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On local colorings of split graphs

Yaroslav Shitov

Abstract. A semi-matching coloring of a finite simple graph G=(V,E) is a mapping ϕ

from V to {1, ..., k} such that (i) every color class is an independent set, and (ii) the edge set of the
graph induced by the union of any two consecutive color classes is a matching. A semi-matching
coloring ϕ is a local coloring if, in addition, (iii) the union of any three consecutive color classes
induces a triangle-free subgraph of G. In this paper, we give two counterexamples and one positive
solution to three problems arisen in recent papers of You, Cao, Wang. In particular, we show that
the local and semi-matching coloring problems are NP-complete on the class of split graphs.

The concept of local coloring, introduced in [1], has attracted some interest in
recent publications because of its connections to other graph theoretical problems,
which include Kneser’s conjecture [6]. A subsequent paper [4] extends this notion
by introducing the semi-matching coloring problem and demonstrates its relation
to Kneser graphs. The papers [5], [7] contain a description of the algorithmic com-
plexity of the problems under consideration, and both the local and semi-matching
colorings turn out to be NP-complete even if the number of the colors is a fixed
integer k�3. The authors of [8], [9] undertake a further investigation of the com-
plexity of the problem and pose several questions, which include the complexity
status of the local colorings of split graphs. The conventional chromatic number is
tractable on this class, but is the local coloring NP-complete for split graphs? Also,
the papers [8], [9] contain an explicitly posed conjecture stating the NP-hardness of
the same problem on perfect graphs, but, since this class includes the split graphs,
our NP-completeness proof is valid for perfect graphs as well.

In Section 1, we present several relevant examples of the computation of the
local and semi-matching chromatic numbers, and one of these examples refutes a
statement in [8]. In Section 2, we construct a part of the reduction that we use
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in our NP-completeness proof and give a counterexample to a statement in [9]. In
Section 3, we finalize the NP-completeness proof of the local and semi-matching
colorings restricted to split graphs, and hence we prove a conjecture in [8], [9].

1. Examples

As in the previous research on the topic [1], [4], we define the semi-matching
chromatic number χm(G) and local chromatic number χl(G) as the smallest possible
maximal value of a color used in a semi-matching coloring and a local coloring of
a graph G, respectively. Also, we recall a trivial inequality χ(G)�χm(G)�χl(G)
involving the conventional chromatic number χ(G). For instance, the behavior of
the complete graph Kn with respect to these notions is as follows.

Observation 1. (See [1].) χl(Kn)=�1.5n−0.5� and χm(Kn)=χ(Kn)=n.

Proof. Every pair of vertices is adjacent, so there cannot be a smaller proper
coloring than just to take the first n positive integers. Such a coloring does also
possess a semi-matching property because the union of any two consecutive color
classes is just an edge. In the local case, we are not allowed to use three consecutive
numbers, so 1, 2, 4, 5, 7, 8, ... is the optimal labeling in this case, which corresponds
to �1.5n−0.5� being the maximal number of a color used. �

Example 2. The graph H defined as

satisfies χ(H)=3, χm(H)=χl(H)=4.

Proof. The graph is not bipartite, so χ(H)�3. In fact, we have χ(H)=3, since
we can construct a proper coloring ϕ of the graph H as

ϕ(1)=ϕ(4)= 3, ϕ(2)=ϕ(3)=ϕ(5)=ϕ(6)= 1, ϕ(7)= 2.

This mapping is neither a local coloring nor a semi-matching coloring because the
union of the colors 1 and 2 contains the path (5, 7, 6), but the change of the value
ϕ(7) to 4 allows us to avoid this obstruction and get χm(H)�χl(H)�4.
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Now we assume that some mapping ψ from the vertex set of H to {1, 2, 3} gives
a semi-matching coloring. If ψ(1)=2, then the vertices 2 and 3 have different colors
in {1, 3}, which forces the vertex 4 to be colored with 2 as well. Similarly, we get
{ψ(5), ψ(6)}={1, 3} and ψ(7)=2, which is impossible because of the edge {1, 7}.
A similar argument shows that ψ(4) �=2 and ψ(7) �=2, and, using the symmetry of
our construction, we can assume without loss of generality that ψ(1) �=ψ(4). In
this case, we have to take ψ(2)=ψ(3)=2 because ψ is a proper coloring, but this
contradicts to the semi-matching assumption and implies χl(H)�χm(H)>3. �

The retracted Theorem 1.1 in [8] stated that the inequality χl(G)�3 holds if,
and only if, the graph G is triangle-free and its vertices of degree three or more
induce a bipartite graph. As we can see, the graph H in the above example is
indeed triangle-free; all the vertices except 1, 4, 7 are degree-two, but the subgraph
induced by 1, 4, 7 is bipartite. Since χl(H)=4, we have a counterexample.

