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Extension of the 2-representation theory of
finitary 2-categories to locally (graded) finitary
2-categories

James Macpherson

Abstract. We extend the 2-representation theory of finitary 2-categories to certain
2-categories with infinitely many objects, called locally finitary 2-categories, and extend the clas-
sical classification results of simple transitive 2-representations of weakly fiat 2-categories to this
environment. We also consider locally finitary 2-categories and 2-representations with a grad-
ing, and prove that the associated coalgebra 1-morphisms have a homogeneous structure. We use
these results to classify (graded) simple transitive 2-representations of certain classes of cyclotomic
2-Kac—Moody algebras.

1. Introduction

The study of the 2-representation theory of finitary and fiat 2-categories, pio-
neered by Mazorchuk and Miemietz in [MM11] through [MM16b] and further ex-
plored in various other works, e.g. [MMMT16] and [CM19], is a powerful new
tool in representation theory. Important applications of the theory include certain
quotients of 2-Kac—Moody algebras (see [MM16¢]) and Soergel bimodules (see for
example [MMM™19)]).

However, while powerful, the setup used to date in this theory has multiple
restrictions, primarily relating to finiteness conditions. Specifically, the theory con-
siders 2-categories which have only finitely many objects and whose hom-categories
have finitely many isomorphism classes of indecomposable 1-morphisms and finite-
dimensional spaces of 2-morphisms. The relaxation of these restrictions would en-
able the study of a much wider class of examples using techniques analogous to
those for 2-representations of finitary 2-categories.

This paper is an initial step in that direction, focussing on the relaxation to
countably many objects in the 2-categories, giving ‘locally finitary’ 2-categories.
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While this is a comparatively mild generalisation, it already enables the study of
multiple interesting examples that were previously inaccessible, including a much
wider class of quotients of 2-Kac—-Moody algebras. For an examination of relaxing
finiteness conditions for 1- and 2-morphisms, see the companion paper [Mac22] by
the same author.

In the course of this paper, we give the generalisation of multiple finitary results
to the locally finitary case. Of specific note, in Theorem 3.6 we construct for any
transitive 2-representation of a locally weakly fiat 2-category an equivalent ‘internal’
2-representation of comodule 1-morphism categories, analagously to major results
in [Ost] and [MMMT16]. In Theorem 4.33, a generalisation of the primary result
in [MM16¢], we further classify all simple transitive 2-representations of strongly
regular locally weakly fiat 2-categories as being equivalent to cell 2-representations.
We then utilise the latter result to classify all simple transitive 2-representations of
cyclotomic 2-Kac—-Moody algebras.

This paper also considers a generalisation of the above setup to the case where
the locally finitary 2-categories have an additional graded structure. In this setup,
we use the construction of a ‘degree zero’ sub-2-category to show in Theorem 6.21
that the previously constructed internal 2-representations associated to a transi-
tive 2-representation can be viewed as a ‘degree zero’ construction in a canonical
fashion. We use this result by considering again cyclotomic 2-Kac-Moody algebras,
demonstrating in Theorem 6.25 that any simple transitive 2-representation is in fact
a graded 2-representation.

The structure of the paper is as follows. In Section 2 we give the initial defini-
tions for locally finitary 2-categories and their 2-representations, as well as various
related notions used in the paper. We also give some minor results demonstrating
that the cell structure of the 2-category is highly analogous in this generalisation. In
Section 3 we generalise various results from [MMMT16], leading up to Theorem 3.6
as well as Theorem 3.12; which classifies the simple transitive 2-representations for
locally finitary 2-categories associated to certain infinite dimensional algebras.

Section 4 considers instead generalisations of various results in the series of
papers [MM11] through [MM16b], particularly the former paper and [MM16¢c]. The
eventual goal of this section is Theorem 4.33. Section 5 presents an application
of this result by demonstrating that cyclotomic 2-Kac—Moody algebras of given
weights are locally weakly fiat 2-categories, and thus submit to the aforementioned
theorem.

In the last section, we examine the further generalisation to locally restricted
G-finitary 2-categories for some countable abelian group G. We construct a degree
zero 2-category associated to such a 2-category, and use it to construct a degree
zero coalgebra 1-morphism for a given graded transitive 2-representation of the
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original 2-category. This setup allows us to prove Theorem 6.21. Finally, we apply
this to the cyclotomic 2-Kac-Moody categories of given weights, showing that their
cell 2-representations are all graded simple transitive 2-representations, leading to
Theorem 6.25.

Acknowledgements. The author would like to thank Vanessa Miemietz for her
support and supervision during the PhD from whence this material was derived. In
addition, the author would like to thank the referees for the paper, who provided
many substantial and helpful suggestions that notably improved the paper.

2. Locally finitary 2-categories
2.1. Initial definitions

Let k be an algebraically closed field.

Definition 2.1. We denote by 2f) the 2-category whose objects are small
k-linear idempotent complete categories, whose 1-morphisms are k-linear additive
functors and whose 2-morphisms are natural transformations. We further denote
by Ql]{( the full sub-2-category of %A with objects those categories of such that o
has only finitely many isomorphism classes of indecomposable objects, and such
that dim Homg(i, j)<oo for all objects i, jesd. We call objects in this 2-category
finitary categories. We finally denote by Ry as the full sub-2-category of 2f) whose
objects are equivalent to A-mod for some finite dimensional associative k-algebra
A.

Definition 2.2. A 2-category € is locally finitary over k when it has countably
many objects, € (1, j)EQl]{{ for all objects i, j €%, horizontal composition is additive
and k-linear and the identity 1-morphism 1; is indecomposable for all i.

Notation 2.3. For the duration of this paper, we notate l-morphisms as
F,G, ... and 2-morphisms as «, (3, .... We denote the composition of 1-morphisms F
and G as either FoG or F'G, and we notate horizontal composition of 2-morphisms
a and 3 as aoy B and vertical composition as aoy 3.

We note that if 4 has only finitely many objects, then this is the definition
of a finitary 2-category first given in [MM11]. Since all the applications of interest
known to the author utilise at most countably many objects, this paper restricts all
definitions to this case. It seems likely that many of the results will still apply in
larger cases; however, the author has not confirmed this.

For the rest of this subsection, we let € denote a locally finitary 2-category.
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Definition 2.4. Given a finite set of objects i={i1,...,i,} in €, we denote
the sub-2-category generated by the i; (i.e. with objects i1, ...,1,, and with hom-
categories € (ij, 1) for all j and k) by €3, and call it a full finitary sub-2-category.

In this paper we will sometimes refer to proofs (generally in other papers) as
having ‘local’ proofs - we use this to indicate that the proof works by proving the
result for any arbitrary set of objects, 1-morphisms and 2-morphisms that belong
to a full finitary sub-2-category of the 2-category under consideration. The proof
can thus be applied directly to the locally finitary setup without having to adjust
anything beyond notation.

Definition 2.5. We say % is locally weakly fiat if it has a weak object-pre-
serving anti-autoequivalence —* and if for any 1-morphism F'€%(i,j) there exist
2-morphisms a:FoF* =15 and §:1; — F*oF such that (aeyidp)ey (idpey B)=idp
and (idproga)oy (Bogidp«)=idp~ hold. We let *(—) denote the inverse of this
weak anti-autoequivalence. If * is a weak anti-involution, we say that % is a locally
fiat 2-category.

Definition 2.6. An additive (respectively finitary, abelian) 2-representation
of € is a strict 2-functor M:% — 2 (resp. M:%%Q{{(, M:% —Rk).

Given a 2-representation M of ¢, we use the notation Jl:=]]; ., M(1i) for the
corresponding category.

Definition 2.7. The ith principal 2-representation P;:% —2j of € is defined
on objects j€F as Pi(j)=%(i,j), on l-morphisms F as P;(F)=Fo—, and on
2-morphisms « as P;(a)=acy —.

Since € is a locally finitary 2-category, this is a finitary 2-representation.

2.2. Cells, ideals and multisemigroups

Definition 2.8. Given a k-linear 2-category %, we define a left 2-ideal .# of
% to have the same objects as ¥, and for each pair i, j of objects an ideal # (1, j)
of the 1-category €(i, j) which is stable under left horizontal multiplication with
1- and 2-morphisms of €. We similarly define right 2-ideals and two-sided 2-ideals.
We call the latter simply 2-ideals.

Following standard constructions, given a 2-category % and a 2-ideal . of ¥,
we define the quotient 2-category € /.7 as follows: the objects and 1-morphisms of
€ /.7 are the same as those of € and the hom-sets between 1-morphisms are defined
as

Hom%/ﬂ(Lj)(F, G) = Hom%o(i’j) (F, G)/ Homj(i’j)(F, G)
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Definition 2.9. Given a locally finitary 2-category % and a 2-representation
M of ¢, an ideal & of M is a collection of ideals .#(i)CM(i) which is closed
under the action of € in that for any morphism f€.#(i) and any 1-morphism
Fe®, M(F)(f) is a morphism in .¢ if it is defined.

Definition 2.10. Let & be a locally finitary 2-category. We denote by S(€)
the multisemigroup of isomorphism classes of indecomposable 1-morphisms of &
(we denote the isomorphism class of F' by [F]), with the operation given by

[F]%[G]={[H] € S(¥)|H is a direct summand of FG}.

We often abuse notation and write F' for the isomorphism class [F].

The Green’s relations for multisemigroups were first defined in [KM12], based
on the original definition for semigroups in [Gre51]. To recall, if (S, ) is a multi-
semigroup with z€S, then the principal left ideal of x is the set L,=SzU{z},
the right principal ideal is R,=xSU{z}, and the two-sided principal ideal is J,=
SxSUSzUxSU{z}. This gives rise to equivalence relations ., # and _# where
e.g. x~gy if Ly=L,. The equivalence classes of these relations are called .Z-,
%- and _Z -cells respectively. There are also two further Green’s relations. One
is :=2NZ, and the other is 2, defined as the join of £ and Z in the poset
of equivalence relations - that is, it is the smallest equivalence relation to contain
both . and Z. In semigroups, it is always the case that =L Z=%-L (see e.g.
[Law03, p. 219]). However, in multisemigroups, this is not in general true. The
best we can say is the following:

Lemma 2.11. 9=J,c,+ (L Z%)".

Proof. Since L, ZC L%, and since Z is the join of £ and £, it follows
that Z2CU;ep+ (Lo%)". However, if £ and # are contained in an equivalence
relation M, then it follows from transitivity that (Z°%)**CM for all i. Thus
Usez+ (£ %) C 2, and the result follows. [

We note that, even in semigroup theory, it is not always true that 2= _¢ in
the infinite case, and we need to apply care when considering a locally finitary
2-category. That said, we are able to give useful results.

For the rest of the subsection, let € be a locally finitary 2-category with multi-
semigroup of isomorphism classes of indecomposables S(%), on which we have
Green’s relations Ly, Z¢, fv, Y% and . For a full finitary sub-2-category
B of €, S(B)CS(€). Let L, Za, F», Y% and Ay denote the Green’s rela-
tions of S(Z), which we consider as equivalence relations on S(#). We can extend
these to equivalence relations on S(%) by setting 2z=2zUA s(e)y for 2 one of
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the Green’s relations and A the diagonal equivalence relation. We first show that
all the Green’s relations on € barring J% are determined by the Green’s relations
on the full finitary sub-2-categories.

Proposition 2.12. Let x denote the set of full finitary sub-2-categories of €.
Then U%ex La=Lyw. A similar result holds for B¢ and He.

Proof. All three results have similar proofs - we give the proof for Zy. If we
have (F, G) €U ze,, L, either (F,G)€Ag() and F=G or there exists some Z€x
such that (F,G)eZg. If F=G then (F,G)e%y. If (F,G)€%5 then there exist
H, KeS(#) such that F is a direct summand of HG and G is a direct summand of
KF. But then it follows that F'~g,_ G and thus (F,G)€.% and U%EX?,@Q,,%;.

