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Abstract 

We study multi-soliton states in two-dimensional 7V=2 supersym- 
metric theories. We calculate their energy exactly as a function of mass 
and volume in the simplest integrable iV=2 supersymmetric theory, the 
sine-Gordon model at a particular coupling. These energies are related 
to the expectation value X = tr[exp(zn7rF) exp(—H/T)], where F is the 
fermion number. For n=l, this is Witten's index; for n an odd integer, 
we argue that X is an index in the sense that it is independent of all 
D-term variations. 

1    Introduction 

The thermodynamic Bethe ansatz (TBA) has proven a useful tool for com- 
puting the ground-state (Casimir) energy of an integrable 1 + 1 dimensional 
system [1]. The special properties implied by integrability allow one to com- 
pute the partition function at any temperature T: 

Z EEtr[e-^/T]   , (1.1) 

where HL is the Hamiltonian for the system on a line of length L. The 
TBA calculation gives the free energy per unit length — T In Z/L when L 
much is larger than any other length scale in the theory. This partition 
function is related to the ground-state energy by interchanging the definition 
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of space and time. The above trace is equivalent to a Euclidean path integral 
where space-time is a cylinder of length L and circumference 1/T. This 
path integral can equivalently by computed by taking space to be a circle of 
circumference R = 1/T, and time propagation to be in the L-direction: 

Z = tr[e-HRL]  . (1.2) 

Since L is very large, the leading contribution to this trace is from the lowest 
eigenvalue of HR, which is the ground-state energy EQ. Thus 

Eo = -j\nZ . (1.3) 

This trick of reversing space and time is known in the conformal field theory 
literature as a modular transformation. 

The TBA can be generalized in order to calculate excited-state energies as 
well. Adding imaginary chemical potentials to (1.1) corresponds to changing 
the boundary conditions around the cylinder (i.e. putting some sort of twist 
in the jR-direction). This enables one to project out the ground state [2] and 
calculate excited-state energies [3]. In this manner one can calculate a few 
low-lying excited-state energies in a number of models [3,4], but all those 
calculated here have the property that, for large J?, they are degenerate with 
the ground state and thus not multi-particle states. 

Recently, several techniques were developed which allow the calculation 
of the energies of multi-particle states [5,6]. The basic idea is to analytically 
continue the TBA equations onto another sheet in an appropriate space 
(the fugacity in [5], the mass in [6]). Using formal techniques developed 
in [7], the results of the continuation can be written in closed form, and are 
interpreted as the TBA equations for an excited state. These generalized 
TBA equations have been worked out in detail only for several states in the 
Yang-Lee model [5,6] and some generalizations [8]. 

We give explicit thermodynamic Bethe ansatz equations for excited-state 
energies in a unitary theory, the simplest integrable N=2 supersymmetric 
field theory. In this model, which is equivalent to the ordinary sine-Gordon 
model at a special value of the coupling, we calculate an infinite number of 
eigenvalues of the Hamiltonian, namely 

En = (n\HR\n) , (1.4) 

when n is a multi-soliton state on a circle of circumference R. The energy 
En of this excited state is a function of the volume R of the one-dimensional 
space and the mass scale m of the theory. The ground-state energy So is the 
Casimir energy on this circle, and it vanishes as R —> oo. The excited states 
in general are a collection of interacting particles, so as R —> oo, En —> am, 
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with a depending on how many particles are in the state and their masses. 
If there is only one particle mass in the theory, then a is an integer. 

At first glance, the supersymmetric model to be discussed here is more 
complicated than the Yang-Lee model studied in detail in [5,6]. It has two 
particles in the spectrum (the soliton and antisoliton in sine-Gordon) with 
a non-diagonal 5-matrix instead of a single particle with a single 5-matrix 
element. However, because of various simplifying features probably related 
to the supersymmetry, we are able to find the appropriate equations to 
describe an infinite number of excited-state energies. The excitations in this 
theory are all solitons saturating the Bogomolny bound [9], so our results 
give the exact non-perturbative energy of an infinite hierarchy of interacting 
multi-soliton states. 

Some of these excited-state energies have a particular interest in the 
context of ./V=2 theories. Formally, one can view the calculation in terms of 

I(a).= ti[eiaFe-RHL]} (1.5) 

corresponding to adding imaginary chemical potentials proportional to the 
fermion number F. X(Q:) makes sense as a function of a at least for a small, 
and is real when the theory is CP-invariant. It depends on i2, L and any 
mass scale m in the theory. By analogy with (1.3), we define 

lni(c*) =-E(a)L (1.6) 

for large L. Below we discuss how to define E(a) for all a. The point of [5] 
is that at appropriately chosen values an, one has 

En = E(an). (1.7) 

In this supersymmetric case, we study an = nTT. We show that when appro- 
priately defined, 1(a) is not periodic in a, even though F is half-integer in 
our example. (This arises because of subtleties in taking the infinite-space 
limit, as are common in open-space index theorems [10].) 

In supersymmetric theories, an object of fundamental importance is Wit- 
ten's index [11] 

J(^) = tr[(~l)Fe-^/T]   . (1.8) 

In the case discussed here, Witten's index is independent of i?, L and m. 
Another case of interest in N=2 theories is d/(a)/da|a=7r, which is the "new 
supersymmetric index" calculated in [12]. This is an index in the sense that 
it is independent of all .D-term perturbations of the theory. In this paper, 
we will show that l(n7r) is also independent of the D-term when n is an an 
odd integer. 

More precisely, in section 2 we show that l(n7r) for n an odd integer cor- 
responds to computing Witten's index with different open-space asymptotic 
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conditions. These asymptotic conditions correspond to inserting operators 
at the ends of the space-time cylinder. We argue that these objects are in- 
dependent of D-term type perturbations, and thus are open-space indices in 
the sense of [12]. We also show the 1(a) gives excited-state energies when n 
is any integer. In section 3 we use the thermodynamic Bethe ansatz to derive 
equations for X(ce) in our example. In section 4, we discuss the solutions in 
the m —> 0 limit, where X(a) is an analytic function of a. In section 5 we 
extend the results to all mi?, showing how to define X(a) past discontinuities 
at certain values of a. In the first appendix, we check our results by explic- 
itly computing the energy in the massless limit. In the second appendix, we 
calculate the excited-state energies of a Dirac fermion, mainly in order to 
clarify the nature of the discontinuity arising in section 5. 

