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Quantum Euler class and virtual Tevelev
degrees of Fano complete intersections

Alessio Cela

Abstract. We compute the quantum Euler class of Fano complete intersections X in a
projective space. In particular, we prove a recent conjecture of A. Buch and R. Pandharipande,
namely [7, Conjecture 5.14]. Finally we apply our result to obtain formulas for the virtual Tevelev
degrees of X. An algorithm computing all genus 0 two-point Hyperplane Gromov-Witten invariants
of X is illustrated along the way.
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1. Introduction

1.1. Quantum Euler class of a variety

Let X be a nonsingular, projective, algebraic variety over C of dimension r and
let {γj}Nj=0⊂H∗(X) be a homogeneous basis with γ0=1 and γN =P the point class.
The small quantum cohomology ring QH∗(X)(1) of X is defined via the 3-point
genus 0 Gromov-Witten invariants:

γi�γj =
∑

β∈H2(X,Z)

∑
k

〈γi, γj , γ∨
k 〉X0,βqβγk

where γ∨
k ∈H∗(X) is the dual of γk with respect to the intersection form on X,

defined by the conditions∫
X

γj∪γ∨
k = δj,k for j =0, ..., N.

Here we are following the notation of [14].
Let also

Δ=
∑
j

γ∨
j ⊗γj ∈H∗(X)⊗H∗(X)

be the Künneth decomposition of the diagonal class of X×X.
The quantum Euler class of X is the image of Δ under the product map

H∗(X)⊗H∗(X) �−−→QH∗(X).

This is a canonically defined element of QH∗(X), first introduced by Abrams
in [2]. In terms of the basis {γj}, we have

E =
∑
j

γ∨
j �γj .

Note that in particular
E≡χ(X)P mod q

where χ(X) is the Euler characteristic of X.
In this paper we compute the quantum Euler class of all Fano nonsingular

complete intersections of dimension at least 3 in a projective space (see Theorem 5
below). In particular, we prove a conjecture of Buch-Pandharipande, namely [7,
Conjecture 5.14].

(1) Unless otherwise specified, (co)homology and quantum cohomology will always be taken
with Q-coefficients in this paper.
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It is worth noting that although a priori the definition of E involves also the
primitive cohomology of X, in our case of interest, this class actually lies in the
restricted quantum cohomology ring QH∗(X)res of X, that is the quantum coho-
mology ring coming from the projective space (see Proposition 1 below for the exact
definition of QH∗(X)res). This is a key reason we were able to obtain so explicit a
formula for E.

Finally, in [7] the quantum Euler class E of any variety X is related via a very
simple formula (see [7, Theorem 1.4]) to the virtual Tevelev degrees of X, that is
the virtual count of genus g maps of fixed complex structure in a given curve class β
through n general points of X. Exploiting their formula and our explicit expression
of E for X a Fano nonsingular complete intersection of dimension at least 3, we are
able to compute all the virtual Tevelev degrees of such varieties X (see Theorem 10
below).

1.2. Preliminary results on complete intersections

We now specialize to smooth complete intersections of dimension at least 3.
Let X=V (f1, ..., fL)⊂Pr+L be a nonsingular complete intersection of dimension r.
Assume for the rest of the paper that r≥3 and that for i=1, ..., L,

fi ∈H0(Pr+L,O(mi))

where mi≥2.
Let m=(m1, ...,mL) be the vector of degrees and, for a, b∈Z adopt the following

notation:

|m|=
L∑

i=1
mi, mam+b =

L∏
i=1

mami+b
i .

1.2.1. Cohomology of complete intersections

Consider the map

(1) Hi(Pr+L)−→Hi(X)

induced by the inclusion X⊂Pr+L. By the Lefschetz Hyperplane Theorem, this
map is an isomorphism for all i≤2r, i �=r and is injective for i=r. Also, for i=r, we
have a canonical decomposition

Hr(X)=Hr(X)prim⊕Hr(X)res
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as a direct sum of the primitive cohomology and the restricted cohomology of de-
gree r.

Explicitly
Hr(X)res =Im(Hr(Pr+L)↪−→Hr(X))

and
Hr(X)prim =Ker(H∪− :Hr(X)−→Hr+2(X))

where H∈H∗(X) is the hyperplane class.
Note that

dimHr(X)prim =(−1)r(χ(X)−(r+1))
where χ(X) is the Euler characteristic of X.

1.2.2. Quantum cohomology of Fano complete intersections

From now on, we will further restrict our attention to the Fano case

(2) |m| ≤ r+L.

Since r≥3, the map in Equation 1 is an isomorphism when i=2 and thus

H2(X)=Q.L

where L∈H∗(X) is the class of a line in X. It follows that QH∗(X) is a graded
algebra over the polynomial ring Q[q] in one variable q and as Q[q]-modules we have

QH∗(X)=H∗(X)⊗QQ[q].