Conversely, if (F, G)€.%¢, then there exist some H, K €S(%) such that F is a
direct summand of HG and G is a direct summand of KF. Now let Z be a full
finitary sub-2-category of ¥ that contains F,G, H and K. It follows that (F,G)e
Za, and hence (F, G)EU%,EX Zs. Thus fchU%,EX %, and g%”:U%‘eX L as
required. [

Proposition 2.13. In the same setup as abowve, U(%’ex Da=D.

Proof. 1f (F, G) € £ then as by Proposition 2.12 %% =]z L, without loss
of generality (F, G) €. % for some B € x. By the definition of g, (F, G) € Zg. Thus
(F, G)eUge, Z#, and hence Lo C|J gc, Z. Similarly, Z¢ C|Jgc, 2. But then
as P is the join of L and %, we must have that %gQU@eX Dep.

For the opposite inclusion, let (F), G)Guﬂex 9. It follows from Lemma 2.11

that Za=\J,cp+ (La-Zz)". Therefore there exists some ne2Zt and H;eS(A)
for 0<i<n such that
F=Hy~g,Hi~g,H~g, ...~ 9, Hy 1 ~z, Hy=G.
Then by Proposition 2.12,
(Hi,Hi11) € L= (H;, Hiy1) € Ly,
and
(His Hi1) € #p = (H;, Hit1) € F .
Therefore (H;, H;11)€ P« for all i. But as P« is an equivalence relation it follows
that (F,G)€%¢. Thus U@ex%g@% and the result follows. O
We can also give a useful result for sufficiently nice _#-cells of ¢

Theorem 2.14. Let § be a 7 -cell of € such that every € -cell of § is non-
empty. Let Ly, Ry, Dy and Fg denote the restrictions of the Green’s relations of
€ to j Then gjogg:%gogg:‘@g:/j.
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Proof. The proof of [MM11, Proposition 28 b)] is local and generalises im-
mediately, proving that £y #Zy=Xy-Ly=_Fg. Finally, it is immediate from the
definitions that £y %y C %y C _Z¢, and thus the remaining equality follows directly
from the prior equalities. [

We note that we have corresponding partial orders <, <5 and < ¢ on S(€)
such that e.g. (F,G)e.Z if and only if F<4¢G and G<¢F, where F< oG if
there is some 1-morphism H such that G is a direct summand of HF', with similar
definitions for <z and < 4.

Definition 2.15. A Z-cell § of € is strongly regular if left cells in § are
incomparable under the left order and if for any left cell £C ¥ and right cell RC ¥,
ZLNR contains a unique isomorphism class of indecomposable 1-morphisms. If only
the first condition holds then ¥ is called regular.

Definition 2.16. Given a 2-representation M of ¢ and a collection of objects
{X,}jes in the image of M, we define the M-span of the X;, Gm({X,}) to be

add{M(F)X;|F € ¢(i,k) for some i,k€¥,jeJ},
where add S is the additive closure of the set S, defined as the smallest full subcat-
egory of Jl containing S and closed under direct sums and direct summands.

Defining
GMm({X,;}) (k) :=add{M(F)X;|F €%¢(i,k) for some i €%, j€ J},
it is immediate from the definition that Ga({X,}) is a sub-2-representation of M.

Definition 2.17. Let M be a finitary 2-representation of 4. We say that M
is transitive if for any i €% and any non-zero X eM(i), Gm({X}) is equivalent to
M.

To define simple transitive 2-representations we need the following generalisa-
tion of [MM16c]:

Lemma 2.18. Let M be a transitive 2-representation of €. There exists a
unique mazimal ideal & of M such that .% does not contain any identity morphisms
apart from the zero object.

Proof. The proof is mutatis mutandis given by the proofs of [MM16¢, Lemma
3,4]. O

Definition 2.19. A transitive 2-representation M is simple transitive if the
maximal ideal of M given in Lemma 2.18 is the zero ideal.
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Let € now be a locally finitary 2-category with a #-cell ¥ and a Z-cell £C ¥.
We let i=ig be the object of ¥ which is the domain of every FF€Z. For each j€%,
we define a full subcategory N (j) of P;(j) by

Ny (j) =add{FX|F €%(—.j), X € £}.

Ng thus defines a map from the object set of € into 2. To make this a 2-repre-
sentation, of €, we take a 1-morphism F' to the functor defined by left composition
with F', and a 2-morphism « is taken to the natural transformation defined by left
horizontal composition with a.

By a similar proof to that of Lemma 2.18 (and hence to that of [MM16¢, Lemma
3]), N¢ is a transitive 2-representation, and thus has a unique maximal ideal not
containing any identity morphisms for non-zero objects, and we can take its simple
transitive quotient:

Definition 2.20. The simple transitive quotient of N is the cell 2-represen-
tation of € corresponding to the Z-cell £. We generally denote this quotient as
Cy.

We now define the apex of a finitary 2-representation, following [CM19].

Definition 2.21. Let M be a finitary 2-representation of a locally finitary
2-category €. Let S #(¢) denote the poset of Z-cells of ¢, ordered by < . If
there exists a unique maximal §€S #(%) that is not annihilated by M, then ¥ is
called the apex of M.

Definition 2.22. Let ¢ be a locally finitary 2-category and let ¥ be a _#-cell
in €. We say that ¥ is non-trivial if it contains some non-identity 1-morphism.
Otherwise, ¥ is trivial. We similarly define trivial and non-trivial .Z- and %-cells,
and define a trivial cell 2-representation to be a cell 2-representation associated to
a trivial .Z-cell.

3. Coalgebra and comodule 1-morphisms for locally finitary 2-categories

We now generalise useful results from [MMMT16]. To start, we utilise the
abelianisation constructions given there in Sections 3.2, 3.3 and 3.4, with the latter
two generalising without issue to this setup. We recall the 1-categorical version for
later reference.

Definition 3.1. Given an additive category €, the injective fan Freyd abelian-
isation @ of @€ is an additive category that is defined as follows:
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e Objects of B are equivalence classes of tuples of the form (X, %,Y;, fi)icz+
where X and the Y; are objects of €, the f;: X —Y; are morphisms of €, and k is
a non-negative integer such that Y;=0 for i>k. Two tuples are equivalent if they
only differ in the value of k.

e A morphism from (X, k,Y;, f;) to (X', K.Y/, f!) is an equivalence class of
tuples (g, hij)i jez+ where g: X — X" and h;;:Y;—Y] are morphisms of € such that
fig=>_; hjif; for each i, modulo the (g, h;;) such that there exist ¢;:Y; — X’ with
> qifi=g.

e The identity morphisms are of the form (idx,d;;idy;) and composition is
given by (g', hi;)o(g, hij)=(9"g, >_p hyihik).

The projective fan Freyd abelianisation is defined dually.

To provide a more intuitive picture of the above definition, the objects of €
are ‘fans’ of objects of 6, specifically of the form

Y

V

X —f-Y

N

where the Y; are all equal to zero for sufficiently large 7. Morphisms between two
fans consist of a single morphism between the ‘heads’ of the fans and a matrix of
morphisms between the non-zero ‘leaves’ of the fans, subject to the above equiva-
lence relation.

3.1. The coalgebra construction

Let & be a locally finitary 2-category and let M be a transitive 2-representation
of €. Throughout the rest of this paper, we will be referring to (internal) coalgebra
and comodule 1-morphisms. These are the natural generalisation of e.g. coalgebras
in monoidal categories - see [JY21, Section 6.4] for a more detailed definition of coal-
gebra 1-morphisms, under the name ‘comonads’. We use the terms ‘coalgebra’ and
‘comodule’ over ‘comonad’ and ‘coalgebra’ to retain continuity with other finitary
2-representation papers.

Given any S€M(i), we define the evaluation functor evs:[[;cq €(1,3)— M
taking F' to F'S and a: F—G to ag:FS—GS. Since evg maps each FE€%(1, j) to
an object in M(j), this functor has a left adjoint if and only if each of the component
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evaluation functors evg ;:%(i, j)—=M(j) does so. But the latter case is the finitary

case where such adjoints exist by e.g. [CM19, Section 1.3], and we construct a

left adjoint [S,—]: [T M(j)— ]I €(i,j). We give the following generalisation of
JjEF jEE

[MMMT16, Lemma 4.3]:

Lemma 3.2. With the above notation, [S,S]| has the structure of a coalgebra
1-morphism in €(i,1).

Proof. We mirror the proof of [MMMT16, Lemma 4.3]. The image of id[g g
under the adjunction isomorphism Home ([S, 5], [S, S]) —»Homm (S, [S, S]S) gives a
non-zero morphism coevg:S—[S,S]S. This gives the composition

coevg [S,S] coevg

S 18,9]S S, S][S, S]S

from S to [S, S][S, S]S. But then as
HomM(Sa [S7 S][S7 S]S)gHomﬁ([S’ S]v [Sv S][S, S]),

again by the adjunction isomorphism, this gives a non-zero comultiplication
2-morphism [S, S]—[S, S][S, S].

For the counit morphism we again use the adjunction isomorphism to note that
Homm (S, S)=Homm (S, 1;5)=Hom ([S, S], 1;), and thus choose the (non-zero)
image of idg under this isomorphism. We denote the comultiplication 2-morphism
by Ag and the counit 2-morphism by eg. It is straightforward to check that the
coalgebra axioms hold. [

We denote the category of comodule 1-morphisms of [S, S] by comod([S, S])
and its subcategory of injective comodules by inj,([S, S]). These can be considered
instead as 2-representations of 4 and % in a natural fashion; when considering them
as such we denote them as comod ([S, S]) and inj([S, S]) respectively.

For the rest of the section we will assume that ¢ is a locally weakly fiat
2-category.

Given any T'€ M, [S, T] can be considered as a right [S, S]-comodule 1-morphism
in a canonical fashion with coaction 2-morphism pg 7):[S, T]—[S, T][S, S], or pr
when there is no confusion. We define a functor ©:.# —comody ([S, S]) by setting

G(T) = ([Sv T]apT); @(f) = [57 f}

Lemma 3.3. The functor © (weakly) commutes with the action of € and
defines a morphism of 2-representations.
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Proof. This is a generalisation of MMMT16, Lemma 4.4], and the proof given
there shows that [S, XT|=X[S,T] in & for any l-morphism X in € by referring
to only hom-categories between three objects of . The proof is therefore entirely
local and generalises immediately. [

We also present generalisations of [MMMT16, Lemmas 4.5, 4.6]:

Lemma 3.4. For any 1-morphism X in 6 and any C €comody([S, S]) there
is an isomorphism Hom omody (15,5)) (Cs X 1S, S]) =Home (C, X).

Proof. The proof given in [MMMT16] is an entirely local proof and generalises
immediately. O

Lemma 3.5. © factors over the inclusion inje([S, S])— comodg([S, S]).

Proof. We mirror the proof given for MMMT16, Lemma 4.6] with some extra
detail to clarify it for our situation. We first consider the case where T'=X .S for some
1-morphism X €% (i, j). By Lemma 3.3 we have that [S, T]=[S, XS|=X|[S, S]. By
the definition of a comodule, [S, 5] is injective in comody([S,S]). We claim that,
because € is locally weakly fiat, X[S,S] is also injective. For the existence of
internal adjunctions in € gives that

Homcomodﬁ([S,S])(fv X[Sa S]) = Homcomodi([S,S])(*va [S, S])

and as the latter is exact by the injectivity of [S, S] and by *X having both left and
right adjoints, so is the former. But since M is transitive, any T is isomorphic to a
direct summand of some X.S. The result follows. [

We can now give the generalisation of [MMMT16, Theorem 4.7]:

Theorem 3.6. Take € to be a locally weakly fiat 2-category, M to be a transi-
tive 2-representation of €, and SEM(1) to be non-zero. Letting © be the functor de-
fined above, © induces a 2-representation equivalence between M and comod([S,S]).
This restricts to an equivalence between M and ingy([S, S]).