2    Super symmetric Indices and Excited States 

In this section we explain how the excited-state energies discussed in the 
introduction are related to interesting quantities in N=2 supersymmetric 
field theories. 

In these two-dimensional models, Euclidean spacetime is a cylinder of 
circumference R and very long length L. Varying a in (1.5) corresponds to 
changing boundary conditions as one goes around the cylinder. In particular, 
for a = 7iTT, when n is an even integer these correspond to antiperiodic 
boundary conditions on fermionic operators. When n is an odd integer, 
these are periodic boundary conditions on the fermions. In conformal field 
theory (which applies when m —> 0), these are called Neveu-Schwarz and 
Ramond boundary conditions respectively. 

The energy E(a) in (1.6) is a natural object to consider when one thinks 
of space as in the /2-direction, and time in the L-direction. It is a particular 
eigenvalue of the Hamiltonian HR operating on the space of states | )a on a 
circle of circumference R. The Hilbert space is labeled by a because changing 
the boundary conditions around R changes the states allowed in the Hilbert 
space. Shifting a by 27r takes the space of states |)a to itself, so for example 
the Ramond sector is mapped to the Ramond sector. However, it does 
not take a given state to itself. This is well known in the superconformal 
literature where the change in a is often called spectral flow; see e.g. [13]. 
Thus in the m —> 0 limit, En for n odd is the energy of some state in 
the Ramond sector, while for n even it is the energy of some state in the 
Neveu-Schwarz sector. 

In a conformally-invariant theory, the energy of a state must be propor- 
tional to 1/R because there is no other scale in the theory. The constant of 
proportionality is related to the central charge c of the theory and the left 
and right conformal dimensions (hn)hn) of the operator which creates the 
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state |n) [14]: 

limEn = -^-(c-12hn-12hn). (2.1) 
ra—>-0 Oil 

Thus in the m —> 0 limit, the ground-state energy in the conformal limit 
is related to the central charge, while excited-state energies are related to 
the dimensions of the operators which create these states. Thus when n is 
an even (odd) integer, we can identify which operator in the Neveu-Schwarz 
(Ramond) sector created the state. 

In an N=2 theory, spectral flow arguments give [13] 

■&,*«->-sHf)')-        ™ 
Since calculations here are left-right symmetric, the states \n) are therefore 
created by operators with conformal dimension (hn, hn) = (cn2/24, cn2/24). 
The formula (2.2) is well known in the example we will discuss in later 
sections., the sine-Gordon model at its N=2 supersymmetric point. The 
m —t 0 limit consists of a free boson, which has c = I1. 

Notice that at n = 1, we have Ei = 0. In fact, Ei = 0 for any m, not 
just in the conformal limit (see [12] for the TBA calculation in many N=2 
theories). This is a deep result for supersymmetric theories, because from the 
point of view where space is in the L-direction and time is in the jR-direction, 
we are calculating the leading term in Witten's index [11]. Witten's result 
is that if there are periodic boundary conditions in the L-direction, then 
X(7r) in (1.8) is related to the number of ground states, and is an integer 
independent of L,T and m. Thus when we find E by interchanging the 
roles of space and time, (1.6) shows that Ei = 0 because 1 is finite and 
L —> oo,, With periodic boundary conditions in the L-direction, Witten's 
index is independent of any supersymmetry-preserving deformations of the 
theory. 

In general 2'(a) does depend on perturbations, for example, changing 
the mass. However, when n is odd, l(n7r) does have a special property. We 
argue here that it is independent of any D-term perturbations. There are 
four supercharges Q+,Q~,Q ,Q in an N=2 theory (for any m). Both 
Q+ and Q~ have fermion number +1, while the other two have fermion 
number -1. These charges are defined with periodic boundary conditions, 
so for the rest of this section we restrict to the case n an odd integer. In a 
superspace action a D-term comes from integrations over all four Grassmann 
coordinates. This means that a variation of a D-term can be written as 
inserting {Q'f, [Q~, A(^)]} in the path integral where A itself can be written 

1 Conformal field theory aficionados will notice that (2.2) looks like the central charge 
of the minimal models. A non-zero a corresponds to a non-zero charge at infinity in the 
Coulomb-gas picture [15]. Taking a = n gives the trivial c = 0 minimal model. 
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as {Q   , [Q  ,A']} for some K.   Thus a jD-term variation of l(n7r) can be 
written as 

6I(mr) = i /rfa:(n|{Q+,[gta,A(a:)]}e-^L|n) . (2.3) 

Because Q+ and Q    anticommute with each other, if either Q+|n) = 0 or 

Q"|n> = 0, then 51 = 0. 
In a superconformal field theory, a state annihilated by Q+ is taken to 

another one annihilated by Q+ under spectral flow by positive a. We prove 
this by writing the left-moving and right-moving fermion currents J(x +1) 
and J(x — t) in terms of a free boson: J = 8x$(x,t), and J = —8x<&(x,i). 
The fermion number F = /0 dx[J(a:-+ ^) - J(x - t)]. In the sine-Gordon 
example to be discussed below, $ — $ is just the c = 1 boson, normalized so 
that the perturbing operator of dimension (2/3,2/3) is cos[2($ — $)]. Then 
Q+ = JdxAexp(i3<fr(x,t)/c), while Q~ = JdxBexp(i3$(x,t)/c), where A 
and B commute with $ and $. The exponents can be verified by checking 
that they give the supercharges the correct fermion number. The operator 
which implements the spectral flow can be written in terms of this boson. 
The state |n) in the Ramond sector is [16] 

|n) = / dxeiaWxfi-*(xM\\). 

where s = (n — l)/2 is the number of "units" of spectral flow; one unit of 
spectral flow corresponds to shifting a by 27r. Therefore, if s is positive, the 
spectral flow operator commutes with 'Q+, because the exponents of both 
are positive. If s is negative, the spectral flow commutes with Q . Since 
the state \n = 1) yields Witten's index, it is annihilated by Q+ and Q 
(and the other supercharges as well). Therefore, the states with n an odd 
integer are all annihilated by either Q+ or Q . This argument applies only 
at the superconformal point. To go off the critical point while preserving 
supersymmetry, one adds to the Hamiltonian a term which commutes with 
all the supercharges. Therefore, in particular, it commutes with Q+, and 81 
in (2.3) is still zero. 

