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Yagita’s counter-examples and beyond

Sanghoon Baek and Nikita A. Karpenko

Abstract. A conjecture on a relationship between the Chow and Grothendieck rings for the
generically twisted variety of Borel subgroups in a split semisimple group G, stated by the second
author, has been disproved by Nobuaki Yagita in characteristic 0 for G=Spin(2n+1) with n=8
and n=9. For n=8, the second author provided an alternative simpler proof of Yagita’s result,
working in any characteristic, but failed to do so for n=9. This gap is filled here by involving a
new ingredient – Pieri type K-theoretic formulas for highest orthogonal grassmannians. Besides,
a similar counter-example for n=10 is produced. Note that the conjecture on Spin(2n+1) holds
for n up to 5; it remains open for n=6, n=7, and every n≥11.

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1. Introduction

Let X be a smooth variety (over a field of arbitrary characteristic). Consider
the Grothendieck ring K(X) of X and its filtration by codimension of support of
coherent sheaves:

0 =K(X)(dimX+1) ⊂K(X)(dimX) ⊂ ...⊂K(X)(1) ⊂K(X)(0) =K(X),
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called the topological filtration or the coniveau filtration. We consider the associated
graded ring

GK(X)=
dimX⊕
i=0

K(X)(i/i+1), where K(X)(i/i+1) :=K(X)(i)/K(X)(i+1).

Let CH(X) be the Chow ring of X. There is a canonical surjective graded ring
homomorphism

(1.1) ϕ : CH(X)−→GK(X),

mapping the class in CHi(X) of a closed subvariety in X of codimension i to the
class of its structure sheaf in the quotient GiK(X)=K(X)(i/i+1). The morphism
ϕ commutes with pull-backs, push-forwards, and Chern classes of the respective
cohomology theories. Moreover, by the Riemann-Roch theorem, the kernel of the
ith homogeneous component

ϕi : CHi(X)−→GiK(X)

is annihilated by (i−1)!.
Let G be a split semisimple group and let E be a generic G-torsor, i.e., the

generic fiber of the quotient map GL(N)→GL(N)/G induced by an embedding
G↪→GL(N) for some N≥1. For the twisted by E variety X of Borel subgroups in
G, the second author conjectured:

Conjecture 1.2. ([7, Conjecture 1.1]) For X as above, the homomorphism

(1.1) is an isomorphism.

Note that since the group G is split, it contains a Borel subgroup B. For
any choice of Borel B, the variety of all Borel subgroups in G is isomorphic to the
quotient G/B and the variety X is isomorphic to E/B.

By [12, Theorem 3.1], the statement of Conjecture 1.2 for a given G is equivalent
to absence of torsion in the connective K-theory of X. Also note that by [8, Lemma
4.2], Conjecture 1.2 is equivalent to the same statement with the Borel subgroups
replaced by any conjugacy class of special parabolic subgroups in G, where an
algebraic group P is called special if any P -torsor over any base field extension is
trivial.

In [8], Conjecture 1.2 has been confirmed for simple groups G of type A and
C. Moreover, by [7, Theorem 1.2], Conjecture 1.2 holds for a wider class of groups
G including special orthogonal groups as well as the exceptional groups of types
G2, F4, and simply connected E6. Finally, by [9, Theorem 3.1], Conjecture 1.2
holds for G=Spin(2n+1) with n≤5. Note that for any n≥1, the statement of
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Conjecture 1.2 on Spin(2n+1) (which is a simply connected group of type Bn) is
equivalent to its statement on Spin(2n+2) (a simply connected group of type Dn+1),
see Proposition 2.16.

In this paper we work with the group G=Spin(2n+1) for larger n. A generic
G-torsor E yields a generic quadratic form q of dimension 2n+1 with trivial dis-
criminant and Clifford invariant (defined as the Brauer class of the even Clifford
algebra of q). The twisted by E variety X of an appropriate conjugacy class of spe-
cial parabolic subgroups in G is identified with the highest orthogonal grassmannian
of q.

Counter-examples to Conjecture 1.2 have been constructed with G=Spin(17)
and G=Spin(19) by N. Yagita in [19]. Later, Yagita’s counter-example for Spin(17)
has been modified, simplified, and extended to the base field of arbitrary character-
istic in [11]. However, an attempt to treat Spin(19) failed at that time.

