A]=^,        [Q,^]=4v^rfd, 
[Q,a] -0,        [Q,a] = >/2if? , 
[Q,trf=0,        [Q,x]=i(F+-D+), 

[Q,£>] = (dA^)+, 

and the action of K is 

[K,a]=^1>, [K,a]=Q, 

[K, if,] = -2(F- + D) ,        [K, A] = -2tx , 

[^,77] =-^da, [K,x] =-3-^*da, 
[K,D} = -%*dV+

3idx. 

The Euclidean Lagrange density is the 4-form: 

^(fl) + -L&rxLD + F+)} - ^{Q^d * ^ 

(2.12) 

(2.13) 

^   {^.^V^V}^* ,     (2.14) 
3-257r 

where ^:'(a) is a holomorphic function called the prepotential. The free the- 
ory (quadratic action) corresponds to the case T = ^TQCI

2
 for some constant 

TO- 
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Using (2.12) and (2.13) we may expand out (2.14) to get the Lagrange 
density: 

i 11 
C = —- (TF+ AF++ TF- A FJ) + — Imrda A*da- --(Imr)jD A *D 

— -r^—Ti/} A *<i77 + 77—^77 A d * ^ + — r^ A dx "" ^""^X Adij) + 
lOTT lOTT OTT OTT 

iyj2dT /T^        „ ,      i\/2dT, ,      ,.      ,„        ^   , 

i        " r i.ii v 2i    r^r dr Jy\     ,/.    ^ 74 + 372^3?* A^ A V A^ - ^^{Q, ^xr^xftVg** . 
(2.15) 

where T(a) = ^"(a). In addition there are extra terms 

e(u)IYit;Ait!*+p(^)Tti?Ai?+JFA^2(X) , (2.16) 

which must be taken into account when coupling to gravity [33]. For the 
case of the i/-plane in Donaldson theory, explicit expressions were found for 
e(u),p(u) in [33]; these expressions are further discussed in section 3.1. 

Observables and Contact Term 
We now want to work out the description in the low energy theory of the 

observable associated with a Riemann surface S and the associated contact 
term. The mapping of observables from the high energy theory to the low 
energy theory is 

O ->2u     , 

I(S) -+ 7(5) =. -1= f K2u 
7rv2 Js 

— f 1 d2u ,      ,      \/2 du, „       ^  . 1 .„ , „. 
^A^-V — (F_+Z)+U .        (2.17) 

5I 32da2r     ^       4  da 

The two-observable is obtained simply by computing iiT2^, with the above 
description of K in the twisted theory. The normalization constants in these 
formulas have been fixed by matching to known results on Donaldson in- 
variants (for instance, the factor of 2 in the first equation is discussed in a 
footnote in the introduction). In principle, by a more careful understanding 
of the relation between the J\f = 2 theory as normalized physically and Don- 
aldson theory as defined mathematically, one should be able to make an a 
priori computation of these normalization factors. 

To determine the function called T(u) in (2.11), consider integrating 

out the auxiliary field D to describe e1^ in terms of physical fields only. 
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Since the D propagator is (D(x)D(y)) ~ J(a;,y)/Imr, this generates a term 

~ (du/da)2/Imr. So after integrating out D, e1^ becomes 

eXp f _ *   /■ f ^F.) + (5+)2^£ + fermionterms)  ,        (2.18) 

where S+ is the self-dual part of the cohomology class 5, and for the moment 
we need not concern ourselves with the fermion terms. 

Equation (2.18) is guaranteed a priori to be Q-invariant, but is not 
modulax-invariant. For the terms involving S+, the lack of modular in- 
variance is clear in (2.18): it comes because the function (du/da)2/Imr is 
not modular-invariant. However, the full integral involves the contact term 

discussed previously, and this effectively replaces e7^ by 

exp(JOS)+T(u).S2) , (2.19) 

where T(u) is a function that will be determined. 
The part of the exponent in (2.18) that involves S- (the anti-self-dual 

part of S) is (du/da)(S-,F). The lack of modular invariance here is less 
obvious. To see it involves analyzing a certain theta function that will enter 
when we study the ^-plane integral in detail. We will in due course study 
this theta function; for now it suffices to note that according to general 
considerations leading to (2.10) and (2.11), the contact term must, as written 
in (2.19), be proportional to the intersection number S2 = S+ + 5?., so that 
we can determine the contact term by computing the S+ term and then 
replacing S+ by S2. 

The contact term will be a holomorphic "function" T(u), appearing in 
the low energy theory as in (2.19), with the following properties: 

(1) In any description by a special coordinate a and photon A, T(u) 
is a holomorphic function. Under a duality transformation to a different 
description, T(u) changes in such a way that 

^^ + r(«), (2.20) 
STrlmr 

which is the total coefficient of 5+ in the exponent in (2.19), is invariant. 
(2) T has no singularity away from cusps in the u-plane. The behavior 

at cusps is as follows. If one works in the appropriate local coordinate near 
u = ±1 (for instance, CLD at the monopole point, and a + ar> at the dyon 
point) then T has no singularity at u = ±1. For u -> oo, if one computes 
using the special coordinate a which is valid near infinity, then T/u vanishes 
for u —> oo. 

(3) T is odd under u -> —u. 
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The statements in (2) about the behavior of T at cusps are justified 
as follows. Integrating out massless monopoles or dyons does not produce 
a singularity in T (we will see in section seven that T coincides with an 
analogous function T* defined without integrating out the monopoles), so T 
has no singularity at u = ±1. The behavior at infinity follows by dimensional 
analysis and asymptotic freedom. Dimensionally, T takes the form T = 
uf(A2/u), where A (generally set to 1 in this paper) is the scale parameter 
of the Af = 2 theory. T vanishes in the tree approximation, so /(0) =0 and 
hence T/u vanishes for u —> oo. 

Oddness of T(u) under u -> — u holds because the microscopic SU(2) 
theory has a classical ^7(1)^ symmetry which is broken to Zg by a quantum 
anomaly. Let w be a generator of the Zs which multiplies a quantum oper- 
ator of degree (or ghost number, or R charge) d by e2md/s. Thus, w maps 
u —>► — u (because u = Tr</>2 has R charge four) and I(S) -> il(S). Thus T 
must be odd under w, that is under u —> —u. 

Given these properties, T can be determined as follows. The main point is 
to determine how the function G(u) = (du/da)2/(87rlYnr) transforms under 
SX(2, Z). Under r -» r + 1, that is, a -* a and a^ -> ap + a, clearly G(u) 
is invariant. Under r -> — l/r, we have 

Imr-^^ (2.21) 
TT 

and 

du        du        du/da       1 du 

da       daj)      da^/da      r da 

Combining these results, we find that under r —>• — 1/r we have 

(2.22) 

Note that the inhomogeneous term in this equation (unlike G itself) is holo- 
morphic in u, a crucial property that enables a contact term with the desired 
properties to exist. 

Modular invariance of G + T now amounts to the statement that T is 
invariant under r -» r + 1 and transforms under r —>■ — 1/r as 

T-r+4^02- <2-24> 
A comparison to the standard transformation law for the Eisenstein series 
£2(7-) shows that these conditions are equivalent to the statement that 

T-T4^(t)2 + H^' <2-25» 
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where H is modular invariant and so is an ordinary holomorphic function 
of u. Conditions (2) and (3) assert that H has no singularities on the finite 
part of the ti-plane, grows precisely as u/3 for u —>• oo, and is odd under 
u -> —u. Hence H(u) = u/3 and 

r-s(*w(S),-te)- (2-26) 

The relation between a microscopic operator exp(/(5)) and macroscopic 
observa-bles on the ?i-plane is hence 

exp(/(5)) -> exp(7(5) + S2T{u)) , (2.27) 

withT(u) given in (2.26). 

2.3    Vanishing of the iz-Plane Contribution for fcj" > 1 

We will now establish a fundamental result: the vanishing of the the u-plane 
contribution for four-manifolds with b^ > 1. In the process we will also learn 
what contributions do survive for b^ < 1. 

The contribution of the w-plane cannot be evaluated by the usual topolog- 
ical field theory technique of reducing to super symmetric field configurations 
and then evaluating their contributions. The reduction is usually made by 
adding to the Lagrangian a term A{Q, V}, where A is real and V is chosen 
so that {Q,^} vanishes only for supersymmetric configurations, and then 
taking A —¥ oo. In the case of the i^-plane theory, such a V cannot be chosen 
in a duality-invariant fashion. In fact, V would have to be chosen to achieve 
r —> zoo, and this notion is certainly not duality-invariant. (Any choice of 
V depends on a choice of a particular "photon" multiplet.) Covering the 
n-plane with open sets and using different V's in different patches would be 
unhelpful, because the proof of invariance of the correlation functions under 
addition of {Q,V} to the Lagrangian involves an integration by parts in 
field space which in particular involves integration by parts on the u-plane; 
so one would run into serious complications in the intersections of different 
patches. 

The alternative is to exploit the fact that the theory is expected to be 
metric-independent (within a chamber, for reasons that will be clear) and 
to take advantage of this by looking at the behavior in a one-parameter 
family of metrics gt = £2<7o5 for fixed go, with t —> oo. What contributions 
survive as t -> oo? The one-loop determinants of the various fields cancel, by 
supersymmetry. Almost all Feynman diagram contributions vanish because 
- the theory on the tz-plane being unrenormalizable and without marginal 
or relevant couplings in the renormalization group sense - the vertices scale 
as negative powers of t.  We will analyze presently which contributions do 
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survive. Finally, in the path integral over abelian connections, one must sum 
over the various line bundles and the classical solutions (connections with 
harmonic curvature) on each line bundle. Since free U(l) gauge theory is 
conformally invariant, the generalized theta function coming from the sum 
over line bundles survives as t —► oo; it will be analyzed in some detail later. 

To illustrate how the quantum theory works without any technicality, 
first consider the case that bi = 0 and fcj" = 1. There is always a single 77 
zero mode, with wave-function 1. For 61 = 0 and b^ = 1, there are no ip 
zero modes and one x zero mode. The 77 and x zer0 modes, being zero-forms 
and two-forms, respectively, are naturally of dimension 0 and 2. The bosonic 
fields F and D are of dimension 2. The rj zero mode and a single x zero 

mode can be soaked up using the terms rjxD or r]xF+ in the low energy 
effective action. As these terms are of dimension 0 + 2 + 2 = 4 and we 
are in four dimensions, this gives a way to soak up all fermion zero modes 
with the overall power of t being t0. (In doing this, one sets df/da to its 
expectation value at the given point on the w-plane.) More explicitly, in 
performing the path integral, one must sum over line bundles. If 77 and x are 

set equal to harmonic forms, then f 77 A x A F+ is equal to the integral of the 
wedge product of the three cohomology classes in question, and is certainly 
invariant under rescaling of the metric by go -> t2go. The 77 A x A D term is 
similar (after integrating out D it will be replaced by fs 77 A x, which again 
depends only on the cohomology classes and not the metric). So these terms 
give contributions that survive as t -> 00. As we will see, these are the only 
contributions that survive. 

Suppose that, still with b^ = 1, we take 61 > 0. We should limit ourselves 
to the case bi even, since everything vanishes in Donaldson theory unless 
1 — 61 + fcf is even. There are &i ip zero modes, and as these are one-forms, 
they are naturally considered to be of dimension 1. We can absorb ip zero 
modes in groups of four using the interaction vertex (d^r/da2)^ Aip Aip Aip, 
and we can absorb ip zero modes in groups of two using the interaction vertex 
(drIda)ip Aip/\{F- +D). Either type of vertex gives a factor independent of 
t. Meanwhile the (unique) 77 and x zero modes are absorbed by the 77 Ax A F 
or 77 A x A D terms. So for &J = 1 and any even 61, there are contributions 
to the 7i-plane integrand that survive for t —> 00. 

What about fcj" > 1? For example, for 61 = 0 and b^ = 3, one could try to 
soak up all fermion zero modes using the TJX

3
 term or by using the x2{F+—D) 

term (along with r)x{F+ — D)) in the Lagrangian. These additional terms, 
however, are not topological and in fact scale as t~2. Other contributions 
with the given Betti numbers behave similarly or worse, as we will prove 
below, so the u-plane contribution vanishes for these values of the Betti 
numbers. The behavior is similar whenever b^ > 1. 

For 6^ = 0 (and bi odd), there are surviving contributions as t —> 00 
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which actually come from one-loop diagrams. Rather than explaining this 
in an ad hoc fashion, we will now adopt a more systematic approach. 

Scaling 
The non-zero modes in the path integral come in bose-fermi pairs re- 

lated by Q and so carry a natural measure. Metric independence of the 
measure thus means that the zero modes (or classical solutions) of the fields 
a,A,r),ip,x should be normalized in a fashion invariant under rescaling of 
the metric of X. (The auxiliary field D has no zero modes.) For example, 
the expectation value of a determines a point on the w-plane; the labeling of 
such points is completely independent of any metric on X. The classical so- 
lutions for A (the ?7(1) connection of the low energy theory) are connections 
with harmonic curvature on various line bundles over X] these are naturally 
labeled by topological data. The zero modes of r/,^, and x are harmonic 
q-forms (for q = 0,1, and 2 respectively) which we take to represent fixed 
cohomology classes. (We are limited here to speaking of invariance under 
conformal rescalings of the metric, not under arbitrary changes in metric, 
since x is a self-dual harmonic two-form, whose cohomology class takes val- 
ues in the self-dual part of H2(X, R), which is invariant under conformal 
changes of metric on X but not under arbitrary changes.) 

Now we expand the various fields as a sum of zero modes plus quantum 
fluctuations. For instance, 

a = ao + a' , (2.28) 

where CIQ is a constant and fx dftxy/ga' = 0, so that a' is orthogonal to the 
constants or zero modes. Likewise, we set 

r) = r/o + r?' , 

* = *> + ^' (2.29) 
X = Xo + x , 
A = Ao + A' , 

where 7/0,^0? and Xo axe harmonic forms, AQ is a connection with harmonic 
curvature, and T/, ^Z, X'? 

and Af are orthogonal to the space of zero modes. 
To analyze the large t behavior, it is convenient to assign dimensions to 

all fields in such a way that the kinetic energy of all fields has dimension four. 
There is not a unique way to do this. It is convenient to assign the natural 
dimensions 1,1,2 to the bosons a^A^D while assigning dimension 1 to ip 
and 2 to 77, x- This assignment of dimensions to the fermions differs from 
the usual choice (dimension 3/2 for all fermions), but still has the property 
that every term in the fermion kinetic energy is of dimension four. 

It is now easy to see that every interaction vertex has dimension at least 
four, and that every such vertex that contains 77 or x fields or contains no 
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fermions at all has dimension greater than four. Thus, every dimension 
four vertex has ip fields and no other fermions. Since the (ipip) propagator 
vanishes (nonzero fermion propagators are (rjip) and (x^)), all tree and loop 
diagrams constructed using the quantum fluctuations only vanish for t —> oo. 

What happens if we include insertions of fermion zero modes? (Inser- 
tions of bose zero modes just give derivatives with respect to the coupling 
constants at the various vertices and do not affect the assertions of the last 
paragraph, which did not depend on details of the couplings.) The zero 
modes represent fixed cohomology classes and so have geometrical dimen- 
sions - dimension q for a g-form. Replacing a quantum fluctuation by a 
fermion zero mode can only help if the zero mode has a smaller dimension 
than the corresponding quantum fluctuation. The only field for which this 
is so is 77, which has precisely one zero mode (with constant wave-function). 
So precisely one vertex will be "improved" in its large t behavior by setting 
7/ equal to a constant. There are three choices for which sort of vertex this 
might be: 

(1) If we set 77 to a constant in the rjxxx interaction, we find that this 
interaction still scales as a negative power of t. Since all other vertices scale 
as nonpositive powers of £, all contributions of this sort vanish. 

(2) We could set 77 = 770 in the rjAxhForrj/KxhD interaction. These 
terms then scale as t0 regardless of whether for x we take a zero mode or a 
quantum fluctuation. There are now basically three cases: 

(a) If 62" = 1, we must take the % field in the 77A^AF or r/Ax^D vertex to 
be a zero mode, since there are no other vertices of dimension four or less that 
could soak up the x zero mode. In the case of the 77 A x A F vertex, we must 
set JP equal to a harmonic form; for if F = dA' with A1 a quantum fluctuation 
while rj is a constant and x is harmonic, then J rjAx^F = 0. Otherwise we 
must use only vertices of dimension four (the alternative being vertices of 
higher dimension that give vanishing contributions). The only such vertices 
are '04, ,02i?, and ^2D; as there is no (ipi/)) propagator, all factors of ip must 
be set equal to zero modes (and F to a harmonic form, since if F = dA1 and 
the T/J'S are harmonic then J rj) A ij) A F — 0).8 This gives the non-vanishing 
contributions described earlier for four-manifolds with fcj" = 1 and any even 

61. 
(b) If 6^ > 1, there is no way to absorb the x zero modes without negative 

powers of t from vertices of dimension bigger than four. 
(c) If 62" = 0, then in the TJAX^FOITIAX^D vertex, as there are no x 

zero modes, x equals a quantum fluctuation x'- (Hence F must likewise be a 
quantum fluctuation F = dAf.) There must therefore be additional vertices, 
and these must be dimension four vertices /045 ^F, or ip2D. As the (/0'0) 

8It can be shown that for bf < 3 and all ^'s equal to zero modes, Jx x/'4 = 0, so this 
interaction can be dropped. 
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propagator vanishes, all if) fields except one must be zero modes. (The V4 

term can hence be dropped for the reason given in the footnote.) By following 
these rules, one can find several one-loop diagrams that contribute for four- 
manifolds with 6^ = 0 and &i odd. These diagrams come from TJXF • ipipF 
or r]xD • iptpD with a (xr]) propagator and either an (FF) propagator or a 
(delta function) {DD) propagator. 

