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A quantitative Gauss-Lucas theorem

Vilmos Totik

Abstract. A conjecture of T. Richards is proven which yields a quantitative version of the
classical Gauss-Lucas theorem: if K is a convex set, then for every ε>0 there is an αε<1 such
that if a polynomial Pn of degree at most n has k≥αεn zeros in K, then P ′

n has at least k−1
zeros in the ε-neighborhood of K. Estimates are given for the dependence of αε on ε.

1. Introduction and results

The Gauss-Lucas theorem states that if K is a convex subset of the complex
plane and all zeros of a polynomial Pn of degree n lie in K, then the same is true for
P ′
n, i.e. all critical points belong to K. This is no longer true if a single zero of Pn

is allowed to lie outside K, for then it may happen that all critical points lie outside
K (see e.g. the simple example in the beginning of [11]). It was Boris Shapiro who
conjectured that in this latter case even though the critical points may lie outside
K, most of them lie close to K, and he formulated the following as a conjecture.

The asymptotic Gauss-Lucas theorem [11]. If ε>0 and most of the zeros

of Pn (i.e. with the exception of o(n) of the zeros) lie in K, then most of the zeros

of P ′
n lie in the ε-neighborhood Kε of K.

This suggests that perhaps it is also true that if for some α at least αn of the
zeros lie in K, then at least (1+o(1))αn (or at least βn with some β depending on
α) of the critical points also lie in Kε (as has been mentioned, none may lie in K).
But for α<1/2 this fails dramatically.

Example. If Pn(z)=zn−1, and K is the square of side-length 2 and with center
at the point 1+sin ((1/2−α)π/2), then K contains for large n at least αn of the
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zeros of Pn (which are the n-th roots of unity), but all the critical points are at the
origin, so Kε with ε= 1

2 sin ((1/2−α)π/2) does not contain a single critical point.

Still, the asymptotic Gauss-Lucas theorem suggests that this cannot happen
when α is close to 1. In general, if k≥αn of the zeros lie in K, how many critical
points can be expected in Kε? The following simple example shows that not more
than k−1.

Example. Let K be the closed unit disk, ε=1 and Pn(z)=zk(2n−z)n−k. This
Pn(z) has k zeros in K and k−1 critical points in Kε.

It is remarkable that for α sufficiently close to 1, the set Kε contains this many
critical points, as is shown by the following theorem that was conjectured by T.
Richards [5], [6].

Theorem 1. For any ε>0 there is an αε<1 such that if a polynomial Pn of

degree n has k≥αεn zeros in K, then P ′
n has at least k−1 zeros in Kε.

An immediate consequence of the theorem is the asymptotic Gauss-Lucas the-
orem stated above (although one should mention that the asymptotic Gauss-Lucas
theorem is true not just for convex sets but also so-called polynomially convex sets,
see [12, Corollary 1.9]).

The αε depends on ε and K, and in the next theorem we give quantitative
bounds for it in terms of ε.

Theorem 2. There is an absolute constant C1 such that αε=1−C1ε
2/

diam(K)2 suffices in Theorem 1 for all ε≤diam(K). On the other hand, there

is a C2 (that depends on K) such that any αε necessarily satisfies αε≥1−C2ε.

Here diam(K) denotes the diameter of K. Note that the condition ε≤diam(K)
is a natural one in this question.

Remark. One could also consider numbers α∗
ε<1 with the property that if a

polynomial Pn of degree n has at least k≥α∗
εn zeros in K, then P ′

n has at least
(1+o(1))k zeros in Kε. Here o(1) tends to 0 as n→∞. Clearly, one can choose
α∗
ε=αε, so α∗

ε=1−C1ε
2/diam(K)2 suffices for this number by Theorem 2. On the

other hand, the proof of Theorem 2 shows that any such α∗
ε necessarily satisfies

α∗
ε≥1−C2ε provided K has non-empty interior.

Remark. A weaker version of Theorem 2 was proved in [6], where it was shown
that the conclusion is true if Pn has at least n(1−cε,K/ logn) zeros in K. The proof
of Theorem 2 proceeds along similar ideas and verifies, in addition, a conjecture for-
mulated in [6] that certain discrete Cauchy-transforms “cannot supercharge certain
curves”.
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2. Proof of Theorem 1

For a positive Borel-measure μ of compact support on the complex plane let

Cμ(z)=
∫ 1

t−z
dμ(t)

be its Cauchy-transform. The proof of Theorem 2 is based on the following lemma.

