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Abstract 

We study the theory of NS five-branes in string theory with a 
smooth non-trivial transverse space. We show that, in the limit that 
the bulk physics decouples, these theories become equivalent to theo- 
ries with a flat and non-compact transverse space. We present a matrix 
model description of the type IIA theory on E9 x S1 with NS five-branes 
located at points on the circle. Consequently, we obtain a description 
of the dual configuration of Kaluza-Klein monopoles in the type IIB 
theory. 

1    Introduction 

The five-branes of M-theory and string theory are extremely interesting ob- 
jects [1]. The theory on k coincident five-branes in M-theory is an interacting 
field theory at a non-trivial fixed point of the renormalization group. This 
theory was first found in [2,3]; for a review, see e.g. [4], We will refer to 
this theory as the (2,0) field theory. To obtain this field theory, we have 
to consider the limit where the eleven dimensional Planck scale Mpi goes to 
infinity. In this limit, all interactions with the modes in the bulk of space- 
time, including the interactions with gravity, decouple and we are left with 
a complete theory on the five-branes. The moduli space of vacua for this 
theory is 

OR5)* ,     x 
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These theories are naturally associated with the Ak-i groups. Extensions 
to other groups and in particular to Dk and EQJ^ were discussed in [2,4]. 
For other groups, the quotient by the permutation group is replaced by the 
appropriate Weyl group. 

A generalization of this theory was found in [5]. There, M theory on 
K10 X iS1 was studied with k five-branes at points on the circle. To find 
a complete theory, we should again make sure that the modes on the five- 
branes decouple from the modes in the bulk of spacetime. Again, this is 
achieved by considering the limit Mpi —> oo. However, unlike the previous 
case, we now have another parameter - the radius of the circle L. Therefore, 
we can find a family of new theories which depend on this parameter. More 
specifically, by taking 

Mpi -> oo, 
(1.2) 

0, 

while holding fixed 
Ms

2 = LMfr (1.3) 

we find a new theory which depends on Ma. Equivalently, by starting with 
the type IIA theory, rather than with M-theory, we can define this theory 
by taking the string coupling gf to zero, while holding fixed the string scale 
Ms. We will refer to this theory as the (2,0) string theory, since it includes 
string-like excitations with tension M^. The moduli space of vacua is now 

M-&%*£, (1.4) 

where the radius of the Sl factor is 

P = LM^ = Ml (1.5) 

This follows since P is clearly proportional to L and the factor of M^ appears 
on dimensional grounds, since Mpi is the only scale in the problem. In the 
"zero slope limit," M3 -4 oo, this theory reduces to the (2,0) field theory. 
As a check, note that in this limit (1.4) becomes the same as (1.1). These 
theories are naturally associated with the Ak-i groups. Extensions to other 
groups, and in particular to Dk and EQJ^ are straightforward. 

Another "non-critical string theory" with (1,1) supersymmetry is simi- 
larly obtained by starting with k NS five-branes in type IIB string theory, 
in the limit where the string coupling gf vanishes with the string scale held 
fixed [5]. After com pact ification on a longitudinal circle of radius i?, these 
(1,1) string theories are the same as the (2,0) string theories compactified 
on a circle of radius ^p-. This fact has led to the conclusion that these the- 
ories are not local quantum field theories [5]. This non-locality distinguishes 
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them from the (2,0) field theories which also have string-like excitations, but 
appear to be ordinary local quantum field theories. 

It is natural to ask whether we can find more theories by compactifying 
more transverse directions, or by considering five-branes on more general ge- 
ometries than flat non-compact transverse spaces. In section two, we study 
the NS five-branes in IIA and IIB with a transverse circle. This circle com- 
pactifies some of the directions in the moduli space of vacua of these theories. 
However, the size of these directions has a factor of — (gs is the type IIA or 
type IIB string coupling) relative to the naive expectation. This factor has 
significant consequences. First, to decouple the physics in the bulk in order 
to find a complete theory on the brane, we have to set the string coupling 
to zero. This leads to the decompactification of these directions. Therefore, 
the brane theories with vanishing string coupling in these cases are the same 
as those in [5]. Second, it shows that unlike D-branes [6], which can serve 
as probes [7,8], the NS five-branes do not probe the background transverse 
space at zero string coupling. 