(3) The remaining possibility is to set rj to a constant in the Trid*ip term 
in the Lagrangian. Since Jx d^x-y/gd*^ = 0, this gives a vanishing contribu- 
tion if we set a (and hence r) to a constant. So the lowest dimension term 
that arises from this source is a dimension three operator a'd*^. Moreover, 
to get a non-vanishing contribution one must use precisely this vertex, since 
the dimension four operator (a'^d^ip would give a negative power of t by 
the time one absorbs the af fields, and higher powers of a' are of course only 
worse. So relevant terms of this kind come precisely from the afd*ip opera- 
tor. In this operator, the a' field is a quantum fluctuation, of course (rather 
than a zero mode), and the same is true of ip as d*^ = 0 for ip a harmonic 
one-form. So we need to absorb an a' field and a ipf field using at most one 
vertex of dimension five (more vertices of dimension five or any of dimension 
greater than five would give a vanishing contribution for t —> oo) together 
with dimension four vertices. The only way to do this is to use a dimension 
five vertex a'drjip (coming from expansion of the 77^ kinetic energy in powers 
of a') together with any number of dimension four operators ^4, ip2F, and 
^D. All ip fields in the dimension five and four vertices just described must 
be zero modes since there is no (ipip) propagator. None of these vertices con- 
tain x fields, so these terms only contribute for four-manifolds with b^ = 0 
(and any odd 61). These contributions actually involve the one-loop diagram 
(a1}dr)(x)dfd*ip(y)). (The ip* term can again be dropped.) 

In short, certain one-loop diagrams contribute for b^ = 0, some simple 
tree diagrams contribute for fcj" = 1, and there are no surviving contributions 
at all for fej > 1. This hierarchy is reminiscent of the progressive simplifi- 
cation found in a certain class of three-dimensional topological field theories 
as bi is increased [34]. The derivation is also more or less similar. 

3    Explicit Expression for the u-Plane Integral 

Our goal in the rest of this paper is to understand the w-plane and SW 
contributions to Donaldson invariants, focussing on the case 61 = 0. (After 
working out some formal properties of the u-plane contributions in sections 
4-6, we will then in section 7 analyze the SW contributions to Donaldson 
invariants.) We would like to calculate the value, in the twisted Af = 2 
theory with gauge group 50(3), of the path integral with an insertion of the 



G. MOORE, E. WITTEN 321 

operator 

exp(pO + I(S)) , (3.1) 

where p is a complex number, O = g^-Tr^2, and as before I(S) is an arbi- 
trary two-observable. We consider the partition function with this operator 
inserted summed over 50(3) bundles E with a fixed value of £ = W2(E). 
We call this object (exp(pO + I(S)))^. It is the generating functional of 
Donaldson invariants for bundles of the given value of w^E). 

As explained in the introduction, the answer will be the sum of a contri- 
bution from the M-plane and a contribution from monopole or SW solutions 
at u = ±1. In this section, we work out the contribution of the 7i-plane, the 
analysis of which is the main focus of the present paper. As we have seen, 
this contribution vanishes for b^ > 1. 

3.1    Form of the Integral for b^ = 1, h = 0 

In analyzing the -u-plane integrals, the first task is simply to write down 
the -u-plane integrand for b^ = 1, &i = 0. A number of factors need to be 
considered, including: 

(i) Some interactions that vanish on flat R4 but are present in the twisted 
theory on a curved four-manifold; and a factor involving the center of the 
gauge group. 

(ii) The integration measure for the zero modes. 
(Hi) The transformation of (3.1) to the macroscopic theory. 
(iv) The path integral of the photons. 
(v) The absorption of fermion zero modes and elimination of auxiliary 

fields. 
We consider these factors in turn and then put the pieces together. 

Effect of Curved Space 
On the w-plane, there are interactions of topological importance that do 

not appear on flat M4 but do appear if one works on a curved four-manifold 
X. For the case of the topologically twisted theory, these interactions were 
analyzed in section 3.3 of [33] and multiply the measure by a factor 

AXB* = cPtirUu2-l)^X    (u2-l)a/& , (3.2) 

where x and cr are the Euler characteristic and the signature of X, and a 
and P are universal constants (independent of X) that were not determined 
in [33]. (These constants could in principle be computed by careful com- 
putations in the semiclassical region of large IA, where asymptotic freedom 
prevails, but this has not been done.) 
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Also, in going from quantum field theory to SU(2) Donaldson theory, 
there is an extra factor of 2, because the center of SU(2), which is of order 
2, acts trivially on instanton moduli space; in quantum field theory one 
divides by this factor of 2 (as part of the Fadde'ev-Popov gauge fixing), but 
in Donaldson theory it is not customary to do so.9 

For bi = 0, 6^ = 1, we have x + & = 4, so the additional factors in the 
path integral, including the factor of 2 just mentioned, become 

2a^>2-l)^P^T . (3.3) 

Zero Mode Integration Measure 
With bi = 0, the bosonic zero modes are purely the choice of a point on 

the w-plane. The metric on the n-plane can be read off from the Lagrangian, 
and is up to a constant multiple Imr|da|2. So the zero mode measure for a 
is a constant multiple of 

Imr da da . (3.4) 

We need not be precise in determining a universal multiplicative factor here 
(and similar factors below); this would be part of the determination of the 
factors a,/3 in (3.3). 

There is a single r) zero mode, with constant wave-function. We write 77 = 
Vo + rfi where 770 is a constant anticommuting c-number and 7/ is orthogonal 
to the constants. For b^ = 1, there is a single x zero mode, the wave 
function being a harmonic self-dual two-form u which we normalize so that 
fxu A LJ = 1. Note that this condition leaves the sign of CJ undetermined. 
We write x — Xo^ + X'J where xo is an anticommuting constant and x' is 
orthogonal to u (we are making a slight change in notation as xo^ was earlier 
called simply xo)- The integration measure for the fermion zero modes is 
just 

drio dxo ,Q rx —  . (3.5) 
Imr 

The reason for the factor of Imr in the denominator is that the kinetic 
energy of every field has a factor of Imr, which means that the measure for 

9 Since we are working on 50(3) bundles of non-zero W2{E), the reader should ask why 
the center of 517(2) is relevant. The answer is that in standard physical 50(3) gauge 
theory, one would sum over all values of ^2(^)5 we instead are calculating the value of the 
path integral for a fixed value of W2(E). This gives a sort of shifted version of SU(2) gauge 
theory (the standard version of which has W2(E) fixed to be zero). In such a shifted version 
of the SU(2) theory, the path integral computes the natural topological intersection theory 
on moduli space, divided by the order of the center of 31/(2), just as in the ordinary 517(2) 
theory. 
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every bose zero mode has a factor of (Imr)1/2 and that of every fermion zero 
mode has a factor of (Imr)-1/2. 

Notice that this measure is odd under a reversal of sign of a;, which 
changes the sign of xo- This corresponds to the standard fact [35, 8] that 
defining the sign of the Donaldson invariants requires a choice of a "Donald- 
son orientation," which is an orientation of H2>+(X) 0 iJ1(X). For bi = 0 
and 6^ = 1, a Donaldson orientation is a choice of a;. Our formulas will thus 
depend on a choice of a;, and will be odd under reversal of sign of a;. 

Combining the above, the zero mode measure is simply 

da da drjo dxo , (3-6) 

with no factors of Imr. 

Observables of the Low Energy Theory 
How to represent the microscopic observable exp(pO + I{S)) in the low 

energy theory has already been determined above. The most subtle step was 
the determination of the contact term T(u) in (2.27). For bi = 0 and b^ = 1, 
the tpip terms in I(S) can be dropped, by arguments similar to those that 
we gave in explaining the vanishing of the {/-plane contribution for fcj" > 1. 
The net result is that 

exp(pO + I(S)) ->exp *-£/,!<*- + '>+> + *r(«> (3.7) 

where the right hand side is to be evaluated in the low energy theory on the 
{/-plane. 

Photon Path Integral 
An important factor in the i/-plane integral is the partition function of 

the free photons. Actually, to be more precise, one will require the photon 
path integral with an insertion of a certain operator. However, many of the 
subtleties occur already if one writes simply the photon partition function 
(which would enter in some physical observables on the u-plane, though not 
in the topological observables considered in the present paper), and we will 
do this first. 

As explained in [33, 36], the photon partition function on a four-manifold 
with &i = 0 is of the form 

where 0o is a sort of Siegel-Narain theta function of the lattice T = H2(X, Z). 
If one simply took U(l) gauge theory with the action appearing in (2.15) we 
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would substitute10 F -¥ ATTX and this theta function would be 

0o = XlexpH7r^A+)2"i7rT(A-)2) • (3-9) 

Here AH- and A_ are the self-dual and anti-self-dual projections of A; hence 
X\ > 0 and A?_ < 0. Note that the self-dual projection is explicitly A+ = 
UJ(U, A) with co the normalized self-dual harmonic two-form introduced above. 

To obtain the desired lattice theta function for the U(l) gauge field that 
appears on the -u-plane, (3.9) must be modified in two ways. First of all, 
suppose that we are doing 5(7(2) gauge theory, spontaneously broken at a 
generic value of u to (7(1). Such breaking means that an underlying SU(2) 
bundle W reduces to T © T-1 where T is a line bundle. The exponent in 
(3.9) is normalized to be the correct effective action for an 5/7(2) bundle of 
this form in Donaldson theory if A is identified as ci(T). 

Suppose, however, that one wishes to do 50(3) gauge theory with a 
bundle E of W2(E) ^ 0. In this case, the bundle W does not exist and 
should be replaced by E = Sym2(W). However, as far as the low energy 
theory on the w-plane is concerned, the effect of having W2{E) ^ 0 is simply 
that A is no longer an integral cohomology class but is shifted from being an 
element of F by \w2(E). Thus A is now an element of ^F that is congruent 
to \w2{E) modulo F. This shift by itself would turn the theta function into 

0! =       J^       exp (-i7rT(A+)2 - OTT(A_)
2
)  . (3.10) 

In addition, there is an important phase factor in the lattice sum whose 
origin was explained in section 4.4 of [33]. This factor may be described as 
follows. Pick an arbitrary and fixed AQ G \W2{FI) +r. The factor in question 
is 

( —l)(A-Ao)-w2We27r*Ag ^ (3.11) 

Of course, there is no canonical choice of AQ (unless W2{E) = 0, in which 
case we take AQ = 0). If AQ is replaced by AQ, then (3.11) is multiplied by 

(-1)^(*) , (3.12) 

where (3 is the integral class /3 = AQ — AQ. Thus, with the factor (3.11) 
included, the overall sign of the Donaldson invariants depends on a choice 
of AQ. This fact actually mimics standard facts in Donaldson theory. In 
Donaldson theory, for W2{E) = 0, one conventionally orients the instanton 

10Recall that with our conventions, A G ^W2{E) + r is a half-integral class. That is why 
F = 4ir\ and not 27rA. 
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moduli spaces using an orientation of Hl(X) ®H2^(X); such an orientation 
entered our discussion above as a choice of sign for the integration measure of 
the fermion zero modes on the ^-plane. When W2{E) ^ 0, the conventional 
way of orienting the instanton moduli spaces depends in addition on a choice 
of integral lift of W2(E), which in our above notation should be identified 
with 2Ao. Moreover, when the integral lift of W2(E) is changed, the usual 
orientation of the moduli space is multiplied by the factor (3.12). (See [8], 
pp. 281-3, for a summary of these matters.) Thus, when the factor (3.11) is 
included, the M-plane integral depends on the same choices, and transforms 
in the same way when the choices are changed, as the orientation of instanton 
moduli space. 

Equally important is the fact that when A is changed by an element of F, 
the phase factor (3.11) changes by a factor of ±1. Thus, in its dependence 
on A, this phase factor behaves as a sign factor. A field theory explana- 
tion of the A dependence of this factor was given in [33], where it was also 
shown to be crucial in the appearance of Spinc structures near u = ±1 after 
duality. In writing the phase factor precisely as in (3.11), we are fixing an 
overall, A-independent factor that was not analyzed in [33], in such a way 
as to agree with standard mathematical conventions in Donaldson theory.11 

Multiplication by a different A-independent factor would simply multiply the 
generating function of the Donaldson invariants by that factor.12 

Putting these factors together, the photon partition function on the u- 
plane is 

Z = i==       y       (-l)(*-*o)'MX) exp (-t7rr(A+)2 - i7rT(A_)2)  . 

(3.13) 

For application to Donaldson theory, we will actually require not the parti- 
tion function but the path integral with a certain operator insertion, so it is 
a related but different function that will appear in the w-plane integrals. 

11 In particular, that is the reason for the e27riAo factor in (3.11). That factor is the 

same as e1™2^ /2, and is completely independent of the choice of Ao, as W2(E)2 has a 
well-defined value modulo 4. This factor is included to agree with standard mathematical 
conventions in Donaldson theory. It would have been equally natural to include instead 
a factor e~27riAo< The change would multiply the Donaldson invariants by a sign factor 
(—l)W2(E) , corresponding to a reversal of the orientation on instanton moduli space. It 
is necessary to include one or the other factor e

:tl7rtiJ2(^) /2 ^n or(jer for the Donaldson 
invariants to come out to be real after performing the u-plane integral. 

12 The convention used in [4] actually differed from the present choice (which as we have 
stated is chosen to agree with standard mathematical conventions) by a sign factor. This 
sign factor depends on an integral lift of W2(X) and is (~l)(2Ao+Ao^2(x)) 
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Absorption Of Fermion Zero Modes And Elimination Of Auxiliary Field 
For 61 = 0 and b^ = 1, there are precisely two fermion zero modes. We 

have already determined in section 2.3 which interactions should be used to 
absorb these zero modes. The relevant part of the path integral contains 
precisely one insertion of the r]x{F + D) interaction vertex. This vertex 
corresponds to a factor in the path integrand that reads 

Now is a good time to integrate out D+ and eliminate it from further 
discussion. The only D-dependent factor in the path integral, other than 
(3.14), appears in (3.7). Combining this with (3.14), the /^-dependence of 
the path integral is in a factor 

exp 

->*(4l//+H^/J^^H-  (3'16, 
One can integrate D out of this expression, using the fact that D is a 
Gaussian field with propagator (D(x)D(y)) ~ ^(a;,y)/Imr. Upon integrat- 
ing out £>, (3.15) becomes 

/   2 ((duldafW    (y/2   f drr /r,        .{du/da) n  \ 

-exp (5 V^T) ) ■ (is L S" A X A (J?++'-ir^) ■ 
(3.16) 

To reduce this further, note that F+ coincides with 47rA+. Also, upon 
integrating over the fermion zero modes, we can replace 77 by 1 and x by w. 
The resulting factor is hence 

\f2df /  2 f(du/da)2\\    (.     AN        %   du,     i 

where r = x + iy. 
The first factor in (3.17) depends on the lattice vector A and should be 

included in defining the lattice sum W that appears in the u-plane integrands 
of Donaldson theory. It is also convenient to include in the definition of * 
an additional A-independent factor of exp [—S^_(du/da)2/87ry)] this factor 
is chosen to simplify the modular behavior of \I/. The lattice sum in the 
u-plane integrand is thus 

* = expf-—(-)252le27riAo        y       (_i)(A-AoWX) 

exp -mT(A+)2 - mr(A_)2 - i^S, A_) 

(3.18) 
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The net effect is that the photon path integral relevant to the u-plane 
integral, combining what appears in (3.8), (3.17), and (3.18), is 

„        V2df _1/2        / r,o(du/da)2\    T 

Putting the Pieces Together 
Combining what we have obtained in (3.6), (3.7), (3.17), and (3.19), the 

integral over the u-plane is simply 

ZU = IM 
d^(r)e^s2n^ , (3.20) 

where T = x + iy, T = T+ £-(^)2, and the measure factor is: 

^r-^^mY*.  »,„ 
We have here fixed the normalization factors a and /3 so as to agree (in the 
computations that follow) with known results on Donaldson invariants. We 
have also set % + a = 4, since this is so for four-manifolds of bi = 0, b% = 1. 

Notice that various factors have combined neatly so that the bosonic 
integration measure da da in (3.6) is transformed to drdr. This is very 
convenient since in terms of a there is no reasonable description of the in- 
tegration region. In terms of r, however, there is a natural answer: the 
integration is to be taken over the modular region M of the group r0(4), 
that is, over the quotient r0(4)\/H, where H is the upper half plane on which 
the subgroup r0(4) of SX(2, Z) acts in the usual fashion. This is simply the 
assertion that the u-plane is the modular curve of r0(4). 

The formal proof that this integral (regularized as in the next subsection) 
is metric-independent follows from the fact that the stress tensor of the 
twisted theory is of the form {Q,...}, as a result of which the derivative 
of the integral with respect to u; is a total derivative on the u-plane. We 
postpone this argument to section 11.3, where we make this argument in 
a wider context and show directly that the integral is a locally constant 
function of UJ with wall-crossing. 

3,2     Definition of the Integral 

At this point we must face the fact that the integral (3.20) does not converge, 
because of bad behavior near u = oo and in some cases also near u = ±1. 
It is quite clear that if one expands (3.20) in powers of p, so as to compute 
Donaldson invariants of increasing order, then as u diverges at infinity one 
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will eventually run into a divergent integral. There is a similar problem near 
u = ±1 if a is sufficiently negative. 

To complete the definition of the integrals that will be studied in the 
rest of the paper, we must therefore explain how the divergences will be cut 
off. We do this in a standard and natural way, as follows. First we expand 
(3.20) out to a given order in p and 5, to obtain an integral that should give a 
Donaldson invariant of some given order. To define that particular integral, 
after writing r = x + iy, we perform the integral for y < yo, for some cutoff 
yo, and then take the limit as yo —>• oo only at the end. A similar procedure 
is followed near the cusps at u = ±1, introducing the dual r-parameters 
at the other cusps and integrating first over Imrp < yo, before taking the 
limit as yo —^ oo. This eliminates the infinities, for the following reason. Set 
q = exp(27rir). Then the term in (3.20) that is of any given order in p and 
S is a sum of terms, each of which is a power of y times a sum of the form 

$>T- (3-22) 

v and fj, are not integers (or even rational numbers, in general) but obey 
v - /i £ 1%. 

The important point is that, though v has no lower bound, fi is bounded 
below by zero. The reason for this is that negative exponents in (3.22) come 
only from factors in (3.20), such as u and (dr/Gb)-0"/4, which are singular 
at the cusps; these factors are holomorphic and so contribute to v but not 
/i. 

Under these conditions, consider an integral of the following form: 

lim    r^- [  dxYq'r . (3.23) 
3/0-04 ycJo     ^qq 

Here yi is an irrelevant lower cutoff, say yi = 3, that is included so as to 
study one cusp while keeping away from others. The interest is in whether 
the integral converges for yo —>• 00. The x integral runs from 0 to k where 
(for r0(4)) k = 4 for the cusp at infinity, and k = 1 for the other cusps. 
A detailed examination of (3.20) and of the definition of the function \I> 
shows that in all cases either c > 1 or there are, for a generic metric on X 
(the metric enters in the definition of \I/), no terms with u = /i = 0. Now 
integrating first over x projects the sum in (3.23) onto terms with v = n, 
and hence (as /i is non-negative) onto terms that vanish exponentially or, if 
v = H = 0, are constant at infinity. For a generic metric on X, the y integral 
converges as yo —> 00, since all terms that have survived the x integral have 
c > 1 or v,/! > 0. Via this procedure, the integral becomes for a generic 
metric a well-defined formal power series in p, S. 
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For special metrics, on the other hand, there are terms with c < 1, in 
fact c = 1/2, and z/ = /J, = 0. That is where wall-crossing will occur, as we 
discuss in section 4. 