Proof. The proof generalises with only minor notes from the proof fof MMMT16,
Theorem 4.7]. The references [MMMT16, Lemmas 4.4, 4.5, 4.6] found therein are
here replaced with Lemmas 3.3, 3.4 and 3.5 respectively. We finally note that our
construction above still has [S,S] as an injective cogenerator of comody([S,S]),
allowing the argument given in the aforementioned proof to generalise. [

We note that [MMMT16, Corollary 4.10] is a local corollary and thus also
generalises immediately:
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Corollary 3.7. For i€%¥, consider the endomorphism 2-category ¢; of i in
€. There is a bijection between the equivalence classes of simple transitive 2-rep-
resentations on €; and simple transitive 2-representations in € which are non-zero
at i.

3.2. The 2-category %a

Let A={A;}ics be a countable collection of basic self-injective connected fi-
nite dimensional k-algebras. We define the locally finitary 2-category %4 to have as
objects the i€, which we associate with (small categories equivalent to) A;-mod.
The 1-morphisms of ¢4 are direct sums of functors from A;-mod to A;-mod whose
direct summands are isomorphic to the identity functor or to tensoring with pro-
jective (A;-A;)-bimodules. The 2-morphisms of €4 are natural transformations of
functors. As a small example, if A=k then % has one object *i and the only
1-morphisms are functors isomorphic to tensoring with direct sums of k®yk=k,
i.e. isomorphic to direct sums of 1.

%4 is a locally finitary 2-category by a similar argument to that found in
[MM11, Section 7.3], and indeed is actually a locally weakly fiat 2-category (again,
by a similar argument to that found in [MM16¢c, Section 5.1]).

Definition 3.8. Let Z; denote the centre of A;. Identifying Z; with Ende¢, (1;),
we denote by Z! the subalgebra of Z; that is generated by idy, and all elements
of Z; which factor through 1-morphisms equivalent to tensoring with projective
(A;-A;)-bimodules. We now choose subalgebras X; of Z; containing Z{, and let
X={Xi|ieI}. We define a sub-2-category €4, x of €4 which has the same objects
and 1-morphisms, and the same 2-morphisms except that End¢, , (1:):=X;.

Up to isomorphism, the non-identity indecomposable 1-morphisms of €4 or
@a,x are of the form

Aje51@neipAi®a, —
where i, j€I and esy, ..., €15, (vespectively eji, ..., ej,,) are a complete set of prim-
itive orthogonal idempotents of A; (respectively A;). For notational compactness,
we define
Fjilk = AJ €41 ®]keikAi ®Ai —

in €4 or €a,x. We also denote AJi.f::Aj ej1®esrA; for the corresponding bimod-
ule.
We present the generalisation of [MM16a, Lemma 12]:

Lemma 3.9. €4 x is well-defined and locally weakly fiat.
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Proof. Since the only difference between ¢4 x and %4 is in the endomorphism
spaces of the 1;, the proof given in [MM16a] is entirely local and generalises without
issue to this setup. 0O

Excluding the trivial _#-cells, there is a single #-cell of €4 x consisting of all
the Ajej®reirA;. The left cells are of the form

L= {Fjilk|j el,l=1,..,n5}
and the right cells are of the form
Ry={F}/liel,k=1,..n}.

We examine the structure of cell 2-representations of €4, x more explicitly. Let
i be a left cell as defined previously. The corresponding 2-representation N :=
Ng,, has indecomposable objects Fjilk €N (j) for I=1,...n;. A bimodule homomor-
phism o: A —>A”C is defined by its image on ej;®e;y, and is thus a k-linear com-
bination of homomorphlsms of the form ¢, : Alk A;’fn, where @, ,(e51®esr) =a®b
for acejAjeym and beespAses. We also note that 1dFj1lm =Pe1,eim (abusing nota-
tion to let ¢, refer both to the bimodule homomorphism and the corresponding

2-morphism in 4 x).

Proposition 3.10. Let .F be the unique maximal ideal of N not containing
any identity morphisms for non-zero objects (so that N /F is a cell 2-representa-
tion). Then its components F(j)CNix(j) are matrices of k-linear combinations of
morphisms of the form @q with a€ A; and be R:=rad es; Ase;y.

Proof. Since the Nji(j) are additive categories, by composing elements of
]_[J. J(j) with biproduct injections and projections it is sufficient to consider the ele-
ments of [ [; .7 (j) that are morphisms between indecomposable objects. We refer to
this process as an injection-projection argument. First, given elements a, o, y€ A;,
B,0€A; and b, b eradeispAiein, Pa,8PabPry,6=Pyaa,p65 A Qo p+Pa by =Pa,btb -
Since R is a two-sided ideal of ejpAjeir, this implies that F is indeed an ideal
of WNig. Further, if 1dF1k €5(j) then e;p€R, which is a contradiction as R is a
proper ideal of e;; A; €1k Hence ¥ does not contain idx for non-zero X € Nig.

To show that F is €4 x-stable, it is again sufficient by an injection-projection
argument to consider the action of indecomposable 1-morphisms of 64, x. Choose
F'e%ax(3,1) and @qp: FiF—»Fif €.9(j). Then

le(F )(QDa b) Speln,ejm ®90a,b : A ®A Alk — AJm®A A
Under the isomorphism

ik i imAjes
AJm®A A_-Jt —A1n®IkeJmA ejt®]k€1k:A (Aifl)@dlm% Jejtv
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the element
(Spelmejm ®(Pa,b)(€1n ®ejm ®ejs ®eik) =€in ®€jm ®a®b

maps first to e;, ®ej,,a®b and then to

dim ejpm Aje;t

@ Vz€1in ® bv

r=1

for some v, €k. Since be R, this implies that Ny (FJ")(¢as) €I (1), giving €a x-
stability.

It remains to show that .F is the unique maximal such ideal. If it is maximal,
then Lemma 2.18, it is immediate that it is unique. Thus assume for contradiction
that there exists some other ideal X D.F such that X does not contain idp for any
non-zero F. Choose some c€X\.F. By injection-projection arguments we may
assume that o is a morphism from Fjilk and F Ji,}fl. Thus 0:2221 Pa,.b, for some ¢
with a,€ej;Ajejm and b, CespAsesr.

If b, € R for some v, then by definition ¢, ;, € F CH, and thus without loss of
generality b, ¢ R for all v. But then by [ASS06, Lemma 1.4.6], e;;, —b, € R for all v,
and hence

t t

U+Z Pay,eip—by — Z Pay,ese = P, av,ein EX.
v=1 v=1

But since K is €4 x-stable, by tensoring ¢c,,, ¢, With ¢s~g, ., similarly to above

and composing with injection and projection morphisms, we therefore derive that

2Pey 05, EX for z€k. But this implies id Fik €X, a contradiction. Thus .7 is indeed

maximal, and the result follows. [

We can use Lemma 3.9 to provide a simple proof of the generalisation of
[MM16¢c, Theorem 15]. However, we will first give a simple proof of the connected
version of that Theorem:

Proposition 3.11. Let A be a basic self-injective connected finite dimensional
k-algebra. Then for every simple transitive 2-representation of €4 there is an equiv-
alent cell 2-representation.

Proof. We consider a larger weakly fiat 2-category axi. This category has
two objects * and xi. We identify the former with a small category o equivalent
to A-mod and the latter with a small category equivalent to k-mod. The category
Caxi(*, %) is taken to be €a(x,*) and the category €axi (K, *x) is taken to be
Gk (*K, #). The l-morphisms between * and *j (respectively x and *) are direct



2-representation theory of locally finitary 2-categories 139

summands of direct sums of functors isomorphic to tensoring with projective (k-A)-
bimodules (respectively projective (A-k)-bimodules). The 2-morphisms are natural
transformations.

The endomorphism 2-category of * is equivalent to 4. Further, if we have an
indecomposable 1-morphism Ae; @ke; AR 4 — in €axi(*,*), then Ae; is an (A-k)-
bimodule and €;A is a (k-A)-bimodule, and hence this factors over .

We denote by % the endomorphism 2-category of %, and claim that any
simple transitive 2-representation of it is equivalent to the cell 2-representation.
Let M be a simple transitive 2-representation of %}. As the 1-morphisms in %
are all of the form 1$™ for some meZg, let N€M(xx) be indecomposable. Then
as M is transitive and M(xy) is idempotent complete, M =id®"(N)=N®" for any
M eM(xi) and for some n€Zd. It follows from Proposition 3.10 that for the left
cell #x={1,,} of G, P, ,=Ng,=Cg, as radk=0. Let ®:P,, —M be a morphism
of 2-representations defined on objects by ®(F)=M(F)(N) and on morphisms by
O(f)=M(f)n. We can abuse notation and equate ® with @, P, (x5)—M(xy).
It is immediate from the prior discussion that ® is essentially surjective on objects
and faithful.

To show that @ is full, let & be the €-stable ideal of M(xy) that is generated
by rad Endpy(N). Since N is indecomposable, by a categorical variant of [ASS06,
Corollary 1.4.8] Endp (V) is local and rad Endpg(N) is the unique maximal ideal.
Assume for contradiction that idy; €K for some M eM(*k). Then by standard
injection-projection arguments idy € K. But since any morphism f: N®"— N®" ig
an mxn matrix of elements of Endng(IN), this implies that idy=Y),_, fik:g; for
some morphisms f;, g;€Endn (N) for all ¢ and morphisms k; €rad Endpg(N) for all
i, i.e. that idy €rad Endp(IV), a contradiction. Hence K does not contain id,, for
any M e€M(x). But since M is simple transitive by assumption, this implies that
F=0 and thus that Endp(N)=k. It follows immediately that ® is full, and thus
an equivalence of 2-representations as we wished to show.

Returning to the main aim of the proof, if A=k then we are done by the above
work. Hence assume that A#k. Using the previous paragraph and Corollary 3.7, we
know that there is a unique equivalence class of simple transitive 2-representations
of €4« that is non-zero on *. We now claim that if a 2-representation N of G4«
is non-zero on *, then it is either non-zero on %y or equivalent to the trivial cell
2-representation on %4.

If Ae;®Ke;A acts in a non-zero fashion on N(x) for some ¢ or j, then as it
factors through N (x| ), we must have that N (x| ) is non-zero. Therefore assume that
Ae;®re; A acts as the zero functor for every ¢ and j. Then the only 1-morphisms
in €a(x,*) that act non-trivially on N(x) are direct sums of 1.. In particular, if
NeN(x) is indecomposable, then for any M €N(x), M=N®" for some n. But this
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is equivalent to the cell 2-representation for the trivial -Z-cell by a similar argument
to above.

It follows by Corollary 3.7 that there is only one equivalence class of sim-
ple transitive 2-representations on %4 that is not equivalent to the identity cell
2-representation, and as we know that %4 has a cell 2-representation for the maxi-
mal _#Z-cell (which by assumption is distinct from {[1.]}) the result follows. O

This leads to the main theorem of this section:

Theorem 3.12. Let A={A;|i€I} be a countable collection of basic self-injec-
tive connected finite dimensional k-algebras. Any non-zero simple transitive 2-rep-
resentation of €a is equivalent to a cell 2-representation.