2. The reduction

We proceed with a consideration of split graphs, that is, graphs whose vertices
can be partitioned into a clique and an independent set [3]. The chromatic number
of such a graph, denoted S in what follows, is clearly equal to the order ω(S) of the
largest clique, and the same applies to every induced subgraph of S, which means
that S is a perfect graph [3]. Proposition 4 in [9] stated that

(2.1) χl(S)=χl

(
Kω(S)

)
or χl(S)=χl

(
Kω(S)

)
+1,

but only a restricted version of this statement does actually hold.

Observation 3. The inequalities

χl

(
Kω(S)

)
�χl(S)�χl

(
Kω(S)

)
+2,

ω(S)�χm(S)�ω(S)+2

hold for any split graph S.

Proof. The complete graph Kω(S) is a subgraph of S, so the left parts of these
inequalities follow by Observation 1. On the other hand, one can construct a local
coloring or a semi-matching coloring of S with the maximal color c+2 from the
corresponding coloring of Kω(S) that used the colors 1, ..., c by picking the color
c+2 to every vertex outside the largest clique. �
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Let us construct a sequence (Un) of split graphs satisfying ω(Un)=n,

(2.2) χm(Un)=n+2 and χl(Un)=χl (Kn)+2,

showing that the conditions (2.1) may fail and that the inequalities in Observation 3
are sharp. This construction is also used in the NP-completeness proof in Section 3.

Definition 4. Let C={C1, ..., Ct} be a sequence of proper subsets of a finite
set V =

⋃
C (that is, Ci�V for all i). We define the graph S=S(C) as follows:

(i) the vertices are W1∪...∪Wt∪V , where the sets Wi={wi0, ..., wi 2|V |} are disjoint
pairwise and disjoint with V ;
(ii) V is a clique and W1∪...∪Wt is an independent set in S;
(iii) the vertices in every Wi are adjacent to those vertices v∈V which belong to
the corresponding set Ci and only to them.

Observation 5. The graph S(C) is split, and its clique number equals |V |.

Proof. It follows immediately from the item (ii) of Definition 4 that S is split
and ω(S)�|V |. Since W1∪...∪Wt is an independent set, any clique larger than V

should contain the whole of V and one other vertex, but such a set cannot actually
be a clique because every Ci is a proper subset of V . �

Now we can construct an example satisfying the equalities (2.2).

Example 6. Let V ={v1, ..., vn}, and let C={C1, ..., Cn} be the set of the
subsets Ci=V \{vi}. For n�6, the equalities (2.2) hold with Un=S(C).

Proof. First, assume that S(C) admits a semi-matching coloring ϕ with the
colors 1, ..., n+1. By the pigeonhole principle, we can find two vertices in W1
colored with the same color c. According to the semi-matching property, the colors
c−1, c, c+1 are forbidden for the vertices in C1, which means that C1 is a clique of
the size n−1 that is properly colored with n−2 colors; this is a contradiction.

Further, assume that S(C) admits a local coloring ψ with the colors 1, ..., λ+1,
where λ=�1.5n−0.5� is the local chromatic number of Kn. As in the previous
paragraph, we can find two vertices in every Wi colored with the same color ci, and
the colors ci−1, ci, ci+1 are forbidden for the vertices in Ci.

Case 1. If we have ci=cj for two different indexes i and j, then the colors ci−1,
ci, ci+1 are forbidden for the vertices in the whole V . Since χl(Kn)=λ, we can have
neither ci=1 nor ci=λ+1. According to Observation 1, the colors 1, ..., c−2 can
color a clique of the size at most (2c−2)/3, and the colors c+2, ..., λ+1 can color
a clique containing at most (2λ−2c+2)/3 vertices; the total number of the vertices
in V cannot exceed (2c−2)/3+(2λ−2c+2)/3=2λ/3<n, which is a contradiction.
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Case 2. Now we assume that all the colors (ci) are pairwise different. Then we
can find two pairs of indexes (i, j) for which ci and cj are consecutive colors, because
otherwise we would need a total of at least 2n−2>λ+1 colors. In other words, we
have ci+1=cj�cp=cq−1, for some indexes i, j, p, q, and hence the colors ci, ci+1,
cp, cp+1 are forbidden for the whole clique V . As we can check, the mapping

ψ−(vt)=

⎧⎪⎨
⎪⎩
ψ(vt), if ψ(vt)<ci,

ψ(vt)−1, if ci<ψ(vt)<cp,

ψ(vt)−2, if ψ(vt)>cp,

is a local coloring of the clique V with the colors 1, ..., λ−1, and, since the cases 1
and 2 cover all the possibilities, the proof is complete. �

3. The proof

In this section, we prove that the local and semi-matching coloring problems
are NP-complete in the class of split graphs. We record the formal definitions of
these questions for the ease of further reference.

Problem 7. Given: A split graph G and an integer k.
Question 1: Is χl(G)�k?
Question 2: Is χm(G)�k?

It is easy to see that both questions in Problem 7 belong to NP, and we are
going to prove their NP-hardness by constructing polynomial reductions directly
from the Boolean satisfiability problem [2]. We proceed with a lemma describing
the left extremal cases of Observation 3.