We have therefore shown that the quantities l(n7r) are independent of 
any D-term variation of the theories when n is an odd integer. Generically, 
there are only a finite number of perturbations of a theory which are not 
D-term, so this means I(mr) depends on only a finite number of parameters. 
In the example we will discuss below, there is only one. 

One can think of l(nn) with n odd as an open-space index. Before 
Witten's work, in fact, it was shown that there are theories where (1.8) is 
not an integer and does depend on various parameters [10]. The arguments 
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of [11] utilize periodic conditions and hence do not necessarily apply in open 
space. The expectation value (1.8) can vary when defined on an open space 
with appropriate asymptotic conditions. We have shown that X(n7r) with n 
odd amounts to calculating (1.8) with asymptotic conditions corresponding 
to inserting the state |n) at the end of the cylinder. For the subsequent 
analysis, we do not need to know how to write these boundary conditions 
in terms of the fields in Hi- Knowing how would be interesting, in order 
to compare our results with [10] and subsequent open-space index results 
like [17]. 

1(a) as defined in (1.5) seems periodic in a when F is rational. Period- 
icity in a contradicts for example the result (2.2). Thus the definition (1.5) 
should be understood as the appropriate continuation away from a = 0. In 
particular, below we will calculate E(a) for all a and use this to define J(a). 
As with the open-space index theorems, this seems to be the only way to 
precisely define 1(a) for all a when L -» oo. 

3    The Thermodynamic Bethe Ansatz Equations 

In the previous section we showed that E(a) = —lnX(a)/L gives excited- 
state energies in N~2 supersymmetric theories when a = nn. For the re- 
mainder of this paper, we show how to calculate En m E(n7r) for the sine- 
Gordon model at its N == 2 supersymmetric point. This is the first model 
in the /V=2 discrete series perturbed by its only relevant supersymmetry- 
preserving operator (see e.g. [9] for a discussion of these models). This model 
is interesting not just because of its supersymmetry. Because it corresponds 
to sine-Gordon coupling /32 = 167r/3 (in the usual normalization where the 
kinetic term in the action has a 1/2 in front, and the free fermion point 
coupling /32 = 47r), it is in the "repulsive" regime, where the fermions in the 
related Thirring model repel each other. The cases discussed in [5,6,8] are 
all in the attractive regime. Moreover, as we mention in the conclusion, our 
model gives information on 2d circular polymers. 

Our starting point is the thermodynamic Bethe ansatz (TBA) equations 
in functional form. Here, these equations are written in terms of two entire 
functions X(d;a) and Y(d;a) 

X{e+i7r/2)X{0-i7r/2)    =    1 + 2cosay(0) + Y2(0) , (3.1) 

Y{9 + iic/2)Y(6-iic/2)   =   1 + X(0), (3.2) 

where for ease of notation we often don't write out the a argument. For 
a < re these equations can be derived from the underlying lattice model 
[18,19] or directly from the quasiparticle S matrix [9,12]. It follows from (3.2) 
that when X / 0, Y(0) = Y{0 + 3i7c) and X(0) = X{0 + 3i7r). Even though 
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the equations are periodic in a, there is no guarantee that the solutions will 
be. 

To relate these functions to the energy levels of the system, we utilize a 
conjecture of [5]. This conjecture relates the TBA quantities to the infinite 
number of conserved quantities Jn(a?) in an integrable theory. In this case 
(/J2 = 2/3 in their conventions), their conjecture relates the asymptotic 
expansion of Y (0; a) around 0 = -oo to the In: 

oo 

In Y(0;a) .= ^Cne(2"-1)e/2n_1(a) , (3.3) 
71=1 

where the the convention-dependent constants Cn are proportional to i?271""1. 
The first conserved quantity Ii(ot) is just the energy E(a), As we will see 
momentarily, this is equal to the ground-state energy determined by standard 
TBA methods. 

To make further contact with the physics, we note that 0 is the rapidity 
of the quasiparticles of the problem, defined so that when the quasiparticles 
have mass m, the energy of the particle is racoshfl and the momentum is 
rasinhfl. The filling fraction (the Fermi distribution function generalized 
to this interacting problem) at temperature T = 1/R is X/(l + X) when 
a < n [9]. This means that the probability that there is a particle with 
rapidity between 0 and 0 + d0 is d0X(0)/{l + X(0)), At high energy (large 
0) the particle interactions are irrelevant, so we can treat these particles as 
free and having a Fermi distribution function. This implies an asymptotic 
condition for X(0): 

X{0) -> e~^cosh^       for 0 -> ±oo , (3.4) 

which in turn requires 

Y(0) -* 1       for Re0 -^ ±oo, \lm{0)\ < 7r/2 , (3.5) 

Even with the asymptotic condition (3.4), there are an infinite number 
of solutions to (3.2). To fix a unique solution, we utilize a lemma of [7]: 

Lemma: When f(0) is analytic and bounded in the strip ~7r/2 < lm(0) < 
7r/2 and obeys the relation 

f{0 + in/2) + f(0~iic/2) = g(0) , 

for some g(0)) then 

r00 dff 1 m = f 
J—c 2n cosh(6> - 0') fiffC) • (3-6) 
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Another derivation of this lemma is given in [20]. 
If there are no zeroes in X(8) or Y(0) in \lm(0)\ < 7r/2 and X obeys 

the asymptotic condition (3.4), then both ln[X(0)emRcoshe] and In Y(9) sat- 
isfy the conditions of the lemma above. Thus there is a unique solution 
Xo(d), Yo(d) of (3.2) with no zeros and which satisfies the asymptotic condi- 
tion. The lemma requires that they solve the integral equations: 

lnXo(9) = -mRcoshe 

+ J   2^ cosh(0 - 6') 
- In [(1 + e-Fo^OHl + e-iaYo(0'))] ,   (3.7) 

lnYo(0) = J (W 
27r cosh(^ - 9') 

ln(l + X0(6')). (3.8) 

where all rapidity integrals here and for the rest of the paper run from — oo 
to oo unless otherwise labeled. These are the usual TBA equations for this 
system [9,18,19], so we conclude that for \a\ < TT there indeed are no zeroes 
in X(0) or Y(9) for \Im(6)\ < ic/2. From (3.3) and (3.8) it follows that the 
ground-state energy is 

EQ = -m 
/d9 

— coshein(l + Xo(^)), (3.9) 

the usual TBA form. 
As we will discuss in detail in the next section, X and Y develop zeroes 

when a > TT. Thus the excited-state energies are given in terms of X and Y 
obeying more complicated TBA equations. To find these, we first note that 

,  {6      27r\       ,   /0      i7r\ 
tanh^-TJtanh^- + TJ=l. 

