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On Hedenmalm-Shimorin type inequalities

Yong Han, Yanqi Qiu and Zipeng Wang

Abstract. We present a direct proof of an Hedenmalm-Shimorin inequality for short anti-
diagonals proved recently in [HS20, Advances in Mathematics, 2020] and give the three tensor
analogue of such inequality.

1. Introduction

1.1. Hedenmalm and Shimorin’s inequality

Very recently, Hedenmalm and Shimorin proved the following:

Theorem A. (Hedenmalm and Shimorin [HS20]) Let M={mj,k}∞j,k=1 be an

infinite complex-valued matrix which acts contractively on �2. Then

∞∑
l=2

sl

∣∣∣∣∣∣
∑

j+k=l

mj,k√
jk

∣∣∣∣∣∣
2

≤ 2s log
( e

1−s

)
, 0≤ s< 1.(1.1)

To prove Theorem A, Hedenmalm and Shimorin interpreted the bound (1.1) in
terms of the correlation EΦ(z)Ψ(z) of two coupled Gaussian analytic functions of
Dirichlet type (simplified as D0-GAFs) with possibly intricate Gaussian correlation
structure between them. More precisely, define a D0-GAF by

Φ(z)=
∞∑
j=1

αj√
j
zj , z ∈D= {z ∈C : |z|< 1},(1.2)

where (αj)∞j=1 are independent standard complex Gaussian variables, then Theo-
rem A is equivalent to the following

Key words and phrases: Gaussian analytic functions, contractive operators, weighted
Bergman spaces.
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Theorem B. (Hedenmalm and Shimorin [HS20]) For any two coupled D0-

GAFs Φ(z) and Ψ(z), with possibly intricate Gaussian correlation structure between

them, we have∫
T

∣∣EΦ(rζ)Ψ(rζ)
∣∣2dm(ζ)≤ 2r2 log

( e

1−r2

)
, 0≤ r < 1,(1.3)

where dm is the normalized Lebesgue measure on the unit circle T.

The inequality (1.3) follows immediately from the inequality (1.1). Indeed, if
we write

Φ(z)=
∞∑
j=1

αj√
j
zj and Ψ(z)=

∞∑
j=1

βj√
j
zj ,

with (αj)∞j=1 and (βj)∞j=1 two sequences of independent standard complex Gaus-
sian variables, with possibly intricate correlation structure between them, then the
infinite matrix M={mj,k}∞j,k=1 defined by

mj,k :=E(αjβk), j, k≥ 1

acts contractively on �2 and the left hand side of the inequality (1.3) is given by

∫
T

∣∣EΦ(rζ)Ψ(rζ)
∣∣2dm(ζ)=

+∞∑
l=2

r2l

∣∣∣∣∣∣
∑

j+k=l

mj,k√
jk

∣∣∣∣∣∣
2

.(1.4)

Conversely, the inequality (1.3) also implies the inequality (1.1). The implication
(1.3)=⇒(1.1) is rather simple by using a standard convexity argument and the
fact that extreme points of the set of contractive operators on a Hilbert space are
contained in the set of partial isometries.

1.2. Main results

Theorem 1.1. For any infinite complex-valued matrix M={mj,k}∞j,k=1, we

have

∞∑
l=2

sl

∣∣∣∣∣∣
∑

j+k=l

mj,k√
jk

∣∣∣∣∣∣
2

≤
(
‖M‖2

1→2+‖M‖2
2→∞

)
s log

( 1
1−s

)
, 0≤ s< 1,(1.5)

provided that the two quantities defined as follows

‖M‖2
1→2 =sup

k≥1

∞∑
j=1

|mj,k|2 and ‖M‖2
2→∞ =sup

j≥1

∞∑
k=1

|mj,k|2(1.6)

are both finite.
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Remark Note that ‖M‖1→2 and ‖M‖2→∞ are in fact the operator norms:

‖M‖1→2 = ‖M : �1 −→ �2‖ and ‖M‖2→∞ = ‖M : �2 −→ �∞‖.

The inequality (1.5) clearly implies the inequality (1.1) since

max(‖M‖1→2, ‖M‖2→∞)≤‖M : �2 −→ �2‖.

A little-o version of the inequality (1.1) for compact operators on �2 is given in
the following

Proposition 1.2. Suppose that the complex matrix M={mj,k}∞j,k=1 is a com-

pact operator on �2. Then

∞∑
l=2

sl

∣∣∣∣∣∣
∑

j+k=l

mj,k√
jk

∣∣∣∣∣∣
2

≤ o
(

log 1
1−s

)
, as s−→ 1−.(1.7)

Theorem 1.1 can be easily generalized to the case of higher tensors. Here we
only state Hedenmalm and Shimorin-type inequalities for 3-tensors.