Lemma 3. If μ is a discrete measure of finite support, λ>0 and G is a con-

nected component of the level set

Λλ(μ)= {z |Cμ(z)|>λ} ,

then

(1) diam(G)≤ 4‖μ‖
λ

,

where ‖μ‖ denotes the total mass of μ.

Note that the set Λλ(μ) is open, and so are its connected components.
The lemma proves in a quantitative form the conjecture from [6] mentioned

above about “supercharging curves”.
The formulation given in Lemma 3 is sufficient for our purposes, but there is

a more general version, see Lemma 4 below.
Consider the special case when μ=μN is the sum of N unit point masses, so

that ‖μN‖=N . The lemma says that if A is large, then any component of the level
set

ΛAN = {z |CμN
(z)|>AN}

has diameter ≤4/A, i.e. even the largest diameter tends to 0 (uniformly in N and
μN ) if A→∞. This should be compared to the fact that the set ΛAN does not
have to be small in some other metric sense. Indeed, the example given in [1,
Theorem 2.2’] shows that for every N there is a μN (which is the sum of N unit
masses) supported in the unit disk such that the projection of Λ(logN)1/2N onto the
real line has linear measure ≥c, where c>0 is an absolute constant. Still, in this
case the largest diameter of the connected components of Λ(logN)1/2N is at most
≤4/(logN)1/2 by Lemma 3.

Proof. Let A,B∈G be two points in G, and let E be a broken line connecting
A and B inside G. The conformal map Φ from C\E onto the exterior of the unit
disk that leaves the point infinity invariant is of the form (around ∞)

(2) Φ(z)= z

cap(E) +c0+ c−1

z
+...,
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where cap denotes logarithmic capacity. If Ω is the unbounded component of C\
Λλ(μ), then the maximum modulus theorem applied to the function (1/Φ(z))/
(Cμ(z)/λ), which is analytic in Ω, gives that this function is at most 1 in absolute
value in Ω, therefore

cap(E)= lim
z→∞

|z|
|Φ(z)| ≤ lim

z→∞
|zCμ(z)|/λ= ‖μ‖

λ
.

For a continuum E we have (see Theorem 5.3.2,(a) in [4])

1
4diam(E)≤ cap(E),

so we obtain

(3) diam(E)≤ 4‖μ‖
λ

.

Since this is true for any two points A,B of G, the lemma follows. �

Let us point out what is behind the preceding lemma. For a positive Borel-
measure μ of compact support on the complex plane let

C∗
μ(z)= sup

ε>0

∣∣∣∣∣
∫
|t−z|≥ε

1
t−z

dμ(t)

∣∣∣∣∣
be the maximal Cauchy-transform. The following extension of Lemma 3 follows
from some classical results of X. Tolsa on analytic capacity.

Lemma 4. Let μ be a positive measure of compact support. If λ>0 and G is

a connected component of the level set

Λ∗
λ(μ)=

{
z C∗

μ(z)>λ
}
,

then

(4) diam(G)≤C
‖μ‖
λ

,

where ‖μ‖ denotes the total mass of μ, and C is an absolute constant.

Note that the set Λ∗
λ(μ) is open, hence so are its connected components.

To prove (4) we need the concept of analytic capacity of a set E. Actually,
there are two notions of analytic capacity in the literature denoted by γ(E) and
γ+(E), but by the fundamental theorem of X. Tolsa [9, (1.1) and Theorem 1.1] they
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are of the same size: γ(E)≈γ+(E), so in what follows we shall only work with γ(E).
If E is a compact set, then γ(E) is defined as the supremum

γ(E)= sup
f

|f ′(∞)|,

where the supremum is taken for all functions f that are analytic in the unbounded
component of C\E and |f(z)|≤1 there. Note also that

f ′(∞) := lim
z→∞

z(f(z)−f(∞)).

The analytic capacity of a Borel-set E is then defined as the supremum of the
analytic capacities of all compact sets lying in E.