In the present paper, we successfully treat Spin(19) by involving a new ingredi-
ent – a Pieri type formula for K-theory of highest orthogonal grassmannians. The
Pieri formula (3.12) we need is formulated in [4, Theorem 1.2] in a combinatorial
way. To avoid combinatorial computations, we reprove it using a technique of par-
tially split generic forms, see the proof of Lemma 3.10. The Pieri formula is used
in Lemma 3.24 as well.

We also do a similar treatment for Spin(21) thus showing the failure of Con-
jecture 1.2 for this group. (The corresponding Pieri formula (3.15) is involved in
Lemmas 3.14 and 3.25.) In other terms, combined with the previously available
results, we show

Theorem 1.3. Let X be the highest orthogonal grassmannian of a generic

quadratic form q of dimension 17, 19 or 21 with trivial discriminant and Clifford

invariant. Then the canonical surjective homomorphism ϕ:CH(X)→GK(X) is not

an isomorphism.

Recall that Conjecture 1.2 on Spin(2n+1) holds for n up to 5. By Theorem 1.3
it fails for 8≤n≤10. However, it remains widely open for every of the remaining
values of n. One of the obstacles to extend the counter-examples to n=11 is the
“drop” to 25 of the torsion index of Spin(23): the torsion indexes of Spin(19) and
Spin(21) are 24 and 25, see [16]. (The similar drop for Spin(19) was also the origin
of the difficulties with this case.) Generally speaking, it seems that every n needs
an individual treatment. However, since the next drop occurs with Spin(35) only,
all 11≤n≤16 can probably be treated in a common way.

We do expect that the conjecture fails for every n≥11. However, the situation
with the pairs n=6 and n=7 looks completely misty.
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For the proof of Theorem 1.3, following the approach of [11], we provide certain
elements in the Chow groups of the highest orthogonal grassmannians, which are
not divisible by 2, whereas their images under ϕ are.

2. Preliminaries

In this section we collect some basic results on the Chow and the Grothendieck
rings of highest orthogonal grassmannians. For details and the general theory we
refer the reader to [5], [11], and [17]. In the last part of the section, we discuss
the equivalence between Conjecture 1.2 for Spin(2n+1) and for Spin(2n+2); in the
course of this discussion it is also demonstrated how information on a generic object
can serve to gain some information on a more general one – see Lemma 2.15.

2a. Chow ring of highest orthogonal grassmannians

For an integer n≥1, let q be a generic (2n+1)-dimensional quadratic form over
a field F of trivial discriminant and Clifford invariant corresponding to a generic
Spin(2n+1)-torsor. The highest orthogonal grassmannian Xn of q is the variety of
its n-dimensional totally isotropic subspaces.

We have dimXn=n(n+1)/2. The index indXn of Xn (defined as the greatest
common divisor of the degrees of closed points on Xn) coincides with the torsion
index of Spin(2n+1), determined by Totaro in [16]. In particular, we have

(2.1) indX8 =24, indX9 =24, indX10 =25.

Let ˛Xn be the base change of Xn to an algebraic closure ¸F of F and let ¸Yn

be the base change of the quadric Yn of q to ¸F . Consider the projective bundle
π : P→˛Xn associated with the tautological vector bundle on ˛Xn and the projection
π′ : P→¸Yn. For i=0, ..., n, let li be the class in CH(¸Yn) of a projective i-dimensional
subspace on ¸Yn and let ei∈CHi(˛Xn) be the image of ln−i under the composition of
the pullback of π′ and the push-forward of π. Then, the Chow group CH(˛Xn) is
free with basis given by the products

∏
i∈I ei, where I runs over the subsets of the

set {1, ..., n}. In particular, both groups CHdim ˛Xn(˛Xn) and CHdim ˛Xn−1(˛Xn) are
cyclic generated by

(2.2) p :=
n∏

i=1
ei and l :=

n∏
i=2

ei

respectively.
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The Chow ring CH(˛Xn) is generated by e1, ..., en subject to the relations

(2.3) e2
i −2ei−1ei+1+2ei−2ei+2−...+(−1)i−12e1e2i−1+(−1)ie2i =0

for all i≥1, where ei :=0 for i>n. In particular, for n≤10 we have the following
relations:

(2.4)
e2
1 = e2, e4

1 =2e1e3−e4,

e8
1 ≡ 2(e3e5−e2e6+e1e7)−e8 (mod 22), e16

1 ≡ 2(e7e9−e6e10) (mod 22).
Let ci be the Chern class of the dual of the (rank n) tautological vector bundle

on Xn. As the Clifford invariant of q is trivial, by [5, Exercise 88.14] there is
an element e∈CH1(Xn) with c1=2e. (As the group CH1(Xn) is torsion free, the
element e is uniquely defined.) Consider the restriction map

res : CH(Xn)−→CH(˛Xn).