The degree of q is equal to 2d where

d= r+L+1−|m|.

which is greater than 0 by Equation 2.
Depending on the degree |m| of X, the ring QH∗(X) satisfies the following

magic relation (due to A. Givental):
• if |m|≤r+L−1 we have:

(3) H�(r+1) =mmqH�(|m|−L)

• if |m|=r+L we have:

(4) (H+m!q)�(r+1) =mmq(H+m!q)�r

Some cases of Equation 3 are proved in [3]. A complete proof of both relations
can be found in Givental’s paper [15]. There also are two very nice expositions
of Givental’s work, see [22, Section 3.2] and [6, Corollary 4.4 and Corollary 4.19].
Relations 3 and 4 will be essential for the object of this paper.
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1.3. Statement of the main theorem

In Theorem 5 below we will give explicit formulas for the quantum Euler class of
any smooth Fano complete intersection X⊆Pr+L as above. Much of our work starts
with the results in [7], some of which we now recall for the reader’s convenience.

Proposition 1. (due to T. Graber) Let R=Span{1,H, ...,Hr}⊂H∗(X). Then,
(R⊗QQ[q], �) is a subring of QH∗(X).

Proof. This is [7, Proposition 5.1]. �

This ring is denoted by QH∗(X)res.

Remark 2. The elements 1,H, ...,H�r form a basis of QH∗(X)res as Q[q]-module.
This follows from the fact that Hi=H�i mod q and H�i∈QH∗(X)res for i=0, ..., r.

Let E be the quantum Euler class of X.

Lemma 3. We have E∈QH∗(X)res.

Proof. See [7, Proof of Proposition 5.5]. �

By Remark 2 and Lemma 3, we can uniquely write

E =
� r
d �∑

i=0
Coeff(E, qiH�(r−id))qiH�(r−id).

where Coeff(E, qiH�(r−id))∈Q. Our goal is to make this coefficients explicit.

Remark 4. We have

Coeff(E,H�r)=m−1
∑
j

∫
X

γ∨
j ∪γj =m−1

∑
j

(−1)deg(γj) =m−1χ(X).

The main result of the paper is the following:

Theorem 5. (Main Theorem) The following equalities hold:

• if |m|≤r+L−1 then

E =m−1χ(X)H�r+(r+L+1−|m|−χ(X))mm−1qH�|m|−L−1,

• if |m|=r+L then

E =m−1χ(X)H�r+
r∑

j=1
m−1(j−χ(X))

(
r

j−1

)
(m!)j−1

[
mm−m!

j
(r+1)

]
qjH�r−j .

The case |m|≤r+L−1 in the theorem is exactly [7, Conjecture 5.14] and is
already shown to be true mod q2 in [7, Corollary 5.13]. The proof of this theorem
is given in Section 3.
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1.4. Application: virtual Tevelev degrees of Fano complete intersections

1.4.1. Virtual Tevelev degrees

Let X be a nonsingular, projective, algebraic variety over C of dimension r. Fix
integers g, n≥0 satisfying the stability condition 2g−2+n>0 and fix β∈H2(X,Z)
an effective curve class satisfying the condition∫

β

c1(TX)> 0.

Let Mg,n(X,β) be the moduli space of genus g, n-pointed stable maps to X in class
β and assume that the dimensional constraint

vdim(Mg,n(X,β))=dim(Mg,n×Xn)

holds. This is equivalent to

(5)
∫
β

c1(TX)= r(n+g−1).

Let
τ :Mg,n(X,β)−→Mg,n×Xn

be the canonical morphism obtained from the domain curve and the evaluation
maps:

π :Mg,n(X,β)−→Mg,n, ev :Mg,n(X,β)−→Xn.

Then the virtual Tevelev degree vTevX
g,n,β∈Q of X is defined by the equality

τ∗[Mg,n(X,β)]vir =vTevX
g,n,β [Mg,n×Xn]∈A0(Mg,n×Xn).

Alternatively, denoting by ΩX
g,n,β :H∗(X)⊗n→H∗(Mg,n) the Gromov-Witten class

ΩX
g,n,β(α) :=π∗(ev∗(α)∩[Mg,n(X,β)]vir),

we have
vTevX

g,n,β [Mg,n] = ΩX
g,n,β(P⊗n).

