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Minimal-mass blow-up solutions for
inhomogeneous nonlinear Schrödinger equations

with growing potentials

Naoki Matsui

Abstract. In this paper, we consider the following equation:

i
∂u

∂t
+Δu+g(x)|u|4/Nu−Wu=0.

We construct a critical-mass solution that blows up at a finite time and describe the behaviour
of the solution in the neighbourhood of the blow-up time. Banica-Carles-Duyckaerts (2011) have
shown the existence of a critical-mass blow-up solution under the assumptions that N≤2, that g

and W are sufficiently smooth and that each derivative of these is bounded. In this paper, we show
the existence of a critical-mass blow-up solution under weaker assumptions regarding smoothness
and boundedness of g and W . In particular, it includes the cases where W is unbounded at spatial
infinity or not Lipschitz continuous.

1. Introduction

We consider the following nonlinear Schrödinger equation with potentials:{
i∂u∂t +Δu+g(x)|u|4/Nu−Wu=0,
u(t0)=u0

(NLS)

in RN , where g∈L∞(RN ) and W is the sum of potentials satisfying one of the
following conditions:

W ∈C∞(RN ), W ≥ 0,
(

∂

∂x

)α

W ∈L∞(RN ) (|α| ≥ 2) ,(W1)

W ∈Lp(RN )+L∞(RN )
(
p≥ 1 and p>

N

2

)
.(1)
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We define Hilbert spaces Σk by

Σk :=
{
u∈Hk(RN ) | |x|ku∈L2(RN )

}
, ‖u‖2

Σk := ‖u‖2
Hk +‖|x|ku‖2

2,

where k is an integer.
It is well known that (NLS) is locally well-posed in Σ1 (see, e.g., [5] and

[6]). This means that for any u0∈Σ1, there exists a unique maximal solution
u∈C((T∗, T

∗),Σ1)∩C1((T∗, T
∗),Σ−1). Moreover, the mass (i.e., L2-norm) and en-

ergy E of the solution are conserved by the flow, where

E(u) := 1
2 ‖∇u‖2

2−
1

2+ 4
N

∫
RN

g(x)|u(x)|2+4/N dx+ 1
2

∫
RN

W (x)|u(x)|2 dx.

Furthermore, there is a blow-up alternative

T ∗ <∞ implies lim
t↗T∗

‖∇u(t)‖2 =∞.

Moreover, we consider the following condition instead of (1):

W ∈Lp(RN )+L∞(RN )
(
p≥ 2 and p>

N

2

)
.(2)

Under this condition, if u0∈Σ2, then the corresponding solution u belongs to u∈
C((T∗, T

∗),Σ2)∩C1((T∗, T
∗), L2(RN )). To show this, we first ensure the regularity

of the solution using [5, Theorem 5.7.1]. Next, we show that t �→|x|2u(t) belongs to
C((T∗, T ∗), L2(RN )) if |x|2u0∈L2(RN ) using [5, Lemma 6.5.2]. Strictly speaking,
[5, Lemma 6.5.2] claims that t �→|x|u(t) belongs to C((T∗, T

∗), L2(RN )) if |x|u0∈
L2(RN ), but this can be justified by modifying the proof.

In this paper, we investigate the conditions for the inhomogeneity and the
potential related with the existence of minimal-mass blow-up solution.

1.1. Critical problem

Firstly, we describe the results regarding the mass-critical problem:

i
∂u

∂t
+Δu+|u|4/Nu=0, (t, x)∈R×RN .(CNLS)

It is well known ([2], [7], and [17]) that there exists a unique classical solution
Q for

−ΔQ+Q−|Q|4/N Q=0, Q∈H1(RN ), Q> 0, Q is radial,

which is called the ground state. If ‖u‖2=‖Q‖2 (‖u‖2<‖Q‖2, ‖u‖2>‖Q‖2), we say
that u has the critical mass (subcritical mass, supercritical mass, respectively).
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We note that Ecrit(Q)=0, where Ecrit is the energy associated to (CNLS).
Moreover, the ground state Q attains the best constant in the Gagliardo-Nirenberg
inequality

‖v‖2+4/N
2+4/N ≤

(
1+ 2

N

)( ‖v‖2
‖Q‖2

)4/N

‖∇v‖2
2 for v ∈H1(RN ).

Therefore, for all v∈H1(RN ),

Ecrit(v)≥
1
2 ‖∇v‖2

2

(
1−

( ‖v‖2
‖Q‖2

)4/N
)

holds. This inequality and the mass and energy conservations imply that any
subcritical-mass solution for (CNLS) is global and bounded in H1(RN ).

Regarding the critical mass case, we apply the pseudo-conformal transforma-
tion

u(t, x) �−→ 1
|t|N/2u

(
−1
t
,±x

t

)
ei|x|

2/4t

to the solitary wave solution u(t, x):=Q(x)eit. Then we obtain

S(t, x) := 1
|t|N/2Q

(x
t

)
ei

(
|x|2−4

)
/4t,

which is also a solution for (CNLS) and satisfies

‖S(t)‖2 = ‖Q‖2 , ‖∇S(t)‖2 ∼
1
|t| (t↗ 0).

Namely, S is a minimal-mass blow-up solution for (CNLS). Moreover, S is the only
finite time blow-up solution for (CNLS) with critical mass, up to the symmetries of
the flow (see [10]).

Regarding the supercritical mass case, there exists a solution u for (CNLS)
such that

‖∇u(t)‖2 ∼

√
log

∣∣log |T ∗−t|
∣∣

T ∗−t
(t↗T ∗)

(see [13], [14], and [15]).
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1.2. Previous results

We describe previous results regarding the following nonlinear Schrödinger
equation with a real-valued potential:

i
∂u

∂t
+Δu+|u|4/Nu−W (x)u=0, (t, x)∈R×RN .(PNLS)

At first, [3] and [4] give results for unbounded potentials. Carles and Nakamura
[4] deal with the case where W is a Stark potential, i.e., W (x)=ξ ·x for some ξ∈RN .
Carles [3] deals with the case where W (x)=±ω2|x|2 for ω∈RN . By using the Avron-
Herbst formula for the former and the generalised lens transform for the latter,
solutions for (CNLS) can be transformed into solutions for (PNLS). Therefore, in
these cases, the minimal-mass blow-up solution for (PNLS) can be constructed from
the critical-mass blow-up solution S for (CNLS). More generally, if (PNLS) can
be reduced to (CNLS) (e.g., when W is easy to handle algebraically), then (PNLS)
may have a critical-mass blow-up solution with a blow-up rate of t−1.