The cutoff we have given is certainly quite natural and will lead to elegant 
formulas that agree with Donaldson theory as it has been formulated math- 
ematically. However, one is reluctant to think of any cutoff as fundamental. 
Since the behavior near u = oo is linked to the "bubbling" phenomena in 
Donaldson theory, one might guess that a different but still "reasonable" 
cutoff might correspond to a different recipe from the one usually used in 
Donaldson theory for handling the singularities of instanton moduli space. 
The usual experience in quantum field theory is that upon making a change 
in the cutoff recipe (within a class of "reasonable" cutoffs) one gets the 
same theory with a different parametrization. In the present case, for in- 
stance, such a reparametrization might mean replacing the function epw by a 
function ePu+a(u)x+P(V')<r ? where x and cr are the Euler characteristic and sig- 
nature of X and a and /3 are some universal functions. We will not, however, 
investigate the extent to which either the cutoff-dependence of the w-plane 
integrals, or the dependence of Donaldson theory on how the singularities 
are treated, can be so written. 

Curiously, the regularization relevant to Donaldson theory also coincides 
with that needed to define one-loop amplitudes in string theory. In particular 
(3.20) bears a striking resemblance to threshold corrections in compactifica- 
tions of heterotic string on K3 x S'1. It would be interesting to understand 
this more deeply. 

3.3    Verification of Modular Invariance 

Having defined the integration at the cusps it is still worth checking that the 
integral actually makes sense, namely, that the integrand is single-valued. 
This is equivalent to checking modular invariance of the integrand under 
r0(4). Verifying this is a test of our calculation since the underlying SU{2) 
gauge theory is intrinsically defined, but to compute the explicit -u-plane 
integrand we have had to use an effective low energy U{1) description that 
is only uniquely determined up to a modular transformation. 

Modular invariance is most readily checked by relating \I/ in (3.20) to 
the standard Siegel-Narain theta functions which transform simply under 
modular transformations. Our notation is explained in Appendix B. We 
introduce the theta function 

e = «-(«»(*w^e^o-, \w2{x), \ME)\PU,Z) , (3-24) 
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with K = e2™/8 and 

Deiining 

da 1 GFU 
(3.25) 

/(P,5,r,») ^((«2 - l)f )X/4(W
2 - IJ'/^exp^ + ^f («)] , 

du 
(3.26) 

for an appropriate normalization constant J\f, we now introduce the auxiliary 
integral Q(p) 

dxdy 
G{p) = f 

Jr r°(4)\ft V 3/2 ■/(P,5,r,y)e, 

related to the Coulomb partition function by 

Zu = (S,u>)g(p) 
p=0 

+4 

(3.27) 

(3.28) 
p=0 

Denote the integrand of (3.27) by ^J, where J = f ■ y1'2®. We 

obtain a fundamental domain for r0(4) from a fundamental domain F for 
P5L(2,Z)by 

■r0(4)\«S ^ U T • T U T2 • ^ U T3 • F \JS-F\J T2S ■ F (3.29) 

The first four domains give the region of the cusp at r -> too and correspond 
to the semiclassical region. The region S ■ F surrounds the cusp near r = 0 
and will be referred to as the monopole cusp. The region T2S ■ F surrounds 
the cusp near r = 2 and corresponds to the massless dyon. 

Mapping the integrand in these 6 regions to the domain F we get six 
functions: 

.7(oo,o) {r) = J{T) , 

J'(OO,2)(T) = J(T + 2), 

.7(00,3)0-) = .7(T+ 3), 

JM{T) = J(-1/T) , 

JD[T) = J{2-1/T). 

In general we will denote r0(4)-modular forms F transformed as in (3.30) 

by Fj where 

/ = (oo, 0), (oo, 1), (oo, 2), (oo, 3), M, D . (3.31) 

(3.30) 
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These will form representations of the permutation group 63 == r/r0(4).13 

It is now straightforward to bring the integral to the form 

^H^^E/Hp^e,, (3.32) 

where 

6/= e^'0^2 (r, a,,/?/;£/), (3.33) 

are the transforms of the Siegel-Narain theta function implied by (3.30). It 
is easy to check that // and 0/ transform in the same unitary representation 
of the modular group. Hence Q is modular invariant, and therefore, so is Zu. 

3.4    The Four Basic Properties 

Here and in sections 4-6 we will examine, in light of what we have learned, 
the basic formal properties mentioned in the introduction. 

The homotopy invariance of the M-plane integral is manifest from the 
form of the integrand in (3.20). The u-plane integral for a simply-connected 
four-manifold is completely determined by the lattice F = H2(X, Z) with its 
intersection pairing. Thus, these integrals, while extremely subtle, capture 
only elementary topological information. Only because there are additional 
contributions from u = ±1 is this compatible with the fact that Donaldson 
invariants of four-manifolds contain further information beyond the inter- 
section form. Those contributions involve the SW invariants and will be the 
subject of section 7. 

As explained in the introduction, beyond homotopy invariance, the u- 
plane integrals possess three additional formal properties that determine 
them completely. These are the chamber dependence, the vanishing in cer- 
tain chambers, and the blow-up formulas. The next three sections are de- 
voted to these properties in turn. 

4    Chamber-Dependence of Zu and Wall-Crossing 
Formulae 

We are now in a position to give a comparatively simple explanation of 
the wall-crossing formula for the u-plane integrals. It is useful to think in 
terms of the analogy of (3.20) to one-loop integrals in string theory. In 
this analogy the wall-crossing discontinuities arise when - in the language of 

13 Actually, one encounters modular forms of half-integer weight and hence occasionally 
one must work with the metaplectic double-cover. 
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string amplitudes - a massive particle becomes massless on a subvariety of 
Narain moduli space, leading to an infrared divergence in the integral. 

In the present integral, there are three cusps r = ioo, r = 0, r = 2. The 
first cusp leads to the Donaldson wall-crossing formulae. The other two lead 
to the SW wall-crossing formulae. 

As explained in section 3.2, any discontinuity in Zu arises from a finite 
number of terms in $ and from negative powers of q in the Fourier expansion 
of the nearly holomorphic modular forms. The relevant terms are of the form 

X(a;) =   f ^c(d)e27r^-27r2/de-^(Ai-|-A2_)e-^(A2.-Ai)(a;5 A) (41) 

Jr yl/2 

for some integer d and some A. (The u-plane integrand also contains addi- 
tional terms proportional to y~3y/2 instead of y"1/2 and lacking the factor 
(a;, A). It will, however, become clear that such terms produce no singular- 
ity.) In (4.1), c(d) is the coefficient of some modular object. It is also a 
function of p and (SL, A_), (£+, A+), but this has not been indicated explic- 
itly. 

We want to study the integral in (4.1) for fixed A as the decomposition 
A — A+ + A_ varies. We recall that A+ = ^(CJ, A), so this decomposition 
is determined by u. The issue is to find a discontinuity in I(UJ) when a 
"wall" is crossed. Such a discontinuity occurs only if A2 < 0, since otherwise 
the integral in (4.1) (with the regularization described in section 3.2) is too 
well-behaved to produce a discontinuity. When, however, A2 < 0, there is a 
discontinuity at A4- = 0. This can be computed as follows. Upon doing the 
x integral, one projects onto d such that 2d = A2. For this value of d, the y 
integral looks like 

r%c{\*l2)e-^l\+. (4.2) 
Jyi   y 

This is an elementary integral (if one replaces yi by 0) and converges for all 
non-zero A+, but is discontinuous at A+ = 0. The discontinuity comes from 
the large y part of the integral and so is independent of yi. The discontinuity 
in 1(UJ) as w crosses from (a;, A) = 0~ to (a;, A) = 0+ is easily computed to 
be14 

X(a;+) -X(u;_) = V2c(d) = V2[q-x2/2c(q)]q0 . (4.3) 

The notation [-J^o indicates the constant term in a Laurent expansion in 
powers of q. It may also be expressed as a residue. Since A+ = 0 we may 
put (S+, A+) = 0 and (£_, A_) = (5, A) in the function c(q). 

14This is the contribution of a single copy of the 5L(2, Z) fundamental domain near the 
cusp. For the cusp at infinity, there is an extra factor of four from the summation over 
four copies of the fundamental domain, or equivalently from the fact that x runs from 0 
to 4. 
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The conditions A2 < 0, A4- = 0 for a discontinuity are very familiar in 
Donaldson theory. They are the conditions that the line bundle with Chern 
class A admits an instanton connection, which (upon embedding of U(l) in 
SU(2) or 5(9(3)) appears as a singular point in instanton moduli space. The 
discontinuity of Zp is usually computed by studying the behavior near this 
singularity. The conditions A2 < 0, A+ = 0 for a wall are also very natural in 
string theory. They are the conditions that in toroidal compactification of the 
heterotic string, a massive particle with Narain vector A becomes massless 
and gives an infrared singularity. The above computation exhibiting the 
discontinuity has a direct analog in heterotic string threshold computations. 
See, for examples, [13, 37]. 

The equation (4.3) is of central importance. It shows (modulo an analysis 
we give presently showing that the contributions of the different cusps do not 
cancel) that the partition function Zu is not topologically invariant. Indeed, 
the conditions A2 < 0, A-f = 0 define chambers in the forward light cone 
V+ = {UJ e H2(X; E) : u2 > 0}. Any A with A2 < 0 defines a wall in V+ by 

Wx = {a; : A • a; - 0} . (4.4) 

The chambers are the complements of the walls. 
When UJ crosses such a wall there is a discontinuity in Zu given by (4.3) 

for an appropriate c(q). Any given correlation function ~ (O^X(5')r) will 
involve an integral with a holomorphic form with pole growing linearly with 
r,£. Thus, any such correlation function will only be piecewise constant as a 
function of UJ. The number of chambers for such a correlator grows with r, I. 
Let us now examine in more detail the chamber-dependence coming from 
the singularities at the three cusps of r0(4)\'H. 

Comparison to Donaldson Theory Wall-Crossing Formulas 
The four cosets forming the cusp at r -4 ioo contribute the semiclassical 

wall-crossing formula. As explained in the introduction, this contribution 
should coincide with the wall-crossing formula for the Donaldson invariants. 

For these cosets, the shifts /?/ defined in (3.33) are all given by /?/ — 
5^2(^) and the formula (4.3) for the quantity 6Ui00 of equation (1.10) be- 
comes: 

Zu,+ - Zu,- = -32i(-l)(A-Ao^2(x))e27rUo 

/ (2idu\2\ ^l* ( 
q-\

2/2(u2 _ 1)/l(r) M^L        exp j 2pu + S2T{u) - i(A, S)lh 

(4.5) 

Here h = ^.  In appendix A we give expressions for the various modular 
forms in (4.5) in terms of Jacobi ^-functions. Using these expressions (4.5) 
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simplifies to: 15 

Mr)3 9~A2/2S3 exA2Pu + S2T
(
U

) - «(A» S)/h] 
(4.6) 

with h = h^fiz and 

u uH + #i 
2 (W2 ' 

In fact, the semiclassical wall-crossing formula (4.6) is identical to the 
wall-crossing formula given in [15, 10] for Donaldson invariants of four- 
manifolds with &i = 0, &2~ = 1. In making this comparison we must note 
the following. Modular forms not of r0(4) but of a group conjugate to it 
by r —> r + 1 are used in [15, 10], and one must make this transformation 
in (4.6) before matching the modular forms. (The shift r —> r + 1 does not 
affect the residue or q0 coefficient in (4.6).) 

SW Wall Crossing 
We will now analyze the wall-crossing behavior associated with the mono- 

pole and dyon cusps at r = 0,2. As explained in the introduction, this wall- 
crossing contribution is related to the wall-crossing behavior of SW invariants 
- a connection that we will explore further in section 7. 

The "monopoles" that appear near u = 1 are not spinors (sections of a 
spin bundle 5+) but are sections of a Spinc bundle which we write somewhat 
symbolically as 5+ ® L, where L does not exist as a line bundle but L®2 

does. We define A = ^ci(L2); thus, A E ^W2(X) -f-F. Hence, in the previous 
notation, (3 = —^W2{X) for these cusps. The walls are still defined by 

A2<0, 

(A,w)=0 . 
(4.7) 

At the monopole cusp, the formula (4.3) for the discontinuity 6Uyi of 
equation (1.10) becomes: 

Zu,+ — Zu,- 

Q 

_*   2i7r(Ao-A+Ag) 

.98+0- f 

"A /27^y3 exphp^M + S2TM - i(A, S)IKM } (4.8) 

15The right hand side of (4.5) is odd under A -> —A. Therefore at any wall the contri- 
butions of ±A to the discontinuity in Zu add, rather than cancel because this is a formula 
for Z+-Z-.- 



G. MOORE, E. WITTEN 335 

where 

1 #% + ^4 
UM = 2 (W ' (4-9) 

There is a similar expression for the dyon cusp. Recall that AQ is a fixed 
element of ^W2(E) + F (or in other words that 2Ao is a fixed integral lift 
of W2(E)) which entered in defining the u-plane integrals in section 3 (and 
which in the usual mathematical theory enters in orienting the instanton 
moduli spaces). 

We would like to stress that the functions u,h,T in (4.8) are the same 
functions occuring in the integrand of Zw; however, they are most usefully 
expressed in terms of the expansion relevant to the cusp at r = 0, namely 
the expansion in powers of qo = exp(27r2T£>) where TD = —1/r. To avoid 
cluttering the notation, we have simply written r, q in (4.8). 

It is interesting to derive a condition for (4.8) to be nonvanishing. Defin- 
ing 

*-i (2A)^-(9-6_)   , 

we see that the leading power of q in (4.8) is q~^dx. Thus, 

(4.10) 

dx > 0 (4.11) 

is a necessary condition for SW wall-crossing. In particular, note that we 
must have 8 + a = 9 — b- < 0. As we explain in section 7 below, (4.11) is in 
perfect correspondence with SW theory. Indeed, dx is the virtual dimension 
of SW moduli space. We will show that a knowledge of the wall crossing 
formula for the cusps at u = ±1 even allows us to learn about Donaldson 
invariants for (hypothetical) four-manifolds of any b^ that are not of simple 
type. 

5    Vanishing in Certain Chambers 

Another important property of the M-plane integrals is that they vanish for 
certain four-manifolds X in certain chambers, for 50(3) bundles E with 
certain values of W2(E). In conjunction with the wall-crossing formulae 
explored in section 4, this determines the values of Zu for such X, E. 
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We recall from the introduction that the appropriate four-folds X are 
"rationally ruled surfaces," which map to a two-dimensional base B, with 
generic fiber F of genus zero. The required bundles are bundles such that 
(w2(E),)F) 7^ 0. The vanishing chamber is defined by the requirement that 
the area of the fibers goes to zero. As we will see, the vanishing occurs 
because the lattice theta function vanishes in this limit, and hence the u- 
plane integrand vanishes pointwise. 

To fix ideas, we will focus on the Hirzebruch surface Fi. The general case 
is similar. Let us set up some notation. We regard X = Fi as a blow-up of 
projective space Fi = BZp(P2). The blow-up produces an exceptional divisor 
JB. X fibers over P1 with P1 fibers which we call F, and B is a section of 
this fibration. There are two natural bases for H2{X\ Z). One basis consists 
of the pair (F,B). In this basis, the intersection form is: 

? A) • <-» 
Alternatively, we can introduce H = B + F, the pullback of a hyperplane 
class on P2. In the basis (H,B), the intersection form is 

i -0,) • <"> 
We choose an integral lift oiw2{X) by setting W2{X) = F. The Kahler cone 
is {xB + yH: x < 0, x + y > 0}. Any Kahler metric of unit volume has a 
Kahler class of the form 

a; = cosh0iI-sinh0B , 0 < 9 < oo , (5.3) 

■u is a self-dual harmonic two-form with (UJ,U) = 1. Define e = e~0. We are 
interested in the limit 

"■F'^O- (5.4) 
u • B = sinh 9 —► oo , 

in which the area of the fibers becomes small. This is the limit in which 
vanishing will occur. 

The basic reason for the vanishing is the following. Suppose that instead 
of Fi we took X = P1 x P1 = B x F. (This choice of X - being fibered 
over B = P1 by the projection of B x F to the first factor - is in any case a 
perfectly acceptable example of the class of manifolds for which the vanishing 
result holds.) To analyze the lattice theta function in this case, note that 
if B x F is given a product metric, then a harmonic two-form on B x F is 
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the sum of a pullback from B and a pullback from F. The Maxwell action 
is easily seen to be: 

/ 
JBxF 

FA*F 
vol(B) 
vol(F) a + vol(F) 

vol(B) B 
(5.5) 

Therefore, if the flux /F F is forced to be nonvanishing, which will be the 

case if (w2{E),F) ^ 0, and ^jfj -> oo, then the action goes to infinity 
and the path-integral is suppressed. Confining a nonzero magnetic flux in a 
small fiber costs a lot of action. 

For Fi or a more general rationally or elliptically fibered manifold, the 
metric is not such a simple product. Nevertheless, the same basic idea holds. 
For instance, in the case of Fi, .if we take W2{E) = B (a special case of 
(w2{E),F) ^ 0), then upon reduction to the abelian theory on the u-plane 
one gets line bundles of first Chern class 

A = nH + (m + -)B ,        with n, m G Z 

The gauge theory action for such a line bundle is: 

(5.6) 

exp iiTT\zr — inrX^ 

exp -Try[n2 + (m + -)2] cosh20 - i7rx[n2 - (m + -)2] (5.7) 

Since n,m are integral, (5.7) always leads to an exponential suppression in 
the limit (5.4). The only other metric dependence in the integrand comes 
from the terms: 

eXp[8^5+//i2]eXp["2'(5-'A)//i] (S»+47m/(A,a;)//i 

Now, 

(5, u) = cosheS ■ F + e~eS • B . 