Consider, for example, a continuum (connected compact set) E that has at
least two points. The conformal map from the unbounded component Ω of C\E
onto the exterior of the unit disk is of the form (2). Therefore, setting f(z)=1/Φ(z)
as a test function in the definition of γ(E) we obtain

γ(E)≥ cap(E).

There is also a converse inequality, namely if f is as in the definition of γ(E), then
((f(z)−f(∞))/2)Φ(z) is of modulus ≤1 in Ω by the maximal principle, and hence

|f ′(∞)| ≤ 2 lim
z→∞

z/Φ(z)= 2cap(E),

giving γ(E)≤2cap(E). Since for a continuum E we have (see Theorems 5.3.2,(a)
and 5.3.4 in [4])

1
4diam(E)≤ cap(E)≤ 1

2diam(E),

we obtain as before

(5) diam(E)≤ 4γ(E).

The reverse inequality γ(E)≤diam(E) also follows from the just given discussion,
and in view of γ(E)≈γ+(E) this yields γ+(E)≈diam(E), which is attributed in [9]
to P. Jones.

The relevance of all these to Lemma 4 is that by [9, Theorem 1] and [10,
Proposition 2.1]

(6) γ(Λ∗
λ(μ))≤D

‖μ‖
λ

with some absolute constant D. Hence, if G is a component of Λ∗
λ(μ), A,B∈G are

any two points and E is a broken line connecting A and B in G as in the proof of
Lemma 3, then applying (5) and (6) we obtain Lemma 4.



200 Vilmos Totik

Proof of Theorem 1. The proof easily follows from Lemma 3 and from Rouché’s
theorem (cf. [5], [6]). Since we need a quantitative estimate in Theorem 2, we give
some details.

We may assume ε<diam(K)/100.
Let Pn(z)=

∏n
j=1(z−zj), and assume that k≥n/2 of the zeros, say z1, ..., zk,

lie in K. For simpler pole and zero counting we assume that the zj ’s are different
— the general case follows from here by taking limits. We set

μ1 =
k∑

j=1
δzj , μ2 =

n∑
j=k+1

δzj , μ=μ1+μ2,

where δz denotes the Dirac mass at z.
The relevance of the Cauchy transform to our theorem is that

−Cμ(z)=
n∑

j=1

1
z−zj

= P ′
n(z)

Pn(z) .

In particular, the poles of Cμ are the zeros of Pn, and a zeros of Cμ are the zeros
of P ′

n.
Instead of ε we shall prove the result for 3ε. Let ∂Kε be the boundary of the

set Kε. First we need that for z∈K3ε\Kε, ε≤diam(K), the inequality

(7) |Cμ1(z)| ≥ c1nε,

holds, where c1 depends only on the diameter of K. Indeed, let z∈K3ε\Kε, and let
w be the closest point to z from K. Let 
 be the line that passes through w and is
perpendicular to the segment zw. Since the open disk about z and of radius |w−z|
cannot contain a point of K, it follows that K must lie on different side of 
 than z.
Without loss of generality we may assume that 
 is the imaginary axis, z belongs
to the negative half of the real axis, and K lies in the half-plane �z≥0. Then for
all zj∈K we have �(zj−z)≥ε, and hence

� 1
zj−z

= �(zj−z)
|zj−z|2 ≥ ε

(3ε+diam(K))2 ≥ ε
1

4diam(K)2 , 1≤ j≤ k,

and (7) follows with c1=1/8diam(K)2 since k≥n/2.
Now assume that

(8) n−k≤ ε2c1
4·5 n,
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which, for ε≤diam(K), also implies the k≥n/2 assumption used above. By Lemma
3 any connected component G of the set

Λ=Λc1nε/2(μ2)=
{
z |Cμ2(z)|>

1
2c1nε

}

satisfies

(9) diam(G)≤ 4 n−k

c1nε/2
<ε/2.