Note also that in the region \lm(0)\ < 7r/2, tanh((0 — x)/2) is bounded and 
its only zero occurs at 6 = x. Thus when X(6) has zeroes in this region at 
6 = xi, X2,..., xj (and at 6 = — Xi, —X2,..., —xj due to the symmetry under 
0 -4 —0) and Y(0) has zeroes at 0 = yi, y2,..., YK and their opposites, then 

In X(0)e^M1[[coth (^Y1) ^th (^) 

and 

In mn-*^)-*^) 
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satisfy the conditions of the lemma. Thus the solution of (3.2) for a given J 
and K and asymptotic form (3.4) obeys the integral equations 

J 

lnX(0) = -m#cosh0 + jSn  tanh (^-y^) tanh (^y^J 

InyW = £> [tanh (^) tanh (^)' 

/JQf 1 

The energy associated with this solution is then 

1 P     rid 

E(a) = —-liil(a) = -m     — coshfl ln(l + X(0',a)) + 2 Vmcosh(yfc) . 
L J  2n f^ 

(3.12) 
The positions of the zeroes are fixed by the consistency conditions 

y(xJ±i|;a)    =   -eiaor-e-ia, (3.13) 

X(yfc±i|;a)    =   -1, (3.14) 

which follow immediately from the fact that (3.2) must still hold at the 
locations of the zeroes. We can write these relations as integral equations 
by using (3.10, 3.11): 

±a - im + 1)* = .• f> [tanh (S-I» + |) tanh (^ + f) 

-(2iVfc + l)7r = mRsmh(yk) 
J 

^g^tanh^ + ^tanh^^); 

+ /#55^ri)hK1+«fay<'»<1 + '"tay<')»]- 
(3.16) 

where the Mj and Nk are integers associated with a given solution. These 
integral equations are convenient for numerical solution.   The branch of 
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the logarithm is defined to be between —iir and in] redefining this merely 
corresponds to redefining Mj and Nk- Note that there are no poles in the 
integrands at 9 = Xj or 9 = y^ because X(XJ) = y(yA;) = 0. We will show in 
the next section that continuity in a uniquely specifies the Mj and iV& for 
a given a. Thus, by studying how zeroes appear, one finds E(a) and hence 
1(a) for all a. 

There is one special case of a where these equations are solvable in closed 
form. This is a = TT, where 1 is Witten's index. As discussed in [12], we 
have X(0) = 0 and Y(0) = 1 for all 0. This yields the required Ex = 0 as 
discussed in section 2. 

4    X(a) in the Massless Limit 

In this section we will analyze the solutions of the TBA equations in the 
limit m -> 0. We define 

X(0]a)   =    lim X{0-ln (mR/2); a) , 
771—>-0 

y(0;a)   =    limY(0-\n(mR/2);a) . 

As discussed in [5], these functions X and y are entire functions of 0 and 
a. In this section we exploit this analyticity to find integral equations which 
determine them for all a. This requires showing at which values of a zeroes 
enter the strip |Jra(0)| < 7r/2 and the corresponding Mj and Nk- 

The functions X and y obey 

In X(0) = -ee + jSntanh (^i) 

(4.1) 

(4.2) 

and 

±a - (2M,- + IJTT = * £ In tanh (^^ + j) 

+ /" ——-±  ln(l + X(6)) ,      (4.3) 
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/ 

d0 1 

{2Nk + l)Tr = eyk + ij^ln tanh {      o ^ + " 

In [(1 + eiay(6)) (1 + e-iaJ(^))] . (4.4) 
27r sinh(yA; — 0) 

Roughly speaking, these are "half" the solutions of the massive case. As 
mR -» 0, the functions X(0) and Y(0) are constant in the region \9\ < 
ln(2/mi?); this constant region becomes the asymptotic region 6 ~> -oo in 
X(0) ovy(0). 

Continuity requires that as we vary a, there are only two ways for a new 
zero to enter the strip |Jra(0)| < 7r/2. The first is for a single zero to enter 
at 0 = —oo. The second is for a pair of zeroes to enter, one at 0 = z + i7r/2, 
and the other at 0 = z - mjl. We adopt the conjecture of [5] that all zeroes 
in the strip occur at real values of exp(20/3). and therefore are on the real-0 
axis. New ones must enter the strip at 0 = -oo. (The only exception to this 
statement is at a = TT, where X{8) = 0 for all 0.) 

The first step to determining which zeroes are present at a given value 
of a is to solve the equations (4.1,4.2) in the limits 0 —► ±oo. This enables 
us to find the possible values of a where a zero enters or leaves at 0 = — oo. 
In subsequent steps we will show at which of these places they do enter and 
leave (it turns that out any time one can enter at —oo, it does). Since X{8) 
and y{6) approach constants as 0 —y — oo, we can do the integrals in (4.1) 
and (4.2), yielding 

[X{-oo)]2   =    l + 2cosa3;(-oo) + [J(-oo)]2 , (4.5) 

[3;(-oo)]2   =    l + *(-oo) . (4.6) 

Requiring that the solution be positive at a = 0 fixes 

W-00) = ^wk '      W"00) = 2«»(«/3) • (4-7) sin (ay o) 

In general, this means at a = (3r + l)7r and a = (3r + 2)7r, the number of 
zeroes (including those at oo) in X must change by l(mod 2). Similarly, at 
a = (3r + 3/2)7r, the number of zeroes in y must change by l(mod 2). For 
example, as a —> 97r/2, either an existing zero in y{0) returns to 0 —» —00 
and goes away, or a new one enters. (We rule out pathologies like triple 
zeroes in the appendix.) 

Other useful pieces of information are the values as 0 -> 00, which are 

X{0 -+ 00) -> 2cos(a/2)e-expW ,        y{oo) = 1 . (4.8) 

The equation (4.1) only requires that that the coefficient in (4.8) be 
±\/4 cos2 (ot/2), but analyticity in a fixes the above result.   For example, 
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we see that a zero must appear in y(0) at a = 37r/2, since y(-oo) < 0 and 
y(0 —> oo) —> 1 for 37r/2 < a < 97r/2. Similarly, there must be a zero in 
X(Q) when 27r < a < STT. Knowing the sign of the exponentially small term 
in (4.8) lets us see when zeroes go to +oo. Because the asymptotic behavior 
of X(0) at large 0 changes from O* to 0^ at a = 7r,37r, STT, ..., continuity 
requires that one of the zeroes Xj goes to oo and stays there. Once it is at 
oo, it no longer needs to obey (4.3), so it cannot move back to finite values. 