(5, UJ
L

) = - sinhOS - F + e-eS - B 

(5.8) 

(5.9) 

To any given order in 5, this extra metric dependence contributes at most a 
power l/eN. This is killed by the exponential suppression of the terms (5.7) 
in the ^-function. Therefore, the contribution of the integration over any 
compact region vanishes for e ->> 0. 

To show vanishing of the u-plane integral in the given limit, pointwise 
vanishing of the integrand is not quite enough. This is because the integra- 
tion region is noncompact and the convergence is not uniform throughout 
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the u-plane. Therefore, to complete the argument, we must make some more 
careful estimates at the three cusps. 

The cusp at oo is easily handled. To study the behavior near the cusp, 
we can replace the integral over J7 by the integral over the strip — ^ < x < 
+^,y > 1. We focus on a term giving a fixed power peSr. The expres- 
sion (5.7) multiplies a modular form times a polynomial in 1/y. After the 
projection J dx the integral has an absolute value bounded above by: 

Ic^n,™))!^^ /     -—y 
,meZ jV,M Jl      y 

• exp[-27ryn2(cosh(9)2 - 27n/(m + -)2(sinh(9)2] ,    (5.10) 

where the modular form is ^c(^)^5 2d(n,m) = n2 — (m + |)2, N,M are 
nonnegative integers, and the number of terms in the sum Y^N M 

ls bounded 
by r for the contribution to ^5r. Now we simply use the estimate: 

/"^-"•-"-ph'?] ~ j^-pl-fl^0^)'   (511) 

The contribution of the monopole and dyon cusps requires a little more 
care. The modular transformation exchanges W2{X) <-> —W2{E). It is more 
useful to work in the basis {F,B) for if2(X), so we now have a sum over 
Chern classes: 

A = nB + (m - -)F ,        n,m G Z . (5.12) 

The gauge action now becomes: 

exp 

exp 

^\2        „■       \2 —mrX^ — mr \\ 

-Try [n2 cosh2(9 + 2(m - -)2e"2*] - Z7ra;[n2 - 2n(m - -)] ,    (5.13) 

The metric dependence is as in (5.8) with h -» hu etc. For n ^ 0, only 
a finite number of terms contribute to the integral and the argument is 
identical to that used for the cusp at oo. However, for n = 0 the entire sum 
on m survives the projection by / dx. Notice that in this dual way of writing 
the theta function, the pointwise vanishing as € —> 0 comes not because each 
term in the sum vanishes, but because once we set n to zero, the sum over 
m is strongly oscillatory. In fact, the sum on m is a derivative of #1 and we 
can use the estimate: 

y-e-2^(m-i)^i7r(m-i)(m_I)fc_consf.(i_)fc+l/2e-7r/(8e=y) _   (5_14) 
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(The constant vanishes for k even.) 
Working at fixed order in S, the integral after the projection f dx be- 

comes a finite sum of terms of the form: 

/ 

(S.F)(m--) 
1   xta 

K1(S-F)/e + K2y(m-±)e (5.15) 

Here ti,i2' are nonnegative integers, /I(r) is a certain modular form, and 
Ki,K2 are constants. But /I(T) - <&y(<&3<8A)4e2PUM+s2TM ~q + ... actually 
vanishes at the cusp, so in fact [M(T)]9O vanishes. This completes the proof 
of the vanishing theorem. With the vanishing factor removed, the rest of 
(5.15) behaves like the integral: 

- T-tm^1^**'-1"^ - (5-16) 
e Jl    y

6/2  ely       ezy 

Making the change of variables z = e2y shows that this particular integral 
is non-zero and finite as e —> 0. 

A similar reasoning applies for other rational ruled surfaces. A dangerous 

looking factor #2 ~ QD 
coming from the AxBa measure factor, which can 

be singular if a is negative enough (and is responsible for SW wall-crossing) 
is canceled by a vanishing of the theta function near qp = 0. 

In the somewhat analogous case that X is an elliptic surface of b^ = 
1, which maps to a two-dimensional base (necessarily of genus zero) with 
generic fiber F of genus one, a slightly different situation holds. In a chamber 
with nearly zero area for F and with a bundle such that (^(E), F) 7^ 0, the 
Donaldson invariants do not vanish but obey a simple type condition [18] 
(the SW invariants are likewise not zero). The u-plane integrals hence must 
obey a simple type condition. In fact, an analysis as above shows a pointwise 
vanishing of the u-plane integrand as the area of F goes to zero, but study of 
the behavior near u = ±1 shows a surviving contribution from that region, 
as a result of which the ij-plane integral does not vanish. Indeed, for b^ — 9, 
the factor \jj\qo = 1 + 0(q) in (5.15) and since (5.16) is nonzero, there can 
indeed be nonzero contributions. However, acting on Zu by the operator 
[^-2 — 4], relevant to the simple type condition, is equivalent to an insertion 
of" 

^"^(W (5-17) 

in the integral. This factor increases the order of the zero in /J by one and 
hence, the integral for b^ = 9 obeys a simple type condition, in accordance 
with [18]. 
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6    The Blow-Up Formula 

The blow-up formula compares the Donaldson invariants of a four-manifold 
X to those of a four-manifold X that is obtained by blowing up a point in 
X. Let TT : X -> X be the blow-down map. Let b be the exceptional curve 
contracted by TT, 1(b) the corresponding two-observable, and t a complex 
number. In the blow-up formula, one seeks to compute 

(exp(2p« + /(5)+tJ(6)))^, (6.1) 

in a limit in which the area of b is small, in terms of 

(exp(2pu + J(5)))eix . (6.2) 

In trying to do so, one assumes that £ is a class that coincides with 7r*(£) 
away from b. The last condition means that £ = 7r*(£) + jb for j = 0 or 1. 
Also, we are identifying a surface S in X (which we can assume does not 
pass through the point that is to be blown up) with its pullback to X. 

Let us first discuss on very general grounds why a blow-up formula exists 
and what its general form would be. We scale up the metric of X by g —> t2^, 
with very large t. Then we blow up a point in X, producing an "impurity" 
that is supposed to be very small, since in the blow-up formula the area of b is 
supposed to be small. To a distant observer, it must be possible to simulate 
the effect of the impurity by some local, Q-invariant observable. But in 
the twisted Af = 2 theory, any local Q-invariant observable (supported at a 
point as opposed to the /c-form descendants) is a holomorphic function of u. 
There must thus be holomorphic functions Fj(u,t), for j = 0,1, such that 

(exp(2pu + I(S)+tm))l2 = (exp(2Pu + I(S)+Fj(u,t)))tx .     (6.3) 

Thus, the blow-up formula is very similar to the replacement in conformal 
field theory of a disk or handle by a sum of local operators. The blow-up 
formula replaces a small region in X which has been modified by the blow-up 
to produce X by a local operator on X. 

By applying the same sort of reasoning to the -u-plane integrals, which 
simply measure the contributions of certain vacua to the correlation func- 
tions, we see that the t^-plane integrals should obey a formula of the same 
structure. Moreover, for reasons given in the introduction, the functions 
appearing in the blow-up formula on the u-plane are precisely the functions 
appearing in the blow-up formula for the Donaldson invariants. 

Actually computing the functions Fj amounts to comparing the tx-plane 
integrands for X with those for X. Let B denote the cohomology class dual 
to 6. We work in a chamber B+ = 0 (more precisely, for any given correlator, 
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in a chamber B+ < e for sufficiently small e). Take S = S+tb and substitute 
into the theta function (3.18) and use the condition £+ = 0 to obtain: 

#^ = *x exp[——2 ]        22        exp [i7rTn2 + int/h]e'im •        (6-4) 
neZ+±W2(EyB 

Similarly, the measure factor for the blown up manifold is related to that of 
the original manifold by: 

/jf = /^r1exp[-*2r(«)] -. (6.5) 

The $4 factor comes because the blow-up changes x and 0", and the other 

factor comes because S2 = S2 — t2. Now, taking r —> r +1 on this expression 
(so as to facilitate comparison to [10], where a subgroup of SX(2,Z) that 
differs from r0(4) by conjugation by r -> r + l is used), we see that the blow- 
up has the effect of modifying the integrand in a way which is equivalent to 
the substitution 

in the case where W2(E) 13 = 0 mod 2. Likewise, it is equivalent to the 
substitution 

^p[24^(V)i))2   ^(OCDJJ    M01T)     , 

(6.7) 

when W2(E) • B = 1 mod 2. The equations (6.6), (6.7) are equivalent to 
the expressions in [10], eqs. 4.5.1, 4.5.2. (Note there is a misprint in these 
formulae; they should have G(r)//2(r)). 

In order to interpret (6.6) and (6.7), it is helpful to expand the expressions 
in powers of t and then re-express the modular functions of r as power 
series in the function u^,!)- The resulting expression is a power series in t 

whose coefficients are polynomials in U(oo,i)- For example, when W2{E) -B — 
1 mod 2 we have 

("l8)exp[^((^Sy"8u(oo'l)] ' w)   = E**fifc("<°o,i)). 
(6.8) 
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where (as we will see shortly) B^ is a polynomial. Since ^(00,1) multiplies p 
in the integral representation we arrive at the relation between invariants: 

exp[l(S)+tI(B)+pO] 
I XiW2(E)=W2(E)+B 

k>l P k>l      X / X,w2(E) 

(6.9) 

We will now determine the polynomials B^. We use the formula: 

"  G2k(r) -E 2k 
k=l 

_z2k (6.10) 

where G2k — 2((2k)E2k are Eisenstein functions, and E2k are normalized 
Eisenstein series of weight 2k. Using ^i(0|r) = — 27r773 = —7ri?2/^3^4 we 
rewrite (6.8) as: 

t2 ^t2k       G2k{T) 

2k     ■ l6'11) 
k=2 

I * ^(^i))^exp^-n(TO)1)-g-^—^ 
A;>1 

Now we note that the Eisenstein functions G2A; can be expressed as: 

G2k=    Y,    ck,s,t(G4y(G6)
t , (6.12) 

4s+6i=2fc 

where Cfc)Slt are rational numbers. Using the expression for Eisenstein series 
in terms of theta functions, we now show: 

n. 1 
= 77(4nLn-3), (27r/i(ool))

4~45^W) 
j?'* 2 (6-13) 

(^^F^gisHoo,!)-^,!)), 

and hence the Bk are polynomials in M(oo,i) with rational coefficients. The 
ratio of T? functions can be expressed in terms of Weierstrass a functions 
and this is the form in which the blow-up formula was originally stated, e.g. 
in [19]. 

As a simple example of (6.9), we may consider the first term in the 
expansion: 

£— (5n,pm,B) = VX(E){S
n,pm) . (6.14) 
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For the other case one must expand (6.6) to order 4. One finds: 

The factor of 2 in this formula is the reason that in Donaldson theory, invari- 
ants outside the so-called "stable range" are not integral but have factors 
ofi. 

7    Universal Form of SW Contributions 

We now analyze the SW contributions to Zp, that is, the contributions of 
the special vacua at u = ±1. First, we outline the basic mechanism by 
which the contributions of the u = ±1 vacua are computed in terms of SW 
invariants. Then we obtain precise formulas, without assuming a simple type 
condition, using the w-plane wall crossing formulas of section 4 to determine 
some universal functions that will be required. 

Near u = 1, there is a distinguished special coordinate on the u-plane, 
namely an- It is part of a vector multiplet that also contains a distinguished 
photon AJJ, and fermions TJD^D^ XD (which in the twisted theory are a zero- 
form, a one-form, and a self-dual two-form). The theory near u = 1 has a 
U(1)R symmetry (violated quantum mechanically by an anomaly involving 
the dimension of SW moduli space) under which AD is invariant and ap has 
R charge 2. 

Because there is a distinguished special coordinate near u — 1 and no 
issue of duality symmetry, the theory near u = 1 can be analyzed as a 
topological quantum field theory of a standard sort. By picking a suitable 
functional V and adding to the Lagrangian a term A{Q, V} with A -> oo, one 
localizes on supersymmetric configurations (solutions of the SW equations) 
which must be counted, in a suitable way, to give the correlation functions. 
We have explained in section 2.3 that duality presents an obstruction to such 
a treatment of the w-plane contribution. 

The theory at u = 1 has, in addition to the vector multiplet, a massless 
hypermultiplet whose bosonic part will be called M. In the topologically 
twisted theory on a four-manifold X, for reasons explained in section 4.2 
of [33], the dual U(l) gauge theory with connection AD involves not quite 
a connection on a line bundle but a Spinc connection. For our purposes, 
we symbolically associate a Spinc structure with a bundle 5+ ® L, where 
5+ is the positive spin bundle and L2 is a line bundle such that ci(L2) is 
congruent to W2 (X) modulo 2. (The factors S+ and L in 5+®!/ do not really 
exist separately.) We will use the symbol A to denote ^ci (I>2), regarded as an 
element of ^F (as before F = H2(X, Z)) that is congruent to ^W2(X) modulo 
1. We call A the first Chern class of the Spinc structure, and we identify a 
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Spin0 structure with its first Chern class. To avoid cluttering the formulas, 
we will write in this section simply F, instead of Fp, for the curvature of 
Ap, and A, instead of A/), for the first Chern class of the Spinc structure; 
likewise we will omit the subscript D for the fermions 77, ^, %. In the twisted 
theory, the bosonic part of the charged hypermultiplet is a section M of the 
Spinc bundle S+ ® L. 

The supersymmetric configurations on which the contribution at u = 1 
is localized can be described as follows. The supermultiplet that contains ao 
and AD also contains, along with the fermions 77, ?/>, x, the familiar auxiliary 
field D. In the presence of the hypermultiplet, the equation of motion for D 
(keeping only the bosonic terms) says that D is equal to the hyper-Kahler 
moment map of the hypermultiplets; we write this as D = (MM)+. The 
supersymmetry transformation law of x ls ^X — ^(^+ ~ D)) or5 with D 
integrated out, Sx = i{F+ - (MM)+). So for a bosonic configuration to be 
supersymmetric, it must satisfy 

F+ = (MM)+ . (7.1) 

This is one of the SW equations. The other SW equation, which is the Dirac 
equation 

IpM - 0 , (7.2) 

arises because the hypermultiplet contains a fermi field £ whose Q-variation 
is 5( = IpM. So supersymmetric configurations are simply solutions of the 
SW equations. Let M\ be the moduli space of SW solutions of given A. 

The dimension of M\ is (according to an index theorem) 

dx = -*X±*+X*. (7.3) 

In the special case that bi = 0, b^ = 1, this amounts to 

dx = -2 - y + A2 . (7.4) 

The basic topological observable in the u = 1 theory is simply the zero- 
form operator O^ = an, which has R charge two and so is associated 
topologically with a two-dimensional class on M.\. It has a one-form de- 
scendant, which is simply ^, and a two-form descendant, which is simply F. 
The correlation functions of the two-form descendant hence measure simply 
the first Chern class A, and the one-form descendant of course does not enter 
if bi(X) — 0. In that case, therefore, the only relevant quantum topological 
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observable is a^ itself. If d\ = 2n, the SW invariant is defined as16 

SW(\) = (an
D)x = [    al . (7.5) 

JMX 

(In all known cases with fcj" > 1, SW{\) is non-zero only for A such that 
n = 0. But all values of n contribute for b^ = 1. This is a consequence of 
the fact that, for sufficiently negative a, wall crossing can occur for A with 
arbitrarily large n.) 

When we speak of the SW contribution to Donaldson invariants from 
u = 1, we mean by definition the contribution of SW solutions with M ^ 0. 
Solutions with M = 0 can be "confused" with the continuous contribution of 
the u-plane. The restriction to solutions with M ^ 0 is, except for b^ < 1, 
a mild one in the following sense. A solution with M = 0 is an abelian 
instanton, and is possible only if A-f = 0. In this case 2A is an integral and 
anti-self-dual cohomology class. For fcj" > 0, there is no such class for a 
generic metric,17 so the SW contributions with M ^ 0 and the continuous 
contribution of the ^-plane are well-separated. However, for b^ = 1, the 
condition that a given A obeys A+ = 0 puts only one condition on the metric. 
Hence in a generic one-parameter family of metrics, one may "cross" a metric 
for which A+ = 0. It is known that SW(\) jumps by ±1 in crossing such 
a wall. Such wall-crossing does not occur for fcj- > 1, because in that case 
A+ — 0 puts more than one condition on the metric, so that in a generic 
one-parameter family of metrics, the SW and u-plane contributions never 
meet. 

The intuitive picture of SW wall crossing that we want to justify is that 
in crossing a wall, some SW solutions move to (or from) M = 0, and their 
contributions to the Donaldson invariants disappear from the u = 1 vac- 
uum and move onto the u plane. Thus, the jumping of the SW invariant in 
crossing a wall, if suitably measured, will just cancel the u = 1 part of the 
wall-crossing formula of the i^-plane integral. A full justification of this will 
occupy the rest of this section, but let us first make the following simple re- 
marks. For d\ < 0, M\ is generically empty and the SW invariant vanishes. 
For M to go to zero in an SW solution requires, as we saw above, A4- = 0. 

16 Mathematically, there is a tautological (7(1) bundle over M\ defined by dividing the 
space of solutions to the SW equations using only based gauge transformations, CLD is 
then, up to a normalization, the first Chern class of this 17(1) bundle. 

17Except A = 0. On the -u-plane, the computation in section 4 shows that, at least in 
the simply-connected case, there is never wall-crossing associated with A = 0; the wall- 
crossing came from a term (AjU;)/?/1'2 that vanishes for A = 0. In SW theory, A = 0 never 
contributes for a simply-connected four-manifold X with b^ ■= 1. In fact, A = 0 is only 
possible if X is spin, in which case for fcj = 1, a theorem of Donaldson shows that 6J = 1 
and the intersection form is that of P1 x P1. But for bi = 0, b^ = b^ = 1, and A = 0, the 
virtual dimension of the SW moduli space is negative, so SW(X = 0) = 0. 
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So 4A2 is a negative integer with 

4A2 - (8 + a) > 0 . (7.6) 

These then are the standard conditions for SW wall-crossing. They also 
are exactly the conditions (4.11) we found in section 4 for a contribution 
to w-plane wall-crossing at u = ±1. This is a first indication that SW 
wall-crossing and the u = ±1 wall-crossing of the w-plane integrals can be 
matched up. 

Effective Couplings Of The u = 1 Theory 
The Lagrangian of the twisted theory near u = 1 has the form 

L = {Q,W}+ f (c(u)FAF+p{u)TrRAR + t(u)TrRAR+''^  . 

