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On a remark by Ohsawa related to the
Berndtsson-Lempert method for

L2-holomorphic extension

Tai Terje Huu Nguyen and Xu Wang

Abstract. In [15, Remark 4.1], Ohsawa asked whether it is possible to prove Theorem
4.1 and Theorem 0.1 in [15] using the Berndtsson-Lempert method. We shall answer Ohsawa’s
question affirmatively in this paper. Our approach also suggests to introduce the Legendre-Fenchel
theory and weak psh-geodesics into the Berndtsson-Lempert method.
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1. Introduction

In [15] Ohsawa gave a new proof of two theorems of Guan-Zhou (see [11], [12],
[18] for further details and related results), Theorem 1.1 and 1.2 below, and asked
in a remark (remark 4.1 in [15]) whether a proof using the Berndtsson-Lempert
method in [9] can be had.

Theorem 1.1. (Theorem 4.1 in [15] and Corollary 1.8 in [13]) Let Ω be a
pseudoconvex domain in C

n, Ω′ :={(z′, zn)∈Ω:zn=0}, φ a plurisubharmonic func-
tion on Ω, f∈O(Ω′) a holomorphic function on Ω′, and let α>0. Then there exists
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f̃∈O(Ω) a holomorphic function on Ω such that f̃ |Ω′ =f and∫
Ω
|f̃ |2e−φ−α|zn|2 ≤ π

α

∫
Ω′

|f |2e−φ,

where integration is with respect to the Lebesgue measure.

Theorem 1.2. (Theorem 0.1 in [15]) With the same assumptions and nota-
tion as in Theorem 1.1, there exists f̃∈O(Ω) such that f̃ |Ω′ =f and satisfying the
estimate ∫

Ω

|f̃ |2e−φ

(1+|zn|2)1+α
≤ π

α

∫
Ω′

|f |2e−φ.

In this paper we answer Ohsawa’s question affirmatively by proving an exten-
sion theorem with estimate using the Berndtsson-Lempert method. This is Theorem
1.3 below and the main theorem of this paper. A key ingredient in our proof is the
construction of a weight function θ using the Legendre-Fenchel transform and weak
geodesics for plurisubharmonic functions (see the appendix in Section 4) to which
we can apply the Berndtsson-Lempert technique.

Below we use the following terminology. Let σ :U→R, x �→σ(x) be a real-valued
function where U⊆R

n is some subset and we write x:=(x1, ..., xn). We will say that
σ is increasing if σ is separately increasing in each argument. That is, more precisely,
if for each j∈{1, 2, ..., n}, the one-variable function t �→σ(x1, ..., xj−1, t, xj+1, ..., xn)
is increasing for all (x1, ..., xj−1, t, xj+1, ..., xn)∈U .

Theorem 1.3. (Main Theorem) Let Ω be a pseudoconvex domain in C
n, 1≤

k≤n an integer,

Ω′ := {(z′, z′′)∈Ω : z′′ =0}, z′′ := (zn−k+1, ..., zn),

φ a plurisubharmonic function on Ω, f∈O(Ω′) a holomorphic function on Ω′, and
σ a convex increasing function on R

k. Then there exists f̃∈O(Ω) a holomorphic
function on Ω such that f̃ |Ω′ =f and∫

Ω
|f̃ |2e−φ−σ(ln |z′′|) ≤

∫
Ω′′

e−σ(ln |z′′|)
∫

Ω′
|f |2e−φ,

where we write ln |z′′|:=(ln |zn−k+1|, ..., ln |zn|), Ω′′ :={z′′∈Ck :ln |z′′|∈Ω′′
R
}, Ω′′

R
de-

notes the convex hull of {ln |z′′|:z∈Ω}, and integration is with respect to the Lebesgue

measure.