Fixed-domain curve counts for Grassmanians have a beautiful story at the
intersection between algebraic geometry and physics. They are computed by the
celebrated Vafa-Intriligator formula, conjectured by the physicists Vafa and Intrili-
gator [16] and partially proved by Siebert-Tian [23] and by Bertram-Daskalopoulos-
Wentworth in [4] and [5], and fully proven by Marian-Oprea in [20] using Quot-
schemes. The equivalence with the formulation in terms of stable maps was then
proven by Marian-Oprea-Pandharipande in [21]. The systematic study of Tevelev
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degrees for general targets started with [11], motivated by work of Tevelev [24] on
scattering amplitudes in mathematical physics. The paper [11] then stimulated a se-
ries of subsequent studies. In [11] these degrees were formally defined and computed
via Hurwitz theory for the case of P1; then, in [13], using Schubert calculus the prob-
lem was posed and solved for the case of Pn; in [10] a generalization of these degrees
is presented for P1. In [7] a virtual perspective is adopted via Gromov-Witten the-
ory and in [19] an equality between virtual and geometric Tevelev degrees is proven
for certain Fano varieties and large degree curve classes. The relationship between
virtual and geometric degrees is studied for point blow-up of projective spaces in [9],
where the authors also provided simpled closed formulas for the Tevelev degrees of
such varieties. In [18] geometric Tevelev degrees are computed for low degree hyper-
surfaces and large degree curve classes via projective geometry. Finally, a tropical
perspective is presented in [8] where, after proving a generalization of Mikhalkin’s
correspondence theorem for logarithmic and tropical Tevelev degrees, the authors
computed these degrees for Hirzebruch surfaces in genus 0.

1.4.2. Virtual Tevelev degrees of Fano complete intersections

In this paper, we are concerned with exact computations of virtual Tevelev
degrees of Fano complete intersections following the perspective presented in [7]
and described above in Section 1.4.1.

Let X be a smooth Fano complete intersection in Pr+L of dimension r≥3 and
vector of degrees m. Writing β=kL with k>0, condition 5 becomes

k= k[g, n] := n+g−1
d

r.

For us, the main ingredient to compute vTevX
g,n,k will be the following result:

Theorem 6. Suppose k=k[g, n]. Then

vTevX
g,n,k =m1Coeff(P�n�E�g, qkH�r).

Proof. This is [7, Theorem 1.4]. �

Before stating our theorem, we require a remark and some additional notation.

Remark 7. Given the form of Equation 4, when |m|=r+L it will be more
convenient to use 1, (H+m!q), ..., (H+m!q)�r instead of 1,H, ...,H�r as a basis of
QH∗(X) as Q[q]-module.
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Definition 8. Define

Q�Pi =
{

Coeff(P, qiH�r−id) when |m|≤r+L−1,
Coeff(P, qi(H+m!q)�r−i) when |m|=r+L,

for i=0, ..., � r
d� and

Q� bi =
{

Coeff(P�n�E�g, qi+kH�r−id) when |m|≤r+L−1,
Coeff(P�n�E�g, qi+k(H+m!q)�r−i) when |m|=r+L,

for i=0, ..., � r
d�.

Note that, by Theorem 6

vTevX
g,n,k =m1b0

and that by Theorem 5 the bi’s are determined by the Pi’s.

Definition 9. Following [7, Definition 5.15], we define the discrepancy of P�n�

E�g to be

Disc(P�n�E�g)=
� r
d �∑

i=1
bim−im+1.

Putting everything together we obtain explicit formulas for all virtual Tevelev
degrees of X (once all the coefficients Pi are known):

Theorem 10. Suppose k=k[g, n]. Then, the virtual Tevelev degrees of X are

as follows:

• if |m|≤r+L−1 then

vTevX
g,n,k =

( � r
d �∑

i=0
Pim−im

)n
(r+L+1−|m|)gmkm−g+1−Disc(P�n�E�g),

• if |m|=r+L then

vTevX
g,n,k =

(
r∑

i=0
Pim−im

)n(
1−m−rm(m!)r(r+1−χ(X))

)g
mkm−g+1

−Disc(P�n�E�g).
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The case |m|≤r+L−1 already appears in [7, Proposition 5.16] (where they as-
sume that [7, conjecture 5.14] holds for X), the case |m|=r+L is instead completely
new.

The last question would be if we can actually express the coefficients Pi ap-
pearing in Theorem 10 in a closed formula, obtaining in this way a closed formula
for the virtual Tevelev degrees.

Partial results have been obtained in [7], where they gave a complete answer
in the following cases:

• for quadric hypersurfaces (see [7, Theorem 1.5 and Example 2.4];
• for low degree complete complete intersections r>2|m|−2L−2 which are not

quadrics (see [7, Corollary 5.11 and Theorem 5.19]);
• for the border case r=2|m|−2L−2 (see [7, Lemma 5.21 and Corollary 5.23]).