To find out what happens at higher values of a we must study the equa- 
tions for the zeroes (4.3) and (4.4) in more detail. These equations simplify at 
the values of a where a zero is entering. For example, a zero y* enters at -oo, 
and in this limit the log terms become constants. Moreover, y(—oo) = 0 
when a zero enters, so the integrand in (4.4) vanishes as Xj —> — oo at these 
values of a. Thus when a zero y^ enters or leaves at a = (3r + 3/2)TT by 
going to —oo, (4.4) simplifies to 

(2JVfc + l) = J. (4.9) 

Because of the eyk term in (4.3), we see that zeroes in y cannot go to +00 
like those in X. 

Similarly, for a zero Xj entering (or potentially leaving) X at a = (3r+l)7r 
or (3r + 2)7r by going to —00, (4.3) simplifies to 

a - (2Mj + l)ir = -icK , (4.10) 

where the + sign in (4.3) must be chosen because as Xj increases from —00, 
the terms on the right-hand side increase. (This can be checked by plugging 
in the expansion y(0) ~ 2cos(a/3) + Aexp(20/3) + Bexp(40/S) + ... valid 
for'0 —> -00 into the relation (3.13); A is given in (4.12) below.) We show 
in the appendix that choosing the + sign gives the correct contribution to 
the energy. For a zero Xj going to +00 at a = (2r + l)7r, one has 

±a - (2Mj + l)ir = 0 . (4.11) 

Thus we see that when a zero Xj = — 00 enters at a = ay, the value Xj will 
go to 00 at aj + KJTT, where Kj is the number of zeroes in y at ay. This 
phenomenon is displayed in figure 1, where we plot the locations of various 
zeroes of A! as functions of a. 

Now we can map out how at which values of a the zeroes enter at —00, 
and at which values the zeroes in X approach +00. For a < TT, there are 
no zeroes, and the original TBA equations (3.7,3.8) apply. The situation at 
a = TT is atypical because of the special property that X(d) = 0 for all 0. 
Because K = 0 here, (4.10) and (4.11) are the same, the zero with Mi = 0 
enters at -00 and goes straight to +00. The effect of a single zero xi at 
infinity is to ensure that X(0) < 0 for all 0.  Thus the TBA equations for 
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Figure 1: The location of the first zero in X as a function of a. 

TT < a < 37r/2 are almost the same as the ordinary TBA equations (3.7) and 
(3.8): the only difference is that ln[X] is replaced by ln[—<Y]. 

A zero yi enters y at a .= 37r/2. Because of the zero xi already at 
infinity, J• = 1 here, and we have iVi = 0. At a = 27r, A! changes sign at 
—oo but not at +oo. Therefore, a zero X2 enters at — oo, and since K = 1 
here, M2 = 1. This zero then goes to 00 at a = STT, changing the ln[—X] 
back to In [A']; effectively there is no zero in X for 37r < a < 47r. At a = 47r, 
a new one must appear because X(0) changes sign at 0 —> — 00 but not near 
00. Still K = 1, so this new zero X3 must have M3 = 2. As we said above, 
at a = 97r/2, either a new zero y2 appears, or the old one yi goes away. 
The former must happen because J has changed from when yi entered; a 
zero with iVi = 0 can no longer satisfy (4.9) and hence cannot go back to 
—00. The new zero Y2 has N2 = 1. The zero X3 with M3 = 2 disappears at 
a = STT, but again a new one must appear. This new zero has M4 = 3, and 
since K = 2 here, it will go to infinity at a = TTT. 

This pattern repeats mod QTT. New zeroes enter X at a = (6r + l)7r, (6r + 
2)7r, (6r+4)7rand (6r+5)7r with Mj — 4r, 4r+l, 4r+2 and 4r+3, respectively. 
Zeroes enter y at a = (6r + 3/2) TT and a = (6r + 9/2) TT with Nk = 2r and 
2r + 1, respectively. Zeroes Xj go to 00 at a = (6r + l)7r, (6r + 3)7r and 
(6r + 5)7r. Thus when a goes up by GTT, J increases by 4, K increases by 2, 
and the number of zeroes at infinity goes up by 3. To summarize, 

X2r-i enters at        a = (3r — 2)7r , 
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while 

X2r enters at a = (3r - l)7r , 

Xj goes to oo at a = (2J — l)7r , 

y&        enters at        a = (3k — 3/2) TT , 

Mj   =   j-l, 

iVib   =   * - 1 . 

All of this analysis is completely consistent with numerical solutions of the 
equations (4.1,4.2,4.3,4.4). We present some plots of the functions X(0) and 
y(0) for various values of a in figures 2 and 3. 

-8 -6 -4 -2 

Figure 2: X(0) for several values of a. 

Another very strong check of the results comes from comparison to per- 
turbative results for 0 near -oo. In [21,22], it is shown that 

w-'-^-sferd^SrV^- (4.12) 
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Figure 3: 3^(0) for several values of ot. 

(this corresponds to the coupling g = 2/3 in [21]). This calculation is done by 
conformal perturbation theory and is completely independent of the TBA. 
In fact, it is not known how to extract this analytically from the TBA equa- 
tions. However, we have checked that (4.12) is indeed satisfied by numerically 
solving the TBA equations for numerous values of a. 

This scenario is not the unique way of adding zeroes to the functions 
consistent with the relations (4.10,4.11,4.9), but it is the simplest. All the 
numerical evidence favors this scenario, as we have seen in the plots. In the 
appendix we calculate the energy, and show that for it to agree with the 
required value (2.2), many other possibilities can be ruled out. However, 
there seems to be a strange possibility that a zero could enter at +oo with 
a minus sign in (4.1). The analysis of the appendix does not rule out the 
possibility that at a = (6r+l)7r or (6r+5)7r, additional zeroes simultaneously 
enter at +oo and —oo. While we cannot rigorously rule this out, we adopt 
the assumption of [5] that zeroes enter only from —oo, and our numerical 
work supports this assumption. 
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These results are also completely in agreement with another conjecture 
of [5] concerning where zeroes enter their quantum monodromy operator. In 
our case, this agrees perfectly with our result that zeroes should enter y at 
a= (3r + 3/2)7r. 

