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Estimates of p-harmonic functions in planar
sectors

Niklas L. P. Lundström and Jesper Singh

Abstract. Suppose that p∈(1,∞], ν∈[1/2,∞), Sν=
{
(x1, x2)∈R2\{(0, 0)}:|φ|< π

2ν
}
,

where φ is the polar angle of (x1, x2). Let R>0 and ωp(x) be the p-harmonic measure of
∂B(0, R)∩Sν at x with respect to B(0, R)∩Sν . We prove that there exists a constant C such
that

C−1
( |x|

R

)k(ν,p)
≤ωp(x) ≤C

( |x|
R

)k(ν,p)

whenever x∈B(0, R)∩S2ν and where the exponent k(ν, p) is given explicitly as a function of ν and
p. Using this estimate we derive local growth estimates for p-sub- and p-superharmonic functions
in planar domains which are locally approximable by sectors, e.g., we conclude bounds of the
rate of convergence near the boundary where the domain has an inwardly or outwardly pointed
cusp. Using the estimates of p-harmonic measure we also derive a sharp Phragmén-Lindelöf
theorem for p-subharmonic functions in the unbounded sector Sν . Moreover, if p=∞ then the
above mentioned estimates extend from the setting of two-dimensional sectors to cones in Rn.
Finally, when ν∈(1/2,∞) and p∈(1,∞) we prove uniqueness (modulo normalization) of positive
p-harmonic functions in Sν vanishing on ∂Sν .

1. Introduction

We study solutions of the p-Laplace equation which yields

Δpu :=∇·(|∇u|p−2 ∇u)= 0(1.1)
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when p∈(1,∞). If p=∞, then the equation can be written

Δ∞u :=
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
=0(1.2)

which is the so called ∞-Laplace equation. The p-Laplace equation arises in mini-
mization problems, nonlinear elasticity theory, Hele-Shaw flows and image process-
ing; see e.g. [45, Chapter 2] and the references therein for more on applications and
motivations.

Let Ω⊂R
n be a regular bounded domain and let f be a real-valued continuous

function defined on ∂Ω. It is well known that there exists a unique smooth function
u, harmonic in Ω, such that u=f continuously on ∂Ω. The maximum principle and
the Riesz representation theorem yield the following representation formula for u,

u(z)=
∫
∂Ω

f(w) dωz(w), whenever z ∈Ω.

Here, ωz(w)=ω(dw, z,Ω) is referred to as the harmonic measure at z associated to
the Laplace operator. As the harmonic measure allows us to solve the Dirichlet
problem, its properties are of fundamental interest in classical potential theory.

In this paper we prove estimates in planar sectors of the following p-harmonic
measure, which is a generalization of harmonic measure, related to the p-Laplace
equation.

Definition 1.1. Let G⊆R
n be a domain, E⊆∂G, p∈(1,∞) and x∈G. The

p-harmonic measure of E at x with respect to G, denoted by ωp(x)=ωp(E, x,G), is
defined as infu u(x), where the infimum is taken over the set of all p-superharmonic
functions u≥0 in G such that lim infz→y u(z)≥1, for all y∈E.

The ∞-harmonic measure is defined in a similar manner, but with p-super-
harmonicity replaced by absolutely minimizing [54, pages 173–174]. It turns out that
the p-harmonic measure in Definition 1.1 fails to be a measure but is a p-harmonic
function in Ω, bounded below by 0 and bounded above by 1. For these and other
basic properties of p-harmonic measure we refer the reader to [26, Chapter 11].

Let (r, φ) be polar coordinates for (x, y)⊂R
2 and consider the planar sector

Sν =
{

(x1, x2)∈R
2\{(0, 0)} : |φ|< π

2ν

}
, where ν≥ 1

2 ,(1.3)

having aperture π/ν and apex at the origin. Suppose that p∈(1,∞], ν∈[1/2,∞) and
let ωp(x)=ωp(∂B(0, R)∩Sν , x, B(0, R)∩Sν) be the p-harmonic measure of ∂B(0,
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R)∩Sν at x with respect to B(0, R)∩Sν . Using comparison arguments and ba-
sic boundary estimates together with certain explicit p-harmonic functions derived
in [7], [8], [9] and [55] we prove in Theorem 4.1 that

C−1
(
|x|
R

)k(ν,p)

≤ωp(x) ≤C

(
|x|
R

)k(ν,p)

,(1.4)

whenever x∈B(0, R)∩S2ν and where C depends only on ν and p. As the p-Laplace
equation is invariant under rotations, scaling and translations, Theorem 4.1 holds
for any planar sector. The exponent k(ν, p) is given by

(1.5) k(ν, p)=
(ν−1)

√
(1−2ν)(p−2)2+ν2p2+(2−p)(1−2ν)+ν2p

2(p−1)(2ν−1) ,

interpreted as a limit when ν=1/2 and p=∞ so that

(1.6) k(1/2, p)= p−1
p

and k(ν,∞)=
{

1 when 1
2≤ν≤1,

ν2

2ν−1 when 1≤ν.

Figure 1 shows the radial exponent k(ν, p) for some ν and p. Curves for ν<1
approaches zero as p→1 and 1 as p→∞. Curves for ν>1 approaches infinity as
p→1 and ν2/(2ν−1) as p→∞. Moreover, k(ν, p)→∞ as ν→∞, reflecting the case
when the sector Sν approaches a line. The asymptotic behaviour in this case is
k(ν, p)= pν

2(p−1) +O(1) which is in agreement with a related result in [35]. Further,
the case k(1/2, p) captures the rate at which the p-harmonic measure (or a positive
p-harmonic function) vanish at a halfline because S1/2=R2\{(r, φ):φ=π}. Further-
more, we retrieve the known results in the classical cases k(ν, 2)=ν and k(1, p)=1,

Figure 1. The radial exponent k(ν, p) as function of ν and p.
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of which the first corresponds to the harmonic measure (p=2) and in the second Sν

is a halfplane.
When p=2 the p-harmonic measure coincides with the famous harmonic mea-

sure and our result, expressed in probabilistic terms, answers the question; what
is the probability that a Brownian motion started at x∈Sν will first hit the part
of the boundary consisting of the arc ∂B(0, R)∩Sν? Our estimate in (1.4) implies
that the probability is comparable to (|x|/R)ν .

Our estimates for the p-harmonic measure imply local growth estimates for
p-sub- and p-superharmonic functions vanishing on a fraction of a domain contained
in, or containing, a sector. Indeed, we conclude that solutions must vanish at the
same rate as |x|k(ν,p) as x approaches the apex (Corollary 5.1). Similar growth
estimates where proved in the setting of C1,1-domains in [4] and for wider classes
of equations and other geometric settings in [2], [38]–[40], [46], [47] and [49]. An
immediate consequence of Corollary 5.1 is the boundary Harnack inequality for
p-harmonic functions in planar sectors, see (5.3). For ν 
= 1

2 such result is already
well known by [38], [40] since then Sν is a Lipschitz domain.

Consider a domain Ω⊂R2 having a sharp outwardly pointed cusp with apex
w and let u be a p-subharmonic function taking nonpositive boundary values in a
neighborhood of w. Using Corollary 5.1 we prove that then the rate of convergence
to zero, as x approaches the apex, is faster than any power of |x−w|, i.e. for any
N>0 it holds that

lim sup
x→w
x∈Ω

u(x)
|x−w|N ≤ 0,

which is a result proved already in [35, Theorem 3]. Consider now instead a domain
Ω⊂R

2 having a sharp inwardly pointed cusp at w, and let v be a p-superharmonic
function taking nonnegative boundary values in a neighborhood of w. In this case
we prove in Section 5 that the rate of convergence to zero, as x approaches the
apex, is not faster than |x−w|

p−1
p , i.e., for each ν> 1

2 it holds that

lim inf
x→w

x∈C2ν∩Ω

v(x)
|x−w|

p−1
p

> 0.

The p-harmonic measure has a probabilistic interpretation in terms of the
zero-sum two-player game tug-of-war, see [53] and [54], in which also estimates
for p-harmonic measure are proved, e.g. for porous sets. Further results in the
literature include [50] who proved estimates for p-harmonic measures in the plane,
which, together with a result in [28], yield properties of the p-Green function. Es-
timates for the p-harmonic measure of a small spherical cap and of small axially
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symmetric sets are proved in [21], [22], and in [23] estimates for the p-harmonic
measure is given of the part of the boundary of an infinite slab outside a cylinder.
In [47] estimates of p-harmonic measure, n−m<p≤∞, for sets in R

n which are close
to an m-dimensional hyperplane, 0≤m≤n−1 are proved, and in [43] it is proved
that the p-harmonic measure in R

n
+ of a ball of radius 0<δ≤1 in R

n−1 is bounded
above and below by a constant times δα, and explicit estimates for α are given. For
more on possible applications of p-harmonic measure, see e.g. [26, Chapter 11 and
Chapter 14] including a Phragmén-Lindelöf theorem and the study of quasiregular
mappings.