Here we will content ourselves with illustrating in Section 5 an algorithm that
calculates all the coefficients Pi. It should be noted here that the method we
will describe is more effective than the general result in [1], where they deal with
Gromov-Witten invariants in all genera with arbitrary insertions.

Acknowledgement. I am especially thankful to my supervisor R. Pandhari-
pande who introduced me to the topic of this paper, explained me some parts of
the papers [7] and [22] and read very carefully the first draft of this paper. I also
would like to thank S. Molcho for reading and commenting the final draft of the
paper, C. Lian and J. Schmitt for several disscussions about Tevelev degrees and
Younghan Bae for discussions about the content of Section 5. I am supported by
the grant SNF-200020-182181.

2. A preliminary computation

We start with expressing Hi for i=1, ..., r as a linear combination of 1, ...,H�r

with coefficients in Q[q].
The following notation will be convenient. For k≥0 and 0≤j≤r let

αk
r−j :=m−1〈Hkd+j−1,Hr−j〉X0,k =m−1

∫
[M0,2(X,kL)]vir

ev1
∗Hkd+j−1∪ev∗

2Hr−j

where L is the class of a line in X and evi :M0,2(X, kL)→X are the evaluation maps
for i=1, 2. Note the following symmetry:

αk
r−j =αk

kd+j−1.
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Proposition 11. Let 0≤i≤r. Then, for 1≤j≤� i
d�, we have

Coeff(Hi, qjH�(i−jd))=

=
∑

�:1≤�≤j

(−1)�
∑

(i1,...,i�)∈Z≥1:
i1+...+i�=j

∑
(u1,...,u�)∈(Z≥0)×�:
0≤u�≤...≤u1≤i−jd

�∏
a=1

iaα
ia
r−(j−i1−...−ia)d−ua

.

Proof. We proceed by induction on i.
When i<d there is nothing to prove. When i=d, it follows that j=1 and the

right-hand side of the equation is just α1
r. To compute the left-hand side note that

Hi=H�i for i<d and thus

H�d =H�Hd−1 =Hd+q〈H,Hd−1,Hr〉X0,1m−1.

Note that, since H�Hd−1∈QH∗(X)res, the primitive cohomology contribution in
H�Hd−1 is 0.

Use now the divisor equation in Gromov-Witten theory to obtain

〈H,Hd−1,Hr〉X0,1m−1 =α1
r .

Assume now that the Theorem is true for i=d, ..., t−1<r.
Write

H�Ht−1 =Ht+
� t
d �∑

k=1
〈H,Ht−1,Hkd+r−t〉X0,km−1qkHt−kd.

where again the primitive cohomology contributions in H�Ht−1 is 0 and by the
divisor equation

m−1〈H,Ht−1,Hkd+r−t〉X0,k = kαk
r−(t−kd).

Note now that, by induction, we know how to write the Ht−kd and Ht−1 in terms
of 1,H, ...,H�r. Putting everything together we obtain for 1≤j≤� t

d�

Coeff(Ht, qjH�(t−jd))

=Coeff(Ht−1, qjH�(t−1−jd))−
j∑

k=1

kαk
r−(t−kd)Coeff(Ht−kd, qj−kH�(t−jd))

=
j∑

�=1

(−1)�
∑

i1+...+i�=j,
0≤u�≤...≤u1≤t−1−jd

�∏
a=1

iaα
ia
r−(j−i1−...−ia)d−ua

−
j∑

k=1
kαk

r−(t−kd)

(
j−k∑
�=0

(−1)�
∑

i1+...+i�=j−k,
0≤u�≤...≤u1≤t−jd

�∏
a=1

iaα
ia
r−(j−k−i1−...−ia)d−ua

)



Quantum Euler class and virtual Tevelev degrees of Fano complete intersections 311

and, since

r−(t−kd)= r−(j−k)d−(t−jd),

this is exactly the right-hand side appearing in the statement above with i=t. �

Corollary 12. For 1≤j≤� r
d� we have

Coeff(H�r+1, qjH�r+1−jd)

=
∑

�:1≤�≤j

(−1)�+1
∑

(i1,...,i�)∈Z≥1:
i1+...+i�=j

∑
(u1,...,u�)∈(Z≥0)×�:

0≤u�≤...≤u1≤r+1−jd

�∏
a=1

iaα
ia
r−(j−i1−...−ia)d−ua

.(6)

Proof. Proceeding as in the proof of Proposition 11, we write H�r+1=H�H�r

and

H�r =Hr−
� r
d �∑

j=1
Coeff(Hr, qjH�r−jd)qjH�r−jd.