5    Excited-State Energies for Arbitrary Mass 

Once a mass is included, the functions X(0;a) and Y(0;a) remain analytic 
in 0 for a given value of a. They also are continuous in m for fixed a. 
However, thay are no longer analytic in a, because they have discontinuities 
at certain values. We will utilize the results of the previous section to find 
which zeroes are present in the TBA equations with a mass (3.10,3.11). In 
an appendix, we perform a similar computation for a free Dirac fermion. 

The functions X(9) and Y(0) are even in 0. Thus zeroes appear in pairs 
(XJ,— Xj) and (yki—Yk)- If x? satisfies (3.15) with Mj, then — Xj solves it 
with — Mj. Because lim^n^o^^ - ln(2/m);a) = X(0;a) and likewise for 
y, the equations (3.15,3.16) smoothly turn into (4.3,4.4) as one takes the 
limit. Since the Mj and Nk are integers and the other pieces of (3.15,3.16) 
are continuous in Xj and y^, the effect of turning on a very small mass 
is to shift the location of the zeroes and not change the Mj or Nk- So 
for m small enough, the zero structure is identical to that discussed in the 
previous section. Instead of a zero entering at — oo, we have a pair which 
enters at ±i7r/2. As before, we discount the possibility that a quartet of 
zeroes enters at conjugate values (x + i7r/2,a; — i7r/2,—x + i7r/2)—x — 27r/2) 
as mR is increased. We see no numerical evidence for a quartet entering. 

Our strategy in this section will be to fix a and start at mR small where 
we know the zeroes and the Mj and Nk- Once m is large enough, there is 
no guarantee that a given Xj or y^ will remain real or even stay in the strip 
\Im(d)l < 7r/2. For small raiZ, a zero of X(0) at 0 = Xj corresponds to a 
zero of X(0) by the shift Xj « Xj - In (mR/2). Thus the initial tendency 
as mR is increased is for the pair of zeroes to approach the origin. They 
can meet at the origin and move off along the imaginary axis. Eventually, 
the pair can reach 0 + m/2 and 0 - i7r/2 and thus not enter into the TBA 
equations any more. This is the only way they can go away: zeroes must 
appear in conjugate pairs, and we cannot have xr = x5 because Mr ^ Ms 

when r ^ s (and likewise for y^). Thus two zeroes cannot meet and go off 
into the complex plane except at the origin. 

If two zeroes meet at the origin, then equations (3.15,3.16) admit a so- 
lution XJ = 0 or yj = 0. Because the integral vanishes when Xj = 0, and 
tanh(£ + nr/4) tanh(-z + i7r/4) = — 1, for Xj = 0 (3.15) reduces to 

a - (2Mk + l)ir = -TTK. 
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This is identical to the condition (4.10) for a zero Xj to enter at — oo. At 
values of a where (4.10) is true, the zero isn't there yet (it's still at -oo). 
Thus there is no value of a where XJ = 0, and it is impossible for a zero in 
Xj to leave at any value of mR. Of course, (XJ, —Xj) still moves to (oo, — oo) 
at the same values of a as in the massless case, because the equations for 
massive and massless are equivalent when 0 is large. 

It is possible for a zero y^ to leave at some value of mR. If y^ to be zero, 
then 

(2Nk + l) = J. 

This is the same as (4.9). However, as opposed to (4.10), this can be satisfied 
at values of a other than the value a^ where the zero y^ entered. As long as 
J hasn't changed from its value at ak, a pair of zeroes can meet at the origin. 
Zeroes y^ enter at the values a^ = (3k — 3/2) TT. The next time the value 
of J changes is at a = (3k — l)7r. Thus it is possible for a zero y^ to leave 
when (3k — 3/2)TT < a < (3k — l)7r. Our numerical evidence suggests that 
in this range it does in fact leave at some value of mR. To illustrate this, 
in figure 4 we present a plot of Y (0) for a = 27r for various values of mR. 
At mR « .2, the zeroes meet at the origin and thus Y(8) > 0 for all real 6. 
Then, for mR « .35, they leave the strip |Jra(0)| < 7r/2 and disappear from 
the TBA equations altogether. We see that Y(9) is continuous in mR for 
this fixed value of a. 
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Figure 4: Y{6) at a = 2it for several values of mR. 
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This observation lets us see at which values of a the functions are discon- 
tinuous when mR > 0. At a = 27r, when mR > .4, there is no zero in Y(0). 
However, for a > 27r, there is a zero for any value of mR. This zero enters 
discontinuously, as we can see by looking at figure 5, where y(0) is plotted at 
mR = 1 for a = 27r and 2.000000l7r. The functions are discontinuous even 
at mR < .2. There are similar discontinuities at the values a = (3K — l)7r. 

1 
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0 

-0.2 h 

Y(mR=1) 

-0.4 

(x=2n 
a=2.000000 ITC 

-10 -8       -6       -4       -2 0 
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10 

Figure 5: Y(0) at mR = 1 for a = 27r and 2.000000l7r. 

Since the entire analysis of section 4 relied on continuity in a, let us 
reiterate how we found these discontinuities. In section 4, we utilized the 
fact that the functions are continuous in a in a special limit mR —>■ 0. 
This enabled us to find which zeroes were present as a function of a. Then 
we fix a value of a. For a given a, the zeroes move around continuously 
as a function of rai2, so the zero structure is the same for small enough 
values of mR, and we can thus exploit the mR -> 0 results. None of this 
precludes the possibility that if we fix mR and vary a, the functions can 
change discontinuously. In appendix B, we show that these discontinuities 
arise even for a free Dirac fermion. 