In Section 6 we use the estimates in Theorem 4.1 to prove Theorem 6.1 which
is an extended version of the classical result of Phragmén and Lindelöf [56]. In
particular, suppose that u is p-subharmonic in an unbounded planar domain Ω
contained in the sector Sν and suppose that lim supz→∂Ω u(z)≤0. Then either u≤0
in the whole of Ω or it holds that

lim inf
R→∞

(
1

Rk(ν,p) sup
∂B(0,R)∩Ω

u

)
> 0,

where k(ν, p) is as in (1.5). When Ω≡Sν , the above growth rate is sharp. We
remark that when ν=1 the sector Sν is a halfplane and k(1, p)=1; thus we retrieve
the classical result that p-subharmonic functions must grow at least as fast as the
distance to the boundary [41].

In connection with the above Phragmén-Lindelöf result we also prove, for p∈
(1,∞), ν∈(1/2,∞), that positive p-harmonic functions in Sν , vanishing on ∂Sν ,
are unique (modulo normalization), see Theorem 7.1. The proof of this result uses
scaling arguments and a boundary estimate from [40].

Being a generalization of maximum principles to unbounded domains the
Phragmén-Lindelöf principle [56] is undoubtedly an important result with appli-
cations in e.g. elasticity theory [29], [57] and [37]. To summarize some literature
(without giving a complete list) we mention that results of [56] were extended to
halfspaces of Rn in [3] and to general elliptic equations of second order in [24], [59]
and [27]. Uniformly elliptic equations in nondivergence form in cones were con-
sidered in [51], growth estimates of bounded solutions of quasilinear equations in
[31], [36] and for elliptic equations in sectors, see [60]. Fully nonlinear equations
were considered in [5], [18], the later in certain Lipschitz domains, and [33] con-
sidered fully nonlinear elliptic PDEs with unbounded coefficients and nonhomoge-
neous terms. Results for variable exponent p-Laplace-type equations were proved
in [1], while infinity-harmonic functions were considered in [13], [25]. In [41], a
Phragmén-Lindelöf-type theorem for n-subharmonic functions, when the boundary
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is an m-dimensional hyperplane in R
n, 0≤m≤n−1, was proved. This was ex-

tended to p-subharmonic functions, n−m<p≤∞, in [47]. In [17] it was showed
that solutions of a generalized p-Laplace equation in the upper halfplane, van-
ishing on {xn=0}, equals u(x)=xn (modulo normalization), while the growth of
solutions of the minimal surface equation over domains containing a halfplane was
considered in [44]. A Phragmén-Lindelöf theorem for a mixed boundary value prob-
lem for quasilinear elliptic equations of p-Laplace type in an open infinite circular
half-cylinder was proved in [16]. The spatial behavior of solutions of the Laplace
equation on a semi-infinite cylinder with dynamical nonlinear boundary conditions
was investigated in [37]. In halfspaces of Rn, growth estimates for subsolutions of
fully nonlinear nonhomogeneous PDEs was characterized in terms of solutions to
certain ordinary differential equations in [48]. Using this characterization, several
Phragmén-Lindelöf-type results were derived, e.g. a sharp theorem for the variable
exponent p-Laplace equation, and also sharp results for equations allowing for sub-
linear growth in the gradient. Phragmén-Lindelöf theorems for plurisubharmonic
functions on cones were proved in [52] while k-Hessian equations with lower order
terms were considered in [15]. The present paper complements the above by giv-
ing the sharp exponent k(ν, p) explicitly in case of positive p-harmonic functions in
planar sectors.

In Section 2 we summarize some well known basic definitions and properties of
solutions to the p-Laplace equation and in Sections 3 and 9 we summarize and prove
properties on explicit p-harmonic functions in planar sectors. Using these results we
state and prove our estimates of p-harmonic measure in Section 4, while in Section 5
we give Corollaries for p-sub- and p-superharmonic functions. Sections 6 and 7 is
devoted to the Phragmén-Lindelöf theorem and uniqueness of p-harmonic functions
in sectors, respectively. We end the paper by showing in Section 8 that in the case of
infinity-harmonic measure and infinity-harmonic functions then most of our results
extend to symmetric n-dimensional domains, n>2.

2. Preliminaries

In this section we state some basic definitions and results for p-harmonic mea-
sure and p-harmonic functions needed later. By Ω we denote a domain, that is, an
open connected set, by Sν we denote the planar sector as defined in (1.3), and we
let Cν denote any planar sector with opening angle π

ν . For a set E⊂R
n we let E

denote the closure and ∂E the boundary. Further, d(x,E) denotes the Euclidean
distance from x∈Rn to E, and B(z, r)={x∈R2 :d(x, z)<r} denotes the open ball
with radius r and center z. By c we denote a constant ≥1, not necessarily the
same at each occurrence, depending only on ν and p if nothing else is mentioned.
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Moreover, c(a1, a2, ..., ak) denotes a constant ≥1, not necessarily the same at each
occurrence, depending only on a1, a2, ..., ak.

We proceed with defining weak and viscosity solutions and p-harmonicity. If
p∈(1,∞), we say that u is a (weak) subsolution (supersolution) to the p-Laplacian
in a domain Ω provided u∈W 1,p

loc (Ω) and

∫
Ω

|∇u|p−2 〈∇u,∇θ〉 dx≤ (≥) 0,

whenever θ∈C∞
0 (Ω) is non-negative. A function u is a (weak) solution of the

p-Laplacian if it is both a subsolution and a supersolution. Here, and in the sequel,
W 1,p(Ω) is the Sobolev space of those p-integrable functions whose first distribu-
tional derivatives are also p-integrable, and C∞

0 (Ω) is the set of infinitely differen-
tiable functions with compact support in Ω. If p=∞, the equation is no longer of
divergence form and therefore the above definition needs to be replaced. We then
instead use the following notion of viscosity solutions. Here, and in the sequel, Δ∞
is the ∞-Laplace operator defined in (1.2).

An upper semicontinuous function u:Ω→R is a (viscosity) subsolution of the
∞-Laplacian in Ω provided that for each function ψ∈C2(Ω) such that u−ψ has a
local maximum at a point x0∈Ω, we have Δ∞ψ(x0)≥0. A lower semicontinuous
function u:Ω→R is a (viscosity) supersolution of the ∞-Laplacian in Ω provided
that for each function ψ∈C2(Ω) such that u−ψ has a local minimum at a point
x0∈Ω, we have Δ∞ψ(x0)≤0. A function u:Ω→R is a (viscosity) solution of the
∞-Laplacian if it is both a subsolution and a supersolution.

If u is an upper semicontinuous subsolution to the p-Laplacian in Ω, p∈(1,∞],
then we say that u is p-subharmonic in Ω. If u is a lower semicontinuous supersolu-
tion to the p-Laplacian in Ω, p∈(1,∞], then we say that u is p-superharmonic in Ω.
If u is a continuous solution to the p-Laplacian in Ω, p∈(1,∞], then u is p-harmonic
in Ω.

We note that for the p-Laplacian, 1<p<∞, weak solutions are also viscosity
solutions (defined as above but with Δ∞ replaced by Δp); see [32, Theorem 1.29].
Moreover, under suitable assumptions, an ∞-harmonic function is the uniform limit
of a sequence of p-harmonic functions as p→∞; see [30]. For more on weak solutions,
viscosity solutions, p-harmonicity and p-superharmonicity, see for instance [26] and
[20].

We will make use of the following nowadays well known basic properties of
p-harmonic functions:
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Lemma 2.1. Let p∈(1,∞] and suppose that u is p-superharmonic and that v

is p-subharmonic in a bounded domain Ω⊂Rn. If

lim sup
z→w

v(z)≤ lim inf
z→w

u(z)

for all w∈∂Ω, and if both sides of the above inequality are not simultaneously ∞ or

−∞, then v≤u in Ω.

Proof. If p∈(1,∞) then this follows from [26, Theorem 7.6]. For the case
p=∞ this was first proved in [30, Theorem 3.11]. A shorter proof was later given
in [6]. �

Lemma 2.2. Assume that Ω⊂R
n and that u is a p-harmonic function in Ω.

Let F :Rn→R
n be the composition of a translation, a rotation and a scaling. Define

û(x)=u(F (x)) whenever F (x)∈Ω. Then û is p-harmonic in F−1(Ω).

Proof. Follows by standard calculations. �

Lemma 2.3. Let p∈(1,∞], w∈Rn, r∈(0,∞) and suppose that u is a positive

p-harmonic function in B(w, 2r). Then there exists a constant c, depending only on

p and n, such that

sup
B(w,r)

u≤ c inf
B(w,r)

u.

Proof. For the case p∈(1,∞), see e.g. [34]. For the case p=∞ the result follows
by taking the limit p→∞ in the former case, see [42]. �

The following well known estimate tells that p-harmonic functions are Hölder
continuous up to the boundary in the setting of the rather general class of non-
tangentially accessible (NTA) domains. We will only apply the result in smooth
planar domains, and refer the interested reader to e.g. [45, Chapter 1.6] for a defi-
nition of NTA-domains.