In section three, we focus on the NS five-branes in type IIA string theory 
with a transverse circle of radius RA at arbitrary string coupling. We con- 
sider the matrix model [9] description of this configuration. It is given by a 
2+1 dimensional field theory similar to that of [10]. In the limit RA —> oo, 
the theory becomes a 1+1 dimensional theory describing the NS five branes 
in type IIA theory. For RA —> 0 another 1+1 dimensional theory appears, 
which describes an A^_i singularity in IIB theory. Our 2+1 dimensional 
theory interpolates between these two limits. For gf = 0, its Higgs branch 
decouples from its Coulomb branch and gives the matrix model description 
of the (2, 0) string theory [11,12]. 

2    String Theory NS Five-Branes on M9 x 51 

2-1    Type IIA Five-Branes on R9 x Sl 

We start by considering M-theory on M9 X T2 with k five-branes at points on 
the torus T2. The T2 is defined by its complex structure r and its volume. 
For simplicity, let us take the torus to be rectangular with radii Ri and R2. 
This choice will not affect any of the following discussion in a significant way. 
The moduli space for the five-branes is then 
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Using the argument leading to (1.5) we find that the radii of the T2 factors 
are 

Pi = M^Rx , 
(2.2) 

P2 = M^R2 . 

M-theory on a two-torus is equivalent to the type IIB string [13] on a circle 
of radius 

RB
 
=
 M^R2 

=
 MIR2\ (2-3) 

with string coupling 

<7f = f. (2-4) 

This result can be obtained by going from M-theory to type IIA on JRI. 

Then T duality on R2 maps us to the IIB theory on a circle with radius 
(2.3) and coupling (2.4). The NS five-branes in the IIA theory, which are 
located at points on the transverse circle #2, are mapped under the T duality 
into Kaluza-Klein monopoles [14]. Therefore, our theory of k M-theory five- 
branes on T2 is a theory of k Kaluza-Klein monopoles in type IIB string 
theory. 

Let us review some basic facts about Kaluza-Klein monopoles. The 
monopole solution is constructed by taking flat space tensored with the four 
dimensional multi-Taub-NUT metric [15]. In the case of string theory, this 
construction gives a five-brane, while in M theory, we obtain a six-brane [16]. 
The non-trivial metric on R3 x S1 is 

ds2 = V{x)dx2 + V{x)-1{de + A-dx)2, (2.5) 

where x is three dimensional and A is related to V by 

W = V x A. (2.6) 

The scalar function V depends on a single free parameter r: 

v-1+'tirbi- <2'7> 
The positions of the k branes are specified by the x1 and the angular vari- 
able 6 has a period proportional to r. The parameter r sets the scale of the 
solution, and can be rescaled by rescaling x and 9. It corresponds to the size 
of the circle 51 in the limit \x\—too. In our problem r = RB- When all the 
branes are separated the space is smooth. For k > 1 coalescing branes the 
multi-Taub-NUT has an Afc-i singularity at the position of the branes. In 
the limit r-*oo the circle which is coordinatized by 6 decompactifies every- 
where except at the positions of the branes and the space becomes R4/%b- 
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Finally, we should mention that the multi-Taub-NUT has a number of non- 
trivial two-cycles. Some of these cycles collapse when the x1 coalesce; note 
that there is a non-trivial two-cycle even for k = 1 [17]. 

For recent discussions of Kaluza-Klein monopoles in M theory and string 
theory see [18-23]. 

It is useful to re-express the relations (2.2) in terms of the string scale 
and string couplings 

Pi   =   Ms
2, 

Af.2      MfRo (2-8) 
Pi   = 

x5 • 

9? 9? 

The key feature is that P2 always contains a factor of l/ga whether expressed 
in terms of the type IIA or type IIB string coupling. 