(7.7) 

In fact, the most general Q-invariant Lagrangian that can be constructed 
with the multiplets in question takes this form, with some W and some 
holomorphic functions c,p, and i. The terms involving c,p, and £ are close 
cousins of terms studied in section 2 on the n-plane. The c(u)F A F term is 
the fourth descendant of a zero-form observable O^ = Fudu) which is quite 
analogous to the prepotential J7 of equation (2.14). (To be more precise, this 
descendant contains additional terms involving if) which do not contribute 
for &i = 0 and are omitted in (7.7).) In fact, one can think of J^M(^) as 
the prepotential of the effective theory of dual photons and monopoles near 
u = l. In the other terms, TrRAR and Tr RAR are differential forms whose 
integrals are multiples of the signature a and Euler characteristic x of X. 
Upon exponentiation in the path integral, these interactions give factors of 
the general form AXB* familiar from section 2. 

The three couplings indicated explicitly in (7.7) give rise in the path 
integral for a given Spinc structure A to factors 

C{u)x2'2P(u)a'sL{u)x'A , (7.8) 

where the functions C, P, and L are essentially exponentials of c,p, and £. We 
have seen such factors before; the first corresponds to a factor in the lattice 
theta function on the li-plane, and the other two are clearly analogous to 
the functions in equations (2.16) and (3.2). 

One might ask why the functions c,p, and ^, or C, P, and L, do not pre- 
cisely equal the analogous functions in the ^-plane calculation. The answer 
is that in the u-plane analysis, one deals with an effective action in which 
the monopole hypermultiplet has been integrated out, while in the present 
discussion we are using an effective Lagrangian that includes the monopole 
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fields. In particular, the functions C, P, and L should be completely non- 
singular (and non-zero) at u = 1, as the singularities in the 7i-plane de- 
scription come from integrating out the massless hypermultiplet. It is quite 
conceivable that there is a simple recipe to relate the couplings with the hy- 
permultiplets present to couplings with hypermultiplets integrated out, but 
in the present paper we will simply determine the functions C, P, and L by 
comparison to the wall-crossing formula. 

An analogous issue arises in the mapping from the microscopic observ- 
able exp(pO 4- I(S)) to an effective interaction in the theory at u = 1. The 
general considerations are as in the discussion on the w-plane. The micro- 
scopic operator exp(pO) simply maps to exip(2pu) in the iz-plane description. 

The operator I(S) maps to Js (£&(*•_ + D+) - ^ff </> A </>) • This 
computation is in fact precisely as it was on the u-plane, except now using 
the vector multiplet that contains a/), AD. Because of the existence of a 
fermi field x with Sx = i(F+ — D+) and the fact that the u = 1 computation 
is done by localization on supersymmetric fields, we actually can replace 
D+ here by P+, so that I(S) maps to the familiar topological field theory 

expression fs (j^-^F - ^/^^^ A V>); also, the terms involving <0 can 

be dropped if bi(X) = 0. In reducing expos')) to the u = 1 description, 
there is a contact term, governed by the same general logic that applied on 
the w-plane. So we get (assuming bi(X) = 0) 

exp(pO + I(S)) -> exp f 2jm + ^ f -p-F + S2T*{u)\  . (7.9) 
V 47r ^5 daD ) 

A priori the function T*(u) might differ from the analogous function T(u) on 
the w-plane, since T(u) is obtained after integrating out the hypermultiplet. 
However, we will see that T* =T - this particular coupling is unchanged by 
integrating out the monopoles. (Therefore T has no singularity at u = 1 or 
—1, an assumption that was made in determining T.) 

Form of the Path Integral 
We want to analyze the contribution from the monopole vacuum at u = 1 

to the path integral that defines the generating function (e^04-7^))^ (where 
as in the introduction, we sum over all classes of S'0(3) bundles E of fixed 
£ = W2{E)). The path integral in this vacuum includes a sum over Spinc 

structures A, that is over the "line bundle" of the dual photon Ap. We 
will write (ep0+I^)^u-i for the contribution of the u = 1 vacuum to the 
generating function, and (eP0*1^)^^ for the contribution in the u = 1 
vacuum from a particular Spinc structure A. Thus 

(f+'Wh^i = £<ePO+/(s)kM • (7-10) 
A 
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Our goal here is to work out a formula for (e'p0^'I^)^iiix in terms of the 
invariant SW(\). 

The requisite path integral has several factors. We must use the formula 
(7.9) by which ep0+I^ is translated to an effective operator in the u = 1 
vacuum, the factors in (7.8), and two additional factors. The first is a 
factor of 2, because in defining the Donaldson invariants (and in particular 
^epO+l(S)^^ jt js not customary to divide by the order of the center of 51/(2). 
Also, upon making the duality transformation to the natural description at 
u = 1, one gets an analog of the phase factor (3.11). This phase factor is 
e2i7r(Ao'A+Ao), where AQ is the fixed element of ^W2{E) + T that entered in 
(3.11). (A path integral explanation of the A dependence of this factor is 
in [33].) 

After multiplying these factors together, we get a function of ap that 
must be integrated over M\ to get the contribution of the Spinc structure 
A to the Donaldson invariants. So we have 

(eP^n% 1X= [    2e2i^'x+xtiexp f2pu +± [ -p-F + S2T*(u)\ 
JMx \ 47r JS daD J 

• C{u)x2l2P{uyl*L{uYlA .    (7.11) 

What it means to integrate over M\ is that one must expand in powers of an 
- which represents a two-dimensional cohomology class on M\ - near CLD = 
0, and extract the coefficient of a^, where n = d\/2 = —(2% + 3c7)/8 + A2/2. 
Then we integrate over Mx, using fM a7^ = SW(X). We can write this as 
a residue, 

^""W - SWW ■ Res-,,.,, ..(jJZg^/. • **■<»•*»» 
aD 

• exp (2pu + i- [ -p-F + S2T*(u)\ ■ C{u)x2l2P{uY^L{uY^ .    (7.12) 
V 47r Js daD J 

Note that we have not been careful to normalize the operator CLD topologi- 
cally; it is not necessary to do so as a change in the normalization could be 
absorbed in a rescaling of the yet-undetermined functions C, P, and L. 

Determination of C, P, and L 
To determine those factors, we will compare to the wall crossing formulas 

in the special case 6^ = 1, that is x + a = 4. Assuming that A is such that 
n > 0 (otherwise (7.12) vanishes), SW wall crossing occurs at walls at which 
A+ = 0. It is known topologically that at such a wall, SW(X) changes by ±1 
(when'&i = 0). The sign depends on the direction in which one crosses the 
wall, and it will not be necessary to keep track of it in order to determine 
the unknown functions. 
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The change in (7.12) is hence 

aD 

■ exp (2pu + 4- f ^F + S2T*{u)\ ■ C(U)A2/2p(n)^/8L(u)i-<7/4 
V 47r y5 daD ) 

(7.13) 

On the other hand, the contribution of u = 1 to the wall-crossing formula 
for the u-plane integral was given in equation (4.8). In order to compare 
these formulae note first that daj^jdu = — /IMCTD) = I^S^C^D)-

18
 Similarly 

we must have T*(u) = T(w), since the QD expansion of T(u) around the 
monopole cusp r = 0 is exactly TM{(ID) defined in (4.9).19 In a similar way 
we find that the unknown functions C, P, and L can be uniquely determined 
in order for the formulas to agree: 

(ID 

P = -«0D1, (7,14) 

h2 ' 

where we have used the identity: 

daD        1     fl| 
9Dd^ = iw^ • (7-15) 

In particular, the prepotential of the theory is obtained from 

d2   - 1 
FuiciD) =T£> - —-logaD . (7.16) 

da2
D 2m 

Substituting (7.14) in (7.12) we get a formula for the contribution of a 
Spinc structure A at u = 1 to the Donaldson invariants: 

Res gD=o 
dgi> -AV2^

+<7
 /0.^^(x+<T)/4 

^   ^       ap/iM V    hM 

exp[2puM - i(X,S)/hM + S2
TM] (7-17) 

18 There is a subtle minus sign here related to the fact that h is a form of weight 1. 
19If we follow our notation to its logical conclusion then we should speak of a QM ex- 

pansion and OM, etc. However, we do not do this since the notation CLD is standard. 
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In order to complete the result we must say how to expand ap in qp. This 
is a simple exercise in elliptic functions. We know from [2, 3] that apfa) is 
given by aniu) = (^5^)2^1(55 ^;2; ^p). This may be expressed in terms 
of complete elliptic integrals which themselves may be expressed in terms of 
modular functions. The result is that: 

i(2E2-0i-#i\ 
«*> = -?(.,/    )> (7-18) 

as a function of qp. 
The analogous contribution from u = — 1 follows almost immediately, as 

the theory when formulated on flat M4 has a symmetry under u «-» —u. One 
need only replace u by —ix, and CLD by a + a^ (which is the appropriate 
local parameter near u = — 1), to get the formula analogous to (7.17) for the 
contribution of the vacuum at u = — 1 to the Donaldson invariants. As in 
eqn. (2.66) of [31], this replacement, apart from u —>» — u, introduces a mul- 
tiplicative factor of i(x+0")/4-f that reflects the fact that the transformation 
u -> —u, though a symmetry on flat M4, has an anomaly on a four-manifold. 

As a simple but important example of the above procedure, one easily 
recovers equation (2.17) of [4] in the simple type case when d\ = 0. In this 
case we need only take the leading terms in the g-expansions in (7.17). Using 
UM = 1 H , TM — 1/2 H , IIM = 1/(20 "I and UD — 16iqD H we 
find that (7.17) reduces to 

2l+7J+^e2p+S2/2e2(Si\)e2i7r(\o-\+\2
0) ^ (7^9) 

Identifying 2A with the variable called x in [4], equation (2.17), we get perfect 
agreement.20 

More generally, the above formula for (e^-1-7^))^!^ implies that four- 
manifolds of bi = 0, fr^ > 1 (for which the w-plane integral vanishes, so 
everything comes from the SW contributions at u = ±1) are of simple type 
in the generalized sense that (^-y — 4)r(epC,4"/('s'))f)i)A = 0 for some r. One 
simply takes r to exceed the maximum value of n = d\/2 that arises for 
any A with SW(X) 7^ 0. (There is such a maximum, since it is known that 
SW(X) = 0 for all but finitely many A.) The formula (7.17) entails an 
expansion in powers of (u — 1) (or ap) in which one only "sees" terms of 
order at most (u — l)n, hence 

(^-4YZD = 0, (7.20) 

if r exceeds the maximum possible value of n.   Hence the manifold is of 
generalized simple type in the sense formulated by Kronheimer and Mrowka. 

20We recall from the footnote just before eqn.   (3.13) that, to agree with the math- 
ematical  literature,   we have modified the orientation convention of [4]  by a factor 
(_l\^™2(E)2+w2(E)-w2(X))^ 
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8    Evaluation in Certain Chambers 

As explained in the introduction, the wall-crossing, blow-up, and vanishing 
properties of Zu completely determine its value for all X of bi = 0, b^ — 1. 
However, as explained in the introduction, it is desirable to have a more 
effective formula. 

We derive such a formula here in the case 6_ > 1 and W2{E) = 0. We 
follow the general calculation of Borcherds [11] (which in turn is an improve- 
ment on calculations done in the literature on quantum string corrections, 
such as [22, 13]). 

We let I™ be the lattice with quadratic form X)f=i a? - Ej=i Vj- The 

lattice H2(X, Z) is isomorphic to J1'62-1. If we let J/1'1 be the even unimod- 

ular rank two lattice (often called H) with intersection form ( J, then 

ji,&2-i- js isomorphic to /J1,1 © J0,62-2. Our computation will depend on a 
choice of such a decomposition (and for each such decomposition, we will 
compute the u-plane integral in a certain chamber). Fixing such a decompo- 
sition, we choose a basis of primitive null vectors z, z', with (z, z') = 1, which 
generate the summand J/1,1 of H2(X, Z). The second summand J0'62-1 will 
be called K. K can be identified as 

K = zLl{z), (8.1) 

and with this definition depends only on the choice of a primitive null vector 
z and not on z'. 

An example of the situation considered here is that X is a rational ruled 
surface, and z is the class of the fiber. The situation we are considering is 
thus very close to that of section 5, except that W2(E) is zero. 

8.1    The Lattice K and the Reduction Formula 

Our goal is to reduce the computation of the u-plane integrals to one involv- 
ing theta functions for the lattice K. 

We let P± be the orthogonal^projections of H2(X, Z) to self-dual and 
anti-selfdual parts, and and let P± be the orthogonal projections onto the 
orthogonal complement of z± = P±(z) within the self-dual and anti-self-dual 
subspaces of H2(X, Z). In particular, z+ = (^,a;)a;, and P+ = 0 since the 
self-dual subspace of H2(X,Z) is one-dimensional, generated by z+. We 
have 

(\Z+z) ~ ^ 
z_ 
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and the second line is an orthogonal sum in M0,6-: (^_, P_(A)) = 0. 
The reduction formula is now obtained by writing 

A = A^ + cz' + nz , (8.3) 

with c, n E Z and A^ E K, and then doing a Poisson summation formula on 
n. Using the isomorphism H2(X, Z) ^ J1'6- ^ JJ1'1 © J0^--1 We can take 

^ = (0,l;Cf), (8.4) 

t^(X) = (0,0;l,--- ,1). 

Moreover, since W2{E) = 0 we have (aj,2) = (I3i,z) = 0 for all / (a/ and 
)9/ were introduced in equation (3.33)). 

The net result of these manipulations is that the integral Q(p) of (3.32) 
can be written as: 

1       f dxdy s^ T sr^ 

yj2z^ J:F   y      i      c,dez 
Vlcr + dl2-^^,^)^,^-) 

. 22/4 yz+ 

exp 
7r(^+,^+) ,CT + d, _ 7r(g_,z-) ,CT + d, 

z\ y z% y 

+ : 27rz—^ c — 27r(/i, a/)c 
^2 z+ 

where the vector £ is defined in (3.25). Following Borcherds, we have intro- 
duced a vector // E K as follows: 

This vector satisfies (/i, z) = 0 and thus descends to a vector in K.  Note 
that this vector is metric dependent. 

We now apply the unfolding technique to the integral (8.5). One looks 
at the action of 51,(2, Z) on c and d. The degenerate orbit with c = d = 0 
gets special treatment. That contribution to the theta function is modular- 
invariant by itself, and gives the integral over the fundamental domain of a 
holomorphic form divided by a power of y. Such an integral can be done in 
a standard way by integrating by parts, picking up a contribution at infinity. 
Orbits with c and d not both zero can be transformed by 51/(2, Z) to have 
d = 0, giving an integral over a strip 0 < x < 1 in the upper half plane 
(rather than a modular region), together with a sum on c from —oo to +oo, 
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omitting zero. The integral over the strip is straightforward, if tedious. We 
give some details of the derivation in appendix C. 

In order to write the final result, we define: 

and 

hj 

SK = S-(S,z)z' 

(A + /3/,S*)-[(A + /3/,/x)](S,;z) 

(8.7) 

(8.8) 

where [•] is the greatest integer function. The final result is then (recall the 
notation (3.31)): 

Zu = -4V2iril4: 
fooh (/0 ,/OO-»0O Q^J       /ox 

1 _ e-HStf/hco ^ooW 

+ 
1-e i(S,z)/hM ^KM^0' + fohv (M) 

1-e- (S,z)/hD
UK,D^) ,    (8-9) 

where © is a theta-function-like object 

©K,/^) = E exp| -i7rT(A+^)2+27ri(A+^' ari - i(A+&> s'^)//i^} 
Ae/c       I J 

•exp{i^[(A + /37,/i)]}    (8.10) 

and // is the holomorphic version of the function // introduced in (3.26). 
(That is, we replace f -► T in (3.26).) 

There are several remarks which should be made about this result. 

1. In order to apply the unfolding method we must regard the expressions 
as power series in p, S. The decay from the G function ~ exp[— T^V-I 

in (8.5) must not be overwhelmed by the "tachyon" divergence of the 
modular functions. At order j/S17" the modular functions diverge like: 

expT—-(8 + <7)l 
y 

in the regions (oo, 0), (oo, 2) and like 

r27r. 
exp[—(r + 2^ + 3)] 

(8.11) 

(8.12) 
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in the regions (oo, 1), (oo, 3), M, D. Therefore, for 6_ < 9 we have the 
condition: 

4< r + U + 3 

and for b- > 9 we have an extra condition: 

1 

(8.13) 

*+< 4(6_ - 9) 
(8.14) 

for the validity of (8.9). 

2. There are two sources of chamber dependence in the answer. First, 
the expression is only valid in an appropriate set of chambers defined 

above. Second, the factor [(A+ /?/,//)] prevents Q^j(S) from being 
a lattice theta function. Note that the vector /i depends continuously 
on the metric. However, /J, only enters through the greatest integer 
function, so the expression is metric-independent within a chamber. 

3. The result (8.9) bears some similarity with Conjecture 4.12 of [10]. 

8.2    Example: X = P1 x P1 

As a special case of the above formula we write the invariants for X = P1 xP1. 
In this case K = 0 and the expressions simplify somewhat. Moreover, only 
the semiclassical cusp contributes (this is related to the fact that the SW 
invariants vanish, since X admits a metric of positive scalar curvature). 

The expression (8.9) thus simplifies to: 

{-8)V2m fh coth m (8.15) 

This agrees with the expression found in [10]. 

At first order in S we have: 

,e   ui      17P2     71PA     23505/ ,■ ZD =-(6,2) [1 + ^4 — + ^5 — + —fj-— + • • • J (8.16) 

Similarly, we can easily extract the first few Donaldson polynomials in 
5. To do this, recall the relation between the Donaldson polynomials and 
the generating function of equations (1.2) and (1.3). Using this relation, we 



G. MOORE, E. WITTEN 355 

have: 

2>2 = -(£,*), 

Vl0 = 554(5^) " ls2(S,z)s + (S,z)S , 

Oi8 = 252S6(S,2)3 - 21654(5^)5 + 108S2(S»7 - 40(5,^)9 ,      t8'17) 

©26 = 10296058(5^)5 - 10810856(5^)7 

+ 6318054(5^)9 -26949Sr2(5^)11 +9345(5^)13 . 

9    Donaldson linvariants of the Projective Plane 

In this section we consider the Donaldson invariants for P2. Since the SW 
invariants vanish (as P2 admits a metric of positive scalar curvature), the 
Donaldson invariants coincide with the M-plane integral. P2 is therefore, in 
a sense, as far as possible from being of simple type. 