Thus, if such a component intersects ∂K2ε, then it lies inside the set K3ε\Kε.
Choose now an oriented Jordan curve (i.e. a homeomorphic image of the

unit circle) Γ in K3ε\Kε that avoids the set Λ and that circles K once in the
counterclockwise direction. The existence of Γ follows from the fact that each
component of Λ has diameter <ε/2. We shall give a rigorous proof for the existence,
but first let us finish the proof of Theorem 1. Thus, on Γ we have |Cμ2(z)|≤c1nε/2,
which is smaller than the absolute value |Cμ1(z)|≥c1nε established above. Thus,
by Rouché’s theorem, the difference

Δ= (number of zeros inside Γ−number of poles inside Γ)

is the same for Cμ1(z) and for Cμ1(z)+Cμ2(z)=Cμ(z). By the Gauss-Lucas theorem
this difference is −1 for Cμ1(z) (all poles and zeros of (

∏k
1(z−zj))′/(

∏k
1(z−zj)) lie

in K), hence this difference is again −1 for Cμ(z). By the assumption of the theorem
the number of poles of Cμ inside Γ is at least k, therefore Cμ, and hence also P ′

n(z),
has at least k−1 zeros inside Γ. Since Γ lies inside K3ε, it follows that P ′

n has at
least k−1 zeros inside K3ε, and that completes the proof of the theorem.

The existence of Γ is intuitively clear, but for completeness we give a rigorous
proof. To do that, define the polynomial convex hull Pc(S) for a compact S⊂C as
the complement C\Ω of the unbounded component Ω of the complement C\S of
S. This is nothing else than the union of S with the bounded components of C\S.
The boundary of the polynomial convex hull is called the outer boundary of S and
is denoted by ∂outS. Clearly, ∂outS=∂Ω.

We may assume without loss of generality that nε/2 is not a critical value of
Cμ2 i.e. C ′

μ2
(z) 
=0 on the set

{
z |Cμ2(z)|=

c1
2 nε

}

(if this is not the case, just decrease ε by a tiny amount — note that Cμ2 has only
finitely many critical values). But then every component G of Λ is bounded by a
finite number of disjoint analytic Jordan curves, and so the outer boundary ∂outG

of G is also an analytic Jordan curve.
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Figure 1. The sets Kε,K2ε and K3ε and their boundaries (in particular, L=∂K2ε), some compo-
nents of the level set Λc1εn/2 (shaded regions) and a possible path for Γ (the thick path).

For simpler notation we set L=∂K2ε with its counterclockwise orientation.
We define Γ so that
• Γ consists of parts of L and parts of the outer boundaries of some components

of Λ,
• Γ circles K once in the counterclockwise direction (i.e. the index of any point

z∈K with respect to Γ is 1),
• Γ does not have a point common with the interior of Λ, and
• Γ lies in K3ε\Kε.

See Figure 1.
Let G1, ..., Gn be those connected components of Λ which intersect L (if there

are no such components, then L=∂K2ε oriented counterclockwise is suitable for Γ).
Note that for two such Gj the polynomially convex hulls Pc(Gj) of their closures
are either disjoint or one of them is part of the other one. Discard those Gj for
which Pc(Gj) is part of some other Pc(Gk), and we may assume that Gj , 1≤j≤m,
are those components that remain. Then Pc(Gj), 1≤j≤m, are disjoint, they have
diameter <ε/2 (see (9)), and L∩Λ is part of ∪m

j=1Pc(Gj). As has been said, ∂outGj

are analytic Jordan curves.
For each j=0, 1, ...,m we shall construct an oriented Jordan curve Γj with

the properties: either Γj=L, or Γj has the following structure. There are subarcs
AtBt

L
, 1≤t≤r=rj , of L in the counterclockwise orientation of L, so that their

numbering reflects counterclockwise orientation, i.e. A1B1A2B2...ArBrAr+1Br+1...
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follow each other in the counterclockwise orientation on L, where the indices are
considered mod r (i.e. Ar+1=A1). Each arc AtBt

L
lies outside (the interior of)

∪j
s=1Pc(Gs), and the curve Γj consists of these arcs as well as for each t of a

subarc of some ∂outGkt that connects Bt and At+1, i.e. each arc BtAt+1 Γj

of

Γj is a subarc of the outer boundary of some Gkt , where the kt’s are different for
different t’s. The orientation of the arcs AtBt

L
=AtBt Γj

on Γj coincides with

their (counterclockwise) orientation on L, while each BtAt+1 Γj

is oriented from

Bt to At+1. In other words, the structure of Γj is as follows: an arc of L is followed
by an arc of some ∂outGk, followed by another arc of L followed by an arc of some
other ∂outGk′ etc., and the arcs of L follow each other in the same order on Γj (in
the orientation of the latter) as on L (in its counterclockwise orientation).