Lemma 8. Let S, C, V be as in Definition 4; assume |V |=n. Then

(i) χl(S)=1.5n−1 if, and only if, n is even and there is a permutation (v1, ..., vn)
of V such that, for every Ci, there are two consecutive elements vj , vj+1 that do not

belong to Ci;

(ii) χm(S)=n if, and only if, there is a permutation (v1, ..., vn) of V such that,

for every Ci, either v1, v2 /∈Ci or vn−1, vn /∈Ci, or else there are three consecutive

elements vj , vj+1, vj+2 that do not belong to Ci.

Proof. According to Observation 5, the clique number of S is n, so we can use
Observation 1 and get χl(S)�1.5n−1 and χm(S)�n. If these inequalities hold with
the equalities, then the vertices of V should be colored as

ϕ(v1)= 1, ϕ(v2)= 2, ϕ(v3)= 4, ϕ(v4)= 5, ..., ϕ(vn−1)= 3q−2, ϕ(vn)= 3q−1
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with q=n/2∈Z in the local case and ψ(v1)=1, ..., ψ(vn)=n in the semi-matching
case. As said in the proof of Example 6, every Wi should contain a pair of vertices
both colored with a color ci, and the colors ci−1, ci, ci+1 are forbidden for the
elements of Ci. In the local case, the colors ci−1, ci, ci+1 do always cover exactly
two consecutive vertices in v1, ..., vn, hence the condition from the item (i). In the
semi-matching case, the colors ci−1, ci, ci+1 cover three consecutive vertices, except
the possibilities ci=1 or ci=n corresponding to the vertices v1, v2 or vertices vn−1, vn
being forbidden, respectively. This proves the ‘only if’ parts of our statements, and
we can get the ‘if’ part by reversing the current argument. �

In our reductions, we use the following standard NP-complete problem.

Problem 9. (CNF-SAT.) Given: A family of variables ζ=(ζ1, ..., ζτ ) and a
family c of clauses of the form

(3.1) λ1∨...∨λk

in which every λi is either a variable in ζ or its negation. Question: Does there
exist an assignment ζ→{0, 1}n so that all clauses in c are satisfied?

The following two lemmas describe the complexity of the combinatorial prob-
lems arisen in the items (i) and (ii) of Lemma 8.

Lemma 10. For a given family F of non-empty subsets F1, ..., Ft of a finite

set V of even cardinality, it is NP-hard to determine if V admits a permutation

(v1, ..., vn) such that, for every Fi, there are two consecutive elements vj , vj+1 in Fi.

Proof. For an even integer τ , we define the set V =A∪B∪R∪X∪Y , where
A={a1, ..., aτ+1}, B={b1, ..., bτ+1}, R={r1, ..., rτ}, X={x1, ..., xτ}, Y ={y1, ..., yτ}
are pairwise disjoint sets. We define F as the family containing the set {aτ+1, bτ+1},
all the sets

{ai, bi}, {bi, xi, yi}, {xi, ri}, {yi, ri}, {xi, yi, ai+1}

for i∈{1, ..., τ} (we call them main) and also several sets of the form

(3.2) {ξi1 , bi1 , ..., ξik , bik}

with every ξj being either xj or yj ; we call the sets of the latter type optional.
The conditions imposed by the main sets say that a desired permutation should

look, up to reading it from the right to the left, like

a1, b1, z1, r1, z1, a2, b2, z2, r2, z2, ..., aτ+1, bτ+1,
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where {zj , zj}={xj , yj}. Now we take an instance of CNF-SAT as in Problem 9
and proceed with the reduction as follows. For any optional set (3.2), we take the
clause of the form (3.1) such that

λq =
{
ζiq if ξiq =xiq ,

ζiq if ξiq =yiq ,

and we identify an assignment ζj=1 to the choice zj=xj , and also ζj=0 to zj=yj ,
which certifies a desired reduction from CNF-SAT. �

Lemma 11. For a given sequence F1, ..., Ft of non-empty subsets of a finite

set V , it is NP-hard to determine if V admits a permutation (v1, ..., vn) such that,

for every Fi, either v1, v2∈Fi or vn−1, vn∈Fi, or else there are three consecutive

elements vj , vj+1, vj+2 in Fi.

Proof. The proof is similar to Lemma 10, except that we add a new symbol α
to V , and also we define the main sets as {α, a1}, {aτ+1, bτ+1}, and

{ai, bi, ri}, {ri, xi, yi}, {xi, yi, ai+1}

for all i∈{1, ..., τ}. These sets restrict our attention to the permutations

α, a1, b1, r1, z1, z1, ..., aτ , bτ , rτ , zτ , zτ , aτ+1, bτ+1,

and then the optional sets of the form

{bi1 , ri1 , ξi1 , ..., bik , rik , ξik}

correspond to the reduction from CNF-SAT given in Lemma 10. �

The description of the property

χl(S)= 1.5n−1

obtained in Lemma 8(i) is equivalent to the problem as in Lemma 10 by taking Fi

to be the complement of Ci. We have a similar situation with Lemma 8(ii) and
Lemma 11, so we arrive at the main result of this section.

Theorem 12. Questions 1 and 2 in Problem 7 are NP-complete.
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