Since the map res commutes with Chern classes, by [5, Proposition 86.13] we have
res(ci)=2ei for all 1≤i≤n and res(e)=e1.

For a smooth quasi-projective variety X, we consider the total cohomological
Steenrod operation S : Ch(X)→Ch(X), where Ch(X):=CH(X)/2 CH(X) denotes
the modulo 2 Chow ring of X. (The Steenrod operation in characteristic 2 has
recently been constructed in [15].) For any i≥0, we write Si : Ch∗(X)→Ch∗+i(X)
for the ith component of S, which corresponds to the Steenrod operation Sq2i on
mod 2 cohomology. The image of an element x∈CH(X) under the map CH(X)→
Ch(X) will be denoted by x̄.

The values of Steenrod operations on Chern classes have been computed in
[18] (see also [1, Théorème 7.1]). In [11, Proposition 3.1] only the linear part of the
formula is indicated. In fact, there is also a quadratic part, but it is irrelevant for
our purposes.

Lemma 2.5. ([18], [1, Théorème 7.1]) For i≥0, let c̄i be the image in Chi(Xn)
of the ith Chern class ci∈CHi(Xn) of the dual of the (rank n) tautological vector

bundle on Xn. Then, for any j≥0,

Sj(c̄i)=
(
i−1
j

)
c̄i+j+...,

where ... stands for a linear combination of c1ci+j−1, ..., cicj .

In particular, by Lemma 2.5, we have

(2.6)
S(c̄2)= c̄2+c̄3+..., S(c̄3)= c̄3+c̄5+...,

S(c̄6)= c̄6+c̄7+c̄10+c̄11+..., S(c̄7)= c̄7+c̄9+c̄11+c̄13+...,

where c̄i=0 for i>n. Besides, since ē∈Ch1(Xn), we have

(2.7) S(ē)= ē+ē2.
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2b. Grothendieck ring of highest orthogonal grassmannians

For a smooth variety X, let K̃(X) denote the (extended) Rees ring of the
Grothendieck ring K(X) with respect to the topological filtration on K(X), i.e.,

K̃(X)=
⊕
i∈Z

K̃i(X), where K̃i(X)=K(X)(i)t−i

for a variable t, where K(X)(i) :=K(X) for i<0 (see [2, §4.5] for the definition of the
extended Rees ring). We view K̃(X) as a subring of the Laurent polynomial ring
K(X)[t, t−1]. Note that K̃(X) is a graded ring, K̃i(X) is its degree i component.
The degree of t∈K̃−1(X) is −1 and for any i∈Z the degree of any element of

K(X)(i) ⊂K(X)= K̃0(X)

is 0.
We have GK(X)=K̃(X)/tK̃(X). We also have K̃(X)/I(X)=GK(X)/2GK

(X), where I(X) is the ideal of K̃(X) generated by t and 2.
To avoid the minus sign, we sometimes write u instead of t−1. Note that

u �∈K̃(X).
As in §2a, let Xn be the highest orthogonal grassmannian of a generic quadratic

form of dimension 2n+1 of trivial discriminant and Clifford invariant. Given i≥0,
similarly to §2a, we now write ci∈K(Xn)(i) for the K-theoretic Chern class of the
dual of the tautological vector bundle on Xn and we also write ei∈K(˛Xn)(i) for the
image of ln−i∈K(¸Yn)(n+i−1) under the composition

π∗ ¨ (π′)∗ : K(¸Yn)(n+i−1) −→K(P)(n+i−1) −→K(˛Xn)(i).

As the homomorphism ϕ in (1.1) commutes with Chern classes, we have ϕ(ci)=ci
and ϕ(ei)=ei modulo K(Xn)(i+1) and K(˛Xn)(i+1), respectively. We write p and
l for the classes of

∏n
i=1 ei and

∏n
i=2 ei in K(˛Xn)(dim ˛Xn) and K(˛Xn)(dim ˛Xn−1),

respectively. In particular, we have

(2.8) K(˛Xn)(
n2+n

2 ) =Z·p and K(˛Xn)(
n2+n−2

2 ) =Z·p⊕Z·l.