Theorem 1.3. Let {mi,j,k}∞i,j,k=1 be a sequence of complex numbers such that

sup
j,k≥1

∞∑
i=1

|mi,j,k|2+ sup
i,k≥1

∞∑
j=1

|mi,j,k|2+ sup
i,j≥1

∞∑
k=1

|mi,j,k|2 ≤ 1.(1.8)

Then

∞∑
l=3

sl

l+1

∣∣∣∣∣∣
∑

i+j+k=l

mi,j,k√
ijk

∣∣∣∣∣∣
2

≤ s

2

(
log 1

1−s

)2
, 0≤ s< 1.(1.9)

It is not known to us whether the inequality (1.9) is optimal. However, we
have the following

Proposition 1.4. There exists a sequence {mi,j,k}∞i,j,k=1 of complex numbers

with

max
(

sup
j,k≥1

∞∑
i=1

|mi,j,k|2, sup
i,k≥1

∞∑
j=1

|mi,j,k|2, sup
i,j≥1

∞∑
k=1

|mi,j,k|2
)
≤ 1(1.10)

such that for a constant c>0, we have

∞∑
l=3

sl

l+1

∣∣∣∣∣∣
∑

i+j+k=l

mi,j,k√
ijk

∣∣∣∣∣∣
2

≥ c log 1
1−s

for all s∈ [0, 1).(1.11)
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Remark 1.5. In the case where the numbers mi,j,k arise as expectation of prod-
ucts of three random variables, the inequality can be improved significantly. The
following result is rather simple, we include it here only for comparison.

Let α, β, γ be three centered real random variables with finite moments up to
order 6. Let (αi)∞i=1, (βj)∞j=1 and (γk)∞k=1 be independent copies of α, β, γ respec-
tively, possibly with intricate joint distribution. Then, for any δ>0, we have

∞∑
l=3

1
(log l)3+δ

∣∣∣∣ ∑
i+j+k=l

E(αiβjγk)√
ijk

∣∣∣∣
2

<∞.(1.12)

In particular, we have

∞∑
l=3

1
l+1

∣∣∣∣ ∑
i+j+k=l

E(αiβjγk)√
ijk

∣∣∣∣
2

<∞.

2. Hedenmalm and Shimorin’s inequality

Proof of Theorem 1.1. For any fixed integer l≥2, by Cauchy-Schwarz inequal-
ity, ∣∣∣∣∣∣

∑
j+k=l

mj,k√
jk

∣∣∣∣∣∣
2

≤
∑

j+k=l

|mj,k|2
jk

·
∑

j+k=l

1 =
∑

j+k=l

|mj,k|2
jk

·(l−1).

Therefore, for any s∈[0, 1),

∞∑
l=2

sl

∣∣∣∣∣∣
∑

j+k=l

mj,k√
jk

∣∣∣∣∣∣
2

≤
∞∑
l=2

sl

⎛
⎝ ∑

j+k=l

|mj,k|2
jk

⎞
⎠ (l−1)

≤
∞∑
l=2

sl

⎛
⎝ ∑

j+k=l

|mj,k|2
jk

⎞
⎠ l=

∞∑
l=2

sl
∑

j+k=l

|mj,k|2
jk

(k+j)

=
∞∑
l=2

sl
∑

j+k=l

|mj,k|2
j︸ ︷︷ ︸

denoted by I

+
∞∑
l=2

sl
∑

j+k=l

|mj,k|2
k︸ ︷︷ ︸

denoted by II

.(2.13)

Now we estimate the summations I and II. Since 0≤s<1, for any j≥1, we have

∞∑
k=1

|mj,k|2 sk = s·
∞∑
k=1

|mj,k|2 sk−1 ≤ s sup
j≥1

∞∑
k=1

|mj,k|2 = s‖M‖2
2→∞.
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It follows that

I =
∞∑
l=2

∑
j+k=l

|mj,k|2
j

sjsk =
∞∑

j,k=1

|mj,k|2
j

sjsk =
∞∑
j=1

sj

j

∞∑
k=1

|mj,k|2 sk

≤ s‖M‖2
2→∞ ·

∞∑
j=1

sj

j
= s‖M‖2

2→∞ ·log
( 1

1−s

)
.