Proof. If A={k} then we are done by the proof of Proposition 3.11. Assume
that A#{k}. Let M be a simple transitive 2-representation of ¥4. Assume that
there is some j such that M(j)=0 and let i be such that M(i)#0. Then

AjesQresA;®a, Ajeym Oxeindi ®a, —
is the zero map for any primitive idempotents e;; and any e;,. But in particular
~ di mA jim
Asei@rejmA;®a; Ajejm OkeinAs = (Aiein@ues, A;)® dmemAsem,

and this implies that A;e;; ®xeimA; @4, — is the zero map on M(1i) for any j and
m. But by a similar argument to Proposition 3.11, this means M is equivalent to
a cell 2-representation for an identity cell. Thus if M is not equivalent to a trivial
cell 2-representation, it must follow that M is non-zero on every i.

Assume that M(j)#0 for all j€%a, and choose some i€%4. By Proposi-
tion 3.11, every simple transitive 2-representation of €4, is equivalent to a cell
2-representation, and in particular there is only one equivalence class of simple tran-
sitive 2-representations that is not equivalent to the trivial cell 2-representation.
But as every simple transitive 2-representation of %4 not equivalent to a triv-
ial cell 2-representation is non-zero when it restricts down to €4, it follows from
Corollary 3.7 that there is only a single equivalence class of simple transitive 2-repre-
sentations of ¥4 not equivalent to a trivial cell 2-representation. Since %4 has a
cell 2-representation for the maximal _#-cell, the result follows. [

The above arguments in Proposition 3.11 and Theorem 3.12 do not depend on
the endomorphisms of 1; for any object i of ¥. Theorem 3.12 therefore generalises
without notable change to the following:

Corollary 3.13. Taking A={A;|i€I} as before, let X={X;|i€I} be a collec-
tion of subalgebras X; CA; as in Definition 3.8. Then any non-zero simple transitive
2-representation of €4 x is equivalent to a cell 2-representation.
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As a supplementary note, the method of the proof of Proposition 3.11 allows
us to give the following result:

Corollary 3.14. All non-trivial cell 2-representations of €4 (respectively €a, x)
are equivalent.

There are times where we wish to consider the situation where the A; are
not necessarily basic. Given a non-basic algebra A;, let {el;,...,ell, ely, ...elm} be
a complete set of idempotents of A; such that Aie’fj%Aiefl if and only if j=I.
Letting e®=el, +ely+...+el, ., we define the basic algebra A? associated to A; as
Ab=eb A;e® (see [ASS06, Section 1.6] for further discussion). Note that if A; is basic,
then A?:Ai.

Given a countable collection A={A;}ics of self-injective connected finite di-
mensional k-algebras which are not necessarily basic, we define A®={A%};c; and
consequently define €4:=% v, the latter as defined at the start of this section.

4. Locally weakly fiat 2-categories and their simple transitive
2-representations

We move on to extending results from the Mazorchuk—Miemietz series of papers
to the locally finitary case, with the eventual aim of generalising [MM16¢, Theorem
18] to show that any simple transitive 2-representation of a strongly regular locally
weakly fiat 2-category is equivalent to a cell 2-representation. We note that here we
are using the projective fan Freyd abelianisation rather than the injective equivalent
as we did above. Many of the proofs of this section are straightforward generali-
sations of proofs found elsewhere in the literature; we will only provide proofs of
results that are novel or need a non-trivial amount of work to generalise; for the
others, we will merely provide the reference for the original result.

For the entirety of this section, we assume that € is a locally weakly fiat
2-category.

4.1. General properties of the abelianisation

We start by giving some general properties of the action of 1-morphisms of
€ on its ith abelian principal 2-representation P;. The isomorphism classes of
indecomposable projectives and simples are indexed by the isomorphism classes of
indecomposable 1-morphisms in ¥ and we denote them as Pp and Lp respectively.

Lemma 4.1. Let F,G be indecomposable 1-morphisms of €. Then F'Lg#0 if
and only if F<oG*.
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Proof. This is a generalisation of [MM11, Lemma 12]. Though the proof is
similar, we note that there are alterations needed due to how adjunctions work in
the (locally) weakly fiat case.

Assume that Ge¥(1,j) and Fe%€(j, k). We note that FLg#0 if and only
if there exists some indecomposable H€%'(i,k) with Homz, , (P, F'Lg)#0. We
have the adjunction

O#Homm(PH, FLG) %Homm(*F OHPIlia LG),

and as *F'o H Py, is projective and L¢ is simple, the above inequality is equivalent to
saying that Po=G Py, is a direct summand of *FoH Py, i.e. G is a direct summand
of *FoH. This gives that *F <4, and applying —* gives us the result. O

We present the generalisations of [MM11, Lemma 13, Corollary 14].

Lemma 4.2. For F,K, H indecomposable 1-morphisms in €, [FLk:Lg])#0
implies H< o K. If H< ¢ K, there exists some indecomposable 1-morphism M €€
such that [M Ly :Lg]#0.

Corollary 4.3. Let F,G,HeS(¥). If L occurs in the top or socle of HLg,
then Fe<g.

Proposition 4.4. ([MM11, Proposition 17 a), b)]) Let £ be an L-cell of €
with domain 1i.

o There is a unique submodule K=Kg of Py, such that every simple subquotient
of Py, /K is annihilated by any F€Z and such that K has simple top L., for some
Gg €L such that FLg,#0 for any FE€Z.

o For any Fe<£, FLg, has simple top L.

We call Gy as the Duflo involution of £.
Proposition 4.5. ([MM11, Proposition 17 ¢), €)]) G¢,GSEZ.

From this, if ¥ is strongly regular and £C¥, then N*£={G<}. For the
remainder of this subsection, we assume that ¥ is a maximal and strongly regular

Z -cell.

Lemma 4.6. For F,Hc ¥, there exists some non-negative integer mp g such
that H*o FKY™r.u  yhere {K}=Rp-NLp.

Proof. This is a direct consequence of § being strongly regular and maximal
and of Z-cells being closed under indecomposable summands of left 1-composition
and right cells under indecomposable summands of right 1-composition. [

Lemma 4.7. ([MM11, Lemma 26]) For any F€S(%), F*~ 4 F.
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We move to consider the 2-representation M=Cg, the abelianisation of the cell
2-representation for some Z-cell £. We use Pr, Ir and L to refer to projectives,
injectives and simples in M respectively. For the remainder of this section and
the following two we can assume, by quotienting € by the 2-ideal generated by
all idp such that FZ ¥ (for § the #-cell containing &), that § is the unique
maximal _#Z-cell of € (see Subsection 4.3 for more details). Further, we assume
that ¥ is strongly regular. We give the generalisation of the first parts of [MM16b,
Proposition 30]:

Proposition 4.8. The projective object Pr is injective for any FE€Z.

Proof. We mirror the proof for the above citation, with extra clarifying details.
By adjunction,

HOHI%(LGy s F*LF) = Homm(FLGy, LF).

By Proposition 4.4, Ly is the simple top of FLg, and hence the latter space is
non-zero and one-dimensional. Since L¢, is simple, it follows that it injects into

Let I be an injective object in some Cg (i) and let Lx be one of its simple
quotients with K €Z. Then L¢, is a subquotient of the object K*I which is injective
as K* is exact. Using Lemma 4.1 and the strong regularity of § we have that
Gy Ly =0 unless H=Gy. Therefore G4Ly =0 unless H=(Gy. By Proposition 4.4,
GgLg, has simple top Lg, and Lg,, appears in the top of the object G K*I, which
is injective as G is exact. It follows that Pr appears as a quotient, and thus a
direct summand, of FG¢ K*I, which is injective as F' is exact. The result follows.
O

Proposition 4.9. For any FeZ, F*'Lp=Ig,.

Proof. This is a generalisation of the proof of [MM16b, Proposition 30 iii)]. We
provide a few details to clarify for our situation. For any He£N% (i,1), Homz (L,
F*Lp)=Homy(FLy,LF). Since § is strongly regular and £N*£={G¢}, by
Proposition 4.4 it follows that Homm(FLH7 Lp)#0 only if H=Gg, and thus the
same holds true in the quotient /(. It also follows that dim Homm(LGy ,F*Lp)=
1. Therefore, L, is the only simple that injects into F*Lr, and is further its sim-
ple socle. In particular, it follows that F*Lp is indecomposable. But the proof
of [MM16b, Proposition 30 ii)] generalises immediately to give that F*Lp has a
non-zero projective-injective summand, which must be Ig, by construction, and
the result follows. O
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4.2. The regularity condition and some other results

We quote a classical result, [MM16¢, Lemma 13].

Proposition 4.10. Let B be a finite dimensional k-algebra and G an ezact
endofunctor of B—mod. Assume that G sends each simple object to a projective
object. Then G is a functor isomorphic to tensoring with a projective bimodule
(which we call a projective functor).

Proposition 4.11. Let § be a strongly reqular ¢ -cell, and let m:§—7Z*
be defined as *FoFXH®™r QK with no indecomposable direct summands of K
belonging to §. Then m is constant on Z-cells of §.

Proof. This is a generalisation of [MM16b, Proposition 1], and we mirror the
proof therein. Let & be an Z-cell in § and let Cy and Cg be the corresponding
cell 2-representation and its abelianisation respectively. For F, H €<%, by Lemma 4.1
and Proposition 4.5 we can immediately derive that FLy=Pp if H=(Gy and zero
otherwise. Since every element of &£ has the same source object, we can apply
Proposition 4.10 which gives that, for each F€%, Cg(F) is an indecomposable
projective functor.

For each jE¥, let Aj denote the basic algebra such that Cg(j) is equivalent
to Aj-mod. Let {eji,...,ejn,} be a complete set of pairwise orthogonal primitive
idempotents in A;. Then without loss of generality, each Cg (F') is the projective
functor Ajejs®@res1 A;®4, — for some s€{l,...,n;}.

It follows from Proposition 4.8 that A; is self-injective when § is maximal.
There is thus some permutation o;€S,,; such that (ejsA;)"=Ajey,,(5). It follows
that Cy (F™) is the projective functor Aje;q, (1)®Ke;jsA;®a, —. By taking the tensor
product, mp-=dim(e;1 A;je;,, (1)) which is independent of the choice of F€Z. Since
F—F* is a bijection from &£ to the Z-cell of § containing G%,, m is constant on
the Z-cell. But by Proposition 4.5 every %-cell contains a Duflo involution, and
hence the result follows. [

We can use this to derive the following;:

Lemma 4.12. ([MM16b, Lemma 29]) For ¥ a strongly regular mazimal 7 -cell
in € and any FEYL FGqy=F®Mcy

4.3. Restricting to smaller 2-categories

Let € be a locally weakly fiat 2-category and let § be a strongly regular ¢ -cell
of €. We define the 2-ideal F45 of € to be generated by 2-morphisms idr for
FZ 4 3. We also define F<¢ to be the maximal 2-ideal of ¢ such that idp ¢ F<g for
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any F'e§. We define 2-categories €¢g:=%/F¢g3 and €<g:=%/I<g. We also define
‘ﬁg ¢ to be the sub-2-category of ¢¢g closed under direct sums and isomorphisms
and generated by the 1; for i€% and by Fe¥.

Lemma 4.13. J23CJ<y.

Proof. By the definition of F<y it suffices to show that idp¢.F¢g for any Fe§.
Assume otherwise for contradiction. Then for some F'€ ¥ id F:ZZ:1 frmprgr where
meGk—>Gk, Gk$57 ngF—>Gk, f}g:Gk—>F for all k.

Since F' is indecomposable, by a categorical variant of [ASS06, Corollary 1.4.8],
for each k either fiymygi is nilpotent or it is an automorphism. If fymyggx is nilpotent
for all k£, then as nilpotent morphisms form an ideal so is idp, a contradiction.
Therefore there exists some k such that fymigr is an automorphism, say with
inverse h. But then (hfymy)gr=idr= F =G}, and by construction F€ ¥ and G ¢ ¥,
a contradiction. The result follows. [J

Proposition 4.14. The image of § remains a ¢ -cell in %gj.