There is a simple reason for these factors of -^. The collective coordinates 
of each NS five-brane in IIA, or Kaluza-Klein monopole in IIB, are a two- 
form and five scalars (for a recent discussion, see [18]). The two-form and 
one of the scalars $1 arise from the RR sector - for the type IIB Kaluza- 
Klein monopole they arise from the RR four-form and the RR two-form 
reduced on the non-trivial two-cycle. The other four scalars are NS-NS fields 
- they correspond to the three deformations of the metric, and a compact 
deformation $2 of the NS-NS two-form. The natural normalization of these 
fields is with a factor of -^ in front of the kinetic terms for the NS-NS fields, 
but not in front of the kinetic terms for the RR fields. In order to keep 
the (2, 0) supersymmetry on the five-brane manifest, we rescale the NS-NS 
scalars to have no -4- in their kinetic terms. This leads to the crucial factor 

9% 

of i in P2. 
This situation should be contrasted with that of D-branes. There, all 

the collective coordinates appear from open strings. Both the gauge fields 
and the scalars have the same normalization, —.'in their kinetic terms and 
therefore no rescaling is necessary. Therefore, these scalars "see" the under- 
lying geometry, and D-branes can be used as probes. On the other hand, 
the NS five-branes and the Kaluza-Klein monopoles are not good probes. In 
particular, for finite R2 the value of P2 diverges as the string coupling goes 
to zero. 

We now want to decouple the bulk physics to obtain a complete theory. 
This can be accomplished only if gf = gf = 0. It is clear from (2.8) that 
in this case P2 = 00. A more careful analysis immediately shows that this 
conclusion cannot be avoided by taking various limits of Ri and/or #2. For 
example, if we take gf, R2—K), while holding ^ fixed, P2 is finite. However, 

since i?2->0 this theory is better thought of as the type IIB theory in R10 

with a finite coupling, and the bulk physics no longer decouples. 
The spacetime geometry in this limit depends on R2.    When i?2->0 
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the type IIB Kaluza-Klein monopoles are the better description, while for 
ii^-^oo the type IIA NS five-branes are the right description. However, the 
decoupled physics on the brane is actually independent of R2 since P2 has 
gone to infinity. We will find further evidence favoring the uniqueness of this 
decoupling limit from the M(atrix)-theory description of this configuration, 
discussed in the following section. 

Our analysis leads us to a description of the decoupled physics on Ak-i 
singularities in free type IIB string theory. It is given by the same "non- 
critical string theory" as the k NS five-branes in type IIA theory. This fact 
is known for the low energy (2,0) field theories, and here we recover it for 
the (2, 0) string theory. The (2, 0) string theory has two kinds of strings: 
those which exist in the (2,0) field theory, whose tension vanishes at the 
singularities in the moduli space, and other strings with tension M^. In the 
IIA description both kinds of strings are membranes stretching between five- 
branes and wrapping the compact direction. In the type IIB A^-i theory, 
strings of the first kind are associated with IIB three-branes which wrap col- 
lapsing two-cycles. Strings of the second kind are bound states at threshold 
of strings from the bulk with the Kaluza-Klein monopoles. 

Essentially the same scaling analysis applies when more transverse cir- 
cles are present. The extra factor of — rescales the metric, and decompact- 
ifies the transverse space in the gs—>0 limit. Furthermore, we can consider 
type IIA five-branes with an arbitrary smooth transverse metric. It seems 
that a similar factor of ~- would make the general target space geometry as 
"probed" by the five-branes flat and non-compact in the decoupling limit. 
The case of five-branes at a singularity will be discussed in [24]. 