Since the Clifford invariant of q is trivial, we have

(2.9) K(Xn)=K(˛Xn)

by [14]. In addition, the following relations hold:

(2.10) K(Xn)(1) =K(˛Xn)(1) and K(Xn)(i) ⊂K(˛Xn)(i)
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for any i≥2. We shall still write ci for the image of ci∈K(Xn)(i) under the re-
striction map in (2.10) and write e∈K(Xn)(1) for the element e1∈K(˛Xn)(1). Note
that in general, the (injective) restriction map K(Xn)(i)→K(˛Xn)(i) is not an iso-
morphism. However, a restriction-corestriction argument shows that (indXn)·
K(˛Xn)(i)⊂K(Xn)(i), so that

(2.11) (indXn)·K̃(˛Xn)⊂ K̃(Xn).

We shall need [11, Lemma 4.1]. A typo (some plus sign in place of minus)
made there is corrected here:

Lemma 2.12. ([11, Lemma 4.1]) For any i≥0, the difference

(2ei−ei+1)−ci

is a sum of monomials in c1, ..., cn of degrees greater than or equal to i+1, where
the degree of cj for any j≥0 is defined to be j. In particular, the difference

2ei−ei+1, lying a priori in K(˛Xn)(i), actually lies in K(Xn)(i) and 2ei−ei+1=
ci in K(Xn)(i/i+1).

2c. Relation between Spin(2n+1) and Spin(2n+2)

Given any n≥1, we are going to show that Conjecture 1.2 with G=Spin(2n+1)
is equivalent to the same conjecture with G=Spin(2n+2). This statement has
already been mentioned in [11, §1] but no proof was provided.

Before proving the equivalence, let us mention that the genericity of q in The-
orem 1.3 is only used for determination of the index of the variety X. So, the
assumption that q is generic can be replaced by the assumption on the value of
the index. Then it is also not needed to require the triviality of the discriminant
because any quadratic form of odd dimension is similar to a quadratic form of triv-
ial discriminant which has the same highest orthogonal grassmannians. So, we will
actually prove the following stronger result:

Theorem 2.13. For n=8, 9, 10, let X=Xn be the highest orthogonal grass-

mannian of a non-degenerate quadratic form q of dimension 2n+1 with trivial

Clifford invariant. If indX is as in (2.1), then ϕ : CH(X)→GK(X) is not an

isomorphism.

This stronger result is easier to use for producing the counter-examples to
Conjecture 1.2 with G=Spin(2n+2).
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Indeed, any Spin(2n+2)-torsor E (over a field) yields a non-degenerate
quadratic form q of dimension 2n+2 with trivial discriminant and Clifford invari-
ant. The highest orthogonal grassmannian of q consists of two connected compo-
nents each of which is isomorphic to X :=E/P for an appropriately chosen spe-
cial parabolic subgroup P⊂G. Besides, X is isomorphic to the highest orthogonal
grassmannian X ′ of any non-degenerate (2n+1)-dimensional subform q′ of q, [5,
Proposition 85.2]. The Clifford invariant of q′ coincides with the Clifford invariant
of q which is trivial. We also have indX ′=indX and, if E is generic, this is the
torsion index of Spin(2n+2). By [16], the torsion index of Spin(2n+2) coincides
with the torsion index of Spin(2n+1). It follows that Theorem 2.13 applies to X ′

and we get

Theorem 2.14. For n=8, 9, 10, let X be a connected component of the highest

orthogonal grassmannian of a generic quadratic form q of dimension 2n+2 with

trivial Clifford invariant. Then ϕ : CH(X)→GK(X) is not an isomorphism. In

particular, Conjecture 1.2 fails for G=Spin(2n+2).

In order to prove the equivalence between Spin(2n+1) and Spin(2n+2) cases
for arbitrary n≥1, we first deduce another consequence of Conjecture 1.2 with
G=Spin(2n+1):

Lemma 2.15. Assume that for some n≥1, Conjecture 1.2 holds for Spin(2n+
1). Let X be the highest orthogonal grassmannian of a non-degenerate (2n+1)-
dimensional quadratic form q and let ci∈CHi(X) for i=1, ..., n be the ith Chern

class of the tautological vector bundle on X. Assume that c1 is divisible by 2 and that

the ring CH(X) is generated by e:=c1/2 along with c2, ..., cn. Then ϕ : CH(X)→
GK(X) is an isomorphism.