Merle [11] and Raphaël and Szeftel [16] consider

i
∂u

∂t
+Δu+g(x)|u|4/Nu=0, (t, x)∈R×RN .(ICNLS)

Firstly, [11] showed non-existent results:

Theorem 1.1. ([11]) Assume the following for g:

(i)
g1 ≤ g≤ 1 for some g1 > 0,

(ii)
g ∈C1(RN )∩W 1,∞(RN ), x·∇g ∈L∞(RN ),

(iii)
g(x0)= 1 for some x0 ∈RN ,

(iv) There exist δ0, R0>0 such that for all |x|>R0, g(x)≤1−δ0,

(v) g−1({1}) is finite,

(vi) There exist ρ0>0 and α0∈(0, 1) such that for all |x−x0|≤ρ0, (x−x0)·
∇g(x)≤−|x−x0|1+α0 .

Then there is no blow-up solutions with critical mass.

It is also shown that solutions for (ICNLS) with subcritical mass are globally in
time if g satisfies (i) and (ii). Moreover, it is additionally shown that if k satisfies (iii)
and (vi), then there is a blow-up solution with supercritical mass less than ‖Q‖2+ε

for some ε>0. Thus, Theorem 1.1 means that there is no minimal-mass blow-up
solution at a finite time.

In contrast, [16] obtains results for existence:
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Theorem 1.2. ([16]) Assume N=2 and the following for g:

g ∈C5(R2)∩W 1,∞(R2),
g1 ≤ g≤ 1 for some g1 > 0 and g(x0)= 1 for some x0 ∈RN ,

∇2g(x0)< 0.

Then for any E0 such that

E0 >
1
8

∫
R2

∇2g(x0)(y, y)Q(y)4 dy > 0,

there exist t0<0 and a unique up to phase shift u∈C([t0, 0), H1(R2)) that is solution
for (ICNLS) with critical mass and energy E0 and blows up at t=0.

The result differs from results in [3] and [4] in that it does not use the classical
method of pseudo-conformal transformation to construct the blow-up solution. Le
Coz, Martel, and Raphaël [8], based on the methodology of [16], obtain results for

i
∂u

∂t
+Δu+|u|4/Nu±|u|p−1u=0, (t, x)∈R×RN .(DPNLS)

Banica, Carles, and Duyckaerts [1] present the following result for

i
∂u

∂t
+Δu+g(x)|u|4/Nu−W (x)u=0, (t, x)∈R×RN .(INLS)

Theorem 1.3. ([1]) Let N=1 or 2, W∈C2(RN ,R), and g∈C4(RN ,R). As-
sume

(
∂
∂x

)β
W∈L∞(RN ) (|β|≤2),

(
∂
∂x

)β
g∈L∞(RN ) (|β|≤4), and

g(0)= 1, ∂g

∂xj
(0)= ∂2g

∂xj∂xk
(0)= 0 (1≤ j, k≤N).

Then there exist T>0 and a solution u∈C((0, T ),Σ1) for (INLS) such that∥∥∥∥u(t)− 1
λ(t)N/2Q

(
x−x(t)
λ(t)

)
ei|x|

2/4t−iθ(1/t)−itV (0)
∥∥∥∥

Σ1
−→ 0 (t↘ 0),

where θ and λ are continuous real-valued functions and x is a continuous RN -valued

function such that

θ(τ)= τ+o(τ) as τ −→+∞,

λ(t)∼ t and |x(t)|= o(t) as t↘ 0.

[9] obtains the following result, which partially extends the result of [1] using
the method of [8].
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Theorem 1.4. ([9]) Let the potential W satisfy

W ∈C1,1
loc (RN ),

∇W,∇2W ∈Lq(RN )+L∞(RN ) (q≥ 2 and q >N) .

Then there exist t0<0 and a initial value u0∈Σ1 with ‖u0‖2=‖Q‖2 such that the

corresponding solution u for (PNLS) with u(t0)=u0 blows up at t=0. Moreover,∥∥∥∥u(t)− 1
λ(t)N/2Q

(
x+w(t)
λ(t)

)
e−ib(t)|x+w(t)|2/4λ(t)2+iγ(t)

∥∥∥∥
Σ1

−→ 0 (t↗ 0)

holds for some C1 functions λ : (t0, 0)→(0,∞), b, γ : (t0, 0)→R, and w : (t0, 0)→
RN such that

λ(t)= |t| (1+o(1)) , b(t)= |t| (1+o(1)) , γ(t)∼ |t|−1, |w(t)|=O(|t|2)

as t↗0.

1.3. Main result

In the main result, the following conditions are assumed.

Assumption 1.5. The inhomogeneous function g satisfies the following con-

ditions:

g ∈W 1,∞(RN ), x·∇g ∈L∞(RN ),(G1)
|g(x)−1|� |x|2+r1 , |∇g(x)|� |x|1+r1 (|x| ≤ 1)(G2)

for some r1>0.

We use the following notation

X(f) := {g : measurable | |g| ≤Cf for some C > 0} .

Assumption 1.6. The potential W is the sum of potentials satisfying (W1)
or the following conditions:{

W∈Lp1(RN )+L∞(RN )
(
p1≥2 and p1>

N
2
)
,

∇W∈Lp2(RN )+X(1+|x|) (p2≥2 and p2>N) ,(W2)

and furthermore satisfies one of the followings:

W is locally Lipschitz continuous,(W2-1)

W ∈X(|x|r2eC|x|) for some C, r2 > 0.(W2-2)
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Namely, we can write W=W1+W2 and W2=W21+W22 using W1, W2, W21,
and W22 satisfying (W1), (W2), (W2-1), and (W2-2), respectively.