Since

H�Hr =
� r+1

d �∑
k=1

kαk
kd−1q

kHr−kd+1,

we have

Coeff(H�(r+1), qjH�(r+1−jd))

=−Coeff(Hr, qjH�(r−jd))

+
j∑

k=1

kαk
r−(r+1−kd)Coeff(Hr+1−kd, qj−kH�r+1−jd)

=
∑

1≤�≤j

(−1)�+1
∑

i1+...+i�=j,
0≤u�≤...≤u1≤r−jd

�∏
a=1

iaα
ia
r−(j−i1−...−ia)d−ua

−
j∑

k=1
kαk

kd−1
∑

1≤�≤j−k

(−1)�+1
∑

i1+...+i�=j−k,
0≤u�≤...≤u1≤r+1−jd

�∏
a=1

iaα
ia
r−(j−k−i1−...−ia)d−ua

for j=1, ..., � r
d�. Finally, since kd−1=r−(j−k)d−(r+1−jd), we are done. �
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3. Proof of the main theorem

3.1. Plan of the proof

In this subsection we explain how the proof of Theorem 5 goes.
Define

Γ :=
∑

j:γj∈Hr(X)prim

γ∨
j �γj

and

E′ :=m−1
r∑

i=0
Hi�Hr−i

Then
E =Γ+E′.

So by Lemma 3, we see that Γ∈QH∗(X)res.
Using relations 3 and 4, the proof of Theorem 5 becomes an easy algebraic

count (done in Section 3.4) once we know the following two propositions.

Proposition 13. For j=1, ..., � r
d� we have

Coeff(Γ, qjH�r−jd)=m−1(r+1−χ(X))Coeff(H�r+1, qjH�r+1−jd).

The proof is presented in Section 3.2.

Proposition 14. For j=1, ..., � r
d� we have

Coeff(E′, qjH�r−jd)=−m−1(r−jd+1)Coeff(H�r+1, qjH�r+1−jd).

The proof is presented in Section 3.3.
We remark here that the way we prove Proposition 14 is purely algebraic. It

would be interesting to find a more conceptual explanation for this equality.

3.2. Computation of Γ

The proof of Proposition 13 relies on the following preliminary lemma which
is very similar to [7, Lemma 5.2].

Lemma 15. Let Λ∈QH∗(X)res be a degree 2r class such that

Λ= aHr mod q and H�Λ=0

where a∈Q. Then

Coeff(Λ, qjH�r−jd)=−aCoeff(H�r+1, qjHr+1−jd)

for i=1, ..., � r
d�.



Quantum Euler class and virtual Tevelev degrees of Fano complete intersections 313

Proof. Write

Λ= aH�r+
� r
d �∑

i=1
Coeff(Λ, qiH�r−id)qiH�r−id.

Then we have

0 =H�Λ= aH�r+1+
� r
d �∑

i=1
Coeff(Λ, qiH�r−id)qiH�r+1−id

from which we obtain the lemma. �

Proof of Proposition 13. By [7, Corollary 5.3] (the proof of that corollary also
applies when |m|=r+L), we have H�Γ=0. Moreover

Γ =
∑

j:γj∈Hr(X)Prim

γ∨
j ∪γj =dim(Hr(X)prim)(−1)rm−1Hr mod q.

Note that we have dim(Hr(X)prim)=(−1)r(χ(X)−r−1). The proposition now fol-
lows from an application of Lemma 15. �

3.3. Computation of E′

In this subsection we prove Proposition 14 by showing the following equivalent
result:

Lemma 16. For j=1, ..., � r
d� we have

r∑
i=0

Coeff(Hi�Hr−i, qjH�(r−jd))=−(r−jd+1) times the RHS of Equation 6.

Proof. For 0≤i≤r and 1≤j≤� r
d� we have

Coeff(Hi�Hr−i, qjH�(r−jd))

=
∑

(h,s)∈Z
×2
≥0:h+s=j

Coeff(Hi, qhH�(i−hd))Coeff(Hr−i, qsH�(r−i−sd))

and for each (h, s) as above such that hd≤i and r−i≥sd, the product

Coeff(Hi, qhH�(i−hd))Coeff(Hr−i, qsH�(r−i−sd))
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is equal to

∑
1≤w≤h
1≤z≤s

(−1)w+z
∑

y1+...+yw=h
x1+...+xz=s

∑
0≤pw≤...≤p1≤i−hd

0≤vz≤...≤v1≤r−i−sd

w∏
a=1

iaα
ia
r−(h−y1−...−ya)d−pa

×
z∏

b=1

xbα
xb

r−(s−x1−...−xb)d−vb
.(7)

Note that it could be that h=0 or s=0 (but not h=s=0, since h+s=j>0). Observe
the symmetry