Lemma 2.4. Assume that p∈(1,∞], Ω⊂R
n is an NTA-domain with constant

M , let w∈∂Ω, 0<r<r0 and suppose that u is a positive p-harmonic function in

Ω∩B(w, 2r), continuous on Ω∩B(w, 2r) with u=0 on ∂Ω∩B(w, 2r). Then there

exist c and α∈(0, 1], depending only on M , n and p, such that

|u(x)−u(y)| ≤ c

(
|x−y|

r

)α

sup
B(w,2r)∩Ω

u,

whenever x, y∈B(w, r)∩Ω.
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Proof. By observing that Ω is p-regular by the NTA-assumption, the lemma
follows by the same arguments as in [26, Theorem 6.44, Lemma 6.47]. The case
p=∞ is well known, see e.g. [10]. �

The following Lemma states that any positive p-harmonic function, vanishing
on a portion of the boundary of a C1,1-domain, must vanish at the same rate as
the distance to the boundary. The right inequality in Lemma 2.5 – which is an
immediate consequence of the left inequality – is usually referred to as a boundary
Harnack inequality and states that any two p-harmonic functions, vanishing on the
boundary, must vanish at the same rate.

Lemma 2.5. Let Ω∈Rn be a C1,1-domain, or equivalently a domain satisfying

the ball condition with radius rb, p∈(1,∞], n≥2, w∈∂Ω and 0<r<rb. Suppose that

u and v are positive p-harmonic functions in Ω∩B(w, r), satisfying u=0=v on

∂Ω∩B(w, r). Then there exists c=c(n, p) such that

c−1 d(x, ∂Ω)
r

≤ u(x)
u(ar(w)) ≤ c

d(x, ∂Ω)
r

and c−1u(ar(w))
v(ar(w)) ≤

u(x)
v(x) ≤ c

u(ar(w))
v(ar(w)) ,

whenever x∈Ω∩B(w, r/c). Here, ar(w) is a point in Ω satisfying d(ar(w), w)=r/c

and d(ar(w), ∂Ω)=r/c.

Proof. For p∈(1,∞) we refer to [4, Lemma 3.1 and Lemma 3.3]. See also
[38]–[40] for similar as well as stronger estimates in more general geometries. When
p=∞ the proof is similar, but then the comparison argument uses cones (which are
∞-harmonic) in place of the function φp(x) defined on [4, page 286], and therefore
the exterior ball condition is not needed. See also [14] for the case p=∞. �

3. Explicit p-harmonic functions in sectors

In this section we are gonna prove the following Lemma, which is similar to
[50, Lemma 4.1], using some explicit p-harmonic functions derived in [7], [8], [9] and
[55]. The result will be of crucial importance when we prove our main results in
Sections 4-8.

Lemma 3.1. Let p∈(1,∞] and ν∈[1/2,∞). Then there exists a positive

p-harmonic function uν,p :Sν→R of the form uν,p(x)=rkfν,p(φ), where the expo-

nent k=k(ν, p) is given by (1.5). The exponent k is non-decreasing in ν, increasing

in p for ν∈[1/2, 1), and decreasing in p for ν>1. Moreover, the function fν,p(φ) is

continuous, differentiable and satisfies

i) fν,p(± π
2ν )=f ′

ν,p(0)=0,
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ii) 0≤fν,p(φ)≤1, |f ′
ν,p(φ)|≤c when φ∈[− π

2ν ,
π
2ν ],

iii) fν,p(φ)≥c−1 when φ∈[− π
4ν ,

π
4ν ] and

. |f ′
ν,p(φ)|≥c−1 when φ∈[− π

2ν ,
π
2ν ]\[− π

4ν ,
π
4ν ].

Proof. We begin by noting that standard calculations yield (see Appendix 9.3)
dk/dν≥0 whenever ν∈[1/2,∞) and p∈(1,∞]. Moreover, dk/dp>0 for ν∈[1/2, 1),
and dk/dp<0 for ν>1, whenever p∈(1,∞). The rest of the proof is split into four
different cases; p=2, 2<p, p=∞ and 1<p<2.

Case 1: p=2. In this case (1.1) reduces to the Laplace equation which yields,
in polar coordinates,

urr+
1
r
ur+

1
r2uφφ =0.

Thus, the solution u(r, φ)=rν cos(νφ) has the desired properties since k(ν, p)=ν.

Case 2: 2<p<∞. In polar coordinates the p-Laplace equation, with b=1/(p−
2), p 
=2, yields (see Appendix 9.1 for a derivation),

(b+1)u2
rurr+

b

r2

(
urru

2
φ+u2

ruφφ

)
+(b+1)

r4 u2
φuφφ+ b

r
u3
r+(b−1)

r3 uru
2
φ+ 2

r2uruφurφ =0.

(3.1)

We are searching for solutions of the form u(r, φ)=rkf(φ), where f(φ)∈C2 and k

are to be determined. Inserted in 3.1 we obtain

(3.2)
[
(b+1) (f ′)2+bk2f2] f ′′+(2k+bk−1) kf(f ′)2+(bk+k−1) k3f3 =0.

Equation (3.2) can be solved (for details check [8, Lemma 2]) to yield

(3.3) fν,p(φ)= c

(
1− cos2 θν,p(φ)

ak

) k−1
2

cos θν,p(φ),

where a=(p−1)/(p−2) and θν,p is a certain continuous, strictly increasing func-
tion of φ and c=c(ν, p) is chosen so that 0≤fν,p≤1. When |φ|< π

2ν , we have (See
Appendix 9.3),
(3.4)

φ= θν,p(φ)−
(

1− 1
k

) √
ak√

ak−1

[
arctan

(
λν,p tan θν,p(φ)

2

)
+arctan

(
1

λν,p
tan θν,p(φ)

2

)]
,
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where λν,p=
√
ak−1√
ak+1 . The function θν,p is chosen so that it maps the interval [− π

2ν ,
π
2ν ]

to [−π
2 ,

π
2 ], and this condition determines the radial exponent k. More precisely,

the condition that determines k is given by

π

ν
=φ

(π
2

)
−φ

(
−π

2

)
=π

(
1−

(
1− 1

k

) √
ak√

ak−1

)
.

Solving for k=k(ν, p) we obtain the exponent given by (1.5) in the introduction.
Moreover, fν,p

(
± π

2ν
)
=0 and ak>1 implying fν,p(φ)>0 for |φ|< π

2ν .
We also need to estimate the derivative of fν,p. Differentiation of fν,p in (3.3)

and simplifying (see [8] page 143, and/or Appendix 9.4), yield

f ′
ν,p(φ)=−k c

(
1− cos2 θν,p(φ)

ak

) k−1
2

sin θν,p(φ).(3.5)

Since ak>1 we have that |f ′
ν,p(φ)|≤c(ν, p) for all φ∈[− π

2ν ,
π
2ν ]. Also f ′

ν,p(φ)=0
will only occur when θ=nπ, n∈Z, corresponding to φ= nπ

ν . Hence the only place
where f ′

ν,p is zero in Sν is in the radial direction along φ=0. It follows that we can
conclude, by continuity of f ′

ν,p which holds since ak>1, the existence of a constant
c=c(ν, p) such that |f ′

ν,p(φ)|≥c−1 whenever φ∈[− π
2ν ,

π
2ν ]\[− π

4ν ,
π
4ν ]. It also follows

that fν,p(φ)≥c−1 whenever φ∈[− π
4ν ,

π
4ν ]. The proof when 2<p<∞ is complete.

Case 3: p=∞. Letting a=1 when p=∞, the function from Case 2 is im-
mediately extended to the case when p=∞. Indeed, in this case the separation
equation (3.2) boils down to

(3.6) (f ′)2f ′′+(2k−1) kf(f ′)2+(k−1) k3f3 =0,

which has solution

fν,∞(φ)= c

(
1− cos2 θ(φ)

k

) k−1
2

cos θ(φ)

with radial exponent

k(ν,∞)=
{

1 when 1
2≤ν≤1,

ν2

2ν−1 when 1≤ν.

This case is studied in detail in [7] and fν,∞ is infinitely differentiable on
[− π

2ν , 0)∪(0, π
2ν ] and differentiable at φ=0. It follows that uν,∞=rkfν,∞ satisfies the

required conditions, except that it is not immediate that the function is ∞-harmonic
in the viscosity sense in the entire sector. This is because at points where f ′

ν,∞(φ)=0
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we have f ′′
ν,∞(φ)=−∞, which can be seen from (3.6), and fν,∞(φ) is thus not

C2 there. For ν=1, it was shown in [12, appendix I] that r−1/3f1,∞ is indeed
∞-harmonic in the viscosity sense. However, the exact same proof works for all ν≥
1
2 ; or more generally, for ∞-harmonic functions with polar representation rkf(φ)≥0,
with k ·(1−k)≤0 and where f∈C1 is C2 for φ 
=0, has a local maximum at φ=0
and satisfies limφ→0 f

′′(φ)=−∞. To complete the proof of the lemma when p=∞
we observe that statements i)–iii) follow in a similar way as in the case 2<p<∞.

Case 4: 1<p<2. We are going via a stream function technique to handle this
situation. Indeed, we will use the stream function for the case 2<p<∞ to find our
desired solution for 1<p<2. We begin by the following lemma from [9] for which
we present a proof in Appendix 9.5.

Lemma 3.2. Let u(r, φ)=rkf(φ) be p-harmonic in sector Sν , k>0, and 2<
p<∞. Then there exists a q-harmonic stream function v(r, φ)=rλg(φ) in Sν , where

λ=(p−1)(k−1)+1, q=p/(p−1), and

g(φ)=− 1
λ
f ′(φ)

(
k2f(φ)2+f ′(φ)2

) p−2
2 .

The function g(φ) is periodic whenever f(φ) is.