Proof. Let £ be aleft cell in ¥ and let F'€£. We first note that, by Lemma 4.13,
idp¢ Iz for any Fe ¥, and so End%% (F)#0, and hence F'#0 in ‘ggg. For the Du-
F

flo involution G¢ of £ we know by strong regularity of § that FGe = F®™ in (fg g for
some positive m. Since the composition of the injection 2-morphism F'— FG¢ with
the projection 2-morphism FGg¢—F is idp, the direct sum structure is preserved
in %gj and so G <o F in %gj.

Conversely, again by strong regularity of §, F*F=(G%)®" for some positive
n in %g 4. and consequently by a similar argument to above F'< ¢ G% in €%y and
& is contained in an Z-cell in ¥¢y. But it is immediate from the definitions that
if F<oH in €4y, then F< 4 H in € and thus & is precisely an Z-cell in €xy.
Applying adjunctions gives the corresponding result for right cells and the result
follows. O

For an .Z-cell £ of § we recall the finitary 2-representation Ng :‘f—ﬂ(ﬁi given
by Ng(j)=add{FX|F €[]y ¢k, j), X €L} and set Ny =[], Nz (j), with the
class of morphisms Ar(Ng).

We define two 2-representations of ¢¢y. First let N§3 Gy —>Ql]{: be defined
by Ngj(j):add{FX\Fe]_[kecg 623k, j), XeZL}. We define the 2-representation
Ng /F¢g by setting

(N /Izg)(3) =Ne(3)/(Ar(Ne)NIgg (1, 3)),
where i is the source object of &, with the obvious induced action of €¢g.

Lemma 4.15. Ngy and Ng /F¢g are equivalent as 2-representations of €¢g.



146 James Macpherson

Proof. By construction there is a bijection between objects of ./stj and Ny /Iy
and it suffices to show that for F, GENg(j),

Homy«s (F, G) 2 Homn, /9, (F, G).

NZ7
But

Homn, 9., (F,G) =Homy, (F, G)/(Homy, (F, G)NIzg(1,j)

as required. [

By Proposition 4.14 § descends to a _#-cell of (fgj, which we will also denote
by ¥. We can thus define the 2-representation Né of ‘5% ¢ in the standard fashion.
We can consider N§j as a 2-representation of ‘Kg ¢ by restriction. We define the

2-representation (Ng)# of ‘Kgg as the full sub-2-representation of N§5 generated
by F'e¥ and closed under isomorphism.

Lemma 4.16. Né is equivalent to (Ng)? as 2-representations of %ég.

Proof. By construction, if we have 1-morphisms F, GE%% ¢ such that F, G EJ\@Z
and F, G€(Ng)? then

Homjv(j (F, G) = HOIII(N%)J (F, G)

and thus it suffices to demonstrate an essential bijection between objects in the
component categories of the 2-representations.

If F eNé,( j) is indecomposable, then F' is a direct summand of GX for some
XeZ and some G€] [, ‘Kgy(k, j). But then G is a direct sum of elements of §
and thus F€¥. As we can also consider G to be in [ [, Gzg(k, j), it follows that
Fe(Ng)?(3).

Conversely, let I be an indecomposable object in (N¢)?(j). Then F€¥ and
F is a direct summand of GX for some X€£ and G€[], ., Czy(k,j). Hence
X< o F. But by the definition of a strongly regular _#-cell, different left cells of
J are incomparable under <. Thus we must have that F~4 X and FeZ£. But
then F'is a direct summand of 1;F and since 1; E(fé ¢, the result follows. [

We now consider the cell 2-representations. Let C¢ denote the 2-representation
of € corresponding to &£. This corresponds to the quotient of N¢ by the maximal
% -stable ideal X< not containing idr for any FF€Z£. We define similar ideals 3{55
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and %é of N§5 and Ngf respectively. We let Cg’z and Cj’; denote the respective
cell 2-representations.

Lemma 4.17. Ng(j)NIgg(i,j)CHe.

Proof. By the construction of X, it suffices to show that idp¢Ne (j)NFg5 (i, j)
for any FeZ. But if idp €Ng(j)NIFzg(1,]) for some FeLCF, then in particular
idp€Fgg(i,]) for some F e ¥, which we showed was a contradiction in the proof of
Lemma 4.13, and we are done. [

Proposition 4.18. Cg has a natural structure of a ¢y 2-representation, and
further is equivalent to ng as 2-representations of %5—%5.

Proof. By Lemma 4.17, quotienting Ny by K< factors through quotienting by
N NFgg, giving the first statement. For the second, by Lemma 4.15 Ng/Jyg is
equivalent to N?‘? . It thus suffices to show that 3{;5 is the image under this
equivalence of the image of K< in the quotient.

Let 0:N¢ — Ny /Fzg denote the canonical quotient functor. It is straightfor-
ward to see that the preimage Q of 3’{5%‘7 is a ¥-stable ideal of Ng. We will show
that Q CH<. Assume for contradiction that idp €@ for some F'€Z£. Since idp ¢ I«g
by the proof of Lemma 4.13, this implies that id FG?/'{S%J , a contradiction. Therefore
@ does not contain idg for any F'€%, and thus @ CH<. Hence %S%jga(%gg). But
by definition idp¢o(Hg) for any FeZ. Therefore by definition a(%g)g%i%j and
the result follows. [

The cell 2-representation Cé,)j has the structure of a 2-representation of %é g
by restriction, and we can take the full sub-2-representation (C)? where the gen-
erating objects in the component categories are those in ¥.

Proposition 4.19. (Cy)? is equivalent to ng as 2-representations of ‘Kég

Proof. By Lemma 4.16 it suffices to prove that the restriction (¥<)? of 3{5‘7
to (Ng)7 is equal to %gg. By construction idp ¢ (K )? for any FE€Z, and thus
(%g)«?g%é It remains to show that %ig(%g)f.

Let @ denote the €yg-stable ideal of Ng,,j generated by 3{5}5. We will show
that @Q%S%j . Assume for contradiction that idp €@ for some F'€%£. Then using a
similar component argument to previous proofs, we have that idp= 6N§y (K)(v)a,
where v:G— H is in %é, K< 7%, a:F—=KG and 3: KH—F. We immediately see
that F is a direct summand of KG and KH.

Let S€¥ be a l-morphism such that SF#0 in %y, which exists as J is
strongly regular. Then idgp=S(idr)=S(8)SK(y)S(a). But for a indecompos-
able summand V' of SF, V> » S, and as SK#0, it follows that V'€ ¥. Hence by
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pre- and post-composing with injection and projection 2-morphisms it follows that
idy =p'SK(y)a' for some 8’ and o’/. Without loss of generality Ve (e.g. by tak-
ing S=Gg), and by a similar argument to before every indecomposable summand of
SK isin §. Hence idy E%é, a contradiction. Hence @Qi%s%j, and thus %i C(FKe)?
and the result follows. [

Corollary 4.20. The restriction of the cell 2-representation Cy of € to ‘Kéj
is the corresponding cell 2-representation.

Proof. This is a direct consequence of combining Proposition 4.18 and Propo-
sition 4.19 given Proposition 4.14. [J

4.4. §-simple, §-full and almost algebra 2-categories

In this section we will prove the following theorem:

Theorem 4.21. Let € be a locally weakly fiat 2-category with § a strongly
reqular 7 -cell in € and £ a L-cell in §. Then for FEL and HeF, HLp is
either zero or an indecomposable projective in [ Ce ().

We need a supplementary lemma.

Lemma 4.22. Let F,Hc¥. Then HLp is either zero or injective-projective
in Hje% CSK(J)

Proof. If HLgp#0, then by a variant of Lemma 4.1 F* and H are in the same
ZL-cell, and hence HLp is a direct summand of KF*Lp for some K by strong

regularity of ¥. By Proposition 4.8 and Proposition 4.9 this is projective-injective.
O

Proof of Theorem 4.21. To prove the theorem given Lemma 4.22 it suffices to
prove that HLp is indecomposable. This is an immediate generalisation of parts
(iv) and (v) of [MM16b, Proposition 30], using Proposition 4.11, giving the result.
O

Definition 4.23. Let € be a locally finitary 2-category and M a 2-represen-
tation of €. We say that M is 2-full if for any 1-morphisms in % the representation
map Home (F, G) —Homyx (MF, MG) is surjective, where X is the target 2-category
of M. For a #-cell § of €, we say M is §-2-full if for every F,GE ¥, the represen-
tation map is surjective.

Definition 4.24. Let % be a locally weakly fiat 2-category and let ¥ be a
non-trivial #-cell in €. € is §-simple if every non-trivial 2-ideal of € contains idp
for some Fe¥.
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For this section, we will assume that % is a locally weakly fiat 2-category with
a unique non-trivial #Z-cell ¥, that € is §-simple, and that ¥ is strongly regular.

Let M=Cyg, the abelian cell 2-representation for some left cell ZCF. We
recall from Definition 3.8 the construction %4 x, a locally weakly fiat 2-category
associated to a family of basic self-injective connected finite dimensional algebras
{A;]i€l} with certain subalgebras X;. We give the generalisation of [MMI6a,
Theorem 13].

Theorem 4.25. € is biequivalent to €a x for some A and X.

Proof. We start by generalising the proof of [MM16a, Theorem 13], with some
extra detail for clarity. For i€%, let A; be a basic connected finite dimensional
k-algebra such that M(i) is equivalent to A;-mod. Letting Z; be the centre of A;,
we define X;:=M(End(1;))CZ;. We can define an action of M(F') on €, x for
FeJ using the equivalence between M(i) and A;-mod. Then by the definition of
the cell 2-representation, each M(F') for F€¥ is a projective functor in End(/(),
and since each M(1;) acts as the identity, this implies that M factors through
%a,x, and thus M corestricts to a 2-functor from % to €4, x. By construction M
is surjective up to equivalence on objects (and indeed is bijective on objects).

We will show that each

Mi,j (g(l, J) —>%A’X(l, J)

is an equivalence. Since ¥ is §-simple it follows that M; j is faithful. To show
that M ; is essentially surjective on 1-morphisms, by construction a 1-morphism
in €a,x is equivalent to tensoring with a projective (A;-Aj)-bimodule. In partic-
ular, any indecomposable (A;-Aj)-bimodule will take a simple module to either
zero or to an indecomposable projective module. But by the construction of €4 x
and Theorem 4.21 these are precisely M(F) for F' indecomposable, giving essential
surjectivity.

By the construction of €4 x, M is surjective when applied to End(1;). For
any other hom-space Home (F, G) with F, G#1;, by the definition of F-2-fullness,
it clearly suffices to show that M is -2-full. We will do this and show the remaining
cases as a three step process: we will show that

HOmcg(Gg, ]li) — HomM(i) (M(Gg), M(]ll))
is surjective for the Duflo involution G, that this implies surjectivity for any
Home (F, 13) — Hompg(5) (M(F), M(15))

and then derive that each M ; is indeed full.
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These three steps are the generalisations of [MM16a, Theorem 9] (specifically
the proof of that Theorem), [MM16a, Proposition 6] and [MM16a, Corollary 8]
respectively. To give the generalisations, we thus first need to generalise [MM16a,
Lemma 7]. While this is a 1-categorical statement, the way in which we use it
requires us to give a slight generalisation and thus manipulate the proof:

Lemma 4.26. Let A be a countable product of finite dimensional connected
k-algebras and let e and f be primitive idempotents of A. Assume that F' is an exact
endofunctor of A-mod such that FLy=Ae and FL,=0 for any other simple L,%
Ly. Then F is isomorphic to the functor F' given by tensoring with the bimodule
Ae®y fA, and moreover

Hom, (F, ida-moa) = Hom 4 (Ae, Af).