2.2    Type IIB Five-Branes on R9 x S1 

We now consider the case of k type IIB five-branes whose world volume 
theory has (1,1) supersymmetry. We start with M-theory compactified on a 
torus T2 with radii Ri and R2. The type IIB five-branes arise as M-theory 
Kaluza-Klein monopoles associated with one of the cycles which wrap the 
other cycle. For example, let us go from M-theory to type IIA by reducing 
on i?!, and consider Kaluza-Klein monopoles associated with #1, so that 
their r parameter is Ri. These solitons are D6-branes in the type IIA string 
theory. T duality on R2 maps us to the type IIB theory, and the Kaluza-Klein 
monopoles become D5-branes at points on a circle of radius RB = M3RR' 

S-duality converts them to NS five-branes at points on the circle. Instead, 
we can start with Kaluza-Klein monopoles in the IIA theory associated with 
#2, so their r parameter is #2, and T dualize R2 to find the NS five-branes 
of IIB at points on a circle of radius RB- 

The low energy theory on the NS five-branes is a U(k) gauge theory with 
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gauge coupling -^j [5]- When RB is finite, the moduli space of vacua of this 
theory is 

^X*1)*. (2.9) 

The radius P of the 51 factors is easy to determine, e.g. by starting with the 
wrapped D6-brane description in the previous paragraph, and performing 
the duality transformations. We find: 

As in the previous subsection, we see that P has a factor of ^ relative to the 
naive result. As we said there, this is unlike the case of D-branes. This factor 
of — can be explained as in that case. The gauge fields are RR fields, which 
for the Kaluza-Klein monopole arise from the reduction of the three-form on 
the non-trivial two-cycle, while the four scalars are NS-NS fields. Rescaling 
the NS-NS scalars to have the same kinetic terms as the one-forms leads to 
(2.10). 

The factor of — also has consequences for the possible decoupling lim- 

its. Decoupling requires taking g^gf-^O. Once again, the period for the 
scalar decompactifies, and we are driven back to the theory of parallel type 
IIB five-branes in R10. Also, in analogous fashion to the case with (2, 0) 
supersymmetry, there is a parameter RB, which changes the spacetime de- 
scription, but does not alter the decoupled physics. 

3    A Matrix Definition of M-Theory Five-Branes 
on Compact Spaces 

A matrix model [9] for the M-theory five-brane on R9 x T2 follows naturally 
by extending the quantum mechanics describing the longitudinal five-brane 
[10] to k > 1 five-branes, and to a 2+1 dimensional field theory with eight 
supersymmetries. For related discussions see [7,25]. The theory has a U(N) 
gauge symmetry where N is the number of zero-branes used to probe the 
longitudinal five-brane. The coupling to k parallel five-branes is represented 
by k hypermultiplets in the fundamental of the gauge group. There is also 
an adjoint hypermultiplet, which encodes motion of the zero-branes within 
the longitudinal five-brane. 

The interaction of the five-branes with spacetime is encoded in the dy- 
namics on the Coulomb branch of the theory. For k > 1, there is also a Higgs 
branch in the model that corresponds to physics localized within the brane. 
Points on the Higgs branch essentially describe the dynamics of zero-branes, 
which have fattened to instantons within the five-branes [26]. 
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The parameters of the M(atrix)-theory are determined in terms of the 
radius of the longitudinal direction i?, and the two radii Ri and R2 of the 
compact part of spacetime T2 X R7. In terms of these parameters [9,27-29], 
the 2+1 dimensional theory is on a compact space with radii 

Ei=w (3'i) 

and the Yang-Mills gauge-coupling is 

^M=i^k=JR3M5EIE2- (3-2) 

It is convenient to express the dimensions of the torus in terms of the string 
scale and string coupling 

=, = i 

MlR ' (3.3) 
S2   =   MfR3-' 

Consider first the 2+1 dimensional theory on E3. Both the Higgs and 
the Coulomb branches are described by hyperKahler manifolds. A non- 
renormalization theorem guarantees that the Higgs branch is immune to 
quantum corrections [30]. In terms of the fields in the Lagrangian, it provides 
the ADHM hyperKahler quotient construction of the moduli space of TV 
instantons in SU(k) gauge theory in four dimensions. The Coulomb branch 
of the theory for N = 1 was analyzed in [31,32]. Its metric is a Taub-NUT 
metric. For higher N the metric appears to be a symmetric product of Taub- 
NUT metrics. The Coulomb and Higgs branches touch at a singular point 
where the theory flows to a non-trivial interacting three dimensional fixed 
point. The infrared limit is the same as taking the dimensionful coupling 
constant <7yM —> 00. It is a property of this fixed point that the Higgs 
branch and the Coulomb branch both emanate from it. Therefore, these 
two branches are not decoupled here. 