Theorem 1.7. (Existence of a critical-mass blow-up solution) Assume As-

sumptions 1.5 and 1.6. For any energy level E0>0, there exist t0<0 and a initial

value u0∈Σ1 with ‖u0‖2=‖Q‖2 and E(u0)=E0 such that the corresponding solution

u for (NLS) with u(t0)=u0 blows up at t=0. Moreover,∥∥∥∥u(t, x)− 1
λ(t)N/2Q

(
x+w(t)
λ(t)

)
e−ib(t)|x+w(t)|2/4λ(t)2+iγ(t)

∥∥∥∥
Σ1

−→ 0 (t↗ 0)

holds for some C1 functions λ : (t0, 0)→(0,∞), b, γ : (t0, 0)→R, and w : (t0, 0)→
RN such that

λ(t)=

√
8E0

‖yQ‖2
2
|t| (1+o(1)) , b(t)= 8E0

‖yQ‖2
2
|t| (1+o(1)) ,

γ(t)∼ |t|−1, |w(t)|= o(|t|)

as t↗0.

Remark 1.8. In contrast, if g≤1 and W satisfies (W1) or (1), then any subcri-
tical-mass solution for (NLS) exists globally in time and is bounded in H1. This can
be proved easily by the Gagliardo-Nirenberg inequality and the Sobolev embedding
theorem. Therefore, the solution in Theorem 1.7 is a minimal-mass blow-up solution
if g≤1.

1.4. Comments regarding the main result

Theorem 1.7 is a generalisation of Theorems 1.3 and 1.4. For example, if
W (x):=sin(|x|2), then ∇W is not bounded. Therefore, Theorems 1.3 and 1.4 cannot
be applied. On the other hand, W satisfies (W2) and (W2-2), therefore Theorem 1.7
can be applied.

We may consider g is locally Lipschitz continuous. Thus, |g(x)−1|�|x|2+r1

in (G2) may be replaced by g(0)=1.
From the assumption (vi) in Theorem 1.1, which is the nonexistence result, we

obtain
|x|α0 ≤ |∇g(x)| for |x| ≤ ρ0

for some α0∈(0, 1), where we assume g(0)=1. In contrast, Theorem 1.7, which is
the existence result, assumes

|∇g(x)|� |x|1+r1 for |x| ≤ 1
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for some r1>0. Therefore, the threshold for the existence and non-existence of blow-
up solutions with critical mass can be said to be α0=1 (i.e., r1=0). The result in
the case of the threshold has been obtained in part by Theorem 1.2. In this result,
g has a nondegenerate maximum at the origin.

From the point of view of differentiability, it seems that neither g nor W need
to be smooth over the whole RN , since blow-up is crucial for behaviour in the
neighbourhood of the blow-up point. On the other hand, first-order differentiations
are necessary for the technicality of the proof. Thus, the assumption that g and W

are first-order weakly differentiable would be quite close to the limit.
Compared to Theorem 1.4, Theorem 1.7 requires less order of differentiation

for the potential W . In [9], the bootstrap of λ and b is done by differentiating
and then integrating, thus the condition ∂b

∂s +b2=o(s−3) is required. Thus, [9] has
required C1,1

loc for W . However, in this paper, the condition is removed by using the
property of energy. Consequently, we reduce the order of differentiation.

From the point of view of integrability, it would be possible to replace (G1)
and (W2) with weaker conditions. In fact, a scrutiny of proofs of Proposition 2.1,
Lemma 5.3, etc. shows that some of them can be substituted by other integrable
conditions in their proofs. However, it would be complex to attempt to describe
them exhaustively.

2. Notation and preliminaries

We define

(u, v)2 :=Re
∫
RN

u(x)v(x) dx, ‖u‖p :=
(∫

RN

|u(x)|p dx

)1/p
,

f(z) := |z|2+4/Nz, F (z) := 1
2+ 4

N

|z|2+4/N for z ∈C.

By identifying C with R2, we denote the differentials of f and F by df and dF ,
respectively. For instance,

df(z)(w)= ∂f

∂x
(z)Rew+ ∂f

∂y
(z) Imw

where x=Re z, y=Im z, and w∈C. We define

Λ := N

2 +x·∇, L+ :=−Δ+1−
(

1+ 4
N

)
Q2+4/N , L− :=−Δ+1−Q2+4/N .
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Namely, Λ is the generator of L2-scaling, and L+ and L− come from the linearised
Schrödinger operator to close Q. Then

L−Q=0, L+ΛQ=−2Q, L−|x|2Q=−4ΛQ, L+ρ= |x|2Q,

L−xQ=−∇Q, L+∇Q=0

hold, where ρ∈S(RN ) is the unique radial solution for L+ρ=|x|2Q. Note that there
exist Cα,Kα>0 such that∣∣∣∣( ∂

∂x

)α

Q(x)
∣∣∣∣≤CαQ(x),

∣∣∣∣( ∂

∂x

)α

ρ(x)
∣∣∣∣≤Cα(1+|x|)KαQ(x).

for any multi-index α. Furthermore, there exists μ>0 such that for any u∈H1(RN ),

〈L+ Reu,Reu〉+〈L− Im u, Im u〉

≥ μ ‖u‖2
H1−

1
μ

(
(Reu,Q)22+|(Reu, xQ)2|2+(Reu, |x|2Q)2

2+(Im u, ρ)22
)

(3)

holds (see, e.g., [12], [13], [16], and [18]). Finally, we use the notation � and �
when the inequalities hold up to a positive constant. We also use the notation ≈
when � and � hold.

We estimate the error terms Ψ that is defined by

Ψ(y;λ,w) :=λ2W (λy−w)Q(y).

Moreover, we define K by

K :=min
{

1, 2−N

p1
, 1−N

p2
, r1, r2

}
∈ (0, 1],

where pj and rj are from Assumptions 1.5 and 1.6.
Without loss of generality, we may in addition assume that W1(0)=0 and

W21(0)=0. In particular,

W1 ∈X(|x|+|x|2), ∇W1 ∈X(1+|x|)

holds.