To apply Lemma 3.2 it is convenient to view the p-values at hand as conjugate
to those in Case 2, i.e. when 2<p<∞. Hence, fix q∈(1, 2) and denote the conjugate
index by p=q/(q−1)∈(2,∞). Substituting p=q/(q−1) into λ=(p−1)(k−1)+1 and
exercising some algebra gives

λ

(
ν,

q

q−1

)
=

(ν−1)
√

(1−2ν)(q−2)2+ν2q2+(2−q)(1−2ν)+ν2q

2(q−1)(2ν−1) = k(ν, q).

Therefore, the same expression for the exponent continues to hold also for q∈(1, 2).
Next, we consider the function fν,p, defined in Case 2, in the extended domain φ∈
[− π

2ν ,
π
ν ]. Note that such extension is immediate (interpreting lim θ→±π

θ∈(−π,π)
φ(θ)=±π

ν

in expression (3.4)) and that the function (r, φ)→rkfν,p(φ) is still p-harmonic in
the extended domain. Now, let ūν,p(x1, x2)=rkfν,p(φ) for r>0 and φ∈[0, πν ]. As
we shall see, the stream function of ūν,p is, up to rotation, the desired function.
In particular, put fν,p(φ) from (3.3) and f ′

ν,p(φ) from (3.5) in Lemma 3.2, using
p=q/(q−1) and some algebra we arrive at

gν,q(φ)= k (ν, p)p−1

λ
(
ν, q

q−1

) (
1− cos2(θ)

ak(ν, p)

) (k(ν,p)−1)(p−1)
2

sin(θ)
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= k(ν, p)p−1

k(ν, q)

⎛
⎝1− cos2(θ)

1
2−q

(
λ(ν, q

q−1 )(q−1)+2−q
)
⎞
⎠

λ
(
ν,

q
q−1

)
−1

2

sin(θ)

=
k(ν, q

q−1 )
1

q−1

k(ν, q)

(
1− cos2(θ)

q−1
2−qk(ν, q)+1

) k(ν,q)−1
2

sin(θ).

Similarly, from the proof of Lemma 9.2 in Appendix 9.5 we get

g′ν,q(φ)= k(ν, p)fν,p(φ)
(
k(ν, p)2fν,p(φ)2+f ′

ν,p(φ)2
) p−2

2

= k

(
ν,

q

q−1

) 1
q−1

(
1− cos2(θ)

q−1
2−qk(ν, q)+1

) k(ν,q)−1
2

cos(θ).

Now since limν→1/2 k(ν, q)= q−1
q ≤k (ν, q) and 0< (q−1)2

(2−q)q approaches zero only when
q→1, we conclude

0<ˇ< 1− cos2(θ)
q−1
2−qk(ν, q)+1

< 1,(3.7)

whenever q∈(1, 2), where ˇ depends only on p, and can be taken to be increasing
in p. Therefore, |gν,q|≤c(ν, p), |g′ν,q|≤c(ν, p).

Now let f̃ν,p(φ)=gν,q
(
φ+ π

2ν
)
. Then, since the p-Laplace equation is invari-

ant under rotations (Lemma 2.2), u(x1, x2)=rk(ν,q)f̃ν,p(φ) is a positive q-harmonic
function in Sν satisfying the desired boundary conditions. Moreover, f̃ ′

ν,q(φ) is
continuous by (3.7) and only zero for φ=0 when restricting to Sν . Therefore, we
conclude that |f̃ ′

ν,p(φ)|≥c−1 whenever φ∈[− π
2ν ,

π
2ν ]\[− π

4ν ,
π
4ν ]. It also follows that

f̃ν,p(φ)≥c−1 whenever φ∈[− π
4ν ,

π
4ν ]. This completes the proof for the case 1<p<2

and hence also the proof of Lemma 3.1. �

4. Estimates for p-harmonic measure

We will now state our growth estimate for p-harmonic measure in planar sec-
tors. We postpone the proof to the end of the section.

Theorem 4.1. Suppose that p∈(1,∞], ν∈[1/2,∞), R>0 and Sν⊂R
2 is the

sector defined in (1.3). Let k(ν, p) be the exponent in (1.5) and let ωp(x) be the

p-harmonic measure of ∂B(0, R)∩Sν at x with respect to B(0, R)∩Sν . Then there

exists c=c(ν, p) such that

c−1
(
|x|
R

)k(ν,p)

≤ωp(x) ≤ c

(
|x|
R

)k(ν,p)

,
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whenever x∈B(0, R)∩S2ν .

We remark that the upper bound of Theorem 4.1 holds also in B(0, R)∩Sν

which follows from a comment in the end of the proof. By Harnack’s inequality in
Lemma 2.3 the lower bound also holds for any x∈B(0, R)∩Sν but then the constant
depends on the distance from x to ∂Sν . Furthermore, by carefully tracing constants
in the proof it can be shown that the final constant c(ν, p) in Theorem 4.1 can be
chosen independent of p if p is large, and the case p=∞ in Theorem 4.1 can be
derived by taking the limit of the estimates for finite p.

For a final remark, let ω̄p be the p-harmonic measure of ∂B(0, R)∩S2ν at x

with respect to B(0, R)∩Sν . Then there exists c=c(ν, p) such that

c−1
(
|x|
R

)k(ν,p)

≤ ω̄p(x) ≤ c

(
|x|
R

)k(ν,p)

,(4.1)

whenever x∈B(0, R/2)∩S2ν . To see that (4.1) holds we first observe that the upper
bound is immediate from the comparison principle and Theorem 4.1. To prove the
lower bound we apply the boundary Harnack inequality in Lemma 2.5 to ωp and
ω̄p near the points of intersection of ∂B(0, R/2) and Sν and conclude that both
functions vanishes at the same rate in a neighbourhood of these points. This, to-
gether with an application of Hölder continuity up to the boundary (Lemma 2.4)
near the point (r, φ)=(R, 0) and Harnack’s inequality toward the points of intersec-
tions, applied to ω̄p, ensures c(ν, p)ω̄p≥ωp on ∂B(0, R/2)∩Sν . We now apply the
comparison principle in B(0, R/2)∩Sν and Theorem 4.1 to obtain the lower bound.

Proof of Theorem 4.1. Let u(x)=u(r, φ)=rkfν,p(φ) be the p-harmonic function
from Lemma 3.1 and observe that R−ku(x) is p-subharmonic in Sν with boundary
values R−ku(x)=0 on ∂Sν and R−ku(x)≤1 on ∂B(0, R)∩Sν , see ii) in Lemma 3.1.
This together with Definition 1.1 of the p-harmonic measure ensure that

lim sup
x→y

R−ku(x)≤ lim inf
x→y

ωp(x), ∀y ∈ ∂(B(0, R)∩Sν),

and hence by the comparison principle (Lemma 2.1) we obtain

R−ku(x)≤ωp(x), ∀x∈B(0, R)∩Sν .

Lemma 3.1 iii) now implies

ωp(x)≥R−ku(x)=R−krkfν,p(φ)=
(
|x|
R

)k

fν,p(φ)≥ 1
c

(
|x|
R

)k

,(4.2)

whenever x∈B(0, R)∩S2ν , which establishes the lower bound.
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We will now prove the upper bound. As ωp≈1 at points near the intersections
of ∂B(0, R) and ∂Sν where u≈0 we chose to make comparison on a smaller domain
not including these points. Let z∈∂Sν be the midpoint on the line from the origin
to (R,− π

2ν ). By the upper boundary growth estimate for p-harmonic functions in
Lemma 2.5 there exists a constant c=c(p) such that

ωp(x)≤ c
d(x, ∂Sν)

R
ωp (aR(w))≤ c

d(x, ∂Sν)
R

whenever x∈B(z,R/c)∩Sν .

(4.3)

Using the fact that f ′
ν,p(φ) does not vanish near ∂Sν (Lemma 3.1 iii)), we also see

that, for c=c(ν, p),

c u(x)R−k ≥ d(x, ∂Sν)
R

whenever x∈B(z,R/c)∩Sν .(4.4)

Inequalities (4.3) and (4.4) implies

ωp(x)≤ cR−ku(x) whenever x∈B(z,R/c)∩Sν .(4.5)

Next, we also see from (4.4) and continuity of u that, for c=c(ν, p),

cR−ku(ξ)≥ 1,(4.6)

where ξ=(Rξ, φξ) is the point on the boundary of B(z,R/c) with d(ξ, ∂Sν)=R/c.
Since u and ωp are continuous in Sν∩B(0, R) and 0<ωp<1 in Sν∩B(0, R) we

conclude from (4.5) and (4.6) that

lim sup
x→y

ωp(x)≤ lim inf
x→y

cR−ku(x), ∀x∈Sν∩B(0, R), y ∈ ∂Γ.(4.7)

Here, Γ⊂Sν is the open set bounded by the curve starting at the origin and reaching
z in the r-direction, then proceeding along a straight line to ξ and from there to
∂B(0, R) in r-direction, and proceeding in φ-direction to the point (R, 0). The rest
of the curve, back to the origin, is the mirror of the above curve in the line φ=0
(see Figure 2). Using (4.7) and the comparison principle (Lemma 2.1) we conclude
that

ωp(x)≤ cR−ku(x), ∀x∈Γ.