Now we consider the theory with finite Ei^. There can be Wilson lines 
on T2, but we will ignore them. We are going to explore this theory for fixed 
Ei as a function of £2 < Ei and gyw ^ V^i- For iV = 1, this problem 
was analyzed in [33]. The relevant dimensionless quantity which controls the 
dynamics is 

^rf-s-cidb*- (3-4) 

Consider first the limit 7 > 1. At energies larger than I/E2 the theory is 
three dimensional and its Coulomb branch becomes a symmetric product of 
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Taub-NUT spaces. At energies of order ^- the theory becomes two dimen- 
sional. The two dimensional sigma model based on the Taub-NUT metric 
is conformally invariant, and therefore this metric does not change as we 
flow to the infrared. In the opposite limit, 7 <^ 1, the theory becomes two 
dimensional at the scale ^- before the gauge interactions become strong. 
Therefore, here the dynamics is that of the two dimensional gauge theory. 
The result of this dynamics is a metric with an infinite tube [34]. For N = 1, 
the explicit answer which interpolates between the l/\x\ behavior for 7 ^> 1 
and the l/\x\2 behavior for 7 <g; 1 was found in [33]. 

These results are consistent with the spacetime picture. The parameter 
7 = 1/(R2MS)

2 interpolates between the two and three dimensional theories, 
which are appropriate to type IIA and type IIB, respectively. For R2 ^> 1/MS 

the metric we expect is the tube metric of the NS five-brane of the IIA 
theory [34], while for R2 <C 1/Ma we expect the Taub-NUT metric of the 
Kaluza-Klein monopoles in type IIB theory. It is satisfying to see how the 
matrix model reproduces these answers. 

We can now consider the decoupling limit described in the previous sec- 
tion in the context of this matrix model. In this limit £2—»0, gyM^00 while 
Si and 7 are fixed. The 2+1 dimensional theory becomes 1+1 dimensional. 
Now we can use the arguments of [2,11,12] to argue for the decoupling of 
the Higgs branch and the Coulomb branch in this limit. For this decoupling 
it is crucial that we consider the two limits £2—^0 and <7yM->oo. In partic- 
ular, without the £2—^0 limit, the theory is 2+1 dimensional where no such 
decoupling happens. 

It is interesting to examine the R2 or the 7 dependence in this limit. 
The physics of the Higgs branch is independent of these parameters. This 
follows from the non-renormalization theorem mentioned above, as well as 
from the fact that the Higgs branch metric is independent of £2 [35]. This 
independence is in accord with our statements in the previous section about 
the decoupled physics on the five-brane being independent of #2. On the 
other hand, as mentioned above, the Coulomb branch depends on R2 corre- 
sponding to the fact that the spacetime metric depends on R2. 

There is a subtlety that is worth mentioning. In the case without the 
longitudinal five-brane, the 2+1 dimensional theory has sixteen supersym- 
metries. This theory has an interacting fixed-point with Spin(8) global 
symmetry [4,28,29]. In this case, there are two inequivalent limits in which 
the field theory becomes 1+1 dimensional. The first is dimensional reduc- 
tion to Yang-Mills in two dimensions. Flow to the infrared gives an orbifold 
conformal field theory which describes the type IIA string theory [29,36,37]. 
The second is obtained by first flowing to the 2+1 dimensional fixed point, 
and then reducing to 1+1 dimensions. In this case, the resulting 1+1 dimen- 
sional conformal field theory describes the type IIB string.  The difference 
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is essentially in the way that the extra spacetime dimension is acquired: In 
the first case by dimensional reduction, while in the second, by dualizing the 
gauge-field in the Abelian case, or flowing to the interacting fixed point for 
the non-Abelian case. By contrast, in the situation with the longitudinal 
five-bra,ne, we are interested in the Higgs branch of the theory, and then the 
two limits commute. There is only one decoupled 1+1 dimensional conformal 
field theory: the theory which describes parallel type IIA five-branes. 
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