These Γj will have the properties:
1) Γj consists of parts of L and parts of the outer boundaries of G1, ..., Gj ,
2) Γj circles K once in the counterclockwise orientation,
3) Γj does not have a point common with the interior of Pc(G1), ...,Pc(Gj),

and
4) Γj lies in K3ε\Kε.

Then clearly, Γ=Γm will satisfy all the requirements.
To do this, first choose points X1, ..., XM∈L\∪m

j=1Pc(Gj) in the counterclock-
wise direction on L such that the length 
(XsXs+1

L
) of the oriented arc XsXs+1

L
of L from Xs to Xs+1 satisfies 2ε≤
(XsXs+1

L
)<6ε for all s=1, ...M , where we take

the indices mod M (i.e. XM+1=X1). Indeed, let X1∈L\∪jPc(Gj) be arbitrary, and
then consider the points P,Q∈L such that 
(X1XP

L
)=2ε and 
(XPXQ

L
)=2ε,

and X1, P,Q follow each other in this order on L. Since the diameter of a convex
arc is at least as large as 1/π-times its length, (1) (see [8] or [2, Sec. 44, (5)])
it follows that XPXQ

L
has diameter >ε/2. Therefore, this arc cannot lie en-

tirely in a Pc(Gj) because these latter have diameter smaller than ε/2. But then
XPXQ

L
⊂∪jPc(Gj) is impossible, for then XPXQ

L
would be the union of more

than one of its non-empty disjoint closed subsets (namely of those XPXQ
L
∩Pc(Gj)

that are not empty) which is impossible since XPXQ
L

is connected. As a conse-

quence, there is an X2∈L
PQ

\∪jPc(Gj) giving the choice of X2. Now do the same

(1) This is usually stated for closed curves, but the arc-case then follows by simply connecting
the two endpoints of the arc by a segment.
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construction starting from X2 to get X3, then from X3 to get X4, etc. until we get
to an XM for which 
(XMX1

L
)<6ε from X1.

After this we turn to the construction of the Jordan curves Γj for all j. Let
Γ0=L oriented counterclockwise, and suppose that for some 0≤j<m the Γj has
already been constructed. If Γj∩Gj+1=∅ (which is equivalent to the fact that
Γj∩Pc(Gj+1) can contain only boundary points of Pc(Gj+1)), then set Γj+1=Γj .
If this is not the case, then let A0 be a point in Γj∩Gj+1. Note that since different
Pc(Gk) are disjoint, every point of Γj∩Pc(Gj+1) lies in one of the arcs AtBt

L
. So

this A0 lies in one of the arcs XsXs+1
L

of L. Then, by the construction of the

points Xk and by diam(Gj+1)<ε/2, the intersection Γj∩Pc(Gj+1) is part of the arc
Xs−1Xs+2

L
of L. Now let A and B be the first and last points in the orientation

of Γj that lie in Pc(Gj+1) (i.e. A,B∈Γj∩Pc(Gj+1), AA0B follow each other on Γj

in this order, and the arc BA
Γj

of Γj from B to A does not intersect Pc(Gj+1)

except for its endpoints B,A). Then A 
=B (since A0∈Gj+1 and Gj+1 is open), A
and B lie on the outer boundary ∂outGj+1 of Gj+1, and since this outer boundary
is a Jordan curve, there is a Jordan arc J on that boundary that connects A and B

(actually, there are two such arcs, it does not matter which one we choose). Orient
J so that J is an arc from A to B, see Figure 2. The points A and B also lie on
Γj , and they divide Γj into two Jordan arcs J1 and J2, say J1 is the arc from A

to B (in the orientation inherited from Γj). Replace now the arc J1=AB
Γj

on Γj

from A to B by J to get the Jordan-curve Γj+1 (note that J does not intersect the
other arc J2=BA

Γj

of Γj because of the definition of the points A and B, so J∪J2

is, indeed, a Jordan-curve). It is clear that this Γj+1 has the structure described
above. Properties 1), 3) and 4) are obvious for Γj+1 from the induction hypothesis
and from the fact that J lies in the ε/2-neighborhood of the arc Xs−1Xs+2