Since B(0, R)∩S2ν⊂Γ, at least if |φξ|≥ π
4ν which we may assume, it follows that

ωp(x)≤ cR−ku(x)= cR−krkfν,p(φ)≤ c

(
|x|
R

)k

,

which establishes the upper bound in B(0, R)∩S2ν . Observing that B(0, R/2)∩
Sν⊂Γ and that ωp≤1 we can conclude that the upper bound holds also whenever
x∈B(0, R)∩Sν . This together with the lower bound in (4.2) completes the proof of
Theorem 4.1. �
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Figure 2. Geometry in the proof of Theorem 4.1.

We remark that in the case when ν∈[1/2, 1] and p=∞, giving k(ν,∞)=1, we
can prove Theorem 4.1 using the fact that infinity harmonic functions obey the
comparison with cones principle, see [19]. Indeed, the lower bound can be proved
by making comparison with a cone function placed inside of Sν , so that the circular
base of the cone touches the boundary of Sν at the origin (always possible since
ν≤1). The upper bound follows by comparison with a cone function placed so that
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its tip is at the origin. This argument for proving an upper bound works for any
ν∈[1/2,∞) but it is optimal only when ν≤1.

We also remark that for the cases when p∈(1,∞) and ν∈(1
2 ,∞) we may prove

Theorem 4.1 by scaling and an application of the boundary Harnack inequality in
Lemma 7.2 (given in Section 7 below) by taking v(x) as the p-harmonic function in
Lemma 3.1 and u(x) as the p-harmonic measure. This works because the sector Sν

is a Lipschitz domain as long as ν 
= 1
2 .

5. Estimates for p-sub- and p-superharmonic functions

In this section we state and prove some Corollaries of Theorem 4.1 giving
estimates of p-sub- and p-superharmonic functions in domains related to planar
sectors.

Corollary 5.1. Suppose that p∈(1,∞], ν∈[1/2,∞), R>0, Ω∈R2 is a domain,

w∈∂Ω and that Ω∩B(w,R) is contained in a planar sector with apex w and aperture

angle π
ν . Let u be a p-subharmonic function in Ω, satisfying u≤0 on ∂Ω∩B(w,R).

Then

u(x)≤ cM

(
|x−w|
R

)k(ν,p)
(5.1)

whenever x∈Ω∩B(w,R), M=max
{

0, sup∂B(w,R)∩Ω u
}

and where c=c(ν, p) is the

constant in Theorem 4.1.

Suppose now instead that Cν∩B(w,R) is contained in Ω, where Cν is a planar

sector with apex w and aperture angle π
ν , and that v is a nonnegative p-superharmonic

function in Ω, satisfying v≥0 on ∂Ω∩B(w,R). Then

c−1m

(
|x−w|
R

)k(ν,p)
≤ v(x)(5.2)

whenever x∈B(w,R/2)∩C2ν , m=inf∂B(w,R)∩C2ν v and where c=c(ν, p) is the con-

stant in inequality (4.1).

Proof. We begin by proving (5.1). Thanks to Lemma 2.2 we change coordinates
so that w=(0, 0) and the domain Ω is contained in Sν . Let ωp be the p-harmonic
measure in Theorem 4.1. We can conclude that

Mωp(x)≤ cM

(
|x|
R

)k(ν,p)



158 Niklas L. P. Lundström and Jesper Singh

whenever x∈B(0, R)∩Ω where M=max
{

0, sup∂B(0,R)∩Ω u
}
. Moreover, Mωp is

p-harmonic with boundary values dominating u on ∂(B(0, R)∩Ω). Therefore, by
the comparison principle in Lemma 2.1 we have

u(x)≤Mωp(x)

whenever x∈B(0, R)∩Ω and the first inequality in Corollary 5.1 follows by returning
to the original coordinates.

To prove (5.2), change coordinates so that w=(0, 0), Cν=Sν , and let ω̄p be the
p-harmonic measure in (4.1). We can conclude that

c−1m

(
|x|
R

)k(ν,p)

≤mω̄p(x)

whenever x∈B(0, R/2)∩S2ν where m=inf∂B(0,R)∩S2ν v. Since m−1v is p-super-
harmonic and dominates ω̄p on ∂(B(0, R)∩Sν) it follows by Definition 1.1 that

mω̄p(x)≤ v(x)

whenever x∈B(0, R)∩Sν . The second inequality in Corollary 5.1 now follows by
returning to the original coordinates. �

Corollary 5.1 implies growth estimates for p-sub- and p-superharmonic func-
tions near the boundary of a large class of planar domains. Consider e.g. a domain
Ω⊂R

2 having a sharp outwardly pointed cusp with apex w. Then, in a neighbor-
hood of w, the domain will be contained in a planar sector with small aperture
angle and apex at w, and as the neighborhood shrinks the aperture angle of the
sector also shrinks, i.e. ν→∞ in Corollary 5.1. Since k(ν, p)→∞ as ν→∞ it fol-
lows from (5.1) that if a p-subharmonic function u(x) takes nonpositive boundary
values in the neighborhood of the apex w, then the rate of convergence to zero, as
x approaches the apex, is faster than any power of |x−w|. Indeed, for any N>0 it
holds that

lim sup
x→w
x∈Ω

u(x)
|x−w|N ≤ 0,

which is a result proved already in [35, Theorem 3]. Using (5.2) in Corollary 5.1
we now derive a similar estimate for p-superharmonic functions in domains Ω⊂R

2

having a sharp inwardly pointed cusp at w. Indeed, in such case the domain will, in
a neighborhood of w, contain a planar sector Cν with large aperture angle (ν close
to 1

2 in Corollary 5.1) and as the neighborhood shrinks we may let ν→ 1
2 implying

k(ν, p)→ p−1
p . It follows from (5.2) that if a positive p-superharmonic function v(x)
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takes nonnegative boundary values in the neighborhood of the apex w, then the rate
of convergence to zero, as x approaches the apex, is slower than |x−w|N whenever
N> p−1

p . Going to the limit with N implies that, for each ν> 1
2 ,

lim inf
x→w

x∈C2ν∩Ω

v(x)
|x−w|

p−1
p

> 0.

Using Corollary 5.1 we can also derive the boundary Harnack’s inequality for
positive p-harmonic functions vanishing on a portion of the boundary of a planar
sector: Suppose that p∈(1,∞], ν∈[1/2,∞), R>0 and w∈∂Sν . Suppose also that
u1 and u2 are positive p-harmonic functions in Sν∩B(w, 2R), satisfying u1=0=u2
on ∂Sν∩B(w, 2R). Then, if w is the apex of the sector there exists c=c(ν, p) such
that, for i=1, 2,

c−1
(
|x|
R

)k(ν,p)

≤ ui(x)
ui(R, 0) ≤ c

(
|x|
R

)k(ν,p)

and c−1u1(R, 0)
u2(R, 0) ≤

u1(x)
u2(x) ≤ c

u1(R, 0)
u2(R, 0) ,

(5.3)

whenever x∈S2ν∩B(0, R/2), and where we have used the polar coordinates notation
ui(x)=ui(r, φ). To derive (5.3) from Corollary 5.1 we observe that Lemma 2.5 and
Harnack’s inequality (Lemma 2.3) imply the existence of a constant c=c(ν, p) such
that, for i=1, 2,

c−1 ui(R, 0)≤ inf
∂B(0,R)∩S2ν

ui and sup
∂B(0,R)∩Sν

ui ≤ c ui(R, 0).

The left inequality in (5.3) states that any positive p-harmonic function, vanishing
on the boundary of the sector, must vanish at the same rate as the distance to the
apex to the power of k(ν, p). The right inequality in (5.3) – which is an immediate
consequence of the left inequality – is usually referred to as a boundary Harnack
inequality and states that any two p-harmonic functions must vanish at the same
rate. If w is not the apex of the sector Sν then in a neighbourhood of w the
boundary is a line and the estimates in (5.3) are well known to hold with k(ν, p)=1.
In particular, such result is given in Lemma 2.5 and was proved in [4] for C1,1-
domains and in [38]–[40] for Lipschitz and Reifenberg flat doamins.

6. A sharp Phragmén-Lindelöf theorem

In this section we will prove sharp lower growth estimates of p-subharmonic
functions in planar sectors. To state our theorem, let Ω⊂R

2 be a domain contained
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in a planar sector. Assume without loss of generality (thanks to Lemma 2.2) that
the sector is Sν given in (1.3) and define

M(R)= sup
∂B(0,R)∩Ω

u,

for R>0. Using the estimates of p-harmonic measure in Theorem 4.1 we obtain the
following version of the Phragmén-Lindelöf theorem:

Theorem 6.1. Suppose that p∈(1,∞], ν∈[1/2,∞) and that u is a p-subhar-

monic function in a domain Ω⊂Sν satisfying

lim sup
x→y

u(x)≤ 0, ∀y ∈ ∂Ω.

Then either u≤0 in Ω or it holds that

lim inf
R→∞

M(R)
Rk(ν,p) > 0,

where k(ν, p) is the exponent in (1.5).

In case Ω≡Sν then the p-harmonic function from Lemma 3.1 shows that the
growth estimate in Theorem 6.1 is sharp. The proof uses the following well known
Phragmén-Lindelöf principle which can be found in a more general form in [26,
11.11], and is a key to the study of the behaviour of M(R).