Proposition 2.1. (Estimate of Ψ) There exists a sufficiently small constant

ε′>0 such that ∥∥∥eε′|y|Ψ∥∥∥
H1

�λ1+K(λ+|w|)

for 0<λ�1 and w∈RN such that |w|≤1.
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Proof. Firstly, since W1∈X(|x|+|x|2) and ∇W1∈X(1+|x|), we obtain

‖eε′|y|λ2W1(λy−w)Q‖2 � ‖eε′|y|λ2(λ|y|+λ2|y|2+|w|)Q‖2 �λ2(λ+|w|),
‖eε′|y|λ3∇W1(λy−w)Q‖2 � ‖eε′|y|λ3(1+λ|y|+|w|)Q‖2 �λ3.

Secondly, since

W21(λy−w)=
∫ 1

0
(λy−w)·∇W21(τ(λy−w)) dτ,

we obtain

‖eε′|y|λ2W21(λy−w)Q‖2 �λ2−N/p2(λ+|w|)+λ2(λ+|w|),
‖eε′|y|λ3∇W21(λy−w)Q‖2 �λ3−N/p2 +λ3.

Finally,

‖eε′|y|λ2W22(λy−w)Q‖2 � ‖eε′|y|λ2(λr2 |y|r2 +|w|r2)eC(λ|y|+|w|)Q‖2

�λ2(λr2 +|w|r2)
�λ1+r2(λ+|w|),

‖eε′|y|λ3∇W22(λy−w)Q‖2 �λ3−N/p2 . �

Remark 2.2. The estimate stated in Proposition 2.1 holds true even if Q is
replaced by |y|2Q, ρ, etc.

Furthermore, direct calculations yield the following properties:

Proposition 2.3. Let

Qλ,b,w,γ(x) := 1
λN/2Q

(
x+w

λ

)
e−ib|x+w|2/4λ2+iγ .

Then ∣∣∣∣8E(Qλ,b,w,γ)− b2

λ2 ‖yQ‖2
2

∣∣∣∣� λ2+K+|w|2+K

λ2 .

holds for 0<λ�1 and w∈RN such that |w|≤1.
Moreover, if s �→(λ(s), b(s), w(s)) is a C1-function,∣∣∣∣ ddsE(Qλ,b,w,γ)

∣∣∣∣
� 1

λ2

((
λ1+K+|b|+|w|1+K

)(∣∣∣∣ 1λ ∂λ

∂s
+b

∣∣∣∣+∣∣∣∣∂b∂s+b2
∣∣∣∣+∣∣∣∣∂w∂s

∣∣∣∣)+|b|(λ2+K+|w|2+K)
)

holds.
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At the end of this section, we state the following standard result. For the proof,
see [13].

Lemma 2.4. (Decomposition) There exists C>0 such that the following state-

ment holds. Let I be an interval and δ>0 be sufficiently small. We assume that

u∈C(I,H1(RN ))∩C1(I,Σ−1) satisfies∥∥∥λ(t)N
2 u (t, λ(t)y−w(t)) eiγ(t)−Q

∥∥∥
H1

<δ for any t∈ I

for some functions λ : I→(0,∞), γ : I→R, and w : I→RN . Then there exist unique

functions λ̃ : I→(0,∞), b̃ : I→R, γ̃ : I→R/2πZ, and w̃ : I→RN such that

u(t, x)= 1
λ̃(t)N

2
(Q+ε̃)

(
t,
x+w̃(t)
λ̃(t)

)
e−ib̃(t)|x+w̃(t)|2/4λ̃(t)2+iγ̃(t),∣∣∣∣ λ̃(t)

λ(t)−1
∣∣∣∣+∣∣b̃(t)∣∣+|γ̃(t)−γ(t)|R/2πZ+

∣∣∣∣ w̃(t)−w(t)
λ̃(t)

∣∣∣∣<C

(4)

hold, where |·|R/2πZ is defined by

|c|R/2πZ := inf
m∈Z

|c+2πm|,

and ε̃ satisfies the orthogonal conditions

(ε̃, iΛQ)2 =
(
ε̃, |y|2Q

)
2 =(ε̃, iρ)2 =0, (ε̃, yQ)2 =0(5)

on I. In particular, λ̃, b̃, γ̃, and w̃ are C1 functions and independent of λ, γ, and w.

3. Proof of Theorem 1.7

For t1<0 sufficiently close 0, let s1, λ1, b1>0 be defined by

s1 :=−‖yQ‖2
2

8E0
t1

−1, λ1 :=

√
‖yQ‖2

2
8E0

s1
−1, E(Qλ1,b1,0,0)=E0.

Then, from Proposition 2.3, λ1≈b1.
Let u(t) be the solution for (NLS) with an initial value

u(t1, x) := 1
λ1

N/2Q

(
x

λ1

)
e−ib1|x|2/4λ1

2
.(6)

Since b1 is sufficiently small, u satisfies the assumption in Lemma 2.4 with λ=λ1,
γ=0, and w=0 in a neighbourhood I of t1. Therefore, there exist decomposition
parameters λ̃t1 , b̃t1 , γ̃t1 , w̃t1 , and ε̃t1 such that (4) and (5) hold on I. Moreover,
there exists t0<0 which is independent of t1 such that the following lemma holds:
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Lemma 3.1. (Conversion of estimates) For t∈[t0, t1],

λ̃t1(t)=

√
8E0

‖yQ‖2
2
|t|

(
1+ελ̃,t1(t)

)
, b̃t1(t)= 8E0

‖yQ‖2
2
|t|

(
1+εb̃,t1(t)

)
,

|w̃t1(t)|� |t|1+K , ‖ε̃t1(t)‖H1 � |t|1+3K/4, ‖yε̃t1(t)‖2 � |t|3K/4

holds. Furthermore,

sup
t1∈[t,0)

∣∣∣ελ̃,t1(t)∣∣∣� |t|K , sup
t1∈[t,0)

∣∣∣εb̃,t1(t)∣∣∣� |t|K .

Note that constants omitted in inequalities in Lemma 3.1 are independent of t1.
In this section, we prove Theorem 1.7 by assuming Lemma 3.1.