L
of L

(recall that the points A and B belong to L).
As for property 2), note first of all that J1 consists of subarcs of L and of

some subarcs Jk of some ∂outGk’s. Each of the latter ones connect some two points
Ck, Dk of L that lie in between A and B in the counterclockwise orientation on
L. If Δε(Ck) is the disk of radius ε about Ck, then Jk⊂∂outGk⊂Δε(Ck) (recall
that Gk has diameter <ε/2 and Ck∈Gk), so the arcs Jk and CkDk

L
can be

continuously deformed into each other within Δε(Ck). Since Δε(Ck) is also part
of the ε-neighborhood of AB

L
, we obtain that J1 can be continuously deformed

into AB
L

within the ε-neighborhood of AB
L

. Clearly the same is true for J and

AB
L

(for the same reason), hence Γj and Γj+1 can be continuously deformed into
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Figure 2. The points A and B and the arcs J and J1 in the definition of Γj+1. In the figure
we assume that 1≤k≤j, and then J1 consists of the arc ABt

L
of L, one of the subarcs of the

boundary of Gk that connects Bt with At+1, and from the arc At+1B
L

. When defining Γj+1

from Γj , these three arcs are replaced by the single arc J connecting A and B on the boundary of
Gj+1 (as has been said, there are two choices for J , in the figure we chose the longer one). Note
also if we had k>j in the figure, then J1 would be simply the arc of L from A to B.

each other in K3ε\Kε. Since Γj circles K once in the counterclockwise direction by
the induction hypothesis, the same is true of Γj+1, proving 2). �

3. Proof of Theorem 2

The first part follows from the just given proof for Theorem 1. Indeed, we have
seen that if ε≤diam(K)/100 and (see (8))

n−k≤ 1
4·5·8

ε2

diam(K)2 ,

then k−1 critical points are guaranteed in K3ε, so

C1 = 1
9·4·5·8
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suffices in Theorem 2 for such 3ε. Now to cover the range 3diam(K)/100≤3ε≤
diam(K), just divide this C1 by 1002/32.

We shall prove the second part first for a square of side-length 2.
We shall use some basic notions and results from logarithmic potential theory

(see for example the books [3], [4] and [7]), among others the notion of equilibrium
measure and of balayage (for the latter see [7, Sec. II.4] or [3, Ch. IV]). In particular,
we shall use that if RN (z) is a polynomial of degree N with leading coefficient 1, μ
is the normalized counting measure on its zeros, then the equilibrium measure of a
level set L={z |RN (z)|=τ} is the balayage ν̂ of ν out of the bounded components
of C\L (i.e. “onto” L). Indeed, on L the logarithmic potential

U μ̂(z)=
∫

log 1
|z−t|dμ̂(t)

coincides with

Uμ(z)=
∫

log 1
|z−t|dμ(t)= 1

N
log 1

|RN (z)| = 1
N

log 1
τ

(the logarithmic potential does now change on L when forming balayage out of the
components of C\L), i.e. it is constant on L, and that characterizes equilibrium
measures among unit measures on L.

For an integer s≥2 set
R(z)= zs(1−z).

This has s−1 critical points at 0 and one critical point at s/(s+1). Let

ρ0 =
(

s

s+1

)s 1
s+1

be the value of R at the critical point s/(s+1). Then the level set

Lρ0 := {z |R(z)|= ρ0}

passes through the point s/(s+1) and consists of two loops, say 
0 around 0 and 
1
around 1, that meet at the point s/(s+1) (see Figure 3). If we set

μ0 = s

s+1δ0+ 1
s+1δ1

(the normalized zero counting measure of the zeros of R), then, as has been men-
tioned, the equilibrium measure ωLρ0

of Lρ0 is the balayage of μ0 out of the two
bounded domains encircled by Lρ0 . During this balayage process (s/(s+1))δ0 is
moved entirely to 
0, and (1/(s+1))δ1 is moved entirely to 
1, hence

ωLρ0
(
0)= s

s+1 , ωLρ0
(
1)= 1

s+1 .



A quantitative Gauss-Lucas theorem 207

Figure 3. The level set Lρ0 and its two loops.