By examining the mR -»• oo limit, we see that at a = (3K - l)7r, the 
energy shifts from that of a 2(K - l)-particle state to a 2A'-particle state. 
The TBA equations are easily solvable in this limit, where X -> 0 and 
Y —)■ 1. The only contribution to the energy (3.12) comes directly from the 
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zeroes y*. The integral in (4.4) goes to zero in the large-raiZ limit, and the 
mjRsinh(yA;) term must remain finite for there to be a solution. Thus y^ -> 0 

(J - 2k + l)n 
lim   yk 

mR-¥oo mR 
(5.1) 

where we used the fact that JV* = k - 1. In this limit the locations of the 
zeroes have the nice interpretation as the rapidities of the particles in the 
state. Because there are K zeroes for large mR when (3K - l)7r < a < 
(3A' + 2)7r, we have 

lim   E -±2Km. (5.2) 
mR—>oo 

This corresponds to inserting a 2K-particle state at each end of the cylin- 
der. As the cylinder radius R gets large, the particles are far apart so the 
energy approaches the constant value 2Km. The first correction is propor- 
tional to l/(mR2), as it should be for a collection of massive particles far 
apart: the momentum p oc 1/R, and for each particle E = y/p2 + m2 ~ 
m + 0(l/(mR2)). All other terms in this expansion depend on the inter- 
actions between the particles; the full 2? gives the interaction energy non- 
perturbatively. One can compute the corrections perturbatively by using 
methods described in [23]. In figure 6, we plot E3 as a function of mR. 
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Figure 6:  £3 at OL = STT as a function of mR.   As mR gets large, Ez « 
2y/m2 + (n/R)2, the energy of two free particles of momenta ±7r/R. 

Let us examine E3 and E5 more closely.   Both are two-particle states. 
There are two kinds of particle, the soliton and antisoliton. When rewritten 
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in the appropriate ^=2 language, soliton number is proportional to fermion 
number, and because they are a doublet under the supersymmetry, they must 
saturcite the Bogomolny bound [9]. Since the states \n} have zero fermion 
number, the states |3) and |5) each consist of a soliton and an antisolition. 
From (5.1) we see that the individual momenta of the particles in the large 
R limit are ±K/R in |3), and ±27r/R in |5). As discussed in [6], one can 
presumably obtain the energy of two-particle states with higher momenta 
by using different values of Mj and Nk- We have checked numerically that 
there are such solutions of the TBA equations, but have not pursued this 
line of investigation any further. 

6    Conclusion 

One application of this work is to the system of two-dimensional circular 
polymers. As discussed in [24], partition functions calculated in this model 
are related to scaling functions for the number of closed self-avoiding ran- 
dom walks on a cylinder. The world-lines of the particles of this model cor- 
respond to the random walk, or equivalently the polymer. A single closed 
polymer will correspond to a two-particle state. Thus when we insert a 
two-particle state on each end of the cylinder, it corresponds to a circular 
polymer stretched from one end to the other. 

In this paper we have calculated various excited-state energies in the 
simplest integrable model with iV=2 supersymmetry. We view this as a 
useful exercise, because it is a unitary theory, and because it shows that 
generalizing the work of [5, 6] to models with non-diagonal S matrices is 
not prohibitively complicated. It seems likely that one could calculate the 
excited-state energies for any value of the coupling in sine-Gordon in this 
manner. Moreover, by choosing different values of the integers Mj and Nk, 
it seems likely that many more excited-state energies could be obtained. 

Our results also yield an interesting set of expectation values in iV=2 
supersymmetric theories which are independent of D-term perturbations like 
the "index" studied in [12]. That index had some remarkable properties 
in that the TBA equations turned out to be equivalent to a differential 
equation, Painleve III. Moreover, because it depends on the parameters of 
the theory, it contains much information about the solitons of the theory. For 
example, it has found useful application in four-dimensional gauge theories 
[25]. This makes us hopeful that the results of this paper will also find future 
application. 
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Appendices 

A    The Energy in the Massless Limit 

In this appendix, we calculate the energy in the m —> 0 limit and verify that 
it gives the correct answer (2.2) with our values of Mj and Nk. This has the 
bonus of ruling out some alternative scenarios for the appearance of zeroes. 

We define £(a) = Rlimm^oE(a). Then the expression (3.12) for the 
energy yields 

€(a) = -- [eBLx(0) + 2Teyk - (A.1) 

where Lx(8) = ln(l + X(6)). Similarly, we define Ly(9) = ln[(l + eioiy(0)) 
x(l + e~tay(&))]. To simplify this, we use a well-known TBA trick. We take 
the derivative with respect to 9 of (4.1) and use this to eliminate the e0 in 
(A.l), yielding 

K 

S = 2 
^ vu      [d0 6X(O)    1    r   ...     ^ fdff 1 _    ... 

-// 

MM 1 5LX(0') 
K 2K   X{ >cos\Y(0-e')     89' 

The double integral in the final term can be simplified back to a single 
integral by using (4.2). After integrating by parts, one finds 

F       9VV*.i. [de5x^)   l   T  m+[d9Sy(0)>   1   T (0\ S   =   2^* + J --^W)LX(0) + J - — mLy(9) 

-E/vsinh^-x^^^-giirsinh^-y,)1^ 
3- 

■iln[(A'(-oo))2]ln[(-l)^(-oo)], 

where we simplified the final term (the surface term from the integration by 
parts) by using (4.5), (4.6). The zeroes at infinity (there are Joo of them) do 
not contribute, so we can rewrite the sum over j to start at J^ + 1. Notice 
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we can change variables to rewrite the first two integrals as simple integrals, 
so for example 

f d6 8X(d)    1    T   //rt       r
x^ dtil,   ., 

yr-rswL*w-ir(_)T5h<1+-)- 
We use the equations for zeroes (4.3), (4.4) to eliminate the terms with the 
1/sinh and the ey*, yielding 

£=       / irlln(1 + u)+ ^iln (l + a-t;)(l + e-t;) 
Jx(-<x>) n u Vy(-oo) * v 

rx^ dul,  ,        ,      fy^ dv 1 
 ln(l + ti)+ / 

IX(-oo)  * u Jy(-oo) 

-iln[(A'(-oo))2]ln[3;(-oo)(-l)^] 
TT 

K J 

+2JKic - 2 Y^Nk + l)7r + 2    J]   (±a - (2Mj + IJTT) .    (A.2) 
fc=i i=Joo+i 

Because the first three terms are always finite and depend only on /V(±oo) 
and iy(±oo), they are periodic under in a —>■ a + 67r. However, as discussed 
in section 2, we know that 

TT /       a2 

and the full answer is not periodic. This means that zeroes must enter 
into X and y in order that the last three terms make £{pt) continuous in 
ot. This puts strong constraints on the values of Mj and Nk and at which 
values of a the zeroes enter. Despite the fact that it looks like (A.2) will 
be discontinuous when a zero enters, the conditions (4.9,4.10,4.11) ensure 
continuity. This condition of continuity rules out many other conceivable 
ways zeroes could enter. 