Proof of Theorem 1.7. Let {tn}n∈N⊂(t0, 0) be a monotonically increasing se-
quence such that limn↗∞ tn=0. For each n∈N, let un be the solution for (NLS)
with an initial value

un(tn, x) := 1
λ1,n

N/2Q

(
x

λ1,n

)
e−ib1,n|x|2/4λ1,n

2

at tn, where

sn :=−‖yQ‖2
2

8E0
tn

−1, λn :=

√
‖yQ‖2

2
8E0

sn
−1, E(Qλn,bn,0,0)=E0.

According to Lemma 2.4 with an initial value γ̃n(tn)=0, there exists a decom-
position

un(t, x)= 1
λ̃n(t)N

2
(Q+ε̃n)

(
t,
x+w̃n(t)
λ̃n(t)

)
e−ib̃n(t)|x+w̃n(t)|2/4λ̃n(t)2+iγ̃n(t)

on [t0, tn]. Up to a subsequence, there exists u∞(t0)∈Σ1 such that

un(t0)⇀u∞(t0) weakly in Σ1, un(t0)−→u∞(t0) in L2(RN ) (n−→∞).

Moreover, since un : [t0, 0)→Σ1 is locally uniformly bounded,

un −→u∞ in C([t0, T ′], L2(RN )), un(t)⇀u∞(t) in Σ1 (n−→∞)

holds (see [9]). Particularly, we have ‖u∞(t)‖2=‖Q‖2.
Based on weak convergence in H1(RN ) and Lemma 2.4, we decompose u∞ to

u∞(t, x)= 1
λ̃∞(t)N

2
(Q+ε̃∞)

(
t,
x+w̃∞(t)
λ̃∞(t)

)
e−ib̃∞(t)|x+w̃∞(t)|2/4λ̃∞(t)2+iγ̃∞(t)
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on [t0, 0). Furthermore, as n→∞,

λ̃n(t)−→ λ̃∞(t), b̃n(t)−→ b̃∞(t), w̃n(t)−→ w̃∞(t), eiγ̃n(t) −→ eiγ̃∞(t),

ε̃n(t)⇀ε̃∞(t) in Σ1

holds for any t∈[t0, 0). Therefore, we have

λ̃∞(t)=

√
8E0

‖yQ‖2
2
|t| (1+ελ̃,0(t)), b̃∞(t)= 8E0

‖yQ‖2
2
|t| (1+εb̃,0(t)),

|w̃∞(t)|� |t|2L−1, ‖ε̃∞(t)‖H1 � |t|L+K/4
, ‖yε̃∞(t)‖2 � |t|L+K/4−1

,∣∣∣ελ̃,0(t)∣∣∣� |t|K ,
∣∣∣εb̃,0(t)∣∣∣� |t|K

from a uniform estimate of Lemma 3.1. Consequently, we obtain Theorem 1.7.
Finally, check the energy. Since E′(w)=−Δw−g(x)|w|2+4/N +Ww, we obtain

E (un)−E
(
Qλ̃n,b̃n,w̃n,γ̃n

)
= ot↗0(1), E (u∞)−E

(
Pλ̃∞,b̃∞,w̃∞,γ̃∞

)
= ot↗0(1),

where ot↗0(1) is uniform with respect to n. From continuity of energy,

lim
n→∞

E
(
Qλ̃n,b̃n,w̃n,γ̃n

)
=E

(
Pλ̃∞,b̃∞,w̃∞,γ̃∞

)
holds and from conservation of energy,

E (un)=E (un(tn)) =E
(
Pλ̃1,n,b̃1,n,0,0

)
=E0

holds. Therefore, we obtain

E (u∞) =E0+ot↗0(1),

so that E (u∞)=E0. �

4. Uniform estimates for modulation terms

From this section to Section 6, we prove Lemma 3.1.
Let u(t) be the solution for (NLS) with an initial value (6). Note that u∈

C((T∗, T ∗),Σ2(RN )) and |x|∇u∈C((T∗, T ∗), L2(RN )). Moreover,

Im
∫
RN

u(t1, x)∇u(t1, x) dx=0

holds.
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Then there exist decomposition parameters λ̃t1 , b̃t1 , γ̃t1 , w̃t1 , and ε̃t1 such
that (4) and (5) hold on a neighbourhood of t1. We define the rescaled time st1 by

st1(t) := s1−
∫ t1

t

1
λ̃t1(τ)2

dτ.(7)

Moreover, we define

tt1 := st1
−1, λt1(s) := λ̃t1(tt1(s)), bt1(s) := b̃t1(tt1(s)),

γt1(s) := γ̃t1(tt1(s)), wt1(s) := w̃t1(tt1(s)), εt1(s, y) := ε̃t1(tt1(s), y).

In addition, although it is an abuse of the symbol, we define

Ψ(s, y) :=Ψ(y;λ(s), w(s)).

For the sake of clarity in notation, we often omit the subscript t1. Furthermore,
let It1 be the maximal interval of the existence of the decomposition such that (4)
and (5) hold and we define

Js1 := st1 (It1) .

Then, from (4), (NLS), and (7), we obtain the equation of ε:

0 = i
∂ε

∂s
+Δε−ε+g(λy−w)f (Q+ε)−f (Q)−λ2W (λy−w)ε

−i

(
1
λ

∂λ

∂s
+b

)
Λ(Q+ε)+

(
1− ∂γ

∂s

)
(Q+ε)+

(
∂b

∂s
+b2

)
|y|2
4 (Q+ε)

−
(

1
λ

∂λ

∂s
+b

)
b
|y|2
2 (Q+ε)+i

1
λ

∂w

∂s
·∇(Q+ε)+ 1

2
b

λ

∂w

∂s
·y(Q+ε)−Ψ(8)

on Js1 . Moreover, we define

Mod(s) :=
(

1
λ

∂λ

∂s
+b,

∂b

∂s
+b2, 1− ∂γ

∂s
,
∂w

∂s

)
.

We will show in this section that the second and third lines in (8) are small. There-
fore, we show that Mod is small.

When Mod is small, λ, b, and w are expected to satisfy the following approxi-
mate equation:

1
λ

∂λ

∂s
+b= ∂b

∂s
+b2 = ∂w

∂s
=0.