αxb

r−(s−x1−...−xb)d−vb
=αxb

(s−x1−...−xb−1)d+vb−1,

and that

(s−x1−...−xb−1)d+vb−1 = r−[(j−xb−...−xz)d+r−vb+1−jd]

where r−vb+1−jd varies in [i−hd+1, r+1−jd] for 0≤vb≤r−i−sd. Therefore we
can rewrite the quantity in Equation 7 as

∑
1≤w≤h
1≤z≤s

(−1)w+z
∑

y1+...+yw=h
x1+...+xz=s

∑
0≤pw≤...≤p1≤i−hd

i−hd+1≤v1≤...≤vz≤r+1−jd

w∏
a=1

iaα
ia
r−(h−y1−...−ya)d−pa

×
z∏

b=1
xbα

xb

r−(j−xb−...−xz)d−vb
.(8)

Note that the quantity i−hd appearing in Equation 8 under the third summation
symbol varies in [0, r−jd] and not in [0, r] (if i−hd>r−jd, then r−i<(j−h)d=sd

and so Coeff(Hr−i, qsH�(r−i−sd))=0).
Fix j∈{1, ..., � r

d�} and let �, (i1, ..., i�) and (u1, ..., u�) be such that

0≤ �≤ j, i1+...+i� = j and 0≤u� ≤ ...≤u1 ≤ r+1−jd.

We want to count how many times the term

(9) (−1)�
�∏

a=1
iaα

ia
r−(j−i1−...−ia)d−ua

appears in

bj :=
r∑

i=0
Coeff(Hi�Hr−i, qjH�(r−jd))

=
r∑

i=0

∑
h+s=j

Coeff(Hi, qhH�(i−hd))Coeff(Hr−i, qsH�(r−i−sd)).
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We observe that w+z=� and (xz, ..., x1, y1, ..., yw)=(i1, ..., i�) must hold. Moreover,
given any integer g∈[0, r−jd], if i−hd=g then in Equation 8 we must have

z =min{f :uf ≤ g}−1 and w= �−z

where if {f :uf≤g}=∅, we set z=� and w=�.
Therefore

vz =u1, ..., v1 =uz, p1 =uz+1, ..., pw =u�

and
xz = i1, ..., x1 = iz, y1 = iz+1, ..., yw = i�

and finally
h= y1+...+yw and s=x1+...+xz.

This means that the term in Equation 9 appears in bj once for every g∈[0, r−jd],
and thus a total of r−jd+1 times. This concludes the proof of the lemma. �

3.4. Computation of E

We finally prove Theorem 5. We will distinguish two cases.

• Case |m|≤r+L−1.

By Relation 3, in this case we have

Coeff(H�r+1, qjH�r+1−jd)= 0 for j > 1 and Coeff(H�r+1, qH�r+1−d)=mm.

Therefore, by Propositions 13 and 14, we have

Coeff(E, qjH�r−jd)= 0 for j > 1 and
Coeff(E, qH�r−d)=mm−1(r+L+1−|m|−χ(X)).

This is what we wanted to prove.

• Case |m|=r+L.

Note that in this case d=1. Relation 4, can be rewritten as

Coeff(H�r+1, qjH�r+1−j)=
(

r

j−1

)
(m!)j−1

[
mm−m!

j
(r+1)

]

for j=1, ..., r+1. Therefore for j=1, ..., r we have

Coeff(E, qjH�r−j) =m−1(j−χ(X))Coeff(H�r+1, qjH�r+1−j)

=m−1(j−χ(X))
(

r

j−1

)
(m!)j−1

[
mm−m!

j
(r+1)

]
.

This concludes the proof.
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4. Virtual Tevelev degrees

We now apply our computations to prove Theorem 10. We distinguish two
cases again.

• Case |m|≤r+L−1.

This case follows from [7, Proposition 5.16] and Theorem 5 above.

• Case |m|=r+L.

The first step is to express E in terms of the basis 1,H+m!q, ..., (H+m!q)�r.
This will use the following simple combinatorial lemma.

Lemma 17. For j=2, ..., r the following two equalities hold:

(10)
j∑

i=1

(
r

i−1

)(
r−i

j−i

)
(−1)j−i =1

and

(11)
j∑

i=1
i

(
r

i−1

)(
r−i

j−i

)
(−1)j−i = r+1.

Proof. The proof is left to the reader. �

Lemma 18. We have

E =m−1χ(X)(H+m!q)�r+[m−1(r+1−χ(X))(mm−m!)−mm−1r]q(H+m!q)�r−1

+
r∑

j=2
[m−1(m!)j−1(r+1−χ(X))(mm−m!)]qj(H+m!q)�r−j .