Proof. As e and f are primitive idempotents, they each belong to A, and Ay
for connected finite dimensional components A, and Ay of A. Thus without loss of
generality we can restrict F' to A’-mod, where A’=A.x Ay, which is a connected
finite dimensional algebra. Hence we can apply the original form of the lemma in
[MM16a] and the result follows. [

Using Lemma 4.26 and Proposition 4.4 we can generalise the proof of [MM16a,
Theorem 9] directly, since it is a local proof which does not use any properties of
involutions. We give our version of that result:

Proposition 4.27. The representation map
Home (G, 1;) — Hompg(s) (M(Ge), M(1;))

18 surjective.

However, the proofs of [MM16a, Proposition 6, Corollary 8] do use that —* is
an involution in that paper. For Proposition 6 we will give an adaptation of the
whole proof, reworked to avoid the involution issues.

Proposition 4.28. Assuming that the representation map
Home (F, 1) — Homypy5y (M(F), M(15))

is surjective for F=Gg and j=1i, then it is surjective for any F€¥ and any corre-
sponding j.

Proof. Without loss of generality F€%€(j,j). Let H, K€Z for some left cell
& of ¥ and assume that H, K€% (j,k). By strong regularity HK*=aX for some
X €F and some non-negative integer a. Since § consists of a single Z-cell, we can
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vary H and K over & to get any element of ¥, and in particular we can choose
H and K such that HK*=aF for some non-negative integer a. To show that
HEK*#0, note K*Lg =1, €Cg(j) by Proposition 4.9 (which still applies to the
cell 2-representation case) and further HIg, #0 as HLg, #0 by Proposition 4.4. It
follows that H K*=£0.

Similarly, * K H=bG< for some non-negative integer b. In addition, since —* is
an anti-auto-equivalence, it follows that

Home (H, K) 2 Home (K™, HY).
Applying adjunctions, we have that
Home (H, K)=bHome (Gy,1;), Home (K™, H*)=aHome(F,1;).
Evaluating Home (H, K) at Lg,, is surjective, and thus
Homyg(y)(HLg, , KL, ) = bHompgs) (GzLay, Loy )-

Applying Proposition 4.4 gives that G¢Lg,, has simple top L, . Therefore the space
Homyy(3)(G2Llay,La,) is one-dimensional and

b=dim HOHIM(j)(HLGy ) KLGy)'

Let L; denote a multiplicity-free direct sum of all simple modules in M(j). By
adjunction Homyy ;) (K*Lj, H*Lj)=a Homyy ) (FLj, L;). It follows from Lemma 4.1
that K*Lo#0 for Q€& if and only if @ is in the same right cell as K. But then
by strong regularity K=@). Thus by Proposition 4.9 K*L;j=Ig,. By a similar
argument H*L;=Ig, and the left side of the above isomorphism is isomorphic to
EndM(i)(IG;g)~

As F is a direct summand of H K™, it follows that Ly is the only summand
of L; not annihilated by F. By Theorem 4.21 FLg is an indecomposable projec-
tive in M(j), and thus by strong regularity we must have FLyx=Py. Therefore
dim Hompg () (FLj,L;)=1 and a=dim Endpss)(Ic, )

From Lemma 4.22 it follows that HLg,, is an indecomposable projective in J(
with simple top Ly, and is thus isomorphic to Pg. It follows that I, =Pg:. Using
Proposition 4.27 we can apply Lemma 4.26 to Hom¢ (G, 1;), and consequently
Homrg(ng, ]l:-L)gEndM(i) (PGY).

We now show that dim Endpy(;)(Pg, )=dim Endpg;)(Pgs ). Take some finite
dimensional k-algebra A such that M(i) is equivalent to A-mod. We can thus
consider P, to be isomorphic to Aeg, for some idempotent e, of A. Hence

EndM(i) (PGi ) 2 End A- mod (Aer ) Eeg, Aer .
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But on the other hand
End - moa(Aeg, ) = Endmed-a(egy A) 2 End - mod (A€o (),

where o is the permutation defined by the weakly fiat structure on €. But by this
same structure e,(g,)=e€az, i.e. AeU(GY) is isomorphic to PG;;'
We thus have that

dim Home (G, 1;) = dim Endyg (s (Pa,, ) = dim Endpg ) (Pas )-
Using the above results and Lemma 4.26, we have
dim Homg (H, K') = dim Homy(5) (HLg,, KLg,, ) dim Endns) (Pes )
= dim Homp(;)(Pu, Prc) dim Endpg i) (P )
and
dim Home (K, H*) = dim Home (F, 1;) dim Endyg i) (Icy)
= dim Hom (F, 1) dim Endpgs) (Pay )-
As € is F-simple,
dim Home (F, 1;) < dim Homg, (M(F'), M(1;))

and applying Lemma 4.26 we see the latter is equal to dim Homyy()(Px, Pk ). Di-
viding by EndM(i) (ng),

dim Hompy(5) (P, P ) = dim Home (F) 1;)
< dim Homg, (M(F), M(1;))
=dim Homy () (Pu, Px)
where the last equality follows by applying Lemma 4.26. Therefore
dim Home (F, 1;) = dim Homg, (M(F), M(1;)).

Since the representation map is injective by F-simplicity of €, we get surjection
and the result is proved. [

Lemma 4.29. Let H K€ $N%(j,k). If the representation map
Homg (Gg, 15) — Homnps) (M(Ge), M(14))
s surjective, then so is the representation map
Home (H, K) — Hompy (M (H), M(K)).

Proof. The proof is mostly an immediate generalisation of the one for [MM16a,
Corollary 8], except that * K H needs to be read for K*H. O

From this it follows immediately that M is §-2-full and each M;; is full. There-
fore the main theorem is proven. [
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4.5. Reducing to the §-simple case

We will assume for this subsection that € is a strongly regular locally weakly
fiat 2-category.

Lemma 4.30. Let M be a simple transitive 2-representation of €. Then there
exists some strongly regular ¢ -cell § such that M factors over ¢35 and the re-
striction M‘;? of this to ‘fg ¢ 1s still simple transitive.

Proof. The first part of the proof of [MM16¢, Theorem 18], which generalises
immediately to our setting, gives that M has an apex (as in Definition 2.21), which
we denote by ¥. If F'is a 1-morphism of ¥ such that F' is not annihilated by M,
then consider the #-cell X containing F. As _#Z-cells are partially ordered by < »,
we must have that < » . Therefore passing to €zy we can assume that ¥ is the
unique maximal _#-cell of ¥

We note that M restricts to a 2-representation Mgz g of %g 7 The argument
given in the proof of [MM16¢, Theorem 18] generalises immediately to the locally
weakly fiat case, and it follows that M“; g is simple transitive as required. [

By construction, ‘ﬁg ¢ has ¥ as its unique maximal F-cell. We now give the
following generalisation of [MM14, Lemma 18]:

Lemma 4.31. There is a unique 2-ideal % of%gj such that %éj/f 1s F-simple.

Proof. The proof of this result generalises immediately from that of [MM14,
Lemma 18]. O

We let €5 denote this quotient. We denote by My the restriction of M to %y
(with Mg the corresponding coproduct category). We claim that My is a transitive
2-representation of €. To see this, we first note that since ¥ is the unique maximal
Z-cell not annihilated by M, it follows immediately that ker(M)C¥. Second,
let NeJly, and let F€F. Since M is a transitive 2-representation, any M €l is
isomorphic to a direct summand of GF'N for some 1-morphism G€%. But by the
construction of _¢-cells, all indecomposable summands of GF are in ¥, and thus
GF €%y and hence My is indeed transitive.

As €5 is a §-simple category with a unique non-trivial two-sided ideal, it is
biequivalent to €4, x for some A and X. By a simple generalisation of a previous
result, any simple transitive 2-representation of any %4 x is equivalent to a cell
2-representation. We thus have that My is equivalent to (Cg)g for some Z-cell
Z of §. We now provide a lemma that, along with Lemma 4.30, will allow us to
generalise [MM16¢, Theorem 18]:
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Lemma 4.32. If M is a simple transitive 2-representation of € such that Mg
is equivalent to some cell 2-representation of €y, then M is equivalent to some cell
2-representation of €.

Proof. The second half of the proof of [MM16¢, Theorem 18| generalises im-
mediately. O

Hence we have:

Theorem 4.33. Any simple transitive 2-representation of € is equivalent to
a cell 2-representation of €.

Proof. This is an immediate consequence of applying Lemma 4.32 to the result
of Lemma 4.30. O

5. An application: cyclotomic 2-Kac—moody algebras

We present an application for this theory, which is a much larger class of
cyclotomic 2-Kac—-Moody algebras than have previously been accessible by this style
of theory.

5.1. Khovanov-Lauda—Rouquier algebras

We review some notation for Khovanov-Lauda—Rouquier (KLR) algebras. The
original constructions in this subsection come from [KL09] and [Rou08], but the
specific notation below is based on the notation found in [KK12] and [HK02], which
works better for our setup. Let

(A, P,TI={a;ie I}, PV, IIY ={a)|ieI})

be a Cartan datum. We denote the set of dominant integral weights by P*. Given
an algebraically closed field k, let R(n) denote the KLR algebra of degree n over k
associated to the above Cartan datum, as defined in e.g. [KK12, Section 3].

We divide I"™ into disjoint subsets by choosing some weight f=>"" , o; and
setting I°={vel"|a,, +...4+ o, =B}. Notating e(8)=Y", ;s e(v), we thus define
R(B)=R(n)e(B). Finally, we define

aBi)= Y ew)eRBra),

velftei v, 1=i

e(i, f) = Z e(v) € R(B+ay).

velP+ei y=1
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We can apply a Z-grading on R(n) via dege(v)=0, degzire(v)=(ay, |y, ) and
degme(v)=—(ay,|ow,,, ). We denote the grading shift of degree i of a module M
by MT[i], where (M[i]);=M;_;.

For this paper we w1ll be working with cyclotomic KLR algebras. Let Ac PT.
For 1<k<n, we can define a®(zx)=>",c/n x,ih"’“ ’A>e(1/)€R(n).

Definition 5.1. The cyclotomic Khovanov-Lauda-Rouquier algebra R™(j3) of

weight 3 at A is defined as the quotient algebra R (3)= WB))R(B)’ with R (0)=

k.
Definition 5.2. For each i€, we define functors

EM : RM(B+0ay)- Mod — R*()- Mod
FM: RM(B)- Mod — RM(B+ay)- Mod

by

E}MN)=e(B,i)N =e(B3,i) R*(B+:) @pa(s1an N

EMf)=e(B,1)f =id(5.1)rr (5an) ©

and

FMM) =RMB+0:)e(B,1)®@pa sy M

FM9) =1dpa(g4ane(s) ©9-
We notate e(3,1)R*(B+a;) as ¢; and RM(B+a;)e(B,1) as f;.

As noted in [KK12, Section 4], we often apply a grading shift of [1—(h;, A—3)]
(or scalar multiples thereof) to e;, which will allow us later to consider adjunctions
in a fashion that are compatible with the grading, which will be very useful in
Subsection 6.6.

We now give a useful result from [KK12]:

Theorem 5.3. ([KK12, Theorems 5.1, 5.2]) Let A=A—/. We have the follow-
ing isomorphisms of RM(B) modules. For j#i, there exists a natural isomorphism
FJAEf‘[[—(ai|aj)]]—N—>E{\FJA. If i=j we have one of two cases:

o If (hi, \) >0,

(hi,A\)—1
FAEM—=(ai|og)]@ @ U [k(cilen)] = E}MED
k=0
o If (hi, \) <0,
—(hi,A)—1

FPEM=(aia)] = @ Lil-k-(a|a)]oEMF
k=0
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5.2. Cyclotomic 2-Kac—Moody algebras

Let Uy(g) be the quantum group associated to a Kac-Moody algebra with Uq (9)
Lusztig’s idempotent completion, let A€ P+ and let V(A) be its irreducible highest
weight module (see e.g. [HK02, Sections 2, 3] for details). We then categorify the
endomorphisms of its highest-weight module, following the original definition in
[Webl17], as the 2-category Zj:

e The objects of %, are the weights A such that V' (A),#{0}. Writing A=A—2
for some (3, we identify these with (small categories equivalent to) the module
categories R™(3)-proj.

e The 1-morphisms of %, are direct summands of direct sums of the identity
1-morphisms and of compositions of 1-morphisms isomorphic to functors formed
by tensoring with tensor products of (grade-shifts of) the ¢; and f; as defined in
Definition 5.2 (at any weight 5 below A). Following that section, we denote the
functor given by tensoring with ¢;[g] by E*[g] and the functor given by tensoring
with fi[g] as F{*[g].

e The 2-morphisms are the bimodule homomorphisms between the bimodules
that correspond to the 1-morphisms. This implies that, for any %, (A, i), the spaces
of 2-morphisms are finite dimensional.