Consider now the square with center at the origin and of side-length 2, and
shift it horizontally so that its right-hand side passes through the point 1−2/3(s+1).
This will be our set K. If we also set ε=1/3(s+1), then the “right-hand side” Kε

of Kε passes through the point 1−1/3(s+1) (see Figure 4). The point is that the
loop 
0 lies inside K, but K also contains some part of 
1, hence

ωLρ0
(K)= (1+3τ) s

s+1

with some τ>0. But then for some ρ∗>ρ0 we shall have

(10) ωLρ∗ (K)≥ (1+2τ) s

s+1

as well (note that, as ρ∗↘ρ0, ωLρ∗ converges in the weak∗ topology to ωLρ0
). We

fix this ρ∗. For it the level set Lρ∗ is an analytic Jordan curve (this is the case for
all the level sets Lρ with ρ>ρ0).

In what follows we need the following lemma for the integrals of Rn with large
n.

Lemma 5. If z∈Lρ with some ρ>ρ0, then

(11)
∫ z

s/(s+1)
Rn(u)du=(1+o(1)) Rn+1(z)

(n+1)R′(z) ,

where o(1) tends uniformly to 0 in z∈Lρ (with any fixed ρ>ρ0) as n→∞.

Taking this lemma for granted for the time being, we continue the proof, and
set

Sn(z)= (n(s+1)+1)
∫ z

s/(s+1)
Rn(u)du−(ρ∗)n,
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Figure 4. The position of the sets K and Kε.

which is a polynomial of degree n(s+1)+1 with leading coefficient 1. We claim that
if ρ0<ρ1<ρ∗<ρ2, then for large n all the zeros of Sn lie in the strip in between the
level sets Lρ1 and Lρ2 . Indeed, in view of (11) for z∈Lρ1 we have

Sn(z)=O
(
ρn+1
1

)
−(ρ∗)n,

so Sn has no zero inside Lρ1 by Rouché’s theorem (if n is sufficiently large). On the
other hand, if z∈Lρ2 , then again (11) gives that

(n(s+1)+1)

∣∣∣∣∣
∫ z

s/(s+1)
Rn(u)du

∣∣∣∣∣ =(1+o(1))(s+1)
∣∣∣∣R

n+1(z)
R′(z)

∣∣∣∣>cρn+1
2

with some c>0 (that is uniform in z∈Lρ2), hence, by Rouché’s theorem, for both
Sn(z) and Sn(z)+(ρ∗)n the number of zeros inside Lρ2 is the same as the number

D=(number of zeros inside Lρ2−number of poles inside Lρ2)

for the function
(n(s+1)+1) Rn+1(z)

(n+1)R′(z) ,

which is clearly (n+1)(s+1)−s=n(s+1)+1. Thus, all zeros of Sn lie inside Lρ2 ,
and the claim follows.

Let

Sn(z)=
n(s+1)+1∏

j=1
(z−wj,n),
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and consider the zero counting measure

νn = 1
n(s+1)+1

n(s+1)+1∑
j=1

δwj,n .

We claim that these converge in the weak∗ topology to the equilibrium measure
ωLρ∗ , and to do that it is enough to show that if ν is a weak∗ limit of {νn}, say
νn→ν as n→∞, n∈N , then ν=ωL∗

ρ
. We have just shown that ν is supported on

Lρ∗ . Furthermore, if z lies outside Lρ∗ , then from (11) and from what we have just
shown about the location of the zeros of Sn, it follows that∫

log 1
|z−t|dν(t) = lim

n→∞, n∈N

∫
log 1

|z−t|dνn(t)

= lim
n→∞, n∈N

1
n(s+1)+1 log 1

|Sn(z)| = 1
(s+1) log 1

|R(z)| .

However, the right-hand side is the same as∫
log 1

|z−t|dμ0(t)=
∫

log 1
|z−t|dωLρ∗ (t),

where, in the last step, we used that the equilibrium measure of the level set Lρ∗ is
the balayage of the measure μ0 from the inner domain of Lρ∗ , hence its logarithmic
potential outside Lρ∗ coincides with the logarithmic potential of μ0. Thus, the
logarithmic potentials of the measures ν and ωLρ∗ , both of which are supported on
Lρ∗ , coincide outside Lρ∗ , and the equality ν=ωLρ∗ follows from Carleson’s unicity
theorem [7, Theorem II.4.13].