Therefore, λ, b, and w can be considered to be approximated by the following
solutions of the approximate equation:

λapp(s)= Cλs−1, bapp(s)= s−1, wapp(s)= 0
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for some constant Cλ. To adjust the energy of the blow-up solution to be con-
structed, we define Cλ :=

√
‖yQ‖2

2
8E0

.
Let L be defined by

L := 1+K

2
Moreover, let s0 be sufficiently large, s1>s0, and

s′ :=max {s0, inf Js1} .

Furthermore, we define s∗ by

s∗ := inf {σ ∈ (s′, s1] | (9) holds on [σ, s1]} ,

where

‖ε(s)‖2
H1 +b(s)2‖yε(s)‖2

2 <s−2L,∣∣∣∣ λ(s)
λapp(s)−1

∣∣∣∣+∣∣∣∣ b(s)
bapp(s)−1

∣∣∣∣<s−K/2, |w(s)|<s−L.
(9)

Then, from the definitions of λapp and bapp, the following estimate holds on (s∗, s1]:

λ(s)≈λapp(s)≈ s−1, b(s)≈ bapp(s)≈ s−1.

The goal of this section is to estimate Mod.

Lemma 4.1. For s∈(s∗, s1],

|(Im ε(s),∇Q)2|� s−(2L−1).(10)

Proof. According to a direct calculation, we have

d

dt
Im

∫
RN

u(t, x)∇u(t, x) dx

=
∫
RN

(
− 1

1+ 2
N

∇g(x)|u(t, x)|2+4/N + 1
2∇W (x)|u(t, x)|2

)
dx.

Since∣∣∣∣λ2
∫
RN

∇g(x)|u(t(s), x)|2+4/N dx

∣∣∣∣= ∣∣∣∣∫
RN

∇g(λy−w)|Q(y)+ε(s, y)|2+4/N dy

∣∣∣∣
�λ1+K+|w|1+K+‖ε‖2+4/N

2+4/N ,

λ2
∫
RN

∇W (x)|u(t(s), x)|2 dx=λ2
∫
RN

∇W (λy−w)|Q(y)+ε(s, y)|2 dy,
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∣∣∣∣λ2
∫
RN

∇W (λy−w)Q(y)2 dy

∣∣∣∣� 1
λ
‖Ψ‖H1 ,∣∣∣∣λ2

∫
RN

∇W1(λy−w)|ε(s, y)|2 dy

∣∣∣∣�λ2‖ε‖2(‖ε‖2+b‖yε‖2),∣∣∣∣λ2
∫
RN

∇W2(λy−w)|ε(s, y)|2 dy

∣∣∣∣�λ2−N/p2‖ε‖2
H1 +λ2‖ε‖2(‖ε‖2+b‖yε‖2),

we obtain∣∣∣∣ dds Im
∫
RN

u(t(s), x)∇u(t(s), x) dx

∣∣∣∣�λ2
∣∣∣∣ ddt Im

∫
RN

u(t, x)∇u(t, x) dx

∣∣∣∣� s−(1+K).

Therefore, we obtain∣∣∣∣Im ∫
RN

u(t(s), x)∇u(t(s), x) dx

∣∣∣∣� s−K = s−2(L−1).

The rest is shown in the same way as in [9, Lemma 3.2]. �

Lemma 4.2. (Estimation of modulation terms)For s∈(s∗, s1],

(ε(s), Q)2 =−1
2 ‖ε(s)‖2

2 ,(11)

|Mod(s)|� s−2L(12)

holds.

Proof. According to the mass conservation, we have

(ε,Q)2 = 1
2

(
‖u‖2

2−‖Q‖2
2−‖ε‖2

2

)
=−1

2 ‖ε‖2
2

meaning (11) holds.
For v=ΛQ, i|y|2Q, ρ, or yjQ, the following estimates hold:

|(g(λy−w)−1)f(Q+ε)| |v|� (λ2+K+|w|2+K)(Q+|ε|)|v| 12
|f (Q+ε)−f (Q)−df(Q)(ε)| |v|� |ε|2,

|(λ2W (λy−w)ε, v)2|�λ1+K (λ+|w|) ‖ε‖2.

Therefore, according to orthogonal conditions (5), Equation (8), Proposition 2.1,
and (10), we see that

|Mod(s)|� s−2L+ε |Mod(s)| .
Note that the constant omitted in the above inequality is independent of ε. For de-
tail of the proof of the inequality, see [8, Lemma 4.1]. Consequently, we obtain (12).
�
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5. Modified energy function

In this section, we proceed with a modified version of the technique presented
in Le Coz, Martel, and Raphaël [8] and Raphaël and Szeftel [16]. Let m and εj be
defined by

m := 2+K

2 , ε1 := Kmμ

32 , ε2 :=min
{

μ

24 ,
K2μ

24×64

}
,

ε3 :=min
{
mμ

24 ,
K2mμ

24×64

}
, ε4 := K

8

(13)

where μ is from the coercivity (3) of L+ and L−. Moreover, we define

H(s, ε) := 1
2 ‖ε‖2

H1 + ε1b
2

2 ‖yε‖2
2

−
∫
RN

g(λy−w) (F (Q(y)+ε(y))−F (Q(y))−dF (Q(y))(ε(y))) dy

+ 1
2λ

2
∫
RN

W (λy−w)|ε(y)|2 dy,

S(s, ε) := 1
λm

H(s, ε).

Lemma 5.1. (Coercivity of H) For s∈(s∗, s1],

H(s, ε)≥ μ

2 ‖ε‖
2
H1 + ε1

2 b2 ‖yε‖2
2−ε2

(
‖ε‖2

H1 +b2 ‖yε‖2
2

)
holds.

Proof. Firstly, we have∣∣∣∣λ2
∫
RN

W1(λy−w)|ε|2 dy

∣∣∣∣�λ2 (‖ε‖2
H1 +b2‖yε‖2

2
)
,∣∣∣∣λ2

∫
RN

W2(λy−w)|ε|2 dy

∣∣∣∣�λ2−N/p1‖ε‖2
H1 +λ2‖ε‖2

2.

Secondly,∣∣∣∣∫
RN

g(λy−w)
(
F (Q+ε)−F (Q)−dF (Q)(ε)− 1

2d
2F (Q)(ε, ε)

)
dy

∣∣∣∣
� ‖ε‖3

H1 +‖ε‖2+4/N
H1 .