For simplicity we focus on the case W2{E) = 0. Under this condition, the 
integral that must be evaluated is: 

(S»    f dxdy      $1 f 1    .r  E2        0 TI-T. 

32^7r JroW\n yS/2 (^s)4        I 24     L
/I(T)

2 JJ4      K     J 

If we try to do this integral using the unfolding technique on, say, the 
lattice theta function tf^^ we find that we are always outside the range 
of validity of this method. The reason is that there is no parameter z+ to 
vary; indeed, it is effectively always equal to one, hence always outside the 
domain of validity defined by (8.13). Therefore, we need another approach. 
One approach is to write the integral as a total divergence and pick up 
the constant term at infinity. This can be done using a nonholomorphic 
modular form of weight (3/2,0) introduced by Zagier. Similar integrals have 
been done using this form by Borcherds [11]. 

9.1    Zagier's Form and Related Forms 

Zagier's nonholomorphic modular form [23, 24] of weight (3/2,0) for ro(4) 
is given by 

00 1 r 

G(T,y) = 5>(n)^+   £  q-f
2^^ 

^ /frL     167ry1/2 Ji 

00    -A7rf2uy_du 

U3/2 

n>0 /=-oo ^"'v        " 
00 

f2 

= Y/nn)qn + y-1/2   X)  Q~f Pi^fv) . (9-2) 
n>0 /=—00 



356 INTEGRATION OVER THE u-PLANE IN DONALDSON THEORY 

where 

We define Fourier coefficients by: 

G(T,y) = ]rc(n,y)e
2™*. (9.4) 

nez 

In (9.2), the 'H(n) are Hurwitz class numbers, which are closely related to 
the class numbers of imaginary quadratic fields. The %(n) for small n are 
given by 

«(T) = £«(»»)«» 
n>0 

= -1/12 + g3/3 + g4/2 + q7+q8+ Q11 + (4/3)g
12 

+ 2q15 + 3/2qw + q19 + 2q'20 + 3q23 + 2q24 

+ (4/3)q27 + 2q28 + Sg31 + 39
32 + 2q35 

+ (5/2)qx+4q39 + 2q40 + ---  . (9.5) 

The form G satisfies the equation: 

From Zagier's form we construct a two-dimensional representation of the 
modular group: 

G1 = Y/c(4n,y/4)e2™x 

nez 
oo 

= '£H(4n)q
n + 2y-V2   ^   q'^^^fy) , 

n>0 f=-oo .    „v 

G2 = ^ c(4n - 1, y/^e2^71'1^ 
nez 

oo 1 

= J2Wn-l)qn-1/4 + 2y-1/2  *£  q-^20(4n(f + ±)2y) . 
n>0 /=-oo 

These form a weight (3/2,0) representation of the modular group with ( [38], 
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Theorem 5.4, [ll]):21 

GI(T + 1)\      ( GI(T) 

G2(T + i)y   \-iG2(T) 

GI(-1/T)\ _ 1 + ^3/2 A     1 ^ /"GICT) 
^M ,       n_   1 (^ GaC-l/r); 2 V1    "V VG2Wy 

Note that 

G(r) = Gi(4r) + G2(4r) 

5_ 1      1 
^Gl = 16^^3(2r) ' (9.9) 
d_      __ _1 ]_ 

5r 167r2 y3/2 

We would like to construct a form for r0(4) such that we can integrate by 
parts in (9.1). Such a form can be constructed by noting that G((r + l)/2) 
will be modular for r(2). Now r(2) fl r0(4) is index two in r0(4), a coset 
representative being r —> ^W. Adding the transform we obtain the desired 
form: 

Q(oo,o) = G(T-^) + l^C-^) . (9.10) 

Thus, (5(00,0) is modular for r0(4) and obeys 

d „ 1 

w0<-»> = I^^Mr] ■ <9-11) 

The sum over cosets will now involve the functions: 

Q(oo,o) = 0(00,2) = Gi(2r) - G2(2T) + IGI(^) , 

Q(oo,i) = 0(00,3) - Gi(2r) + G2(2r) + ^G^^) , (9.12) 

QM = QD^\[G2^) + KG2(
!
^)] , 

where K = e27rz/8. 

21 This means the functions transform like the third power of a $ function. We use the 
principal branch of the logarithm, and define y/z to have its argument in (—7r/2,7r/2] for 
z in the complex plane cut along (—oo,0]. 
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The integral in (9.1) now can be written: 

1 = 87rn/2(S>) /     dxdy^y h—Q! . (9.13) 
Jf\K j VT 

Like Zagier's functions the Qj can be written as 

Q/(T, y) = HI(T) + ^ + J7(T, y) , (9.14) 

where ^/(T,y) has exponential decay for y -> oo and only negative Fourier 
components in x (which will prevent it from contributing in the computation 
below) and T-Liir) is expressed in terms of class numbers analogous to (9.5). 

We would like to integrate by parts and use the rule: 

C d i f+^ 
/  dxdy—F(x,y) =+- lim   /      dxF{x,k) . (9.15) 

JF or 2 A-»oo J_i 

However, we need to take into account the nonholomorphic dependence in /. 
Thus, we need to generalize Zagier's form, that is, we need (nonholomorphic) 
modular forms G^) for To (4) of weight (§ + 2£,0) such that 

This may be done with the aid of the following. 

Lemma. Suppose <7(T,T) is modular of weight (3/2,0) for some congru- 
ence subgroup F'. Suppose moreover that 

Then 

*w-gG)f$&i#ij*,&''    (9-18) 

is modular for V of weight (2£ + |, 0) and satisfies: 

skw-^S- (»■») 
Proof. It is straightforward to show (9.19) by differentiating and using 

the fact that /I(T) does not depend on r. It is not obvious that the expression 
in (9.18) transforms well under modular transformations.  However, (9.18) 
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may be expressed in terms of Cohen's operator [39], which is essentially just 
a product of covariant derivatives normal-ordered. Cohen's operator is: 

*ifl-Eft9£&ir'<£)'/, 
j=0 

j)Y{k + j)K2iy'      KdTJ (9.20) 

If / is modular of weight (k, 0) then J>[/] is modular of weight (k + 2r, 0). 
It is straightforward to check that 

^-sco r(3/2) ,6i, 
r(3/2 + e -1)v TT 

£-)<-* ]2fa_t\g] (9.21) 

and thus £*[g] is modular. 4 

9.2    Answer for P2 

It is now straightforward to evaluate the integral for P2. One expands the 
exponential expj—52£?2/(24/i2)] in powers of S2 and expresses each term as 
a total derivative using the lemma. Then integrating by parts, and keeping 
the zeroth Fourier coefficient, one obtains a double sum. This is easily 
rewritten so that one can re-exponentiate one infinite sum to get a factor 
exp[—S2E2/(24h2)]. The result of all these manipulations is the formula: 

zD=-*0ns,»)±^m^(*v ^m^i2+i)\2) SA^'M /      hI 
dqJ 

(9.22) 

Examining the sum over cosets we find the entire contribution comes from 
the semiclassical cusp. Consequently, the SU(2) Donaldson polynomials for 
P2 are given by: 

VW2{E)=0(S,P) = J2s2x+1ptd^+ht, 
x.t 

<WM = -2-(2* + l)!E(—)riIr(3/2 + i)V2 

r(3/2)      Ay 

Tx-jn%oofi)(q,j) 
(9.23) 

ft(oo,o)(9.i) = (9^-)J^(oo)o)(9) , 

nioofi) = YJH{inWn + ^i?(4n)g"/2(-l)" 
n>0 n>0 

-Y,H{4n-l)<?n-ll2 

n>0 
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Expanding, we find that the first four polynomials are: 

2*—§5, 

Vlo = S5-pS3-fp2S, 

Z,18 = 359 + ^57   _ H55 2 _ 14153 3 _ 879 5 4 (9.24) 
4     p     16    p       64     p      256  v 

P26 = 54513 + 2451V+^V 

16    ^      128    ^       256     F       4096   ^   ' 

in agreement with the results obtained previously in [25, 15]. 

9.3    Class number relations 

In [15], Gottsehe gave a closed expression for the Donaldson invariants for 
P2. His expression differs from the above, and comparing the two implies 
relations on class numbers similar to the famous relations of Kronecker, 
Weber, and Zagier. See, for instance [23, 24]. 

The answer obtained above in terms of class numbers is: 

dq    .    1^      r(3/2)      S2^1 

^s2T^(ooM^) 

(9.25) 

In [15], Gottsehe first blows up P2 to Fi and (in the notation of section 
5) considers an SO(3) bundle E with W2{E) = F in the chamber UJ • B = 0, 
indeed, u = H. This is on the wrong side of the Kahler cone to apply the 
vanishing theorem. He then adds all the wall crossings in the Kahler cone 
to go to UJ = F where the vanishing theorem applies. The walls are W\ for 
iA = (712 + \)B — niH with ni > 0,n2 > ni. The answer obtained for the 
generating function of P2 Donaldson invariants is 

, dq   ,    1XA(-1)'"S«+1 

q    v   2/2L.   (2^ + 1)! 
e^S2T%V{q,3) (9.26) 

where 

ng,i)=       E      (-l),ll+fla(2n2 + l)n?+1^ p^^  ■    (9.27) 
ni>0,n2>ni 
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It is tempting to try to cancel the common factors e2pu+s r^f in (9.25) 
and (9.26) and then equate the power series in 5, q. This gives false formulae 

because the function e2pu+s T^f is not sufficiently generic. A safe way to 
proceed is to note that the function e2pu, when expanded in powers of p, 
generates arbitrary non-negative powers of u. Hence, it is helpful to change 
variables from q to u, and replace the extraction of residues at q = 0 with 
residues at u = oo, using the relation 

q        u     qdu 

Then, equality of residues at u = oo for all p means that the functions 
multiplying e2pu in the two expressions have the same non-positive terms in 
their Laurent expansions near u = oo. Thus: 

(dqu\ s^l^   r(3/2)   gq+i 

{duqj6       h*^    (2j + l)l    V[q'J) .    (9.29) 
<o 

We need care here, since T(u) and other functions appearing here have series 
expansions in inverse powers of w, but they are multiplying expressions with 
series in positive powers of u, so we cannot cancel these factors. 

Nevertheless, (9.29) does imply some very interesting results on class 
numbers. As an example of these relations we take the term at first order in 
5. Equation (9.29) means that the functions on the left and right differ by 
an entire function of u. Taking only the linear term in 5, we get on the left a 
function that is constant at u = oo and on the right a function that vanishes 
there, so the functions on the left and right actually differ by a constant. 
Using this information together with the relation 

1   du __     1      tf| 70 Qm 
uqdq~~8u^2^3)2 ' (       ' 

we obtain an explicit formula for class numbers: 

— n§(n2("2+lHnJj+l/8       M...  ,94 
«,c»,o,=   E   (-ir+-(2n2 + iK^—^_-!k+i3. 

ni>0,n2>ni 

(9.31) 

We have checked this numerically to order q11'2. It would be very interesting 
to see if this relation leads to improved estimates on the asymptotic behavior 
of class numbers. 
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10    Extension to n^X) ^ 0 

We indicate here how some of the above results generalize to Donaldson 
theory on a four-manifold X that is not simply-connected and which in 
general has &i ^ 0. For simplicity, we assume that there is no two-torsion in 
H2(X, Z), so that W2{E) has an integral lift and some of our formulas which 
involve dividing by two still make sense. 

When bi (X) ^ 0, we can add new operators to the microscopic correla- 
tion function, namely f Tr c/yip = / Ku for a one-cycle 7 and fL K

3u for a 
three-cycle L. To compute correlation functions of such operators, one will 
have to determine several new contact term corrections. For simplicity we 
omit these operators. 

On general grounds the photon partition function always involves a sum 
over all line bundles. Line bundles are classified topologically by ci G 
H2{X\ Z). Moreover, on each class we must integrate over the moduli space 
of harmonic connections. This moduli space is a torus of dimension hi (X). 

Proceeding as in section three, we reduce the evaluation of the fi-plane 
contribution to the path integral to the finite-dimensional integral: 

Zu = 2 [[dadadrjdx] [        dip [ dDAxB(Jy-ll2 

J Jpic(X)        J 

— / (Imr)D A *D  exp -ZTTTA^ - inrX2_ + m(\, W2PO) 

iy/2   f df /r^        .xx     i\/2   f dr, .      IX     ,.   _ _   x 

/ di™ A ( + +     +) + ¥^J^A^)A (      +  +) • exp 

+ 3- 

IGTT . 

J2 1        f d T i     f 
TTTT-T / T-O^ /\ipAip/\ip + 2pu + -=- / K2u + S2T(u) 
211m J  da1 S/2-K JS 

.   (10.1) 

Here fpicfX\ is the sum/integral over all pairs consisting of a complex line 
bundle on X together with a harmonic connection. These bundles have 
first Chern class 2A £ H2(X\Z) which is congruent to W2{E) modulo two. 
In other words, fpic(x) IS a sum over ^(X^Z) times an integral over a 
6i(-X")-dimensional torus. The ip zero modes are tangent to Pic(X), so the 
integration over them is naturally understood as the integral of a differential 
form on Pic(X). As for the 77 and x zer0 modes, they are normalized as in 
section 2.3 to represent fixed cohomology classes (which means in practice 
that the zero mode wave function for 7/ is 770 = 1, and for x we use a 

basis of orthonormal self-dual harmonic two-forms). The integral over D 
is over the space of self-dual two-forms. The "integral" over D is really a 
Gaussian integral with an exponent of the wrong sign and is to be interpreted 
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algebraically. (Also, the D determinant should be ignored; this is part of 
the supersymmetric cancellation of all the bose and fermi determinants.) 

The integrals in (10.1) are most readily done by first doing the formal 
Gaussian integral on the auxiliary field D and then soaking up the fermion 
zero modes. The resulting expressions may be seen to be modular invariant 
if we treat ip as weight (1,0). Indeed, making the simple redefinition 

we get an expression with the same F, D,Xi V dependence as in the simply 
connected case. Therefore we can say without further ado that the {/-plane 
integral is: 

Zu=   f ^i(T)  f d^PU+SifMHS^mu^Kiu)^ > 

./r°(4)YH y ' Jpic(X) 
(10.3) 

where 

9(S) = exp(2mA2)exp[-^(^)2^] 

£        exp 

«PH|(S..A.)] 

-inr{X+y - inriX-y + m(X - AQ, W2(X)) 

„. s     «\/2/d2u      ,   .drrT,l A 
H{u) = -n-   -m -4m—T(u)    , v J      64n \da2 du   y ') ' 

,-w    N * (d2T        ndTcPu        ,„    ./dTv9m/   A 

(10.4) 

It is easy to check that, although T(u) transforms by a shift under mod- 
ular transformations, H(u) and K(u) transform covariantly with weights 
(—2,0), (—4,0) respectively. Indeed, using 

l{2E2 + #$ + 0i 
-^i^^^^i        <io-5» 
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one can derive the explicit g-expansions: 

H(u) = n/2^ + tf3 
167r     i?|      ' 

7 oMsm+tff) (10'6) 
Kiu) = "3^2^ W 4 

This allows us to extend immediately all the above results on wall-crossing, 
blow-up, explicit evaluations, and the like, to the case bi(X) > 0, since 
the integral has the same form. In fact, the above formulae can be further 
simplified, since for any four elements ^i,..., ^4 0f ^(X; M) we have ipi A 
• • • A-04 = 0 when b^ < 3. Hence we may drop the T/J

4
 terms. (We have given 

the formulae for K since they are likely to be useful in related contexts.) 

The discussion of section 7 can also be extended to the non-simply- 
connected case. Define 

*•"=*-££***■        (ioj) 

Then, using (7.16) one finds the generalization of (7.11) to be 

(e^7^)^! = f        di/j [    2e2i^'x+^C{u)x2l2P{uY^L{u)^ 
Jpic(X)        JMx 

• exp (HM(SM^
2
) + ^^W^)) 

.exph^ + i^(5M,A) + 5^TM(n)j   ,    (10.8) 

where the line bundles in Pic(X) now have 2A E H2(X;Z) congruent to 
W2(X) modulo two, and we have dropped two ip4 terms since b^ = 1. 

We can now turn the reasoning of section seven around and use (10.3) 
and (10.8) to give a new derivation of the generalized wall-crossing formulae 
for Seiberg-Witten invariants given in [40, 41]. 

11    Incorporation of Matter 

Af = 2 supersymmetric gauge theories in four dimensions can be generalized 
to include hypermultiplets in some representation of the gauge group. Insur- 
ing that the beta function should be zero or negative places a restriction on 
the possible representations. For the case that the gauge group is 517(2), the 



G.MOORE, E. WITTEN 365 

possibilities are that the hypermultiplets consist of 2Nf copies of the two- 
dimensional representation of SU(2), for Nf < 4,22 or a single copy of the 
adjoint representation. These theories allow hypermultiplet bare masses and 
all have the SU(2)R group of R symmetries. An additional U(1)R symmetry 
group is generally anomalous and is also explicitly violated by hypermulti- 
plet bare masses. The theory with the adjoint hypermultiplet actually has 
more symmetry (J\f = 4 supersymmetry and SO(6)^ in the absence of a 
hypermultiplet bare mass, broken to M = 2 and SO(A)R if there is a bare 
mass); we will call it the M = 4 theory (though we are mainly interested in 
the case in which the Af = 4 is softly broken to Af = 2 by the bare mass). 

After including hypermultiplets, the Coulomb branch of vacua is still 
parametrized by a copy of the u-plane (where u is related to (Tr </>2) in the 
underlying theory), but now the t^-plane parametrizes a different family of el- 
liptic curves. The appropriate families (which depend on the hypermultiplet 
bare masses) were determined in [3]. They have the form: 

y2 = x3 + a2X2 + a^x + a^ , (H-l) 

where a2,04, ag are polynomials in u and in the masses ra;. They are also 
polynomials in the scale A of the theory for Nf < 4, or of certain modular 
functions ^(TQ) for Nf = 4 or for Af = 4. Here TQ will refer to the coupling 
as measured at u = 00 in the Nf = 4 or Af = 4 theory. In this paper we 
have put A = 1 for Nf = 0. 

Any of these theories can be twisted to obtain a topological field the- 
ory. We will consider here only the standard twist, which as reviewed in 
section 2 is obtained by decomposing the four-dimensional rotation group 
as Spin(4) = 517(2)- x SU(2)+ and then picking a diagonal subgroup of 
SU(2)+ x SU(2)R. Some additional twists are possible, using the Spin(2Nf) 
global symmetry in the case of matter multiplets in the two-dimensional rep- 
resentation and picking a homomorphism of SU(2)+ to Spin(2Nf), or using 
the extended symmetry of the Af — 4 theory. (An alternative twist in the 
latter case, related to the Euler characteristic of instanton moduli space, was 
explored in [42].) 