Now in view of (10) and of the convergence νn→ωL∗
ρ

in the weak∗ topology,
for all large n the polynomial Sn(z) of degree n(s+1)+1 has at least

(1+τ) s

s+1(n(s+1)+1)≥ (1+τ)sn

zeros in K, but S′
n(z)=(n(s+1)+1)Rn(z) has only sn zeros (the ones at the origin)

in Kε. This shows that the number αε=α1/3(s+1) for K must be greater than

(1+τ)sn
n(s+1)+1 >

s

s+1 =1− 3
3(s+1) =1−3ε.

Finally, for ε not of the form 1/3(s+1) select the largest s for which ε<1/3(s+1).
This proves the second part of Theorem 2 for a square of side-length 2.
If K is a convex set with non-empty interior, then the argument is the same.

Clearly, it is sufficient to prove the claim for a homothetic copy of K. Now take a
disk inside K and translate it so that we obtain a disk D which still lies in K, but
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contains a boundary point M . By scaling, rotating and translating we may achieve
that M is the point 1−2/3(s+1), the tangent line to K at M is vertical and D is
sufficiently large and lies to the left of that tangent line (which is necessarily the
tangent line to D, as well). Now we are in the position that we can use the just
given proof (which was for squares) using the same function R as before (in this
situation 
0 lies again in K).

Finally, if K has empty interior, then it is a segment, say K=[−1, 1]. For an
s≥1 set

Sn(z)= (z2−1)sn(z−i)n,

which has k=2sn zeros in [−1, 1], and

S′
n(z)=n(z2−1)sn−1(z−i)n−1 (

s(z−i)2z+(z2−1)
)

has 2sn−2 zeros in [−1, 1], n−1 zeros at i and two other zeros lying outside [−1, 1],
the closest of which to [−1, 1] is

i

s+
√
s2−2s−1

,

which is of distance 1/(s+
√
s2−2s−1)>1/2s from [−1, 1]. Thus, if ε=1/2s, then

Sn has at most k−2 critical points in Kε, therefore α1/2s must be bigger than
2sn/(2sn+n)=2s/(2s+1), which proves the second part of Theorem 2 for the seg-
ment K=[−1, 1].

We still need to prove Lemma 5.

Proof of Lemma 5. Let ρ>ρ0 be fixed, z∈Lρ, and select ρ0<ρ1<ρ close to ρ.
The mapping ξ→R(ξ) maps Lρ into the circle Cρ={w |w|=ρ}, and Lρ1 into the
circle Cρ1 in a (s+1)–to–1 fashion. We may assume that R(z)=ρ (if this is not
the case then just multiply R by a suitable number θ of modulus 1 to achieve that
and then divide the integral by θn). The inverse image of the segment [ρ1, ρ] under
this mapping consists of (s+1) Jordan arcs, one of which, say J , has z as one of
its endpoints. Let z1 be the other endpoint of J . Then z1∈Lρ1 . If the path of the
integration lies in the inner domain of Lρ1 , then it is immediate that

∫ z1

s/(s+1)
Rn(u)du=O(ρn1 ).

We also have

1
R′(z)

∫ z

z1

Rn(u)R′(u)du= Rn+1(z)
(n+1)R′(z)−

Rn+1(z1)
(n+1)R′(z1)

= Rn+1(z)
(n+1)R′(z)−O(ρn1 ).
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Thus, it is left to show that

(12)
∫
J

Rn(u)
(

1−R′(u)
R′(z)

)
du=O

(
ρn

n2

)
,

because the right-hand side is

o

(∣∣∣∣ Rn+1(z)
(n+1)R′(z)

∣∣∣∣
)
.

If we make the substitution t=R(u) in the integral on the left of (12), the
integral becomes ∫ ρ

ρ1

tn
(

1− R′(R−1(t))
R′(R−1(ρ))

)
1

R′(R−1(t))dt

with some local branch of R−1, which, in view of
∣∣∣∣ 1
R′(R−1(t))−

1
R′(R−1(ρ))

∣∣∣∣≤C|t−ρ|,

is in absolute value at most

C

∫ ρ

ρ1

tn(ρ−t)dt≤C

∫ ρ

0
tn(ρ−t)dt=C

ρn+2

(n+1)(n+2)

(apply integration by parts). �
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