Thirdly, ∣∣∣∣∫
RN

(g(λy−w)−1) d2F (Q)(ε, ε) dy
∣∣∣∣� s−(2+K)‖ε‖2

H1 .
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Finally, from (3), (5), and (11) since

‖ε‖2
H1−

∫
RN

d2F (Q)(ε, ε) dy=(L+ Re ε,Re ε)2+(L− Im ε, Im ε)2 ,

we have
H(s, ε)≥ μ

2 ‖ε‖
2
H1 + ε1b

2

2 ‖yε‖2
2−ε2

(
‖ε‖2

2+b2‖yε‖2
2
)
.

Consequently, we obtain Lemma 5.1. �

Corollary 5.2. (Estimation of S) For s∈(s∗, s1],

1
λm

(
‖ε‖2

H1 +b2 ‖yε‖2
2

)
�S(s, ε)� 1

λm

(
‖ε‖2

H1 +b2 ‖yε‖2
2

)
holds.

Lemma 5.3. For all s∈(s∗, s1],

|(g(λy−w) (f(Q+ε)−f(Q)) ,Λε)2|� ‖ε‖2
H1 ,(14)

|(g(λy−w) (f(Q+ε)−f(Q)) ,∇ε)2|� ‖ε‖2
H1 ,(15) ∣∣λ2 (W (λy−w)ε,Λε)2

∣∣� s−1 (‖ε‖2
H1 +b2‖yε‖2

2
)
,(16) ∣∣λ2 (W (λy−w)ε,∇ε)2

∣∣� s−1 (‖ε‖2
H1 +b2‖yε‖2

2
)
.(17)

Proof. For (16) and (17), see [9].
Firstly,

∇ (g(λy−w) (F (Q+ε)−F (Q)−dF (Q)(ε)))
=λ(∇g)(λy−w) (F (Q+ε)−F (Q)−dF (Q)(ε))

+g(λy−w) Re (f(Q+ε)−f(Q)−df(Q)(ε))∇Q

+g(λy−w) Re ((f(Q+ε)−f(Q))∇ε)

Therefore, we obtain

g(λy−w) Re ((f(Q+ε)−f(Q)) Λε)

=N

2 g(λy−w) Re ((f(Q+ε)−f(Q)) ε)

+y ·∇ (g(λy−w) (F (Q+ε)−F (Q)−dF (Q)(ε)))
−w·(∇g)(λy−w) (F (Q+ε)−F (Q)−dF (Q)(ε))

−(λy−w)·(∇g)(λy−w) (F (Q+ε)−F (Q)−dF (Q)(ε))
+g(λy−w) Re (f(Q+ε)−f(Q)−df(Q)(ε)) y ·∇Q.
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Therefore, we obtain

|(g(λy−w) (f(Q+ε)−f(Q)) ,Λε)2|� ‖ε‖2
H1

so that (14) holds. (15) is also shown by similar calculations. �

Lemma 5.4. (Derivative of H in time) For all s∈(s∗, s1],

d

ds
H(s, ε(s))≥−b

((
ε1

ε4
+ε3

)
‖ε‖2

H1 +
(

1+ ε3

ε1
+ε4

)
ε1b

2 ‖yε‖2
2+Cs−(2+K)

)
.

Proof. Outline the proofs. See [8] for details.
Firstly, we have

d

ds
H(s, ε(s))= ∂H

∂s
(s, ε(s))+

〈
i
∂H

∂ε
, i
∂ε

∂s

〉
.

Secondly, we have

∂H

∂ε
=−Δε+ε+ε1b

2|y|2ε−g(λy−w)(f(Q+ε)−f(Q))+λ2W (λy−w)ε

=L+ Re ε+iL− Im ε+ε1b
2|y|2ε−(g(λy−w)−1) df(Q)(ε)

−g(λy−w)(f(Q+ε)−f(Q)−df(Q)(ε))+λ2W (λy−w)ε,

i
∂ε

∂s
= ∂H

∂ε
−ε1b

2|y|2ε−(g(λy−w)−1)f(Q)+Modop(Q+ε)+Ψ,

where

Modop v := i

(
1
λ

∂λ

∂s
+b

)
Λv−

(
1− ∂γ

∂s

)
v−

(
∂b

∂s
+b2

)
|y|2
4 v

+
(

1
λ

∂λ

∂s
+b

)
b
|y|2
2 v−i

1
λ

∂w

∂s
·∇v− 1

2
b

λ

∂w

∂s
·yv.

For ∂H
∂s , we have

∂H

∂s
= ε1b

∂b

∂s
‖yε‖2

2−
∫
RN

(
∂λ

∂s
y− ∂w

∂s

)
·(∇g)(λy−w) (F (Q+ε)−F (Q)−dF (Q)(ε)) dy

+λ2 1
λ

∂λ

∂s

∫
RN

W (λy−w)|ε|2 dy

+ 1
2λ

2
∫
RN

(
∂λ

∂s
y− ∂w

∂s

)
·(∇W )(λy−w)|ε|2 dy.



432 Naoki Matsui

Therefore, we obtain

∂H

∂s
≥−ε1b

3‖yε‖2
2+o

(
b
(
‖ε‖H1 +b2‖yε‖2

2
))

.(18)

For
〈
i∂H∂ε , i

∂ε
∂s

〉
, the following estimates hold:∣∣∣∣〈i∂H∂ε , ε1b

2|y|2ε
〉∣∣∣∣≤ 2ε1b

2‖ε‖H1‖yε‖2+o(b‖ε‖2
H1),(19) ∣∣∣∣〈i∂H∂ε , (g(λy−w)−1)f(Q)

〉∣∣∣∣� s−(2+K+L),(20) ∣∣∣∣〈i∂H∂ε ,Ψ
〉∣∣∣∣� s−(2+K+L),(21) ∣∣∣∣〈i∂H∂ε ,Modop Q

〉∣∣∣∣� s−(4L−1),(22) ∣∣∣∣〈i∂H∂ε ,Modop ε

〉∣∣∣∣� s−(4L−1).(23)