Lemma 6.2. Let p∈(1,∞], ν∈[1/2,∞), u be as in Theorem 6.1, and suppose

for each R>0 that v(x) is p-superharmonic in Sν with

lim
x→y

v(x)= 1, ∀y ∈ ∂B(0, R)∩Sν .

Then either u≤0 in Sν or it holds that

lim inf
R→∞

(M(R)v(x))> 0,

for any x∈Sν .

Proof. This follows from The Phragmén-Lindelöf principle [26, 11.11]. �

Proof of Theorem 6.1. The result follows from our estimates in Theorem 4.1
by taking v in Lemma 6.2 as the p-harmonic measure. �
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7. Uniqueness of p-harmonic functions in sectors

It is well known that a positive p-harmonic function in the halfspace R
n
+, van-

ishing on the boundary, must be a multiple of the distance to the boundary. In case
of n=2, the following theorem generalizes this result to planar sectors.

Theorem 7.1. Let p∈(1,∞), ν∈(1/2,∞) and suppose that u is a positive

p-harmonic function in the sector Sν . Suppose also that u=0 on ∂Sν . Then there ex-

ists a constant c such that u=c rkfν,p(φ) where k=k(ν, p) is as in (1.5) and rkfν,p(φ)
is the p-harmonic function in Lemma 3.1.

The proof uses the following boundary estimate from [40], valid for p∈(1,∞),
stating that the ratio of two positive p-harmonic functions, both vanishing on a
portion of a Lipschitz boundary, is Hölder continuous near the boundary. The
reason for excluding ν=1/2 is that then Sν fails to be Lipschitz.

Lemma 7.2. Let Ω⊂R
n be a bounded Lipschitz domain with constant M .

Given p∈(1,∞), w∈∂Ω, and 0<r≤r0 for some r0<∞, suppose that u and v are

positive p-harmonic functions in Ω∩B(w, r). Assume also that u and v are con-

tinuous in Ω∩B(w, r) and that u=0=v on Ω∩∂B(w, r). Under these assumptions

there exist c∈(1,∞) and α∈(0, 1), both depending only on p, n and M , such that if

y1, y2∈Ω∩B(w, r/c), then∣∣∣∣log u(y1)
v(y1)

−log u(y2)
v(y2)

∣∣∣∣≤ c

(
|y1−y2|

r

)α

.

Proof. See [40, Theorem 2]. �

Proof of Theorem 7.1. Let Sν and u be as in the theorem and consider the
bounded sector Ω=Sν∩{r<1}. It is clear that Ω is a bounded Lipschitz domain
for any ν∈(1

2 ,∞). Define the scaled function u1(x)=u(Rx) for some R>>1. Then,
since u is p-harmonic in B(0, R)∩Sν it follows by Lemma 2.2 that u1 is p-harmonic
in Ω. Let v1 be the explicit p-harmonic function in Lemma 3.1, scaled in the same
way as u. Then v1 is also p-harmonic in Ω. As Ω is a bounded Lipschitz domain
with Lipschitz constant M depending only on ν, and since u1 and v1 are zero on
the sides of the sector Ω, we deduce from Lemma 7.2, with ω=0, and r=r0=1, that∣∣∣∣log u1(y1)

v1(y1)
−log u1(y2)

v1(y2)

∣∣∣∣≤ c (|y1−y2|)α ,

whenever y1, y2∈Ω∩B(0, 1/c) and c=c(ν, p). Let x1, x2 be arbitrary points in Sν .
Pick R so large that x1, x2∈Sν∩B(0, R/c) where c is from the above display. In
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the scaled domain, these points are x1=x1/R, x2=x2/R and they end up in Ω∩
B(0, 1/c). Thus

∣∣∣∣log u1(x1)
v1(x1)

−log u1(x2)
v1(x2)

∣∣∣∣≤ c (|x1−x2|)α = c

(
|x1−x2|

R

)α

.

As R can be taken arbitrary large we may send R→∞ and thereby deduce, since
also x1 and x2 were arbitrary, that u1/v1 must be constant and therefore u1=c v1
for some constant c. Scaling back concludes the proof. �

We remark that since Lemma 7.2 is valid in R
n it implies, through the above

scaling argument, the uniqueness (modulo normalization) of positive p-harmonic
functions in n-dimensional cones.

8. Extension to n-dimensional cones when p=∞

Assume n≥2 and define the n-dimensional cone Sn
ν as a domain being rota-

tionally invariant around the x1 axis and of which its intersection with any two-
dimensional plane containing the x1 axis equals Sν (modulo rotation). Recall that
the infinity-Laplace equation is invariant under rotations, scaling and translations
(Lemma 2.2) and hence the following corollary applies to any n-dimensional cone.
In the case p=∞ we have the following extension of our Theorems from planar
domains into R

n:

Corollary 8.1. Suppose that n≥2, ν∈[1/2,∞) and that p=∞. Then Theo-

rem 4.1, Corollary 5.1 and Theorem 6.1 generalize to the corresponding n-dimen-

sional setting. In particular, these results hold also when the two-dimensional cone

Sν is replaced by the n-dimensional cone Sn
ν , Ω⊂R

n, and k(ν, p)=k(ν,∞) is as

in (1.6).

Proof. Corollary 5.1 and Theorem 6.1 follow from Theorem 4.1 by standard
arguments which are valid in Rn as well. Therefore, we focus on the extension of
Theorem 4.1 from two to n-dimensions.

Suppose that ω=ω∞ satisfies the assumptions in the theorem but in n-dimen-
sions, n>2. Then ω is ∞-harmonic in B(0, R)∩Sn

ν . We will show that by symme-
try, ω is also ∞-harmonic in the two-dimensional sector B(0, R)∩Sν and therefore
the result remains. Assume that ω∈C2(Ω), otherwise, we switch to a C2-function
through the definition of viscosity solutions. By symmetry of the bounded do-
main B(0, R)∩Sn

ν , symmetry of the boundary conditions, and by the fact that
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the ∞-harmonic measure is unique, we conclude that ωx3 =ωx4 =...=ωxn =0 on the
two-dimensional cone B(0, R)∩Sν and hence

Δ∞ω=
n∑

i,j=1
ωxiωxjωxixj =ω2

x1
ωx1x1 +2ωx1ωx2ωx1x2 +ω2

x2
ωx2x2 =0.

Thus, ω is ∞-harmonic in B(0, R)∩Sν⊆R
2 and we conclude Corollary 8.1. �

9. Appendices

Here we will present additional calculations, which are mainly based on the pa-
pers [7], [8], [9], [55], clarifying the theory being used to prove Lemma 3.1. We begin
with deriving the p-Laplace equation (3.2) in polar coordinates, which brings us to
the separation equation (3.1). Then we will develop a stream function technique in
order to handle the situation when 1<p<2.

9.1. Transforming the p-laplacian to polar coordinates

The p-Laplace equation (1.1) can be transformed to polar coordinates by
putting x(r, φ)=r cosφ, y(r, φ)=r sinφ and hence u(x, y)=u[x(r, φ), y(r, φ)]. In-
troduce ψ=|∇u|2 and note that when ψ 
=0 the equation is equivalent to

∇2u+ (p−2)
2ψ ∇ψ ·∇u=0.

Trivial calculations yield ur=∂ru= ∂u
∂r =cosφ∂u

∂x +sinφ∂u
∂y and uφ=∂φu= ∂u

∂φ =
−r sinφ∂u

∂x +r cosφ∂u
∂y . Put

P =
(

cosφ − sinφ

sinφ cosφ

)
giving P−1 =PT =

(
cosφ sinφ

− sinφ cosφ

)
,

and thus in operator matrix notation(
∂r
1
r∂φ

)
=PT

(
∂x
∂y

)
and

(
∂x
∂y

)
=P

(
∂r

1
r∂φ

)
.

It follows that

ψ= |∇u|2 =
(
P

(
∂ru
1
r∂φu

))T

P

(
∂ru
1
r∂φ

)
=PTP

(
∂ru,

1
r
∂φu

)(
∂ru
1
r∂φ

)
=u2

r+ 1
r2u

2
φ,
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giving ψr=2ururr− 2
r3u

2
φ+ 2

r2uφurφ and ψφ=2ururφ+ 2
r2uφuφφ. Therefore

∇ψ ·∇u=
(
P

(
∂rψ
1
r∂φψ

))T

P

(
∂ru
1
r∂φ

)
=PTP

(
∂rψ,

1
r
∂φψ

)(
∂ru
1
r∂φ

)
=ψrur+

1
r2ψφuφ

=2u2
rurr−

2
r3uru

2
φ+ 2

r2uruφurφ+ 2
r2uruφurφ+ 2

r4u
2
φuφφ.

Recalling the Laplace operator in polar coordinates,

Δ(r,φ) = ∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂2

∂φ2 ,

we obtain, for 1<p<∞,

∇2u+ (p−2)
2ψ ∇ψ ·∇u=urr+

1
r
ur+

1
r2uφφ

+ (p−2)
2(u2

r+ 1
ru

2
φ)

(
2u2

rurr−
2
r3uru

2
φ+ 2

r2uruφurφ+ 2
r2uruφurφ+ 2

r4u
2
φuφφ

)
=0.