Definition 5.4. We call this construction the cyclotomic 2-Kac—Moody cate-
gory of weight A associated to a Kac-Moody algebra U (g).

Theorem 5.5. % is a locally fiat 2-category.

Proof. We begin by showing that %) is a locally finitary 2-category. To do
this, we wish to show % (A, ,u)te{{ for all weights A and pu. We already have that
the (2-)morphisms form a finite dimensional space and as R*(/3) is indecomposable
for all 8, 1, is indecomposable for all A. It thus remains to show that there are only
finitely many isomorphism classes of indecomposable objects. The objects for this
category are generated by products and direct summands of the E;A]lg and the FiA]lc
for arbitrary weights . Let Q:A— p be a general 1-morphism. We wish to show that
Qeadd({FA .. FALYU{FA.FA EY L E} 1,3U{6x,1,}) for some choice of iy, j,
and k..

If @ is of the form MlEZAFJAMQ —N—>M1E?FJA]15M2 for some products M; and
M, and some weight e, then if ij, My ENFMMy— My FAEMMy. If i=j then we
can use Theorem 5.3 and the fact that composition distributes over direct sums to
get one of the two following cases, depending on &:
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o If (h;,)>0,

(hi75>71
M E}FMMy =5 MyFPEM My [ (aile)]® @D My M[k(es]as)].
k=0
o If (h;, ) <0,
—(hie)—1
ME}FMMe @ MMy [—(k—1)(ai]on)]
k=0

L}MlFlAEZAMQ[[—(OQ‘OQ)H

In the second case, Q=M;E}FAMy€eadd(MyFAEMM,), while in the first case
Qeadd({ M, FAEM Moy, My M,}).

Let R be some formal product of the E} and the F, which we will no-
tate as R:TjOEZ{}leEZ{;...EQLTjn, where each T}, is a possibly empty product of
the FA. If Tj, =FA .. F2, we let |Tj |=I. Define the finite non-negative integer

Len(R)=3_) 1 >-0_, |Tj,|, the length of R. Note that if Tj, =0 for all k>0, which
corresponds to R:Flfl\P‘I/}lE'JAlEJAm for m,n>0, then Len(R)=0. Further,

Len(Q) =Len(M, E}* F;* M) = Len(M, F E} M) +1

and Len(Q)>Len(M;M,). Finally, if Len(Q)>0, there exists a subproduct E}F}*
somewhere in @, and we can apply one of the above operations to it. If Len(Q) >0,
Q is thus contained in the additive closure of finitely many 1-morphisms of strictly
lesser length, and as length is non-negative, proceeding recursively will terminate
in finite time, giving the claim.

We claim that there are only finitely many FZ/}FZZI\]I Ar:A—u and only finitely
many Fﬁ...Fj’}nE,/c\l...E,i‘n]lA:)\ﬁ,u. For the first case, given FZ-A]IA takes A to A—ay,
a simple combinatorial argument shows there can only be finitely many of them
from A to p.

For the Fﬁ...FﬁLEé\l...EaL]lA, write A=A—>". bjc;, where all the b; are non-
negative. Then as the E®* move up the poset of weights, by a similar argument to
the previous one, there are only finitely many non-zero products E,ﬁ‘l E,‘C\]l AA—O
with A>6>X. Then by another similar argument, for any such § there are only
finitely many possible products Fﬁ...Ff}n 15:6—p. Thus there are in total only
finitely many Ff}~-~Fj/:nE1?1~--E1?n]1>\1)\_>/1 as we required.

Each of these morphisms has a finite number of indecomposable direct sum-
mands. We thus find that % (A, 1) can only have finitely many isomorphism classes
of indecomposable objects. This gives the locally finitary structure.
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For the fiat structure, we prove that the 1-morphisms F; and F; have adjoints,
and the other 1-morphisms will be an immediate consequence through composition.
We claim that the adjoint of EAMy[z] is FA_q, [[Z—W(l—i—(ai, A))] and that
the adjoint of FA,[2] is EMya, [2— 2520 (1 (o, A))].

To see this, consider F{*=R™(8+a;)e(B,i)@ga (5 — and ignore grading for the
moment. The right adjoint of this is therefore HomRA(5+ai)(RA(B+ai)e(ﬂ,i), -).
But since R*(8+a;)e(B,1) is projective over R*(3+a;), this is isomorphic to

HomRA(ﬂJrai) (RA (ﬁ+az)e(ﬁ7 Z), RA(ﬂ"—ai))@RA (B+ay) -
This is isomorphic to
Homlk(RA (54—%)6(57 Z)v ]k) ®RA(6+OM) -

because RM(B+a;) is symmetric. But by another application of this symmetric
property, this is then isomorphic to e(3, i)RA(5+Oéi)®RA(6+ai) —=FE». Finally, the
grading is a consequence of the comment before Theorem 5.3. [

Further, this 2-category will turn out to be strongly regular. However, to prove
this we need to extend our definition of a cyclotomic 2-Kac—-Moody algebra to a
wider setup. This definition is a generalisation of a construction from [MM16c,
Section 7.2].

Definition 5.6. Choose a set of positive weights A={A1, ..., A, }CP*. With-
out loss of generality we assume that A; A for i#j. We define a 2-category %,
the truncated cyclotomic 2-Kac—Moody algebra, as follows:

(1) The objects of % are ordered pairs (8, i) where S€Q™ and 1<i<n, modulo
an equivalence relation where (8,4)~(v,7) if Ai—B8=A;—7.

(2) The 1-morphisms of % are the additive closure of (grade shifts of) the
identity 1-morphisms and morphisms of the form E* and F, as in the cyclotomic
2-Kac—Moody algebra case, with identical relations to that situation.

(3) The 2-morphisms are identical to the single weight definition (Definition 5.4).

We note that this 2-category is well-defined. In addition, using the interchange
structure and Theorem 5.5 for distinct F* and EJA7 if (8,i) and (v, j) are objects
of € such that there does not exist Ay with both A;—38<Ay and Aj —y <Ay, then
UN((B,1), (7,9))=Zr((7, ), (B,i))=0. We also define the notation A” as AP ={\|3,
38, \=A;— 5}, the set of weights below at least one of the A;. We also note that if
A={A1}, then %\=%x as previously defined.

That this 2-category is locally weakly fiat follows immediately from the above
considerations, since the internal adjoint 1-morphism and adjunction 2-morphisms
will remain identical to the traditional case. We will combine this with the following
result:
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Proposition 5.7. For any A, %, is strongly regular.

Proof. We mirror the proof for [MM16¢, Theorem 21]. We first consider the
F-cell a, containing 1 5, for some A; €A. If we quotient out by the maximal 2-ideal
in % which contains idg A, but not any identity 2-morphisms for a 1-morphism not
in Ja,, the resulting 2-category is equivalent to one of the form %g, where © is
the unique set of highest weights such that @ =AP\{A;} (see [DG17, Section 9] for
more details). It is thus sufficient to prove that §,, is strongly regular.

Let £ denote the Z-cell of 1,,. From the proof of Theorem 5.5, any el-
ement of £ is in the additive closure of 1-morphisms of the form F...F2 and
FMFAED .. EA. But since any element of £ must have source object A; and any
morphism of the form F}...FAEM . E2 with source object A; must necessarily be
zero (as A; is a highest weight in the 2-category), it follows that & consists of direct
summands of products of the F;.

Let L be an indecomposable object in Ré\ ‘-proj. Since Ré\ =Tk, we have that
L=%k. By [Rou08, Theorem 5.7] and [VV11, Theorem 4.4], the mapping that takes
an FeZ to FL induces a bijection between &£ and the set of isomorphism classes of
indecomposable objects in [], <, RAi-proj. We define two algebras, A=€p, ., R
and B=@, -, R} Since every element X €% can be expressed as X1,, and as
15, M =0 for any M € B-proj, it follows that X M =0 for any X €%. We now consider
the (projective) abelianisation Cg of the cell 2-representation for £.

By the construction of the abelianisation, C% (X) can be considered as a functor
from k-mod to R*i(3)-mod for some positive weight 3. This can consequently be
considered as an endofunctor of k x R*(3)-mod. Further, since the only projective
it is non-zero on is L, which it must take to an indecomposable projective, it follows
from [MM16¢, Lemma 13] that C(X) is an indecomposable projective endofunctor.
By consideration of sub-categories of the domain and of the range where this functor
acts trivially or does not map to respectively, we can indeed say that C(X) is an
indecomposable projective functor from k-mod to A-mod. But by this projectivity,
for any Y €<%, Ce(XoY*) is also indecomposable.

We claim that this implies that X oY ™ is itself indecomposable. For assume that
XoY*=2V@W for non-zero V and W. Then without loss of generality Cg (W)=0.
But since ¥ is a maximal 2-sided cell, we must have for every indecomposable
summand W' of W that W’€¥. But then by construction, Cg (W’)#0 and hence
C4(W)#0, a contradiction. The claim follows.

Hence the set {XoY*} is a set of indecomposables that forms a Z-cell by
construction and hence by Theorem 2.14 is a _#-cell that contains 1,,, and thus is
equal to . Now fixing X and varying Y clearly gives a #Z-cell in ¥, and fixing Y
and varying X gives an .Z-cell, and therefore this process must exhaust all such Z-
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and Z-cells. In particular, the intersection of any .Z-cell with any Z-cell is thus a
unique element. Thus ¥ is strongly regular, and the result follows. O

Theorem 5.8. FEvery simple transitive 2-representation of a truncated cyclo-
tomic 2-Kac—Moody algebra is equivalent to a cell 2-representation.

Proof. By Theorem 5.5 and Proposition 5.7, a truncated cyclotomic 2-Kac—
Moody algebra is a strongly regular locally weakly fiat 2-category. Therefore ap-
plying Theorem 4.33 gives the result immediately. [

6. A specialisation to graded 2-categories

We now move to considering the graded setup. It is worth pointing out that
we are not considering the full generalisation of allowing infinite-dimensional hom-
spaces of 2-morphisms with finite dimensional graded components, as is common
in the literature; rather, we are considering locally finitary 2-categories which also
have a graded structure (as defined in the following sections). For the rest of the
paper, we always take GG to be a countable abelian group unless otherwise stated.

6.1. Initial definitions

We start by defining G-graded (2-)categories and their G-envelopes, following
the ideas in [BD17, Section 3.5]. By a G-graded (k-)vector space, we mean a vector

space A with a direct sum decomposition A= Agy. There is a forgetful functor

G
from the category of graded k-vector spaces to tghee category of k-vector spaces that
forgets the grading. When we refer to isomorphisms of G-graded vector spaces,
we mean isomorphisms in the latter category under the forgetful functor, unless
otherwise indicated. If A is a G-graded vector space and g€G, we denote by A[g]

the G-graded vector space isomorphic to A such that Afg]r=Anr_,.