Combining inequalities (18), (19), (20), (21), (22), and (23), we obtain

d

ds
H(s, ε(s))= ∂H

∂s
(s, ε(s))+

〈
i
∂H

∂ε
, i
∂ε

∂s

〉
≥−ε1b

3‖yε‖2
2+o

(
b
(
‖ε‖2

H1 +b2‖yε‖2
2
))
−2ε1b

2‖ε‖H1‖yε‖2+o(b‖ε‖2
H1)

−C
(
s−(2+K+L)+s−(4L−1)

)
≥−ε1b

3‖yε‖2
2−2ε1b

2‖ε‖H1‖yε‖2−ε3b
(
‖ε‖2

H1 +b2‖yε‖2
2
)
−bC

(
s−(2+ 3K

2 )+s−(2+K)
)

≥−b

((
ε1

ε4
+ε3

)
‖ε‖2

H1 +
(

1+ ε3

ε1
+ε4

)
ε1b

2 ‖yε‖2
2+Cs−(2+K)

)
. �

Lemma 5.5. (Derivative of S in time) For all s∈(s∗, s1],

d

ds
S(s, ε(s))� b

λm

(
‖ε‖2

H1 +b2 ‖yε‖2
2−Cs−(2+K)

)
.

Proof. According to Lemma 5.1, Lemma 5.4, and (12), we have

d

ds
S(s, ε(s)) =m

b

λm
H(s, ε(s))−m

1
λm

(
1
λ

∂λ

∂s
+b

)
H(s, ε(s))+ 1

λm

d

ds
H(s, ε(s))

≥ b

λm

((
mμ

2 − ε1

ε4
−ε2m−2ε3

)
‖ε‖2

H1

+ε1

(
m

2 −1− ε2m

ε1
− 2ε3

ε1
−ε4

)
b2 ‖yε‖2

2−Cs−(2+K)
)
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From (13),

mμ

2 − ε1

ε4
−ε2m−2ε3 ≥

mμ

2 −mμ

4 −mμ

24 −mμ

12 = mμ

8
m

2 −1− ε2m

ε1
− 2ε3

ε1
−ε4 ≥

K

4 − K

24×2−
K

24−
K

8 = K

16

hold. �

6. Bootstrap

In this section, we establish the estimates of the decomposition parameters by
using a bootstrap argument and the estimates obtained in Section 5.

Lemma 6.1. There exists a sufficiently small ε2>0 such that for all s∈(s∗, s1],

‖ε(s)‖2
H1 +b(s)2 ‖yε(s)‖2

2 � s−(2L+K/2),(24) ∣∣∣∣ λ(s)
λapp(s)−1

∣∣∣∣+∣∣∣∣ b(s)
bapp(s)−1

∣∣∣∣� s−2(L−1),(25)

|w(s)|� s−(2L−1).(26)

Proof. See [8] for the proof of (24).
From Proposition 2.3 and (12),

|E(Qλ,b,w,γ)−E0| ≤
∫ s1

s

∣∣∣∣ d

dσ

∣∣∣∣
σ=τ

E(Qλ,b,w,γ(σ))
∣∣∣∣ dτ �

∫ s1

s

τ−(1+K) dτ � s−K

holds. Therefore, since

∣∣b2‖yQ‖2
2−8λ2E0

∣∣≤λ2
(∣∣∣∣ b2λ2 ‖yQ‖2

2−8E(Pλ,b,γ)
∣∣∣∣+8 |E0−E(Pλ,b,γ)|

)
� s−(2+K),

we obtain ∣∣∣∣∣∣ ∂∂s
⎛⎝√

‖yQ‖2
2

8E0

1
λ
−s

⎞⎠
∣∣∣∣∣∣≤

∣∣∣∣∣∣−
√

‖yQ‖2
2

8E0

1
λ2

∂λ

∂s
−1

∣∣∣∣∣∣
� 1

λ

(∣∣∣∣ 1λ ∂λ

∂s
+b

∣∣∣∣+∣∣∣b‖yQ‖−
√

8E0λ
∣∣∣)

� s−(2L−1)+s−(1+K).
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Since
√

‖yQ‖2
2

8E0
1

λ(s1) =s1, we obtain∣∣∣∣∣∣
√

‖yQ‖2
2

8E0

1
λ
−s

∣∣∣∣∣∣� s−2(L−1), i.e.,
∣∣∣∣λapp(s)

λ(s) −1
∣∣∣∣� s−(2L−1).

Next, since∣∣b2−bapp
2∣∣= ∣∣∣∣b2− 8E0

‖yQ‖2
2
λapp

2
∣∣∣∣� ∣∣∣∣b2− 8E0

‖yQ‖2
2
λ2

∣∣∣∣+∣∣λ2−λapp
2∣∣� s−(2+K)+s−2L,

we obtain (25).
Finally, we prove (26). Since

|w(s)| ≤
∫ s1

s

|Mod(σ)| dσ� s−(2L−1),

(26) holds. �

From Lemma 6.1, we obtain the following corollary:

Corollary 6.2. If s0 is sufficiently large, then s∗=s′=s0 for any s1>s0.

Finally, we rewrite the estimates obtained for the time variable s in Lemma 6.1
into an estimates for the time variable t.

Lemma 6.3. (Interval) If s0 is sufficiently large, then there exists t0<0 such

that

[t0, t1]⊂ st1
−1([s0, s1]),

∣∣Cst1(t)−1−|t|
∣∣� |t|1+K (t∈ [t0, t1])

hold for t1∈(t0, 0), where C= ‖yQ‖2
2

8E0
.

Proof. See [9] for the proof. �

Finally, we prove Lemma 3.1.

Proof of Lemma 3.1. Firstly, we define

ελ̃,t1(t) :=
√
Cλ̃t1(t)
|t| −1.

From Lemma 6.3 and λapp(s)=
√
Cs−1, we have∣∣∣ελ̃,t1(t)∣∣∣=

∣∣∣∣(st1(t)λ̃t1(t)√
C

−1
)

C
st1(t)|t|

+ C
st1(t)|t|

−1
∣∣∣∣� |t|K .

The same can be proved for b̃t1 and w̃t1 . �
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