In the case that σ depends only on |z′′|2, Theorem 1.3 reduces to [18, Theorem
1.7]. It is also very likely that the main theorem in [12] implies Theorem 1.3. So
our contribution is not the theorem itself, but rather a method of proof using the
Berndtsson-Lempert method.
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2. The Berndtsson-Lempert method in a simple setting

We start by recalling quickly the Berndtsson-Lempert method for L2-holomor-
phic extension ([9]) in the simple setting of domains in C

n as it will apply to us.
Specifically, we consider the following set-up. Let Ω⊆C

n be a pseudoconvex domain
and let φ be a plurisubharmonic function on Ω. For z∈Ω, we write z=(z′, zn). Let
Ω′ :={z∈Ω:zn=0}, suppose that f∈O(Ω′) is a given holomorphic function on Ω′,
and suppose that |zn|<1 on Ω. We are interested in finding a holomorphic extension
f̃∈O(Ω) of f defined on all of Ω for which we have a good weighted L2 estimate of
the form ([16]) ∫

Ω
|f̃ |2e−φ ≤C

∫
Ω′

|f |2e−φ,

where integration is with respect to the Lebesgue measure, and C is some universal
constant. The Berndtsson-Lempert method demonstrated in [9] is the following.
Fix a positive constant j>1 and consider the following plurisubharmonic function

θ :C×Ω−→R, (τ, z) �−→ θ(τ, z) := θRe τ (z) :=φ+j max{ln |zn|2−Re τ, 0}.(2.1)

For each t:=Re τ≤0, θt provides a weight function for a weighted L2 inner product
〈·, ·〉t and the corresponding induced weighted L2 norm ||·||t, given by

〈u, v〉t :=
∫

Ω
uv̄e−θt

, ||u||2t := 〈u, u〉t .

Since |zn|<1 on Ω, we have θ0=φ. Let ft denote the holomorphic extension of f
with minimal ||·||t-norm. Then we can write [9, section 3]

||ft||2t = sup
g∈C∞

0 (Ω′)

|ξg(F )|2

||ξg||2t
, ξg(F ) :=

∫
Ω′

F ḡe−φ,

where F denotes any holomorphic extension of f , and where ||ξg||2t denotes the
(squared) dual norm of the continuous linear functional ξg, given by

||ξg||2t = sup
||F ||t=1

|ξg(F )|2.

The crux of the argument is that by complex Brunn-Minkowski theory (see e.g.
[2], [3], [6], [7]), under the assumption that θ is plurisubharmonic, we have that
t �→||ξg||2t is log-convex. Hence t �→et ||ξg||2t is log-convex. Suppose that this is also
bounded as t→−∞. Then t �→t+ln(||ξg||2t ) is convex and bounded as t→−∞, and
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hence increasing. Taking the exponential, we infer that t �→et ||ξg||2t is increasing,
which implies that t �→e−t ||ft||2t is decreasing. Thus, we get the inequality

||f0||20 ≤ lim
t→−∞

e−t ||ft||2t .

Since ft is the extension of f with minimal ||·||t-norm, the right-hand side limit
is bounded by the limit of e−t ||F ||2t as t→−∞ with F any extension as above.
Writing f0 :=f̃ and recalling that we are assuming θ0=φ, we therefore find∫

Ω
|f̃ |2e−φ ≤ lim inf

t→−∞
e−t ||F ||2t = lim inf

t→−∞
e−t

∫
Ω
|F |2e−θt

.

By [9, Lemma 3.2, Lemma 3.3], as j→∞, the right-hand side limit converges to
π

∫
Ω′ |f |2e−φ. Thus, we get an extension f̃ with the following estimate:∫

Ω
|f̃ |2e−φ ≤π

∫
Ω′

|f |2e−φ.

This estimate is known to be optimal (we have equality in the case Ω=Ω′×{|zn|<1}
and φ does not depend on zn) and was first proved in [10], [12].

3. A solution to Ohsawa’s question

In this section we apply the Berndtsson-Lempert method in Section 2 to a
weight function θ that is different from the one in (2.1) to prove Theorem 3.1 below.
Notice that taking σ=αe2x or σ=(1+α) ln(1+e2x) we get L=π/α in Theorem 3.1.
Hence Theorem 1.1 and 1.2 follow. Our construction of θ is based on a Legendre-
Fenchel transform approach to weak geodesics for plurisubharmonic functions (see
the appendix in Section 4).