Proof. Since c1 is divisible by 2, the Clifford invariant of q is trivial, [5, Exercise
88.14(1)]. We consider the group G=Spin(2n+1) over the field of definition of q.
We choose an embedding G↪→GL(N) with some N≥1. Let q̃ be the quadratic form,
given by the generic fiber of the quotient map

f : GL(N)−→Q :=GL(N)/G,

and let X̃ be the highest orthogonal grassmannian of q̃. The smooth variety Q has
a rational point x such that the fiber of f over x is a Spin(2n+1)-torsor that yields
q, see [13, §3]. Therefore we have a specialization homomorphism CH(X̃)→CH(X)
which is a homomorphism of graded rings mapping for every i the ith Chern class
of the tautological vector bundle on X̃ to ci. The specialization map K(X̃)→K(X)
is an isomorphism. Moreover, since the rings CH(X̃) and CH(X) are generated by
Chern classes (the element e is also the Chern class of a line bundle), the topological
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filtrations on both K(X̃) and K(X) coincide with the gamma-filtrations ([6, Proof
of Theorem 3.7]) implying that the specialization map is an isomorphism of rings
with filtrations. It follows that the specialization map GK(X̃)→GK(X) is an
isomorphism. From the commutative square

CH(X̃) iso−−−−→ GK(X̃)⏐⏐	onto
⏐⏐	iso

CH(X) ϕ−−−−→ GK(X)

we conclude that the bottom map is an isomorphism. �

Proposition 2.16. For any n≥1, Conjecture 1.2 with G=Spin(2n+1) is equiv-
alent to the same conjecture with G=Spin(2n+2).

Proof. Assume that Conjecture 1.2 with G=Spin(2n+1) holds. To prove Con-
jecture 1.2 with G=Spin(2n+2), it suffices to show that ϕ : CH(X)→GK(X) is
an isomorphism, where X is a connected component of the highest orthogonal
grassmannian given by a generic (2n+2)-dimensional quadratic form q of trivial
discriminant and Clifford invariant. Since the variety X also is the highest orthog-
onal grassmannian of a non-degenerate (2n+1)-dimensional subform of q, ϕ is an
isomorphism by Lemma 2.15.

The proof of the inverse implication is similar (with Lemma 2.15 replaced by
its Spin(2n+2)-analogue). �

3. Proof of Theorem 1.3

Theorem 1.3 for q of dimension 17 is [11, Theorem 1.1]. So, here we assume
that dim q=2n+1 for n=9, 10 and consider the highest orthogonal grassmannian
Xn of q.

3a. Non-divisibility in CH(Xn)

We first show that certain elements in CH(Xn) are not divisible by 2:

Proposition 3.1. The elements

c2c3c6e
31 ∈CH(X9) and c2c3c6c10e

31 ∈CH(X10)

are not divisible by 2.
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Proof. Consider the elements

A9 =(c2+c3+...)(c3+c5+...)(c6+c7+...)(e+e2)31 ∈CH(X9) and
A10 =(c2+c3+...)(c3+c5+...)(c6+c7+c10+...)c10(e+e2)31 ∈CH(X10),

where ... stand for certain sums of pairwise products of ci with i>0. By (2.6)
and (2.7), they are integral representatives of S(c̄2c̄3c̄6ē31) and S(c̄2c̄3c̄6c̄10ē31),
respectively, where S is the total Steenrod operation. For n=9, 10, the (dimXn)th
degree homogeneous part An[dimXn] of An is therefore the integral representative
of S3(c̄2c̄3c̄6ē31) and S3(c̄2c̄3c̄6c̄10ē31), respectively. Let deg : CHdimXn(Xn)→Z be
the degree homomorphism (induced by the structure morphism of the variety Xn).
Then, by Lemma 3.2 below, the image of An[dimXn] under the degree map is an
odd multiple of indXn. Hence, An[dimXn] is not divisible by 2 in CH(Xn) and the
statement follows. �

Lemma 3.2. For n=9, 10, with the above notation, res
(
An[dimXn]

)
is an

odd multiple of (indXn)·p, where, as in (2.2), p∈CHdimXn(˛Xn) is the class of a
rational point.

Proof. We will prove the statement case by case.

Case n=9: Since modulo 2 we have

A9[45]≡ (e16)2(c3c3c6e+c3c3c7+c2c3c6e
2+c2c3c7e+c2c5c6+...)

+e31(c3c5c6+c2c5c7+...),

where ... stand for a sum of products of at least four ci with i>0, and (e16
1 )≡0

(mod 2) by (2.4), we obtain

(3.3) res(A9[45])≡ 23(e3e5e6e
31
1 +e2e5e7 ·e16

1 ·e15
1 ) (mod 25).

As e2
7≡0 (mod 2) and e16

1 ≡2e7e9 (mod 22) by (2.3) and (2.4), it follows from (3.3)
that, modulo 25,

res(A9[45])≡ 23e3e5e6 ·e1+2+4+8
1 ·e16

1 ≡ 23e3e5e6 ·e1e2e4e8 ·2e7e9 =24 ·p.