Put, when p 
=2, p−2=1/b, multiply by 2ψ=2(u2
r+ 1

r2u
2
φ) and simplify to finally

arrive at the p-Laplace equation in polar coordinates:

(b+1)u2
rurr+

b

r2

(
urru

2
φ+u2

ruφφ

)
+(b+1)

r4 u2
φuφφ+ b

r
u3
r+(b−1)

r3 uru
2
φ+ 2

r2uruφurφ =0.

(3.1)

9.2. Searching for solutions of the form u(r, φ)=rkf(φ)

We are searching for solutions of the form u(r, φ)=rkf(φ), where f(φ)∈C2

and k are to be determined. Differentiation with respect to r and φ yields ur=
krk−1f(φ), urr=k(k−1)rk−2f(φ), uφ=rkf ′(φ) and uφφ=rkf ′′(φ), which inserted
in Equation (3.2) yield

(3.2)
[
(b+1) (f ′)2+bk2f2] f ′′+(2k+bk−1) kf(f ′)2+(bk+k−1) k3f3 =0,

which is our separation equation (3.2). We are initially interested in the case where
p>2, f(φ)>0 and k>0, which is case α in [8]. Following [8] there are three cases to
consider ak>1, ak=1 and 0<ak<1. Here a=(p−1)/(p−2). First, we have a look
at the case ak>1 and later (if needed) the cases ak=1, 0<ak<1. The equation (3.1)
can be solved (for details check [8, pages 141-143]) to yield

(9.1)

⎧⎪⎪⎨
⎪⎪⎩

φ= θ∗+
∫ θ

θ∗

a−cos2 θ′

ak−cos2 θ′ dθ
′

f(φ)=c
(
1− cos2 θ(φ)

ak

) k−1
2 cos θ(φ)
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for some constant c>0. For convenience further ahead we put c=(ak−1
ak )− k−1

2 giving
fν,p(0)=1. Note that φ(θ) is monotonously increasing since φ′(θ)= a−cos2 θ

ak−cos2 θ>0,
which holds since ak>1 and a>1. Hence there exists an inverse θ=φ−1, which is
continuous since φ(θ) is continuous.

9.3. Finding the radial exponent k=k(ν, p)

To find the radial exponent k=k(ν, p) we need to solve the parametric equa-
tion (9.1) and from that determine k. To do so put θ∗=0 in (9.1) and observe
that

a−cos2 θ′

ak−cos2 θ′ = ak−cos2 θ′−a(k−1)
ak−cos2 θ′ =1− a(k−1)

ak−cos2 θ′ ,

which transforms the integrand to

φ= θ−a(k−1)
∫ θ

0

dθ′

ak−cos2 θ′ .

Using partial fraction decomposition yields

φ= θ−a(k−1)
∫ θ

0

dθ′

ak−cos2 θ′ = θ− a(k−1)
2
√
ak

(∫ θ

0

dθ′√
ak+cos θ′

+
∫ θ

0

dθ′√
ak cos θ′

)
.

Utilizing the tan(θ/2) substitution and simplifying we arrive at

φ= θ− a(k−1)√
ak

√
ak−1

[
arctan

(
λ tan θ

2

)
+arctan

(
1
λ

tan θ

2

)]

= θ−(1− 1
k

)
√
ak√

ak−1

[
arctan

(
λ tan θ

2

)
+arctan

(
1
λ

tan θ

2

)]
,

where
λ=

√
ak−1√
ak+1

and 1
λ

=
√
ak−1√
ak−1

.

Define

φ̄=φ
(π

2

)
−φ

(
−π

2

)
= π

2 −(1− 1
k

)
√
ak√

ak−1

[
arctan

(
λ tan π

4

)
+arctan

(
1
λ

tan π

4

)]

−
(
−π

2 −(1− 1
k

)
√
ak√

ak−1

[
arctan

(
λ tan(−π

4 )
)
+arctan

(
1
λ

tan(−π

4 )
)])

=π−(1− 1
k

) 2
√
ak√

ak−1

[
arctan (λ)+arctan

(
1
λ

)]
.
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Now d
dλ (arctan(λ)+arctan(1/λ))= 1

1+λ2 − 1
1+λ2 =0, and hence arctan(λ)+arctan(1/

λ) is constant. Therefore λ=±1 determines the function values for λ>0 and λ<0
respectively, so that

arctan (λ)+arctan
(

1
λ

)
=

⎧⎨
⎩

π
2 , λ≥0

−π
2 , λ<0.

Since ak>1 we must have λ>0 and therefore φ̄ becomes

φ̄=φ
(π

2

)
−φ

(
−π

2

)
=π

(
1−

(
1− 1

k

) √
ak√

ak−1

)
.

Note that φ
(
π
2
)
= φ̄

2 , φ
(
−π

2
)
=− φ̄

2 , and also f
(

φ̄
2

)
=f

(
− φ̄

2

)
=0 which suits our

purpose perfectly.
Recall the sector Sν from (1.3), having aperture π/ν and apex at the origin. In

Sν we can now introduce our continuous p-harmonic function uν,p(x, y)=rkfν,p(φ),
where fν,p can be written as

(3.3) fν,p(φ)= c

(
1− cos2 θν,p(φ)

ak

) k−1
2

cos θν,p(φ),

where, for convenience, we take c=(ak−1
ak )− k−1

2 . Note that since ak>1, fν,p(φ) is
bounded by a constant, depending only on ν and p, when φ∈(− π

2ν ,
π
2ν ).

When |φ|< π
2ν , we have that

φ= θν,p(φ)−
(

1− 1
k

) √
ak√

ak−1

[
arctan

(
λν,p tan θν,p(φ)

2

)
+arctan

(
1

λν,p
tan θν,p(φ)

2

)]
.

The condition that determines the radial exponent k=k(ν, p) is given by

π

ν
=φ

(π
2

)
−φ

(
−π

2

)
=π

(
1−

(
1− 1

k

) √
ak√

ak−1

)
.

Recalling that a=(p−1)/(p−2) and solving for k we obtain two roots

(9.2) k1(ν, p)=
√

(1−2ν)(p−2)2+ν2p2(ν−1)+(2−p)(1−2ν)+ν2p

2(p−1)(2ν−1)

and

k2(ν, p)=
√

(1−2ν)(p−2)2+ν2p2(1−ν)+(2−p)(2ν−1)+ν2p

2(p−1)(2ν−1) .
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To decide which of these two solutions to choose for k we put p=2 giving k1(ν, 2)=ν

and k2(ν, 2)=ν/(ν−1). Therefore, k(ν, p)=k1(ν, p) is the true solution (it matches
k(ν, 2)=ν and k2(ν, 2) fails to be positive).

Differentiating (9.2) with respect to ν gives

∂k(ν, p)
∂ν

= ν
p(ν−1)

√
(ν−1)2p2+4(2ν−1)(p−1)+(ν−1)2p2+2(2ν−1)(p−1)
(p−1)(2ν−1)2

√
(ν−1)2p2+4(2ν−1)(p−1)

,

which is easily seen to be greater than zero if ν≥1. For ν∈[ 12 , 1) ∂k
∂ν is nonnegative if

(ν−1)2p2≥−p(ν−1)
√

(ν−1)2p2+(8ν−4)p−8ν+4, which leads us to the inequality
4(p−1)(2ν−1)≥0. Hence ∂k

∂ν ≥0, for all p∈(1,∞) and ν∈[ 12 ,∞). When p=∞ the
conclusion follows by differentiation on (1.6).

Given the expression (9.2) for k we can now check if the case ak>1 gives the
desired p-harmonic function whenever ν∈[ 12 ,∞) and p∈(2,∞). Since k is increasing
in ν we only have to check the worst case scenario i.e. ak(1

2 , p)=
p−1
p−2

p−1
p =1+ 1

p2−2p>

1, for all p>2. Therefore, it is enough to consider the case ak>1.
Differentiating (9.2) with respect to p gives

(9.3) ∂k(ν, p)
∂p

=(1−ν)
(ν−1)

√
(ν−1)2p2+4(2ν−1)(p−1)+ν2p+(2ν−1)(p−2)

2(2ν−1)(p−1)2
√

(ν−1)2p2+4(2ν−1)(p−1)
.

Putting ∂k
∂p =0 gives either ν=1 or (ν−1)

√
(ν−1)2p2+4(2ν−1)(p−1)+ν2p+(2ν−

1)(p−2)=0. The latter holds when ν=0 (which is not allowed), ν=1/2 or when p=1
(of which none are allowed). Going to the limit in (9.3) yields limν→ 1

2

∂k
∂p = 1

p2 >0,
for all p>1. Since ∂k

∂p is zero only when ν=1 it is sufficient to investigate two
points ν1∈[1/2, 1) and ν2∈(1,∞) in order to know the sign of the derivative. If
ν1=3/4 then the numerator of (9.3) is equal to

√
p2+32p−32+17p−16

64 >0 for all p>1.
Similarly, if ν2=2 then the numerator of (9.3) is equal to 6−7p−

√
p2+12p−12<0

for all p≥4
√

3−6 and thus also for p>1. We conclude that k(ν, p) is increasing in
p for all ν∈[1/2, 1), decreasing in p for ν>1 and constant if ν=1 (k(1, p)=1).