Similarly, for all integers k≥1,
∞∑
j=1

|mj,k|2sj = s·
∞∑
j=1

|mj,k|2sj−1 ≤ s·sup
k≥1

∞∑
j=1

|mj,k|2 = s‖M‖2
1→2,

then

II =
∞∑
l=2

∑
j+k=l

|mj,k|2
k

sjsk =
∞∑

j,k=1

|mj,k|2
k

sjsk =
∞∑
k=1

sk

k

∞∑
j=1

|mj,k|2sj

≤ s·‖M‖2
1→2 ·

∞∑
k=1

sk

k
= s‖M‖2

1→2 ·log
( 1

1−s

)
.

This completes the whole proof. �

Proof of Proposition 1.2. Without loss of generality, we assume that M :�2→�2

is a compact operator with operator norm ‖M‖2→2≤1. Recall the inequality (2.13):

∞∑
l=2

sl

∣∣∣∣∣∣
∑

j+k=l

mj,k√
jk

∣∣∣∣∣∣
2

≤
∞∑
l=2

sl
∑

j+k=l

|mj,k|2
j︸ ︷︷ ︸

denoted by I

+
∞∑
l=2

sl
∑

j+k=l

|mj,k|2
k︸ ︷︷ ︸

denoted by II

.

Define

aj(s)= sj

j
, bj =

∞∑
k=1

|mj,k|2 and ck =
∞∑
j=1

|mj,k|2.

Since ‖M‖2→2≤1, we have 0≤bj≤1 and 0≤ck≤1. The compactness of M on �2

implies that

lim
j→∞

bj =0 and lim
k→∞

ck =0.

For any s∈[0, 1), we have

I =
∞∑
j=1

sj

j

∞∑
k=1

|mj,k|2sk ≤
∞∑
k=1

aj(s)bj .
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For any given ε>0, there exists an integer j0 such that bj≤ε for all j≥j0. Then we
get

∞∑
j=1

aj(s)bj ≤ ε

∞∑
j=j0

aj(s)+
j0−1∑
j=1

aj(s)bj ≤ ε

∞∑
j=j0

aj(s)+
j0−1∑
j=1

aj(s)

≤ ε
∞∑
j=1

aj(s)+
j0−1∑
j=1

aj(s)= ε log 1
1−s

+
j0−1∑
j=1

aj(s).

Therefore,

lim sup
s→1−

∑∞
j=1 aj(s)bj
log 1

1−s

≤ ε+lim sup
s→1−

∑j0−1
j=1 aj(s)
log 1

1−s

= ε.

It follows that

lim sup
s→1−

I

log 1
1−s

=0.

With similar arguments, we also have

lim sup
s→1−

II

log 1
1−s

=0.

Consequently, we obtain

lim
s→1−

1
log 1

1−s

∞∑
l=2

sl

∣∣∣∣∣∣
∑

j+k=l

mj,k√
jk

∣∣∣∣∣∣
2

=0

and complete the proof. �

3. Hedenmalm and Shimorin-type inequalities for 3-tensors

Proof of Theorem 1.3. For any fixed integer l≥3, by Cauchy-Schwarz inequal-
ity, we have∣∣∣∣∣∣

∑
i+j+k=l

mi,j,k√
ijk

∣∣∣∣∣∣
2

≤
∑

i+j+k=l

|mi,j,k|2
ijk

·
∑

i+j+k=l

1 =
∑

i+j+k=l

|mi,j,k|2
ijk

(l−1)(l−2)
2 .

Therefore, for any s∈[0, 1), we have

∞∑
l=3

sl

l+1

∣∣∣∣∣∣
∑

i+j+k=l

mi,j,k√
ijk

∣∣∣∣∣∣
2

≤
∞∑
l=3

sl

l+1
(l−1)(l−2)

2
∑

i+j+k=l

|mi,j,k|2
ijk
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≤ 1
2

∞∑
l=3

sl
∑

i+j+k=l

|mi,j,k|2
ijk

(i+j+k)

= 1
2

( ∞∑
l=3

sl
∑

i+j+k=l

|mi,j,k|2
jk︸ ︷︷ ︸

denoted T (1)

+
∞∑
l=3

sl
∑

i+j+k=l

|mi,j,k|2
ik︸ ︷︷ ︸

denoted T (2)

+
∞∑
l=3

sl
∑

i+j+k=l

|mi,j,k|2
ij︸ ︷︷ ︸

denoted T (3)

)
.