Since indX9=24, we are done with this case.
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Case n=10: As the formal expressions for A10[55] and A9[45] are related by
the equality A10[55]=c10A9[45], using (3.3), we get that

res(A10[55])≡ 24e31
1 (e3e5e6e10+e2e5e7e10) (mod 26).

Now we have e16
1 ≡2e7e9−2e6e10 (mod 22) by (2.4). As e2

10=0 and e2
7≡0 (mod 2),

the second summand vanishes in the last formula for A10[55] and we come to the
congruence (modulo 26)

res(A10[55])≡ 24e3e5e6e10 ·e1+2+4+8
1 ·e16

1 ≡ 24e3e5e6e10 ·e1e2e4e8 ·(2e7e9−2e6e10)
≡ 24e3e5e6e10 ·e1e2e4e8 ·2e7e9 =25 ·p.

Hence, by (2.1) the statement follows. �

3b. Divisibility in GK(Xn)

Now we show that the images under the map

ϕ : CH(Xn)−→GK(Xn)

of the elements given in Proposition 3.1 are divisible by 2. This will complete the
proof of Theorem 1.3.

Proposition 3.4. The classes of the elements

c2c3c6e
31 ∈K(X9)(42) and c2c3c6c10e

31 ∈K(X10)(52)

in the quotients K(X9)(42/43) and K(X10)(52/53), respectively, are divisible by 2.

Proof. We shall use the (extended) Rees ring K̃(Xn) of K(Xn) and the ideal
I(Xn)⊂K̃(Xn), introduced in §2b. Let

B′
9 := c2c3c6e

31 ∈K(X9)(42) and B′
10 := c2c3c6c10e

31 ∈K(X10)(52).

We have B′
9u

42∈K̃42(X9) and B′
10u

52∈K̃52(X10), where u=t−1. We will show that

B′
9u

42 ∈ I(X9) and B′
10u

52 ∈ I(X10).

Consider the elements

B9 := (2e2−e3)(2e3−e4)(2e6−e7)e31
1 ∈K(˛X9)(42) and B10 := 2e10B9 ∈K(˛X10)(52),

where the equality defining B10 is an equality of formal expressions. We have B9∈
K(X9)(42) and B10∈K(X10)(52) by Lemma 2.12. (For the sake of clarification, let
us recall that K(Xn)=K(˛Xn) and ei∈K(˛Xn)(i); however the inclusion K(Xn)(i)⊂
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K(˛Xn)(i) can be strict.) Moreover, the classes of B′
9u

42∈K̃42(X9) and B′
10u

52∈
K̃52(X10) modulo tK̃43(X9), tK̃53(X10) are represented by

B9u
42 ∈ K̃42(X9) and B10u

52 ∈ K̃52(X10),

respectively. Since

tK̃43(X9)⊂ I(X9) and tK̃53(X10)⊂ I(X10),

it suffices to show that

B9u
42 ∈ I(X9) and B10u

52 ∈ I(X10).

We are going to prove first that

(3.5) B9u
42 ∈ I(˛X9)5 and B10u

52 ∈ I(˛X10)6.

For this, we expand the element B9 as follows:
(3.6)(

23e2e3e6−22(e2e3e7+e2e4e6+e2
3e6)+2(e2e4e7+e2

3e7+e3e4e6)−e3e4e7
)
·e31

1 .

Using the relations

(3.7) (eiui)2 ≡ e2iu
2i, e12u

12 ≡ 0, and e16u
16 ≡ 0 mod I(˛Xn)

for i≥1 and n=9, 10, we easily see that each term in (3.6) multiplied by u42 is
contained in I(˛X9)5 except for the term

(3.8) 2(e2
3e7e

31
1 )u42 =2t2 ·(e2

3e
7
1)u13 ·(e7e

24
1 )u31.

Similarly, each term in (3.6), considered as an element of K(˛X10) and multiplied
by 2e10u

52, is contained in I(˛X10)6 except for the term

(3.9) 22e10(e2
3e7e

31
1 )u52 =22t2 ·(e2

3e
7
1)u13 ·(e7e10e

24
1 )u41.

By the following Lemmas 3.10 and 3.14, the terms in (3.8) and (3.9) are con-
tained in I(˛X9)5 and I(˛X10)6, respectively. This proves inclusions (3.5).