Theorem 3.1. Let Ω⊆Cn be pseudoconvex and write for z∈Ω, z=(z′, zn).
Let φ be a plurisubharmonic function in Ω, Ω′ :={z∈Ω:zn=0}, and f∈O(Ω′) a

holomorphic function on Ω′. Put x:=ln |zn| and let σ=σ(x) be a convex and in-

creasing function in x with the property that L :=
∫
C

e−σ(ln |w|) <∞. Then there

exists f̃∈O(Ω) a holomorphic function on Ω such that f̃ |Ω′ =f and∫
Ω
|f̃ |2e−φ−σ(ln |zn|) ≤L

∫
Ω′

|f |2e−φ.(3.1)

Proof. Fix c∈R and consider the weight function θ defined by

θ(τ, z) := θRe τ (z) :=φ(z)+ψRe τ (ln |zn|), t=Re τ > 0,
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where

ψt(x) :=ψ(t, x) := tσ

(
x−c

t
+c

)
.(3.2)

One may directly verify that (see also the appendix in Section 4 for another ap-
proach) ψ is convex in (t, x) and increasing with respect to x. Since φ is assumed to
be plurisubharmonic, we know that θ defined above is plurisubharmonic in (τ, z).
By the Berndtsson-Lempert method, using the same notation as in Section 2, it
follows that

ρc(t) := ln ||ξg||2t−2c(t−1)

is convex as a function of t. Hence for all t∈[1/2, 1),

ρc(1)−ρc(t)
1−t

≥ ρc(1)−ρc(1/2)
1−1/2 .

Observe that ρc(1)=ln ||ξg||21 does not depend on c. Thus,

ln ||ξg||21 ≥ ρc(t)+2(1−t)
(
ln ||ξg||21−ρc(1/2)

)
,

for all t∈[1/2, 1) and for all c∈R. Now let

c := −1
(1−t)2 ,

and let t↑1. Lemma 3.2 below implies that

ln ||ξg||21 ≥ lim sup
t↑1

ρc(t).(3.3)

Hence, by (3.3), we have a holomorphic extension f̃ with the following estimate∫
Ω
|f̃ |2e−φ−σ(ln |zn|) ≤ lim inf

t↑1
e2c(t−1)

∫
Ω
|F |2e−φ−ψt(ln |zn|)

= lim inf
t↑1

e2/(1−t)
∫

Ω
|F |2e

−φ−tσ

(
ln |zn|+ 1

1−t
t

)
,

where F is any arbitrary holomorphic extension. From the change of variables

zn = e
1

t−1w, Ωt := {(z′, w)∈C
n : (z′, e

1
t−1w)∈Ω},

and the definition of L, we find that letting t↑1,

e2/(1−t)
∫

Ω
|F |2e

−φ−tσ

(
ln |zn|+ 1

1−t
t

)
=

∫
Ωt

|F (z′, e
1

t−1w)|2e
−φ

(
z′,e

1
t−1 w

)
−tσ

(
ln |w|

t

)

converges to the right hand side of (3.1). Hence the theorem follows. �
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Lemma 3.2. Let c:= −1
(1−t)2 . Then limt↑1(1−t)ρc(1/2)=0.

Proof. It suffices to show that lim supc→−∞ ρc(1/2)<∞. That is,

lim sup
c→∞

sup
F∈O(Ω)

∣∣∣∣
∫

Ω′
F ḡe−φ

∣∣∣∣
2

e−c

∫
Ω
|F |2e−φ− 1

2σ(2 ln |zn|−c)
<∞.

This now follows from the change of variables zn=ec/2w and the definition of L.
�

Remark. The change of variables argument in the proof of Theorem 3.1 also
suggests to use another weight function, with

(3.4) ψt(x)=σ(x−t), t∈R.

In fact, as we shall see next, the proof of Theorem 3.1 is simpler if we use this new
weight function. Nevertheless, we still wish to include the proof given above since it
is our first example of the use of weak geodesics in the Berndtsson-Lempert method.

3.1. Proof of the main theorem (Theorem 1.3)

Since Ω⊂C
n−k×Ω′′, one may assume that σ=∞ outside Ω′′

R
. Also we may as-

sume that the right-hand side in the estimate in the theorem is finite, else there is
nothing to prove. Replace ψt in (3.2) by

(3.5) ψt(x)=σ(x−t), t∈R, x−t := (x1−t, ..., xk−t).