The invariants of smooth four-manifolds associated with these twisted 
theories with hypermultiplets could be computed at short distances in terms 
of the underlying .577(2) gauge theory with matter. Such an analysis would 
proceed roughly along the lines in [42, 28] and will not be explored here. Our 
goal will be to compute at long distances in terms of the physical vacua. We 

22The number of copies of the two-dimensional representation must be even; otherwise 
the quantum theory is inconsistent because of a global anomaly. A single copy of the 
two-dimensional representation gives what is sometimes called a half-hy per mult iplet. A 
pair of half-hypermultiplets is sometimes called a quark or a quark flavor, a terminology 
we will sometimes use below. 
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will consider mainly the case that the hypermultiplet bare masses are generic, 
so that there is no Higgs branch of vacua, and the entire contribution comes 
from the Coulomb branch. On the Coulomb branch, there is a finite set 
of exceptional points at which a massless charged hypermultiplet appears. 
There will be SW contributions from these points, which can be analyzed 
rather as in section 7. There is also a continuous -u-plane integral, similar 
to the ones we have already studied but with some differences that we will 
analyze. 

We will obtain the analogue of (3.20) for the theories with hypermul- 
tiplets. It is given by equation (11.8) below. Then we will discuss special 
properties of the integrals and of the various models. 

11.1    The Measure Factor and the Contact Term 

First we analyze the measure factor AXB(T for the n-plane integral with 
hypermultiplets. 

The factor Ba, for the theory without hypermultiplets, was determined 
in [33] as follows. We will express the argument in a way that carries over 
immediately to the general case. This factor has neither zeroes nor poles on 
the w-plane except at points ui at which there is a massless charged hyper- 
multiplet. Integrating out the light hypermultiplet produces a singularity 
B^ - (u - Ui)*/8. Hence, if we set23 

ArrJJOi-tii), (11.2) 
i 

then up to a constant multiplicative factor one has 

Ba = A^8 . (11.3) 

The ceise treated in [33] was the case A = u2 — 1. There is no way to 
determine an overall multiplicative factor in (11.3) except by comparing to 
a precise definition of the theory at short distances; we have done so earlier 
in this paper for the pure gauge theory, but will not do so for the theories 
with hypermultiplets. 

Just as in [33], this formula can be checked by looking at the behav- 
ior near u = oo. Near oo, the function B* should behave as a power of 
n, in a way that reproduces the anomaly of those of the elementary fields 

23We recall from [3] that for the theory with doublet hypermultiplets, one uses a for- 
malism that generalizes the r0(4) formalism of the pure gauge theory. In this description, 
the discriminant of the family of elliptic curves is up to a constant multiple the function 
A defined in the next equation. For the Af = 4 theory, it is more convenient to use instead 
a formeilism related to r(2), and then the discriminant is the square of what we axe here 
calling A. 
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that are massive at large u and have been integrated out to produce the 
B function. (Possible hypermultiplet bare masses which break the U(1)R 

symmetry explicitly are irrelevant at large u.) The charged components of 
the vector multiplet give an anomaly that corresponds to a behavior at in- 
finity B*7 ~ -W4, as in eqn. (3.5) of [33]. Including the contributions of 
charged components of the hypermultiplets, the behavior at infinity should 
be Ba ~ u(2+Nf)a/8 for the theory with 2JV) doublets, or u3<7/8 for the the- 
ory with an adjoint hypermultiplet. This agrees with (11.3), since [3] A is a 
polynomial of degree 2 + Nf or of degree 3 in the two cases. 

Now we consider the "function" Ax. This quantity was determined in [33] 
from the following properties: 

(1) It is actually not a function in the ordinary sense, but transforms 
under duality transformations in the low energy theory like a holomorphic 
modular form of weight —x/2. 

(2) In the appropriate local description of the low energy theory, it has 
neither zeroes nor poles at zeroes of A or elsewhere on the w-plane. 

(3) It behaves near u = oo as ux'^. 
All of these properties are unchanged by the incorporation of hypermul- 

tiplets. In fact, the anomalies of the elementary hypermultiplets involve 
only a and not x, so incorporation of such hypermultiplets does not modify 
assertion (3). Likewise, massless charged hypermultiplets of the low energy 
theory have an anomaly that is independent of x, which is the reason for the 
assertion in (2) that Ax is regular and non-zero even at zeroes of A. Finally, 
because the hypermultiplet kinetic energy has no explicit r-dependence, the 
analysis of the modular weights proceeds just as in [33], leading to assertion 

One would therefore expect that in some sense Ax would be the same as 
in the theory without hypermultiplets. That is so, but some care is required. 
The result in [33] was Ax = ((u2 - l)dT/du)x/A. 

The most obvious thing to do is to replace u2 — 1 by A. However, it 
is not true that Ax is equal to (Adr/du)x^. This fails to obey property 
(2), which fails at zeroes of dr/du. (For the theory without elementary 
hypermultiplets, there are no such zeroes, as shown on p. 398 of [33] by an 
argument that does not carry over when hypermultiplets are included.) But 
we can proceed as follows. For the theory without hypermultiplets, there is 
an identity [43]: 

Hence the result in [33] could have been written 
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This expression obeys properties (l)-(3), irrespective of the presence of mat- 
ter hypermultiplets. Property (1) is verified using the fact that du/daj) = 
(da/daD)du/da = (l/T)du/da. As regards (2), the absence of zeroes or poles 
of Ax away from zeroes of A follows from the fact that da/du is a period 
of a holomorphic differential and so is never zero. Regularity at zeroes of A 
follows from the fact that, in the appropriate local description, a is a good 
local coordinate at such a zero so du/da ^ 0. Finally, (3) is a consequence 
of the fact that near infinity a ~ y/u. 

To summarize our results so far, the measure factor is 

AXB<r=(^\X     A*/8 (1L6) 

up to multiplicative constants that depend on a precise microscopic definition 
of the theory. 

The other somewhat similar function that must be determined is the 
contact function T(u) that arises in the product of two-observables. The 
derivation in section 2.2, which led in equation (2.25) to the general structure 

1 _ , x f du\ T=-sftWUJ +i?('') <11'7) 

carries over here. We recall that H is here an ordinary holomorphic function 
of u. Moreover the determination of the function H that was given in sec- 
tion 2.2 for the theory without hypermultiplets carries over with only small 
modifications to the general case. One modification is that in general the 
theory with hypermultiplets has no symmetry under u —t —u. An exami- 
nation of the determination of H for Nf = 0 shows that the same result - 
that is, H{u) = u/S - follows without any assumption of this symmetry if T 
vanishes for u -» oo. This is so by asymptotic freedom for doublet hypermul- 
tiplets with Nj = 1,2, 3, so the form oiT(u) obtained previously for Nf — 0 
carries over to these cases. For Nf = 4, or for ftf = 4, instead of asymptotic 
freedom one has conformal invariance near u = oo. In those cases, instead of 
vanishing near infinity, T might approach a constant (independent of u, but 
depending on the bare coupling constant or more precisely on the coupling 
constant TQ measured at u = oo). Thus for Nf = 4 or Af — 4, we have 
H{u) — E<I{T§) - u/3 up to a possible additive constant. The coefficient of u 
has been chosen to cancel a pole in T at u = oo. Since topological invariance 
would not be spoiled by adding a constant to T, the constant term in T(u) 
can only be determined in these examples by comparing to a microscopic 
definition of the theories, or possibly by using S'-duality and holomorphy in 
T. 
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11.2    Expression for the u-Plane Integrals 

We now consider the twisted theories with hypermultiplets on a four-mani- 
fold X with 61 = 0, b% = 1. For the theories with doublet hypermultiplets, 
one must set £ = W2(E) = W2(X). The reason is that the hypermultiplets, 
being doublets, transform non-trivially under the center of the gauge group 
SU(2) and, being spinors, also transform under the center of the cover of 
the Lorentz group. (For some alternative twists that use suitable homo- 
morphisms of SU(2)+ to Spin(2Nf)^ for Nf = 2,4, this restriction would 
be modified.) For the case of the adjoint hypermultiplet, the hypermul- 
tiplets transform trivially under the center of SU{2) but are still spinors 
with respect to the Lorentz group. Thus these theories only make sense for 
W2{X) = 0, i.e., for spin manifolds. 

Apart from factors examined in the last subsection, the derivation of 
the n-plane integrand in these theories proceeds rather as in section 3. In 
particular, the definition of the photon path integral Z of eqn. (3.19) is 
unchanged. One important difference, which leads to some complications in 
actually performing integrals, is that the u-plane is generically not a modular 
curve, and hence one cannot conveniently map the integration region to a 
fundamental domain in the upper half r plane, as we did in the theory 
without elementary hypermultiplets. 

Putting together all the above remarks, we conclude that the w-plane 
integral for all values of Nj is given by: 

£u(p, 5; m*, TO) = / ^?/i(r)c*«+5af W* . (11.8) 

(For Nf < 4 we replace TQ -* A on the left hand side.) The function ^ is 
exactly the same as (3.18). The measure is now: 

Here a, /? are functions of m^, A for Nf < 4 and functions of mj, TQ for Nf = 
4. It is possible that they can be determined by constraints of symmetry, 
holomorphy, and RG flow. (We hope to return to this in future work.) Of 
course, the definition of Zu also depends implicitly on a choice of metric 
through a choice of period point u). We will study the dependence on CJ 

presently. 
As for Nf = 0, the integral (11.8) requires precise definition. There are 

singularities in the integral near the zeroes of A and near u = 00. Near 
the zeroes of A one can express the integrand in terms of the appropriate r 
parameter and use the definition discussed in section 3.2. This also works 
at u = 00 for Nf < 4. 
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For Nf = 4 (or similarly ftf = 4) the r parameter behaves at u —> oo 

T(U; m^ ro) = T0 + 0(l/u) . (11.10) 

like: 

We also have: 

^-►.1(1 + 0(1)). (11.11) 

Finally, A is a sixth order polynomial in u. Hence the measure behaves as 

JF(mi,To)dndu^u-5+x/4+3a/4/'1 + 0(I)l)^ (11 12) 

ir \ u u J 

for some function F. The series in = comes from the expansion of y = Im r 
and df/du. An operator insertion of ghost number Q modifies the integrand 
at u —> oo by an insertion of u®/4. This is always holomorphic. Therefore, 
in order to define the integral at infinity we first integrate over the region 
\u\ < R and then take R —> oo.24 The integrand of (11.8) has an expansion 
in terms Y1LLU

U
^

V-> where the largest possible value of v is —2. Hence, 
upon integrating over a large circle in the i^-plane with |^| fixed and then 
integrating over |ifc|, the dangerous terms vanish and one gets a convergent 
result. 

11.3     Topological Invariance of the Integrals 

We will now investigate the topological invariance of the integral (11.8). 
Actually, anticipating that wall-crossing at zeroes of A will cancel similar 
behavior of SW contributions, we will focus on the behavior near u — oo. 
Given the delicate convergence of the integrals at large u, the topological 
invariance is not obvious. We will discover that for Nf < 4, the integrals are 
locally constant as a function of the metric and have a wall-crossing behavior 
similar to that of Donaldson theory. In marked contrast, for Nf = 4 (and 
Af = 4) the integrals have no wall-crossing, but instead have a continuous 
dependence on the period point u. Nevertheless, the Nf = 4 theory does 
have a truly topological subsector. This is defined by correlation functions 
of observables satisfying an upper bound on the ghost number which we 
derive below. For these observables the integrals are absolutely convergent 
at infinity and have no metric dependence at all, even for b^ = 1. 

24In principle other regularizations are possible. For instance, one could use the coor- 
dinate a at infinity and make a similar definition. We expect that any difference between 
the two answers could be interpreted in terms of a redefinition of the observables, along 
the lines suggested in section 3.2. 
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Let us consider a family of period points uj(t) and study Zu((jj(t)). The 
variation of the path integral with respect to the metric is given by the 
one-point function of the energy momentum tensor T. Since we have a 
topological field theory, the energy momentum tensor is BUST exact; that 
is, T = {Q,L} for some local and duality invariant quantity L. When 
the path integral is reduced to an integral on the u-plane, the BRST exact 
integrand is expected to become a total derivative in u. We will now exhibit 
this behavior directly from the expression (11.8). 

The nonholomorphic and metric dependent factors in the integrand of 
(11.8) are all contained in the expression: 

§^exp[-^-A2^]e2^o        J-       (_!)<*-*,)-,<*) 
du    FL87ryvdo;    +J *-? 

A6ff2+|«;2(A-) 

(A,a;) t      du 
[yi/2   +47n/3/2^  '    ' 

exp -i7rr(A+)2 - i7rr(A_)2 - As, A_) 
da 

(1 .13) 

The derivative of ^(^(t)) with respect to t can be rewritten as a total deriva- 
tive d/cfET: 

l»Mfl) = |T . (11.14) 

The explicit formula is: 

T = -4iexp[gi-(^)252]e2'rao        £       (^(A-AOW*) 

^'^t^ 
Ae#2+!w2(X) 

•exp     ' — i7rT(A+)2 -27rT(A_)2 -^(5, A_) 
da 

(11.15) 

An important feature of T is that it transforms well under modular trans- 
formations when combined with the contact term exp[52T(u)]. Thus, one 
can integrate by parts. It is possible to write similar expressions directly for 
the integrand of (11.8); however, these expressions are in general not use- 
ful because they do not have good modular transformations (they are quite 
analogous to the second term in (9.2)). 

Using (11.14), we can perform the integration by parts, and find that the 
continuous variation of the Coulomb branch integral is 

-^ZuMt)) =-to*/?' lim  /       duA'-^A'/V^+^WT .  (11.16) 
at R->oo J\U\=R       du 
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Now, if Nf < 4, r(^) -> zoo for u —> oo, indeed, q ~ l/u4-^/. Hence the 
terms in the lattice theta function decay at infinity. If we do not cross a 
wall, then A+ > 0, so to cancel the phase integral on u the integrand must 
go like u~1(uu)~1' for u > 0, and hence the variation of the integral vanishes. 
Thus, except for the wall-crossing, the integral is topologically invariant for 
Nf < 4. 

The situation is quite different for Nf = 4. Since r approaches a constant 
TQ, there is no suppression from the lattice theta function. The integrand 
pertaining to the general correlation function of high order involves a sum 
of terms including a term ~ ^. Thus, there is continuous variation of the 
integral as a function of CJ! 

While for Nf = 4 we have thus lost topological invariance for the general 
correlator at b^ = 1, there is a special subclass of correlators which are 
completely invariant, that is, have no continuous variation or wall-crossing, 
and are thereby true topological invariants. These are the correlators for 
which the integral at u = oo is absolutely convergent. The variation (11.16) 
of a correlator involving p^Sr has an integrand which behaves for large u 
like 

£ du u^+Wp'u'STvr'2 To + 0(l/u, 1/u) (11.17) 

Here To is the limiting value of (11.15) at the appropriate order in S. It is 
generically nonzero. The term u^1^2 comes from the measure and we have 
used x + v — 4. If the leading power of u is less than —1 then we cannot have 
any variation of the correlator, either continuous or discontinuous. Hence, 
correlators of ghost number Q = M + 2r are true topological (or rather 
differentiable) invariants, even for manifolds of b^ = 1 (and bi = 0), for 

6 + 2c7 + Q<0 . (11.18) 

11.4    Other Properties of the i^-Plane Integrals 

Now we will discuss other general properties of the u-plane integrals. Many 
results we found for Donaldson theory generalize nicely, but there are some 
changes. 

The vanishing in certain chambers of the tz-plane integral, discussed in 
section 5, does not have a precise analog for Nf > 0 because of the restric- 
tion W2{E) = u?2(X), which prevents one from considering the appropriate 
bundles. This vanishing does have an analog for jV = 4, which can be ob- 
tained in the same way. Since the twisted Af = 4 theory is restricted to 
four-manifolds X with W2{X) = 0, the only practical case of the vanishing 
isP1 xP1. 
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The blow-up formula analyzed in section 6 generalizes as follows. The 
derivation of the blow-up formula is exactly the same as before, but for 
Nf > 0, we must choose the case W2(E) -3 = 1 mod 2 because of the 
restriction W2{E) = W2{X). Following through the steps (6.3) to (6.5) we 
find that the integrand for the manifold X is that of the integrand for X 
times: 

a 
|29/4texp (11.19) 

where h = da/du. The Eisenstein functions G2/C(T) are related to Eisenstein 
series G2k{L) of the lattice L = uiZ + c^Z by 

G2k{r)  _ nkri   m 

j2^-2G2k{L)- (11.20) 

The G2k{L) may be expressed as polynomials in the coefficients a2, a4, ae of 
(11.1). Therefore, there are universal polynomials ^(i^o^a^ae) defined 
by: 

texp -mu) - £ 
k=2 

(2t2)h 

2k 
G2k(L) = J^tkBk{u, 02,04, a6) ,      (11.21) 

fe=i 

such that, for all Nf the blow-up formula is given by: 

exp[l(S) + tI(B)+pO])    = 
/ x 

2^Y/t
k(exY>[l{S)+P0]Bk(u,a2,ai,ae) 

k>l 

(11.22) 

(where W2{E) = W2{X) on both sides). We conclude that the coefficients in 
the generalized blow-up formula are polynomial in the masses with rational 
coefficients. 

One can analyze wall-crossing just as in section 4, with results just like 
those of section 4 at zeroes of A (and some modifications, for reasons ex- 
plained in section 11.3, near u = oo). At a zero u = u* of A, the wall 
crossing at W\ is: 

Z+-Z-= 2V2e27riX°{-l)(x-x^'W2Wax(30 

A2/2   du     da   i.^       /8   2pu+S*T-i%(S,\) 
(11.23) 
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where we expand in the good local g-coordinate: 

u = u* + K*q + 0{q2) , 

da      ,da,       ^V, , (H-24) 

Similarly, the wall-crossing at oo is given by the contour integral: 

Z+-Z-= 2\/2(4 - Nf)e
27riX'Xoaxpa 

•  lim   /       duq-^^A'-^A^exp^pu + S^-As.X)} . 