We have

T (1) =
∞∑

i,j,k=1

si+j+k |mi,j,k|2
jk

=
∞∑
j=1

sj

j

∞∑
k=1

sk

k

∞∑
i=1

si|mi,j,k|2

≤
∞∑
j=1

sj

j

∞∑
k=1

sk

k
·s sup

j,k≥1

∞∑
i=1

|mi,j,k|2 = s
(

log 1
1−s

)2
· sup
j,k≥1

∞∑
i=1

|mi,j,k|2.

Similarly, we have

T (2)≤ s
(

log 1
1−s

)2
· sup
i,k≥1

∞∑
j=1

|mi,j,k|2

and

T (3)≤ s
(

log 1
1−s

)2
· sup
i,j≥1

∞∑
k=1

|mi,j,k|2.

Under the assumption (1.8), we have

∞∑
l=3

sl

l+1

∣∣∣∣∣∣
∑

i+j+k=l

mi,j,k√
ijk

∣∣∣∣∣∣
2

≤ s

2

(
log 1

1−s

)2
.

This completes the proof of the theorem. �

The proof of Proposition 1.4 is based on a modified Zachary Chase’s construc-
tion [HS20, p.35] described as follows. Let N denote the set of positive integers. For
any even integer d≥2 and any integer m≥2, define

Im(d) := {(i, j, k)∈N
3 : i, j, k≥ 2−1dm−1 and i+j+k= dm}.

Clearly, the subsets Im(d)⊂N
3 are mutually disjoint. Set

S(d) :=
∞⊔

m=2
Im(d).
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Lemma 3.1. Let d≥2 be an integer. For any (i, j)∈N2, there exists at most

one k∈N such that (i, j, k)∈S(d). That is,

sup
i,j∈N

∑
k∈N

1S(d)(i, j, k)≤ 1.

Similarly,

sup
j,k∈N

∑
i∈N

1S(d)(i, j, k)≤ 1 and sup
i,k∈N

∑
j∈N

1S(d)(i, j, k)≤ 1.

Proof. We prove the lemma by contradiction. Suppose there exists (i, j)∈N2

and two distinct integers k1, k2∈N such that (i, j, k1), (i, j, k2) are both inside the
subset S(d). Then, by the definition of the set S(d), there exist two distinct integers
m1,m2∈N with m1≥2,m2≥2 such that{

i, j, k1≥2−1dm1−1

i+j+k1=dm1
and

{
i, j, k2≥2−1dm2−1

i+j+k2=dm2
.

Without loss of generality, we assume that m2>m1. Then

dm1 = i+j+k1 ≥ 2−1dm2−1+2−1dm2−1+2−1dm1−1 = dm2−1+2−1dm1−1.

That is,
1≥ dm2−m1−1+ 1

2d.

Note that the assumption m2>m1 implies m2−m1−1≥0. Thus, we obtain

1≥ dm2−m1−1+ 1
2d ≥ 1+ 1

2d,

which is absurd and we complete the proof of the lemma. �

Proof of Proposition 1.4. Let d≥2 be an even integer and take

mi,j,k =1S(d)(i, j, k), i, j, k∈N.

By Lemma 3.1, {mi,j,k}∞i,j,k=1 satisfies the assumption (1.10) of Proposition 1.4.
We now show that this sequence {mi,j,k}∞i,j,k=1 satisfies the required lower estima-
tion (1.11). For any integer m≥2 and any (i, j, k)∈Im(d), we have i, j, k≤dm and
hence √

ijk≤ d
3m
2 .(3.14)

Thus
∑

i+j+k=dm

mi,j,k√
ijk

=
∑

i+j+k=dm

1Im(d)(i, j, k)√
ijk

≥ 	Im(d)
d

3m
2

,(3.15)
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where 	Im(d) denotes the cardinality of the finite set Im(d). Since d is an even
integer and m∈N with m≥2, we have 2−1dm−1∈N. Now using the following equality

	Im(d)= 	{(i, j)∈N
2 : i, j, dm−i−j≥ 2−1dm−1},

we obtain

	Im(d)=
dm− 3dm−1

2 +1∑
�=1

�= 1
2

(
dm− 3dm−1

2 +1
)(

dm− 3dm−1

2 +2
)

≥ 1
2d

2m(1− 3
2d )2 ≥ d2m

32 .

(3.16)

Combining (3.14), (3.15) and (3.16), we obtain, for any m≥2, that
∑

i+j+k=dm

mi,j,k√
ijk

=
∑

i+j+k=dm

1S(d)(i, j, k)√
ijk

≥ d
m
2

32 .