Proof. This is an algebraic check substituting

H =(H+m!q)−m!q

in the expression of E found in Theorem 5.
Here we will deal with Coeff(E, qj(H+m!q)�r−j) for j=2, ..., r. The cases j=0, 1

are instead left to the reader.
Using Theorem 5, we see that for j=2, ..., r the coefficient Coeff(E, qj(H+

m!q)�r−j) is equal to

m−1χ(X)
(
r

j

)
(−1)j(m!)j
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+
j∑

i=1
m−1(i−χ(X))

(
r

i−1

)
(m!)i−1

[
mm−m! (r+1)

i

](
r−i

j−i

)
(−1)j−i(m!)j−i

which we now rewrite as a sum of four terms. The first one is

m−1χ(X)(m!)j−1m!
[
(−1)j

(
r

j

)
+

j∑
i=1

(−1)j−i

(
r

i−1

)(
r−i

j−i

)
r+1
i

]

=m−1χ(X)(m!)j−1m!

where we used Equation 10. The second one is

−m−1χ(X)(m!)j−1mm
j∑

i=1

(
r

i−1

)(
r−i

j−i

)
(−1)j−i =−m−1χ(X)(m!)j−1mm

where we used Equation 10. The third term is

−m−1(m!)j−1m!
j∑

i=1

(
r

i−1

)(
r−i

j−i

)
(−1)j−i(r+1)=−m−1(m!)j−1m!(r+1)

where we used again Equation 10. Finally the last term is

m−1(m!)j−1mm
j∑

i=1
i

(
r

i−1

)(
r−i

j−i

)
(−1)j−i =m−1(m!)j−1mm(r+1)

where instead we used Equation 11.
Summing everything up we obtain the desired conclusion. �

Although the full expression of E might be a bit complicated, the product
(H+m!q)�r�E is quite simple.

Corollary 19. We have

(H+m!q)�r�E = [m−1−m−rm−1(m!)r(r+1−χ(X))](H+m!q)�2r.

Proof. Use r times Equality 4. �

We can now finish the proof of Theorem 10.

Proof of Theorem 10 when |m|=r+L. From Definition 8 and Equation 4, we
see that

(12) P�n�E�g�(H+m!q)�r =
(

r∑
i=0

bim−(k+i)m

)
(H+qm!)�r+rg+nr.
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Using Definition 8 and Equation 4, we also have

P�n�(H+m!q)�r =
(

r∑
i=0

Pim−im

)n
(H+qm!)�nr+r,

and so by Corollary 19

P�n�E�g�(H+m!q)�r

=
(

r∑
i=0

Pim−im

)n(
m−1−m−rm−1(m!)r(r+1−χ(X))

)g
(H+m!q)�r+gr+nr.(13)

The theorem follows by comparing Equation 12 and Equation 13. �

5. An algorithm for the calculation of the coefficients Pi

In this final section we propose a method to compute the coefficients Pi appear-
ing in Definition 8. In this way, up to implementing the algorithm with a computer,
all the virtual Tevelev degrees of X can be explicitly calculated.

It is possible that our result is known to the experts, but we preferred to include
it anyway for completeness.

5.1. Recursion for genus 0 two-pointed Hyperplane Gromov-Witten in-
variants

Proposition 11 reduces the computation of the Pi’s to the computation of
genus 0 two-pointed Hyperplane Gromov-Witten invariants of X. These invariants
satisfies a recursion involving more general integrals which we now recall.

5.1.1. The recursion

For g≥0, k>0 and n>0 the gravitational descendant invariants of X are
defined by:

〈τa1(γ1), ..., τan(γn)〉Xg,k :=
∫

[Mg,n(X,kL)]vir
ev∗

1(γ1)∪ψa1
1 ∪...∪ev∗

n(γn)∪ψan
n

where γ1, ..., γn∈H∗(X) and ψi=c1(Li)∈H2(Mg,n(X, kL)) is the first Chern class
of the cotangent line

Li
∣∣[f :(C,p1,...,pn)→X]

=(TpiC)∨

for i=1, ..., n.
We start with a monodromy result.
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Lemma 20. For any γ∈H∗(X)prim, γ1, ..., γn∈H∗(X)res (with n≥0), a1, ...,

an∈Z≥0 and k>0 we have

〈τa1(γ1), ..., τan(γn), γ〉X0,k =0.