It follows by (2.1) and (2.11) that B9u
42 is congruent modulo I(X9) to an

element of
(23t2)K̃44(˛X9)+(22t3)K̃45(˛X9),

whereas B10u
52 is congruent modulo I(X10) to an element of

(24t2)K̃54(˛X10)+(23t3)K̃55(˛X10).

According to (2.8) with n=9, 10, these elements are of the shape
(
(23l)a+(22p)b

)
u42

and
(
(24l)c+(23p)d

)
u52, respectively (for some integers a, b, c, d). Therefore, by

Lemma 3.16, we conclude that B9u
42∈I(X9) and B10u

52∈I(X10). �
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Lemma 3.10. For X9, one has (e7 ·e24
1 )u31∈I(˛X9)2.

Proof. Let x=(e7 ·e24
1 )u31∈K̃31(˛X9) and define fi :=eiu

i∈K̃i(˛X9) for i≥1.
Then, by (3.7), we get

(3.11) x= f7f
8
1 f

8
1 f

8
1 ≡ f7 ·f2

8 ·f8 mod I(˛X9)2.

We need to calculate e2
8 modulo K(˛X9)(18)+2K(˛X9)(17). This can be done

using the K-theoretical Pieri formula [4, Theorem 1.2] involving some combinatorial
calculations. To avoid them, we provide an alternative method using a partially split
generic quadratic form.

Let us consider a quadratic form q′ of dimension 19 which is the orthogonal
sum of three hyperbolic planes with a 13-dimensional generic quadratic form q′6.
The generic quadratic form here (without any condition like the triviality of its
discriminant or Clifford invariant, considered so far) is given by a generic torsor
under the orthogonal group O(13). It can also be defined in an elementary way
using free variables for its coefficients (see [10, §9] for details).

Let X ′
9 be the highest orthogonal grassmannian of q′. The Grothendieck rings

K(˛X ′
9) and K(‚X9) are identified canonically. For i=7, 8, 9, the element ei is in

K(X ′
9)(i). By (2.3), the difference e2

8−2e7e9 is in K(X ′
9)∩K(˛X9)(17).

We claim that K(X ′
9)∩K(˛X9)(i)=K(X ′

9)(i) for any i∈Z. The claim is a con-
sequence of the fact that the Chow group CH(X ′

9) is free of torsion. To prove the
fact, one uses the decomposition [3, Theorem 7.5] of the Chow motive of X ′

9 in a
direct sum of shifted motives of X ′

6 – the highest orthogonal grassmannian of q′6,
implying that the graded group CH(X ′

9) is a direct sum of shifted copies of CH(X ′
6).

The latter group is torsion free by [10, Corollary 6.2].
Having obtained the above claim, we conclude that the difference e2

8−2e7e9 is
in K(X ′

9)(17). Taken modulo K(X ′
9)(18)+2K(X ′

9)(17), it yields an element in the
image of the restriction homomorphism res17 : Ch17(X ′

9)→Ch17(˛X9) of the modulo
2 Chow groups. By [17, Main Theorem 5.8] (see also [5, Theorem 87.7]), the image of
the ring homomorphism res : Ch(X ′

9)→Ch(˛X9) of the total modulo 2 Chow groups
is, as a ring, generated by e7, e8, e9. In particular, any element of Im(res17) is a
multiple of e8e9. Thus we have the formula

(3.12) e2
8 ≡ 2e7e9+me8e9 mod K(˛X9)(18)+2K(˛X9)(17)

with some integer m.
Turning back to (3.11), since

e2
7 ∈ 2K(˛X9)(14)+K(˛X9)(15),
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it follows from (3.12) that

(3.13) f7 ·(f8)2 ≡ t·me7e8e9u
24 mod I(˛X9)2.

Furthermore, since
e2
8 ∈ 2K(˛X9)(16)+K(˛X9)(17),

we get by (3.11) and (3.13) that

x≡ t·me7e
2
8e9u

32 ≡ 0 mod I(˛X9)2. �

Lemma 3.14. For X10, one has (e7 ·e10 ·e24
1 )u41∈I(˛X10)2.

Proof. Let x=(e7 ·e10 ·e24
1 )u41∈K̃41(˛X10) and fi :=eiu

i∈K̃i(˛X10) for i≥1.
Then, by (3.7) we get

x= f7f10f
8
1 f

8
1 f

8
1 ≡ f7 ·f10 ·f2

8 ·f8 mod I(˛X10)2.