To simplify it further, we take the derivative of £{ot) with respect to a. 
By using the relations (4.5) and (4.6) and their derivatives with respect to 
a, most of the resulting terms cancel, leaving only 

8£ f1 dv 2 sin a ^-^   /.-IN 

8<* ~    h cos(a/3) * 1 + 2 cos av + v2     i J^+1 

For a < TT, one can do the integral, yielding -a/Sn in agreement with 
(A.3). However at integer values of a/7r, one must carefully check if there 
are discontinuities because the denominator and numerator both can become 
zero. One sees that at a = (6r + 2)7r and (6r + 4)7r, the integrand is 28(v + l) 
giving discontinuities of —1 in S£/5a. Similarly, at a = (6r + 3)7r there are 
discontinuities of+1. These discontinuities must be cancelled by the second 
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term. This means a zero with +a in (4.3) must enter at a = (6r + 2)n and 
(6r + 4)7r, while at a = (6r + 3)7r, either one with —a should enter, or one 
with +a should go to oo, where it does not contribute to (A.2). Since we 
show in section 4 that a single zero cannot enter at a = (6r + 3)7r, the latter 
possibility must hold. 

These conditions are satisfied by the scenario discussed in section 4, 
and we take it as strong evidence that it is correct. The analysis of this 
appendix rules out, for example, the possibility that a triple zero enters at 
a = (6r + I)?*". 

B    The Excited States of a Free Dirac Fermion 

In this appendix we derive the excited-state energies of a free Dirac fermion 
by applying the general methods of this paper. This will clarify several 
issues which arose in the interacting case, in particular the nature of the 
discontinuity discussed in section 5, where the energy is discontinuous at 
particular values of a when the mass is non-zero. 

Just like the interacting case, the expectation value of interest is (1.5). 
This corresponds to placing the fermion and antifermion at opposite (imag- 
inary) chemical potentials. Although (1.5) looks periodic in a, we define 
the values for a > TT as the appropriate continuation of those for a < IT. 

Since the particles are free, we can evaluate the trace explicitly. We define 
a function T(0) which satisfies the functional relation 

T(0 + i7r/2)T{0 - i7r/2) = e'mRcoshe + 2 cose* + emRcoshe. (B.l) 

It follows that T(8 + 27r) = T(0). In this non-interacting case, we can find 
all the zeroes of T explicitly. The relation (B.l) requires that 

exp (ia + rai2cosh(t* + i7r/2)) = —1, 

where T(t^) = 0 and T(-t^) = 0. Taking the logarithm, we have 

a + mi?sinht+    =    -(2ra-l)7r, (B.2) 

-a + raJSsinht"   =   -(2n-l)7r, (B.3) 

where n is some integer. Using the Lemma of section 3, one can write an 
integral equation for In T: 

ln[T(0)] = mRcosh0 + ]£ln  tanh (^y^) tanh (^y^) 

/JQf 1 r 

2^cosh(6 - 0')ln [(1 + <^-ra*COsh')(l + e--e-^coshe) 

(B.4) 
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where the sum over k is only over those zeroes which are in the strip — 7r/2 < 
Im(tk) < 7r/2. 

The energy levels are found by the large-0 asymptotic expansion as in 
(3.3) [5]. A bulk term is present here which does not appear in the supersym- 
metric case. This term is independent of a, so we won't bother to discuss 
this subtlety. The energy is 

E(a)   =   £o(a) + 2^mcosh(tfc) > (B-5) 
k 

Eo(a)     =     -m   f |^COsh0 In [(1 + g^g-mflcosh*)^ + c-.ac-.m«co8h^l    ? 

where cigain the sum over k is over only the zeroes in the strip. Notice that 
Eo(oi) is periodic in a, and denotes the usual Casimir energy of a Dirac 
fermion. 

We now need to decide which zeroes are present for a given value of a. 
At a = 0, £^o is indeed the correct ground state energy for a Dirac fermion, 
so there are no zeroes in the strip here. Thus the zeroes t^ must solve 
(B.2,B.3) with n > 1, so that Jm(t£) = TT when a = 0. (The relation (B.l) 
only requres that T(t%) = 0 or T(t* + in) = 0, so it is consistent to require 
that T^) = 0 only for n positive. One can find different excited states 
of the system by restricting the allowed n to be a different subset of the 
integers.) 

As discussed in [5], in the massless limit T(0; a) = limm_^o T(0 — ln(ZI~); 
a) is analytic in 9 and a. The zeroes t^ of T must therefore obey 

a + c*" = -(2n + i)ic , 

-a+e*" = -(2n+l)7r , 

with n > 1 for all a. For a < TT, all the t^ have imaginary part ZTT, and do not 
contribute to the energy (B.6). At a = TT, tj~ = —oo. As we go past a = n, 
this zero "jumps" onto the real axis. Even though this seems discontinuous, 
one can easily check that T is continuous: the extra term coming from the 
zero in (B.4) is zero when t^ = —oo. Similarly, at a = (2/i' — l)7r, the zero 
t^- jumps onto the real axis and hence enters into expressions for T and the 
energy. If we were to take a to —(2K - l)7r instead, then the zero tj- jumps 
onto the real axis. 

A similar phenomena happens in the massive case. At a = (2K - l)7r, 
we see from (B.3) that the zero t^- jumps from in to 0. This solution reduces 
to the massless one appropriately in the limit m ->- 0. (It is possible to find 
a continuous solution to (B.3) by having the zeroes tjr and —1]£ just switch 
places at a = (2K — l)7r, but this solution is periodic in a and does not 
reduce to the correct massless solution.) Thus for a > (2K - l)7r, the zero 
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t^ must now must be included in the sum in (B.4) and likewise in (B.6). 
However, the interesting distinction between the massless and massive cases 
is that T and E are not continuous at these values of a, as is easily seen by 
examination of (B.4) and (B.6). 

The physical interpretation of this is clear. For (2K - l)7r < a < (2K + 
l)7r, the energy is that of a state of K fermions and K antifermions. The 
zeroes ±tfc with k < K are the rapidities of the particles, so that the energy 
of a given particle is racosht^. The energy still contains the Casimir piece 
i?o(a); because the particles are non-interacting it is not changed by presence 
of physical particles in the state. The example treated in the main part of 
this paper is interacting, so the energy only decouples into a "Casimir" 
piece and an "excited-state" piece in the large-.ft (dilute) limit. However, 
we have seen in this appendix that the discontinuities in the energy and in 
the function used to determine it are very natural physically, if somewhat 
surprising mathematically. 
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