It is clear that ψt(x) in convex in (t, x) and increasing in x. Hence, the corresponding
weight function

θ(τ, z)=φ(z)+ψRe τ (ln |zn|)
is plurisubharmonic in (τ, z), and the Berndtsson-Lempert method applies. Thus,
we know that t �→ln ||ξg||2t +2kt is convex. Moreover, the change of variables z′′=etw

gives, ∫
Ω
|F |2e−φ−σ(ln |z′′|−t) = e2kt

∫
{(z′,etw)∈Ω}

|F (z′, etw)|2e−φ(z′,etw)−σ(ln |w|),(3.6)

where F , as before, is any arbitrary fixed extension of f . From (3.6) we infer that
ln ||ξg||2t +2kt is also bounded near t=−∞. Hence, t �→ln ||ξg||2t +2kt is increasing
and there exists a holomorphic extension f̃ with∫

Ω
|f̃ |2e−φ−σ(ln |z′′|) ≤ lim inf

t→−∞

∫
{(z′,etw)∈Ω}

|F (z′, etw)|2e−φ(z′,etw)−σ(ln |w|)
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≤
∫
Ck

e−σ(ln |w|)
∫

Ω′
|f |2e−φ

=
∫

Ω′′
e−σ(ln |w|)

∫
Ω′

|f |2e−φ,

where in the last equality we have used that σ=∞ outside Ω′′
R
. This completes the

proof. �

Remark. From (3.6), in the case that Ω is horizontally balanced (that is,
(z′, z′′)∈Ω⇒(z′, τz′′)∈Ω for all τ∈C with |τ |<1), the method above is equivalent
to the one associated to the weight function

θ(τ, z) :=φ(z′, τz′′)+σ(ln |z′′|).

This construction has already been used in [8, Section 2]. The advantage of (3.5)
is that it also applies to general Ω.

4. Appendix: weak geodesics in the space of toric plurisubharmonic
functions

By a toric plurisubharmonic function we mean a function of the following form

ψ(z) :=ψ(log |z1|, ..., log |zn|)

on C
n, where ψ is a convex increasing function on R

n.

Definition 4.1. We call a family, say {ψt}0<t<1, of toric plurisubharmonic func-
tions a weak geodesic(1) if

Ψ : (τ, z) �−→ψRe τ (z), τ ∈C(0,1) := {τ ∈C : 0<Re τ < 1}

is plurisubharmonic on C(0,1)×C
n and (i∂∂Ψ)n+1=0 on C(0,1)×(C\{0})n.

Remark. Noticing that Ψ is locally bounded on C(0,1)×(C\{0})n, we know
that (i∂∂Ψ)n+1 is well defined. Moreover, by a local change of variables zj=ewj ,
we know that {ψt}0<t<1 is a weak geodesic if and only if

ψ(t, x) :=ψt(x)

is convex on (0, 1)×R
n and

MA(ψ) :=det(D2
(t,x)ψ)= 0

(1) For usual weak psh geodesics on compact Kähler manifolds, see [1, Section 2]. The weak
geodesic is also called generalized geodesic in [5, Section 2.2], and maximal psh segment or psh
geodesic segment in [17, page 5]. See [14] for the background.
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on (0, 1)×R
n, where D2

(t,x)ψ denotes the real Hessian matrix of ψ with respect to
(t, x). Hence, by Corollary 2.5 in [4], {ψt}0<t<1 is a weak geodesic if and only if
the Legendre-Fenchel transform of ψ(t, x) with respect to x for fixed t, say

(ψt)∗(ξ) := sup
x∈Rn

x·ξ−ψt(x),

is an affine function in t. This suggest the following definition.

Definition 4.2. We call a family, say {ψt}0<t<1, of toric plurisubharmonic func-
tions, a weak geodesic segment if

(ψt)∗ = t(σ1)∗+(1−t)(σ0)∗

with σ1, σ0 convex increasing functions on R
n.

Now let us consider the case n=1. Let σ1 :=σ in Theorem 3.1. For σ0 we take

σ0 :=1(−∞,c](x)=
{

0, x≤c

∞, x>c.

Then we have

(σ0)∗(ξ)= sup
x∈R

xξ−σ0(x)= sup
x≤c

xξ = cξ+sup
x≤0

xξ =
{
cξ ξ≥0
∞ ξ<0.

Since σ1=σ is also increasing, we know that (σ1)∗(ξ)=σ∗(ξ)=∞ when ξ<0. Hence
ψt can be written as

ψt(x)= sup
ξ∈R

xξ−tσ∗(ξ)−(1−t)cξ = t

(
sup
ξ∈R

x−(1−t)c
t

ξ−σ∗(ξ)
)
,

and σ∗∗=σ gives ψ(t, x)=tσ
(
x−c
t +c

)
. This is precisely (3.2). Note that (3.4) also

gives a weak geodesic since

sup
x∈R

xξ−σ(x−t)= tξ+σ∗(ξ)

is affine in t.
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