9.4. Computing the derivative f ′(φ)

We also need an estimation of the derivative of f(φ). Differentiation of f in
Equation (9.1) and simplifying yields

df

dθ
= c

(
1− cos2 θ

ak

) k−3
2

(
cos2 θ
a

−1
)

sin θ.(9.4)
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Since θ∗=0 we have φ(θ)=
∫ θ

0
a−cos2 θ′

ak−cos2 θ′ dθ
′, and differentiation gives

dφ

dθ
= d

dθ

(∫ θ

0

a−cos2 θ′

ak−cos2 θ′ dθ
′

)
= a−cos2 θ

ak−cos2 θ .(9.5)

Now df
dθ = df

dθ
dθ
dφ by the chain rule and recall the fact that φ is monotone, continuous,

differentiable and hence invertible. For simplicity let φ=g(θ) be the right hand side
of the integrand in (9.1) so that θ=g−1(φ). By the inverse function theorem [58,
Theorem 9.24] dg−1

dφ exists and once again by the chain rule 1= dg−1

dφ
dφ
dθ = dθ

dφ
dφ
dθ . Thus

dθ
dφ =(dφdθ )−1= ak−cos2 θ

a−cos2 θ and by using (9.4) with (9.5) we arrive at

df

dφ
= df

dθ

dθ

dφ

(3.5)

= c

(
1− cos2 θ

ak

) k−3
2

(
cos2 θ
a

−1
)

ak−cos2 θ
a−cos2 θ sin θ=−ck

(
1− cos2 θ

ak

) k−1
2

sin θ.

9.5. A little taste of stream functions

Here we will present a simple stream function technique for partial differential
equations of the form

∇·
(
F (|∇u|)
|∇u| ∇u

)
=0,

where F (t)>0 is monotonically increasing and continuously differentiable on (α, β)∈
Ω⊂R

2. Applying this technique to the p-harmonic equation will reveal a q-harmonic
stream function, where p and q are conjugate exponents (1/p+1/q=1). This has
been described earlier in [9] but for the convenience of the reader we will give a
short presentation of it here.

Consider Ω⊂R
2, u∈C2(Ω) and assume also that 0≤α<|∇u|<β in Ω for con-

stants α and β. Now if

(9.6) ∇·
(
F (|∇u|)
|∇u| ∇u

)
=0,

it follows that
∂

∂x

(
F (|∇u|)
|∇u|

∂u

∂x

)
= ∂

∂y

(
−F (|∇u|)

|∇u|
∂u

∂y

)
.

Define ψy=
(

F (|∇u|)
|∇u| ux

)
and ψx=

(
−F (|∇u|)

|∇u| uy

)
. Since F (t), ux∈C1(Ω) and |∇u|>

0 it follows that ψx and ψy are integrable, thus ψ=
∫
ψy dy+C(x) and ψ=

∫
ψx dx+
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D(y), for some functions C(x) and D(y). Further since |∇u|>0 both ∂
∂x (|∇u|) and

∂
∂y (|∇u|) exists, hence ψ∈C2(Ω).

Now |∇ψ|= |F (|∇u|)|
|∇u| (u2

x+u2
y)

1
2 =F (|∇u|) and |∇u|=F−1(|∇ψ|), since F (t) is

strictly increasing and hence invertible, therefore

ux = F−1(|∇ψ|)
|∇ψ| ψy and uy =−F−1(|∇ψ|)

|∇ψ| ψx.

Now, since uxy=uyx we deduce

(9.7) ∇·
(
F−1(|∇ψ|)

|∇ψ| ∇ψ

)
= F−1(|∇ψ|)

|∇ψ|

(
∂

∂x
x̂+ ∂

∂y
ŷ

)(
∂ψ

∂x
x̂+ ∂ψ

∂y
ŷ

)

= F−1(|∇ψ|)
|∇ψ|

(
∂2ψ

∂x∂y
− ∂2ψ

∂y∂x

)
=0

in Ω. Conversely if we begin with ψ satisfying (9.7) and proceed similarly we will
find u satisfying (9.6). Equations (9.6) and (9.7) is said to constitute a reciprocal
pair of equations. Also

∇u·∇ψ= F−1(|∇ψ|)
|∇ψ|

(
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ

)
·
(
∂ψ

∂x
x̂+ ∂ψ

∂y
ŷ

)

= F−1(|∇ψ|)
|∇ψ|

(
∂ψ

∂y

∂ψ

∂x
− ∂ψ

∂x

∂ψ

∂y

)
=0,

so the gradient of ψ is perpendicular to the streamlines of u. Thus streamlines of
u are level curves of ψ and vice versa. In fluid mechanics ψ is called the stream
function corresponding to the potential u (or conversely), see [11]. Let 1<p<∞ and
consider ∇·(|∇u|p−2∇u)=0 so that F (t)=tp−1. We then have t=F−1(s)=s

1
p−1 , and

the corresponding reciprocal equation

∇·
(
|∇ψ|

2−p
p−1 ∇ψ

)
=0.

Since p and q are conjugate exponents we have q=p/(p−1) and the reciprocal
equation becomes

∇·
(
|∇ψ|q−2 ∇ψ

)
=0.

Thus, the reciprocal of the p-harmonic equation in the plane is the q-harmonic
equation, where 1/p+1/q=1. The above discussion will lead to the result below (it
is sometimes presented as a definition), which is proven in [9]:
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Lemma 9.1. Let p∈(1,∞) and let u be p-harmonic (u not constant) in a

simply connected domain Ω⊂R2. Then there exists a q-harmonic function v∈C1(Ω),
where 1/p+1/q=1, such that ⎧⎨

⎩
vx=−|∇u|p−2uy

vy=|∇u|p−2ux.

Both u and v have locally Hölder continuous gradients. The zeroes of ∇u and ∇v

are isolated in Ω. Streamlines of u are level lines of v and vice versa.

For any vector, define operator T :R2→R
2 by T

(
a

b

)
=
(
−b

a

)
. According to

Lemma 9.1 we then have

(9.8) ∇v= |∇u|p−2 T (∇u)= |∇u|p−1 T

(
∇u

|∇u|

)
.

Hence |∇v|=|∇u|p−1 and |∇v|q=|∇u|p. Let us find stream functions v to our radial
function u=rkf(φ) in polar coordinates. The below result is established in [9] and
a complex version can be found in [55].

Lemma 9.2. Let u(r, φ)=rkf(φ) be p-harmonic in the sector Sν , k>0, and
suppose that p∈(2,∞). Then there exists a q-harmonic stream function v(λ, φ)=
rλg(φ), where λ=(p−1)(k−1)+1, q=p/(p−1), and

g(φ)=− 1
λ
f ′(φ)

(
k2f(φ)2+f ′(φ)2

) p−2
2 .

The function g(φ) is periodic whenever f(φ) is.

Proof. Assume u(r, φ)=rkf(φ) to be p-harmonic in Sν , and k>0. The nabla
operator in polar coordinates gives

∇u=
(

cosφ − sinφ

sinφ cosφ

)(
∂r
1
r∂φ

)
rkf(φ)= rk−1 (kf(φ)e(φ)+f ′(φ)d(φ)) ,

where e(φ)=
(

cosφ
sinφ

)
and d(φ)=

(
− sinφ

cosφ

)
. Now, substituting

|∇u|= rk−1
√

(k2f(φ)2+f ′(φ)2)

into (9.8), we obtain

|∇u|p−1T

(
∇u

|∇u|

)
= r(k−1)(p−1) (k2f(φ)2+f ′(φ)2

) p−1
2 T

(
kf(φ)e(φ)+f ′(φ)d(φ)√

k2f(φ)2+f ′(φ)2

)



Estimates of p-harmonic functions in planar sectors 171

=
r(k−1)(p−1) (k2f(φ)2+f ′(φ)2

) p−1
2√

k2f(φ)2+f ′(φ)2
(−f ′(φ)e(φ)+kf(φ)d(φ)) .

Now we search for a stream function of the form v=rλg(φ) such that

∇v= rλ−1 (λg(φ)e(φ)+g′(φ)d(φ))

holds. It is convenient to separate the direction from the modulus, i.e.,

∇v= rλ−1
√
λ2 (g(φ)2+g′(φ)2) λg(φ)e(φ)+g′(φ)d(φ)√

λ2 (g(φ)2+g′(φ)2)
.

Equation (9.8) and the fact that |∇v|=|∇u|p−1 give the following system of equa-
tions ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rλ−1
√

λ2g(φ)2+g′(φ)2=r(k−1)(p−1) (k2f(φ)2+f ′(φ)2
) p−1

2 ,

λg(φ)√
λ2g(φ)2+g′(φ)2 =− f ′(φ)√

k2f(φ)2+f ′(φ)2 ,

g′(φ)√
λ2g(φ)2+g′(φ)2 = kf(φ)√

k2f(φ)2+f ′(φ)2 .

Hence λ−1=(p−1)(k−1) and the other conditions yield

(9.9)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ2g(φ)2+g′(φ)2=
(
k2f(φ)2+f ′(φ)2

)p−1
,

λg(φ)=−f ′(φ)
(
k2f(φ)2+f ′(φ)2

) p−2
2 ,

g′(φ)=kf(φ)
(
k2f(φ)2+f ′(φ)2

) p−2
2 .

Clearly λ=(p−1)(k−1)+1 and g(φ)=− 1
λ
f ′(φ)

(
k2f(φ)2+f ′(φ)2

) p−2
2 . We remark

that a straightforward calculation verifies that the system (9.9) is identical to the
separation equation (3.2), which f(φ) is known to satisfy. �
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