It follows that, for d≥2 and m≥2, we have

1
dm+1

( ∑
i+j+k=dm

mi,j,k√
ijk

)2
≥ 1

32
dm

dm+1 ≥ 1
40 .

Therefore, for any s∈[0, 1), we have
∞∑
l=3

sl

l+1

( ∑
i+j+k=l

mi,j,k√
ijk

)2
=

∞∑
m=2

sd
m

dm+1

( ∑
i+j+k=dm

1S(d)(i, j, k)√
ijk

)2

≥ 1
40

∞∑
m=2

sd
m

.

Finally, by applying the well-known equality (cf. [HS20, p.36])

lim
s→1−

1
log 1

1−s

∞∑
m=2

sd
m

= 1
log d,

we see that there exists a constant cd>0 depending on d such that
∞∑
l=3

sl

l+1

( ∑
i+j+k=l

mi,j,k√
ijk

)2
≥ cd log 1

1−s
for s∈ [0, 1).

This completes the proof of the proposition. �

We now proceed to the proof of inequality (1.12). The following elementary
lemma will be useful for us.
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Lemma 3.2. For any δ>0, there exist two constants c1, c2>0 depending on δ

such that for any integer n≥1, we have

c1
log(n+1)3+δ

≤
∫ 1

0

tn

(1−t)[log 2
1−t ]4+δ

dt≤ c2
log(n+1)3+δ

.(3.17)

Proof. By change of variables, we have
∫ 1

0

tn

(1−t)[log 2
1−t ]4+δ

dt=
∫ ∞

log 2
Hn(x)dx,

where
Hn(x)= (1−2e−x)n

x4+δ
.

Note that

H ′
n(x)= (1−2e−x)n−1

x5+δ
xe−x(4+δ)

( 2n
4+δ

− ex−2
x

)
.

It is easy to see that the function (ex−2)/x is increasing for x∈(0,∞). Therefore,
for any integer n such that log(n)>4+δ and any x∈[log 2, logn], we have

2n
4+δ

− ex−2
x

≥ 2n
4+δ

− n−2
logn >n

( 2
4+δ

− 1
logn

)
> 0.

It follows that for all integer n≥e4+δ, the function Hn(x) is increasing on [log 2,
logn]. Consequently, we have

0≤
∫ logn

log 2
Hn(x)dx≤Hn(logn) logn=

(
1− 2

n

)n
(logn)−3−δ ≤ c(logn)−3−δ,

where c>0 is a numerical constant. We thus obtain, for all integer n≥e4+δ, that∫ ∞

log 2
Hn(x)dx≤ c(log n)−3−δ+

∫ ∞

logn

1
x4+δ

dx=
(
c+ 1

3+δ

)
(logn)−3−δ

and∫ ∞

log 2
Hn(x)dx≥

∫ ∞

logn

(1−2e−x)n

x4+δ
dx≥

∫ ∞

logn

(1−2/n)n

x4+δ
dx≥ c′

3+δ
(logn)−3−δ,

where c′>0 is a numerical constant (for instance, take c′=infn≥e4+δ (1−2/n)n>0).
For the finitely many integers 1≤n<e4+δ, the inequalities (3.17) clearly hold for
suitable c1, c2>0, hence by modifying the two constants c1, c2 if necessary, the
inequalities (3.17) hold for all integers n≥1. �
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Proof of inequality (1.12). Fix a number δ>0. Let (αj)∞j=1, β=(βj)∞j=1, γ=
(γj)∞j=1 be three sequence of random variables as stated in Remark 1.5. For any
r∈[0, 1), define

S(r) :=
∞∑
l=3

∣∣∣∣ ∑
i+j+k=l

E(αiβjγk)√
ijk

∣∣∣∣
2

r2l

(log l)3+δ
.

Then, to prove the inequality (1.12), it suffices to prove

sup
0≤r<1

S(r)<∞.(3.18)

By Lemma 3.2, there exists a constant C>0 such that

1
(log l)3+δ

≤C

∫
D

|z|2l dA(z)
(1−|z|2)[log 2

1−|z|2 ]4+δ
for all integers l≥ 3,

where dA(z) is the normalized Lebesgue measure on D. Therefore, for any r∈[0, 1),

S(r)≤C

∞∑
l=3

∣∣∣∣ ∑
i+j+k=l

E(αiβjγk)√
ijk

∣∣∣∣
2

r2l
∫
D

|z|2l dA(z)
(1−|z|2)[log 2

1−|z|2 ]4+δ

︸ ︷︷ ︸
denoted I(r)

.