By the same arguments as in Lemma 3.10, using the orthogonal sum of (this
time) four hyperbolic planes and q′6 (or the K-theoretical Pieri formula [4, Theorem
1.2]), we show that

(3.15) e2
8 ≡ 2(e7e9−e6e10)+me8e9+m′e7e10 mod 2K(˛X10)(17)+K(˛X10)(18)

for some integers m and m′. Since, besides, e2
i ∈2K(˛X10)(2i)+K(˛X10)(2i+1) for

i=7, 8, 10, it follows by (3.15) that x∈I(˛X10)2. �

Lemma 3.16. For X9, one has (23l)u42, (22p)u42∈I(X9)⊂K̃(X9). For X10,

one has (24l)u52, (23p)u52∈I(X10)⊂K̃(X10).

Proof. Consider two elements C9u
42∈K̃(X9) and C10u

52∈K̃(X10), where

C9 := (2e2−e3)(2e4−e5)(2e6−e7)e30
1 ∈K(X9)(42)

and C10∈K(X10)(52), defined by the formal equality C10 :=2e10C9.
We expand C9 as follows:

(3.17)
[23(e2e4e6)−22(e2e4e7+e2e5e6+e3e4e6)+2(e2e5e7+e3e4e7+e3e5e6)−(e3e5e7)]·e30

1 .

By (3.7), we see that each term in (3.17), multiplied by u42, is contained in I(˛X9)5
except for the following two terms

(3.18) 2(e3e5e6e
30
1 )u42 and (e3e5e7e

30
1 )u42.
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Similarly, each term in (3.17), considered in K(˛X10) and multiplied by 2e10u
52, is

contained in I(˛X10)6 except for the following two terms

(3.19) 22(e3e5e6e10e
30
1 )u52 and 2(e3e5e7e10e

30
1 )u52.

By Lemmas 3.10 and 3.14, the second terms in (3.18) and in (3.19) are con-
tained in I(˛X9)5 and I(˛X10)6, respectively. By Lemmas 3.24 and 3.25, we obtain

C9u
42 ≡ 22t2(e2...e9)u44 mod I(˛X9)5

and

(3.20) C10u
52 ≡ 23t2(e2...e10)u54 mod I(˛X10)6.

Thus for X9 we have

(3.21) (C9−22l)u42 ∈
3∑

i=0
(25−iti)K̃42+i(˛X9).

By (2.1) and (2.11), both groups 25K̃42(˛X9) and (24t)K̃43(˛X9) are contained in
I(X9). As e1C9u

42=t(e1C9u
43)∈I(X9), multiplying the element in (3.21) by e1

and 2, respectively, we get from (3.21) and (2.8) with n=9 that

(3.22) (22p+23ap)u42 ∈ I(X9) and (23l+23bp)u42 ∈ I(X9)

for some integers a and b. As (23p)u42=e1 ·(23l+23bp)u42∈I(X9), the statement
for X9 follows by (3.22).

For X10, by (3.20), we similarly have

(C10−23l)u52 ∈
3∑

i=0
(26−iti)K̃52+i(˛X10).

Thus, multiplying the element (C10−23l)u52 by e1 and 2, respectively, we get

(3.23) (23p+24cp)u52 ∈ I(X10) and (24l+24dp)u52 ∈ I(X10)

for some integers c and d. Again, since (24p)u52=e1 ·(24l+24dp)u52∈I(X10), by
(3.23) the proof of Lemma 3.16 is complete. �

Lemma 3.24. e30
1 u30≡2(e2e4e7e8e9)u30 mod I(˛X9)2.
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Proof. By (3.7) we have

e30
1 u30 = f2

1 f
4
1 f

8
1 f

8
1 f

8
1 ≡ f2f4f8f

2
8 mod I(˛X9)2.

Hence, it follows by (3.12) that

e30
1 u30 ≡ f2f4f8(2e7e9+me8e9)u16 ≡ 2f2f4f8(e7e9u

16)= 2f2f4f8f7f9 mod I(˛X9)2.

Here we use that f2
i ∈I(˛Xn) for i>n/2 which follows from (2.3). �

Lemma 3.25. (e10 ·e30
1 )u40≡2(e2e4e7e8e9e10)u40 mod I(˛X10)2.

Proof. Let x=(e10 ·e30
1 )u40=f10f

2
1 f

4
1 f

8
1 f

8
1 f

8
1 . Then, by (3.7) we have

x≡ f10f2f4f8f
2
8 mod I(˛X10)2.

Therefore, it follows by (3.15) and (2.3) that

x≡ 2f10f2f4f8(e7e9u
16)= 2f10f2f4f8f7f9 mod I(˛X10)2. �
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