Proof. The proof is a monodromy argument. Let

U ⊂
L∏

i=1
P(H0(Pr+L,O(mi)))

be the open subscheme parametrizing smooth complete intersection in Pr+L of
dimension r and degree m. Call V =V prim⊕V res where V prim=H∗(X)prim⊗QR

and V res=H∗(X)res⊗QR, and

ρ :π1(U, u)−→Aut(V )

the monodromy homomorphism (here u∈U is the point corresponding to X). The
homomorphism ρ preserves the decomposition V =V prim⊕V res and actually its in-
variant subspace is exactly V res. Let G⊂GL(V prim) be the algebraic monodromy
group defined as the Zariski closure of the image of π1(U, u)→Aut(V prim). The
lemma will follow from the following two standard facts:

• the invariance under deformations of X in Gromov-Witten theory tells us
that for any α∈π1(U, u) we have:

〈τa1(α.γ1), ..., τan(α.γn), α.γ〉X0,k = 〈τa1(γ1), ..., τan(γn), γ〉X0,k;

• the intersection form Q on V prim is preserved by the monodromy action.
When r is odd, Q is a non-degenerate skew-symmetric bilinear form, it follows that
in this case dim(V prim) is even and that G⊆Sp(V prim). When instead r is even, Q
is a non-degenerate symmetric bilinear form and we have G⊆O(V prim). Since for us
r≥3, by [12, Theorem 4.4.1] (see also [1, Proposition 4.2]), the previous inclusions
are actually equalities except for the case when r is even and m=(2, 2). In this
latter case, dim(V prim)=r+3 and G is the Weyl group W of Dr+3.
Since −Id∈Sp(V prim) and −Id∈O(V prim) the proof is complete in all cases except
for the case r even and m=(2, 2). In this case, note that if L:V prim→V prim is any
R-linear map invariant under W then L=0 must hold (reason: if Φ⊂V prim is the
root system corresponding to Dr+3 then for all v∈Φ the reflection rv along the
hyperplane v⊥ lies in W and sends v to −v, thus L(v)=L(−v)=−L(v), from which
L(v)=0. Since SpanR(Φ)=V prim we are done). To conclude the proof of the lemma,
apply this observation with L=〈τa1(γ1), ..., τan(γn),−〉X0,k. �
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Proposition 21. Let i, a≥0 and j, k>0 be integers satisfying

i+j+a=vdim(M0,2(X, kL)).

Then we have

〈τa(Hi),Hj 〉X0,k = 〈τa(Hi+1),Hj−1〉X0,k+k〈τa+1(Hi),Hj−1〉X0,k

−
k−1∑
�=1

m−1�〈τa(Hi),H�d+r−1−i−a〉X0,�〈Hj−1,H(k−�)d+r−j〉X0,k−�.

Proof. An application of [17, Corollary 1] and the splitting principle in Gromov-
Witten theory yields

〈τa(Hi),Hj〉X0,k = 〈τa(Hi+1),Hj−1〉X0,k+k〈τa+1(Hi),Hj−1〉X0,k

−
k−1∑
�=1

N∑
j=0

�〈τa(Hi), γ∨
j 〉X0,�〈Hj−1, γj〉X0,k−�

where as always {γj}Nj=0 is any homogeneous basis of H∗(X) with γ0=1 and γN =P.
Finally, apply Lemma 20 to conclude the proof. �

5.1.2. The base case

Consider the recursion of Proposition 21. In each two-pointed Gromov-Witten
integral on the right-hand side, either the quantity j decreased or the quantity k

decreased (when compared to those appearing in the left-hand side). Note also that
when k=1, the recursion becomes simply

〈τa(Hi),Hj〉X0,1 = 〈τa(Hi+1),Hj−1〉X0,1+〈τa+1(Hi),Hj−1〉X0,1.

So, when k=1, k stabilizes while j continues to decrease. It follows that the recur-
sion completely determines all the integrals

〈τa(Hi),Hj〉X0,k for a, i, j≥ 0 such that a+i+j =vdim(M0,2(X, kL))

once the integrals 〈τa(Hi), 1〉X0,k are given for all a, i≥0 and k>0. These last invari-
ants are indeed known as the next proposition shows.

Proposition 22. Let a, i≥0 and k>0 be integers such that

a+i=vdim(M0,2(X, kL)).

Then
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• for |m|≤r+L−1 and i=0, ..., r we have

〈τr+kd−1−i(Hi), 1〉X0,k =Coeff
(∏L

j=1
∏kmj

�=0 (mjx+�)∏k
�=1(x+�)r+L+1

, xr+L−i

)
;

• for |m|=r+L and i=0, ..., r we have

〈τr+k−1−i(Hi), 1〉X0,k =
k∑

h=0

(−m!)k−h

(k−h)! Coeff
(∏L

j=1
∏hmj

�=0 (mjx+�)∏h
�=1(x+�)r+L+1

, xr+L−i

)

where in both cases the coefficient of xr+L−i is meant to be the coefficient of the

Taylor expansion in x at 0.

Proof. This is just a way of rephrasing [6, Theorem 4.2 and Theorem 4.17].
Note that in [6, Theorem 4.17] there is a typo: in their notation, their index m in
the product appearing in the numerator should range from 0 to dlj , instead of from
1 to d. �
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