Consequently, the inequality (3.18) would be a consequence of the following inequal-
ity

sup
0≤r<1

I(r)<∞.(3.19)

Now define three random analytic functions on D by

Fα(z)=
∞∑
j=1

αj√
j
zj , Fβ(z)=

∞∑
j=1

βj√
j
zj and Fγ(z)=

∞∑
j=1

γj√
j
zj .

Set

fr(z) :=E[Fα(rz)Fβ(rz)Fγ(rz)] =
∞∑
l=3

( ∑
i+j+k=l

E(αiβjγk)√
ijk

)
rlzl.(3.20)

Then clearly, we have

I(r)=
∫
D

|fr(z)|2
dA(z)

(1−|z|2)[log 2
1−|z|2 ]4+δ

.(3.21)
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Write the integral in (3.21) in the polar coordinate system z=ρeiθ with 0≤ρ<1 and
θ∈[0, 2π), we obtain

I(r) = 2
∫ 1

0

[ ∫ 2π

0
|fr(ρeiθ)|2dθ

] ρdρ

(1−ρ2)[log 2
1−ρ2 ]4+δ

=2
∫ 1

0

[ ∫ 2π

0
|fρr(eiθ)|2dθ

] ρdρ

(1−ρ2)[log 2
1−ρ2 ]4+δ

=2
∫ 1

0
‖fρr‖2

L2(T)
ρdρ

(1−ρ2)[log 2
1−ρ2 ]4+δ

.

Let us proceed to the estimate of ‖fρr‖2
L2(T). From the definition (3.20), for any

ρ∈[0, 1) and r∈[0, 1), by Jensen’s inequality and then by Hölder’s inequality, we
have

‖fρr‖2
L2(T) =‖E[Fα(ρr·)Fβ(ρr·)Fγ(ρr·)]‖2

L2(T) ≤E

[
‖Fα(ρr·)Fβ(ρr·)Fγ(ρr·)‖2

L2(T)

]
≤E

[
‖Fα(ρr·)‖2

L6(T)‖Fβ(ρr·)‖2
L6(T)‖Fβ(ρr·)‖2

L6(T)

]
.

Hence, by Hölder’s inequality again, we have

‖fρr‖L2(T) ≤
(
E

[
‖Fα(ρr·)‖2

L6(T)‖Fβ(ρr·)‖2
L6(T)‖Fγ(ρr·)‖2

L6(T)

])1/2

≤
[
E‖Fα(ρr·)‖6

L6(T)

]1/6[
E‖Fβ(ρr·)‖6

L6(T)

]1/6[
E‖Fγ(ρr·)‖6

L6(T)

]1/6
.

(3.22)

By Khintchine’s inequality for centered i.i.d. random variables, there exists a con-
stant Cα>0 such that for any r∈[0, 1) and any ζ∈T, we have

(
E|Fα(ρrζ)|6

)1/6
=
(
E

∣∣∣ ∞∑
j=1

αj
ρjrjζj√

j

∣∣∣6)1/6 ≤Cα

(
E

∣∣∣ ∞∑
j=1

αj
ρjrjζj√

j

∣∣∣2)1/2.
Since (αj)∞j=1 are centered i.i.d. random variables, they are orthogonal and with a
common L2-norm ‖α‖2. Then

E

∣∣∣ ∞∑
j=1

αj
ρjrjζj√

j

∣∣∣2 = ‖α‖2
2

∞∑
j=1

ρ2jr2j

j
.

Therefore,

sup
0≤r<1

[
E‖Fα(ρr·)‖6

L6(T)

]1/6
≤Cα‖α‖2 sup

0≤r<1

( ∞∑
j=1

ρ2jr2j

j

)1/2
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=Cα‖α‖2

(
log 1

1−ρ2

)1/2
.

Similar inequalities hold for the counterparts of β, γ and hence there exists a con-
stant C=C(α, β, γ)>0 such that for any ρ∈[0, 1),

sup
0≤r<1

‖fρr‖2
L2(T) ≤C(α, β, γ)

(
log 1

1−ρ2

)3
.

It follows that

sup
0≤r<1

I(r)≤ 2
∫ 1

0
sup

0≤r<1
‖fρr‖2

L2(T)
ρdρ

(1−ρ2)[log 2
1−ρ2 ]4+δ

≤C(α, β, γ)
∫ 1

0

dt

(1−t)[log 2
1−t ]1+δ

<∞.

This completes the proof of the desired inequality (3.19). �
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