(11.25) 

The above wall-crossing formulae are consistent with RG flow. That is, 
if we take a quark mass to infinity m2 -> oo in a theory with Nf quarks 
then the wall-crossing at u = m2 combines with the wall-crossing for Nf 
quarks at u = oo to produce the wall-crossing at u = oo for the theory with 
Nf — 1 quarks. To prove this one expresses (11.23) as a contour integral in 
the w-plane and shows that it combines correctly with (11.25) to produce 
the corresponding expression at Nf — 1 in the limit m2 —> oo. 

As in section 11.3, the main qualitative difference from what we have 
seen in the case Nf = 0 comes in the analysis of wall-crossing at u = oo for 
the asymptotically conformally invariant theories Nf — 4 and J\f = 4. In 
these cases, because the effective r parameter does not diverge at u = oo, the 
behavior near u = oo is not at all like what we encountered in section 4. In 
these cases there is never any wall-crossing at u = oo, but there is continuous 
variation with the period point CJ, except for those correlators satisfying 
(11.18). For these correlators the convergence is uniform at infinity and 
independent of the value of the period point u. Hence, there is no variation 
at all. Since all other ix-plane wall-crossing (localized at zeroes of A) will 
cancel SW contributions, the result is that for these correlators, one actually 
gets true invariants for four-manifolds of 6^ = 1, in contrast to the usual 
situation in Donaldson theory, in which one gets invariants only for fcj" > 1- 

A similar discussion holds for the other theories at Nf < 4. Using (11.25) 
one finds that in this case there is no wall-crossing, hence no variation of the 
correlators of ghost number Q for: 

6 + ^ + Q<0. (11.26) 

Since Q > 0 this phenomenon does not occur in Donaldson theory (i.e., for 
Nf = 0). 
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11.5    SW Contributions 

Finally we turn to the generalization of the results of section 7. The universal 
functions C, P, L are obtained from (11.23) in exactly the same way as before 
and the result is: 

C = (a - a*)/q , 

L = -z7r2x/2a4A2, (11.27) 
da' 

P = -87r2/38A(a - a*)"1 . 

Indeed, with the proper interpretation of da/du this is the general form for 
all cases, at all zeroes u* of the discriminant. 

As an application of these formulae we give the detailed form of the 
invariants for four-manifolds of simple type with b^ > 1 and bi = 0 (thus 
generalizing equation 2.17 of [4] to all iV/).25 In this case the iz-plane integral 
vanishes and the entire path integral is a sum over the SW basic classes A 
which obey d\ = A2 ^-^ = 0. The contribution of each class A is a sum 
over the zeroes u* of the discriminant, with a given zero contributing 

sw(\)2^3^e^(-i)«(yLj    (yw)    Kf^) 

exp 2pu* + S2T*-z(-^)*(S,A) 
da 

(11.28) 

where 6 = ^^ and K* was defined in (11.24). Note that we can simplify 

T"-sfti)!-8-)- (11'29) 

Thus, the contribution is expressed solely in terms of the positions of the 
zeroes and the values of the periods there. Because of this, we can be more 
explicit in terms of the relation between (11.28) and the parameters in the 
SW curve (11.1). By standard reduction techniques (see, e.g., section three 
of [45]) (11*1) is equivalent to the curve: 

2       3      c4 c6 
y 48       864' 
C4 = 16(a2 - 3a4) , t11-30) 

c6 = -64a! + 288 a2 a^ - 864 a6 . 

25In [44], J. Labastida and M. Marino generalized the reasoning of [4] to give the result 
for Nf = 1 in the massless case for spin manifolds. One can check that the expression 
given below agrees with their result for this case. 
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By comparing the values of Eisenstein functions we can extract (3^)* up to 
sign from 

Using 

we then obtain: 

da 2 = c^ 
vduy*     2c6K) 

A - M!!^,^ _ 2-6   ^4(g) fll 3- 

«* = #4 • (11-33) 

Note that (11.31) only determines the value of the period up to sign. 
In fact., we do not need to resolve the squareroot. We must sum over the 
contributions of the SW basic classs A and —A and hence we may average 
(11.28) over A and -A. Since [4] 

SW{-\) = {-1)6SW(\) , (11.34) 

the factor exp [—i(^)*(S, A)] averages to a cosine when 6 + a is even and 
to a sine when 5 + a is odd. This combines with the prefactor to produce a 
series in even powers of (g^)*. 

When we sum (11.28) over the zeroes u* we obtain an expression totally 
symmetric in the roots of A. Therefore, at any order in p, S the invariants 
are rational expressions in ra2-, ^(TQ) at Nf = 4 and in ra;, A for Nf < 4. 

Perhaps the simplest example of these new invariants is the result for X 
a K3 surface. In this case, only A = 0 contributes. The sum over the roots 
becomes: 

£    A-^fr,)exp[(2p + s2/3)ui-i^^)/c^))] • (1L35) 

We have used Ci(ui)3 = CQ(ui)2, since A(ui) — 0, and have omitted an overall 
function of the mi, A. 

11.6     Other u-Plane Integrals 

Much of the discussion of this section, and the w-plane integral (11.8) in 
particular, makes sense for more general families of elliptic curves. Thus, for 
example, toroidally compactified tensionless string theories provide a family 
of d = 4, M = 2 theories which can be twisted to produce topological field 
theories. The Coulomb branch of these theories is described by the E% curve 
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of [46, 47]. In this case there are 12 singularities in the w-plane and r becomes 
a constant at infinity. This strongly suggests that as in the discussion of the 
Nf = 4, Af = 4 theories, only a finite set of correlators satisfying a condition 
analogous to (11.18) will give invariants. 

Another extremely interesting generalization of the ?i-plane integrals 
might be provided by topological field theories associated with the D3 probe 
[48, 49] in the context of F-theory [50, 51]. In this case one would integrate 
over the fi-sphere, regarded as the base of an elliptically fibered K3 surface. 
Various quantities in (11.8) can be interpreted as sections of line bundles over 
the lA-sphere and nonvanishing correlators can be identified from combina- 
tions of operators leading to a globally well-defined (1,1) form. Nevertheless, 
while certain correlators in (11.8) apparently make sense, several open prob- 
lems remain. It is not clear, for example, how to define the topological field 
theory whose Coulomb branch leads to (11.8). The discovery of this theory 
could be particularly interesting because the -u-sphere theory, if it really ex- 
ists, will obey all the axioms of topological field theory, with Hilbert spaces 
associated to three-manifolds and complete cut and paste rules. This is 
probably not the case for the other theories, even for the Nf = 4 and Af = 4 
theories, because of the noncompactness of the u-plane. 

12     Conclusions 

In this paper, we have obtained a more comprehensive understanding of 
the relation between the Donaldson invariants and the physics of Af = 2 
supersymmetric Yang-Mills theory. In particular, we have explained the role 
of the iA-plane in Donaldson theory more thoroughly than had been done 
before, both for b^ = 1 and for hypothetical four-manifolds of fcj" > 1 that 
are not of simple type. We hope that in the process the power of the quantum 
field theory approach to Donaldson theory and the rationale for the role of 
modular functions in Donaldson theory have become clearer. 

Our results can be summarized by an admittedly rather complicated 
formula for the Donaldson invariants of any simply connected compact four- 
manifold with 62" > 0. It is: 

\£H2(X;Z)+±W2(X) 

(12.1) 

where ZU£ is defined by equations (3.18), (3.20), and (3.21) and the SW 
contribution at u = 1 is defined by (7.5) and (7.17), with a similar formula 
for u = — 1. The result can be extended to non-simply- connected manifolds 
along the lines discussed in section 10. 
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The above considerations can be generalized and extended in several 
interesting ways. 

It Is of some interest to extend Donaldson invariants to invariants of a 
family of four-manifolds, valued in £r*(BDiff(X)) [5], and some work on wall- 
crossing formulae in this context has recently been done [52]. It should be 
possible to study family invariants, and their wall-crossing formulae (which 
will occur for 6^ > 1) by a relatively simple extension of the above ar- 
guments. To do so, one would include in the analysis a BRST partner of 
the metric {Q^g^} = Vv> &vinS rise ^0 differential forms on BDiff(X). 
Wall-crossing formulae should be obtained from the corresponding t^-plane 
integral as above. 

Another avenue for research is in the generalization of the above results 
to other Af = 2 systems. We have indicated in section 11 how the results gen- 
eralize to SU(2) theories with hypermultiplets. It would also be interesting 
to investigate higher rank gauge groups, and to study more thoroughly the 
reductions of six-dimensional tensionless string theories, and their hypothet- 
ical F-theoretic generalizations. Some of these generalizations are currently 
under study. 

It would also be of some interest to connect these results to nonperturba- 
tive string theory. The above results will probably have some use in working 
with wrapped D-branes. 

Acknowledgements 

We would like to thank R. Borcherds, 1. Prenkel, R. Friedman, R Kron- 
heimer, T. Li, M. Marino, J. Morgan, T. Mrowka, P. Sarnak, N. Seiberg, 
R. Stern, and G. Zuckerman for discussions and correspondence. GM would 
like to thank A. Losev, N. Nekrasov, and S. Shatashvili for many discussions 
on Donaldson theory over the years. GM would like to thank CERN and 
the Aspen Center for Physics for hospitality during the latter course of this 
work. The work of GM is supported by DOE grant DE-FG02-92ER40704. 
The work of EW is supported by NSF grant PHY-9513835. 

Appendices 

A    Elliptic  Curves,   Congruence  Subgroups,   and 
Modular Forms 

Here we collect some useful facts and notations related to various modular 
forms in the paper. 
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The covariant Eisenstein function of weight two is E2 where: 

E2 = l-24q + -'- , 
- _ 3 
E2 = E2 — 

(A.1) 

vry 

Our conventions for theta functions axe: 

#[J](0|T)        £;g§(n+0)2
e27ri(n+^ 

(A.2) 

with0<6»,^<l. 
In particular the three Jacobian theta functions have series and product 

representations: 

tf2 = tf 
1/2- 

0 
m=2q

1/8l[(l-q
n)(l + qn)2 

nez 
01 

#3 = # (0|T)=n(1-9n)(l + 9"-") -i\2 

neZ 
' 0 " 

.1/2J 

=X^n2(-1)n = 1-2^+- 

(A.3) 

1?4 = 1? (0|r) = n(1-9n)(1-^) -i\2 

The Seiberg-Witten curve is: 

A4 

x   — ux  + -7-a; . 
4 

(A.4) 

If we set A = 1 the singularities will be at: u = 1 for the monopole cusp and 
u = — 1 for the dyon cusp. This is the modular curve of r0(4). 

The group r0(4) is conjugate in GL(2, <Q>) to the subgroup r(2) of SL{2,Z) 
which consists of matrices congruent to 1 modulo 2. The u-plane could 
equally well be identified (as in [2]) as the modular curve of r(2), which 
parametrizes a family of elliptic curves C^, defined by y2 = (x2 — l)(x — u), 
with a distinguished level two structure (the points with y = 0 and x = 
1, — 1,IG). The two families of elliptic curves differ by a two-isogeny. We use 
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here (as in [3]) the r0(4) description, to make some formulas slightly more 
natural and to facilitate comparison to the mathematical literature. The 
translation between the two descriptions is given by: 

u = u , 

r = 2r , 

a = 5/2 , 

OD = ao - 

where quantities in the r(2) description are denoted with a tilde. 

In terms of theta functions we have: 

1 tit + ^ 
u = -—  

2 (W2 ' 
^-i = I  "2   -   ** 

4(t92i93)4      64/I
4
(T) ' 

i du _ 1     tff 
Trdr      4(^3)2 ' 

/2l duYl 
^ IT dr' 
'2idu\2\ 1/8 

U2-l 
= 04, 

Mr) = | - i*«, . 

The following g-expansions are sometimes useful: 

u — u ^ = 8^ i1 + ^^ " 62q + ^^ + " ') 
1   5o3  31 gt    5  641 g3  409 gl 

i   5i i  31i 3 
4 

(A.5) 

(A.6) 

(A.7) 

rtW. s  641t 7  409i £ ,. 0, + 271 q* + —— q* + ——- q* + • • • , (A.8) 

UM^D) = 1 + 32 OD + 256 ^ 

+ 1408$?, + 6144^ + 22976 ?!, + 76800 q% + ••• ,    (A.9) 
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n«) - 4 ^2 Q 

Mr)2 

= gl/4 _ 2 g3/4 + g g5/4 _ 16 g7/4 + 37 g9/4 _ 73 gll/4 

+ 158 g13/4 - 312 g15/4 + 594 q17^ + ■■■ , (A.10) 

2M(<?D) = ^ + 8 qD + 48 ^ + 224 q3
D 

+ 864 ^ + 2928 eft, + 9024 q6
D + --- , 

^=^3 = ^(T/2) 

= g1/8 + 2 g5/8 + 9
9/8 + 2 g13/8 + 2 g17/8 + 3 g25/8 + 2 g29/8 + • • • , 

/»M = £70304 = ^1(2TD) 

= ±(l-4qD+4ql+4qj)-Sq5
D + ---) 

(A.11) 

Finally, near the monopole cusp we have: 

aoigo) = 16^D(1 + 6tfD + 24^ + 76q3
D + •••)• (A.12) 

B    Siegel-Narain Theta functions 

Let A be a lattice of signature (&+, &_). Let P be a decomposition of A ® M 
as a sum of orthogonal subspaces of definite signature: 

P: A<g>M^M6+'0 _LM0'6- . (B.l) 

Let P±(A) = A-t denote the projections onto the two factors. We also write 
A = A+ + A_. With our conventions P-(A)2 < 0. 

Let A+ 7 denote a translate of the lattice A. We define the Siegel-Narain 
theta function 

eA+7(T,a,/?;P,0 =eM^l-d)} 

■ Y^  expjWT(A + (3)2+ + iTTT(X + (3)1 + 2m(X + (3,0- 2^(A + i/3, a) 1 
AeA+7 ^ J 

= e-^)exp[f(e-e)] 

■ Yl  exp|i7rT(A + (3)1 + inT{\ + {3)2_ + 2m{\ + (3,0- 27ri(A + (3,a) \ . 
AeA+7 *> J 

(B.2) 
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We modify slightly the definitions in [11] for the present case:   There is 
no essential simplification in passing to an even sublattice.   We also treat 
insertions somewhat differently. 

The main transformation law is: 

eA(-l/r,a,P;P, y + y) = J^HT)6+/2(;r)6-/2eA,(T,/?, -cr,P,Q , 

(B.3) 

where A' is the dual lattice.   If there is a characteristic vector, call it i^, 
such that 

(A, A) = (\,W2) mod 2 , (B.4) 

for all A then we have in addition: 

0A(r + 1, a, (3; P, 0 = c-^^)/2eA(r, a - /? - ^2, /?; P, 0 .    '   (B.5) 

C    Some Details in the Derivation of (8.9) 

The strategy to do the integral was explained below (8.6). We must evaluate 
two terms separately, called the degenerate and nondegenerate orbits. 

C.l    The Nondegenerate Orbit 

After transforming the integration to the strip S and setting d = 0, we 
simplify the y-dependent terms in the exponentials to get: 

1       f dxdy Y^ ,    v^  /       fin 

jhl-±.to>+ms+.u)-l£$: 

53 expj -WT(A + /?')2 - >(>• + 0', P(S)-/hi) + 2<n(A + ff',ai'+ j» | 
\6K 

,   (ci) 
,„      v 27r    r.   .     (S-szJ), 

where we have renamed c -> j, and the prime on the sum means we omit 
the term j — 0. 
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The integrand is now written as a function of q and of y. If we first 
integrate over the x variable then we isolate the power q0. We can then 
integrate over the y variable. There is a nice cancellation and the integral 
becomes 

-2\/2 
L /  xeK 

exp|27ri(A + /3/,/i)il 

j=-oo 
j + (S,z)/(2nhI) 

■ expj -i7rT(A + (31)2 - *(A + /31, P(5)_)//i/ + 2m(X + p1', a1) \ 

The sum over j can be done using the identity: 

E' 
j=-oo 

j + A 
I ■     e-iA9 

'A+       l-e-^iA ' 

which is valid for 

0<9<2ir ,        A^Z. 

In our case we can apply this formula with the angle: 

6 = 2n({\ + (3,11) - [(A + I3,ii,)]) , 0 < 9 < 2* 

where [•] is the greatest integer. Moreover, define 

AT = 
2-Khj 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

Now we can begin to see some topological invariance. We can combine 
exponentials using the identity: 

P{S)- + {S,z)n = SK + 
(S,z+-z-) 

2z\ (C.7) 

S* = S-(S,.z)z' 

On the right hand side of (C.7) SK is topological, and projects to K. The 
second term is metric dependent and changes continuously within chambers, 
but has zero inner product with all vectors in K. Define an angle: 

tyi 
h, 

(A + fr.S^-KA + fr./iJKS,*) (C.8) 
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Using this (C.2) becomes: 

-2V2 

f    27r/i/ 

£ £ M/ exp[-nrr(A + (31)2 + 2m(X + /J^ a1)} 
L / Ae/c 

(5,z) 
exp(-i(X + (31,P(S)-)/hi) + 

2m 
1 -27riA/ 

-Zt/J/ .   (C.9) 

The expression in curly brackets in (C.9) is a sum of two terms. The first is 
not topological and varies continuously with metric within chambers, while 
the second term is a nice topological expression, within each chamber. Equa- 
tion (C.9) should be regarded as a formal series in S'. The pole terms cancel 
between topological and nontopological pieces. 

C.2    The Degenerate Orbit 

Returning to (8.5) we consider the term with c = d = 0: 

/ 

1        f dxdy ^-A 
fiQw^/zfaofAPit1)) (S+,u>) 

(S-,z-) 

(w>*+) 

(CIO) 

Using the identities 

S2 - (P(5)_)2 = Si - (5-f-)2 = (S,z)(S,z+ -z-)\ 
0+ 0+ 

and 

(s+M- 
(S-,z-) 
{u,z+) 

(S,z+-z-.) 

(C.ll) 

(C.12) 

and isolating the 1/y dependence in the exponential we find that the inte- 
grand can be written as a total derivative J= of a modular invariant expres- 
sion. In the standard way only the constant term at r —> ioo contributes. 
Note that we must work with formal series expressions in S. 

Doing the integral by parts we find a metric-dependent expression: 

-47n/2 
(S,z) EM

2
/E 
xeK 

■ exp|-*7rr(A + /31)2 + 2Tri{\ + (31',a1) -i(\ + (31',P(S)-)/hi\ 

'(C.13) 

This metric-dependent expression exactly cancels the metric-dependent term 
in the nondegenerate orbit! 
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