Definition 6.1. Let A be a G-graded k-algebra. We say that A is G-graded-
finite dimensional if it has a G-grading A:@gGG Ay such that each A, is finite
dimensional as a k-vector space. In particular, this implies that Ag is a finite
dimensional k-algebra.

Definition 6.2. The category k-Mods has as objects the G-graded k-vector
spaces, and as morphisms finite linear combinations of homogeneous linear maps
of arbitrary degree g€G. We define the full subcategory ]k—Modéf to contain the
G-graded k-vector spaces that are G-graded-finite dimensional. We let k-Modg o
and ﬂ(—Modgyo denote the subcategories of the above categories with the same ob-
jects but with morphisms only those homogeneous linear maps of degree zero.
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Definition 6.3. We define a G-graded category to be a category enriched over
]k—MOdGKL

Definition 6.4. We define a G-graded finitary category to be an additive idem-
potent complete category enriched over ]k—Mod%f’0 with a finite set of isomorphism
classes of indecomposable objects.

When G={e} is the trivial group, the above definition is precisely that of a
finitary category first defined in [MM11].

Definition 6.5. Let 6 be a G-graded category. We define its G-envelope e
as a category with objects defined formally as symbols of the form X[g] where X
is an object of € and g€G. For notational convenience we set X [¢][h]:=X[g+h].
We set hom-spaces as

Homg (X [g], Y [A]) = Home (X, Y)[h—g]

with composition of morphisms is given by the obvious inheritance from €. If 6 is
a G-graded finitary category then we call € a G-finitary category.

We denote by idx 4: X —X[g] the canonical isomorphism for any object X €€
and any g€, which is homogeneous of degree —g with inverse id x4, —4-

Definition 6.6. Let € and & be G-finitary categories. A functor F:6—
is a G-graded functor if it respects the structure of the grading and the envelope.
Explicitly, this means the following:

e For X an object of € and geG, F(X[g])=F(X)[g]-

e For X and Y objects in 6, Fx y:Home(X,Y)—>Homg(FX, FY) is homo-
geneous of degree zero; that is, deg(F(«))=deg(«) for any homogeneous morphism
a.

Definition 6.7. Let k-Catg denote the category whose objects are G-graded
categories and whose morphisms are all G-graded functors between them. Let
]k—Cat%f denote the category whose objects are G-graded finitary categories and
whose morphisms are all G-graded functors between them.

Definition 6.8. We define a G-graded 2-category as a category enriched over
k-Catq. Explicitly, it has G-graded hom-spaces of 2-morphisms such that hori-
zontal and vertical composition both respect degree. We define a locally G-graded
finitary 2-category to be a category with countably many objects enriched over
]k—CatgGf such that each identity 1-morphism is indecomposable.

Definition 6.9. Let ¥ be a G-graded 2-category. We define the G-envelope
2-category € of € by taking the same objects as ¢, and defining each hom-
category ¢(i,j) as the G-envelope of the category €¢(i,j). We further require
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that composition respects the envelope; that is, for 1-morphisms X[g] and Y[h],
X[g]-Y[h]=(X-Y)[g+h] wherever this makes sense. We also define horizontal
and vertical composition of 2-morphisms as the obvious inheritance from compo-
sition in €. If ¥ is a locally G-graded finitary 2-category, then we say that its
G-envelope is a locally G-finitary 2-category.

Again, if we take G={e} to be trivial, a locally G-graded finitary or locally
G-finitary 2-category is just a locally finitary 2-category in the sense of the previous
sections.

Definition 6.10. Let % be a locally G-finitary 2-category. If we have a
weak object preserving anti-autoequivalence —* such that for any 1-morphism X €
% (i,j) has natural homogeneous 2-morphisms a: XeX*—1; and 3:1; +X*oX of
degree zero such that (OLDHidx)Ov(idonﬂ):idx and (idx* OHa)Ov(ﬂOHidx*):
idx~, then we say that ¥ is a locally weakly G-fiat 2-category. If —* is a weak
involution, we say that € is locally G-fiat.

6.2. 2-representations and ideals

We first examine functors for the graded setup, again following [BD17].

Definition 6.11. Let € and &£ be locally G-finitary 2-categories. We say that
a strict 2-functor F:¢ — A is a G-graded strict 2-functor if each component functor
F; j:€(1,j) =P (F1i, Fj) is a G-graded functor.

Definition 6.12. Let ¥ and £ be locally G-finitary 2-categories, with strict
G-graded 2-functors P,Q:%—%. We define a G-graded 2-natural transformation
as a 2-natural transformation a:P— (@ such that for each 1-morphism X €%, the
associated 2-morphism «ax is of degree zero.

We denote by Ql]f'gf the 2-category which has as objects G-finitary categories,
as l-morphisms k-linear additive G-graded functors, and as 2-morphisms natural
transformations of these. We will also be using the 2-category PRy as defined in
Definition 2.1.

We now recall the definition of a 2-representation from [MM11], and give its
specification to this setup.

Definition 6.13. Let € be a locally G-finitary 2-category. We define a G-fini-
tary 2-representation to be a strict G-graded 2-functor from % to QIHCJ 8 An abelian
2-representation is a strict 2-functor from € to Ry.

We retain the notation for 2-representations, principal 2-representations etc.
from the locally finitary case. There are other concepts that we have previously
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defined that still apply to our case - we retain the concepts of Z-, #-, - and
Z-orders and cells, as well as the concept of strongly-regular cells. Ideals in
2-representations and 2-ideals also apply with no issues.

6.3. Degree zero sub-2-categories

We wish to generalise the idea of a coalgebra 1-morphism in the 2-category and
the related theory to locally G-finitary 2-categories. However, in general the method
of abelianisation given in [MMMT16] is not guaranteed to give an abelian category.
Explicitly, as was shown in [Fre66], the process of injective (respectively projective)
abelianisation given in [MMMT16, Section 3] results in an abelian (2-)category if
and only if the original (2-)category has weak kernels (respectively weak cokernels).

We instead consider locally restricted G-finitary 2-categories; that is, locally
G-finitary 2-categories where the hom-spaces of 2-morphisms are not only graded-
finite dimensional, but also finite dimensional in totality. In this case the 2-categories
are simply locally finitary 2-categories, but with extra structure on the hom-spaces
of 2-morphisms.

Let 6 be a G-finitary category. We define a subcategory €y by taking the
objects of By to be the same as the objects of € but taking the morphisms to
be only those morphisms of € that are homogeneous of degree zero. Let % be a
locally G-finitary 2-category with a G-finitary 2-representation M. We define a
sub-2-category %y to have the same objects as %, and we set the hom-categories
to be €o(1,3)=(%€(4,j))o for all objects i, j€%€. We note that this implies that
the 1-morphisms of %, are also the same as those of ¥. Further, it is still the
case that 1; is an indecomposable 1-morphism for each object i€%. However %
is not a locally finitary 2-category in general - since we can no longer guarantee
that F'= F[g] for any non-zero g as the canonical isomorphism idg 4 is of non-zero
degree, in general €, has infinitely many isomorphism classes of indecomposable
1-morphisms. This will turn out to be a surmountable problem.

Given a G-finitary 2-representation M of €', we define the 2-representation Mj
of %o to by setting Mo(i)=(M(1))o for all objects i of €p. This can be naturally
viewed as a 2-representation of 6y. Given a 1-morphism F[g]€%,, we define the
functor My (F'[g]) as the restriction of M(F[g])) to Mg(i). This can be done since
by the definition of a G-finitary 2-representation

M(F[g]) m,~ : Homam (M, N) — Homm (F M [g], FN[g])

is a homogeneous map of degree zero, and thus restricts to a morphism between
the degree zero subspaces. Further, as horizontal and vertical composition in & are
also defined to preserve degree, the restriction of M(«) for a: F—G a homogeneous
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2-morphism of degree zero to My (a):My(F)—My(G) is also well defined. We also

notate Mo:=]];c4 M(i)o in a similar fashion to JL.

Proposition 6.14. Assume that M is transitive. The 2-representation Mg of
%o is also a transitive 2-representation.

Proof. Let M, Ne€Jly with N indecomposable. It is sufficient for the proof
to find F'€% such that IV is isomorphic to a summand of FFM in Mg, i.e. via
an isomorphism that is homogeneous of degree zero. Since M is transitive, we
have some F€% such that there exists an isomorphism @:FM—N@®N" in Al for
some N"e€l. We therefore have morphisms ¢: N —FM and o:FM— N such that
or=idy.

Setting the homogeneous decompositions L:deG 9 and O':dec o9, we
see from comparison of degree with idy that for g#0, >, .« o9~ =0 while
Y ohec oM ~h=idy. Since N is indecomposable, by standard nilpotent arguments
there exists a g€ G such that ¢9.79 is an automorphism.

We thus have some p€End 4 (V) such that po9:~9=idy. But as idy and 09.79
are homogeneous of degree zero, so too must p be. Thus we have homogeneous
morphisms t=9:N—FM and po9:FM—N in Jl such that po9.=9=idy. We now
set F'=F[g]. We thus have the corresponding morphisms ¢;9:N—FM and po? :
FM — N that are homogeneous of degree zero and such that po? gtg?=idn. The
result follows. [J

Proposition 6.15. Let € be a restricted G-finitary category. Then By has
weak kernels and weak cokernels.

Proof. Let p: X —Y be a morphism in €y. Consider the full subcategory 6y,
of Gy closed under isomorphisms and generated by

add{X,Y, H[g] | H € €, indecomposable, g € G, Homg, (Y, H[g]) # 0}.

Since the total dimension of hom-spaces in € is finite, given any indecomposable
H €% there are only finitely many g€ G such that Hom (Y, H)#0, and hence only
finitely many g€G such that Home, (Y, H[g])#0. Since € has only finitely many
G-orbits of isomorphism classes of indecomposables and since X and Y each have
only finitely many indecomposable summands, 6, , contains only finitely many
isomorphism classes of indecomposable 1-morphisms. It is additive and idempotent
complete by construction, and as a subcategory of a category with finite dimensional
hom-spaces it also has finite dimensional hom-spaces. Since it also inherits being
Lk-linear, G, is actually a finitary category.

There thus exists a weak cokernel wcokerp:Y — L of p in Gy ,. We claim that
wcoker p is a weak cokernel of p in €y. For let m:Y — K be a morphism in €y such
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that mp=0. If m=0, then we clearly have the zero morphism L— K satisfying the
weak cokernel diagram. If m#0, then by the definition of €y, we have me@ .
Thus as wcoker p is a weak cokernel in 6, ;,, we have a morphism ¢: L— K satisfying
the weak cokernel diagram, which also satisfies the diagram in 6y. Hence p does
indeed have a weak cokernel and thus 6y has weak cokernels. The weak kernel case
is precisely dual to the above argument, and the result follows. [

Corollary 6.16. Let € be a locally restricted G-finitary 2-category. Then 6
has weak cokernel 2-morphisms and weak kernel 2-morphisms.

Corollary 6.17. Let € be a locally restricted G-finitary 2-category with a G-
finitary 2-representation M. Let Ml=]];., M(1i). Then 6 is an abelian 2-category
and My is an abelian category.

Proof. This is a direct consequence of applying the preproof to [Fre64, Theorem
4] to Corollary 6.16. O

As a cautionary note, the author knows of no reasonable way to give & or
M a graded structure that is compatible with the gradings on ¥ and M. This
is why abelian 2-representations of locally G-finitary 2-categories are ungraded in
Definition 6.13, and why various results below refer to component 2-morphisms of
2-morphisms in the abelianisation, rather than the 2-morphisms themselves.

6.4. Grading coalgebras

For this section let % be a locally restricted G-finitary 2-category and let M
be a G-finitary 2-representation of ¢’. Choose TeM(j) and SeM(i). Following
[MMMT16] and Section 3 we construct a functor (which we denote T') from €'(1, j)
to k-mod which takes F' to Hom (T, F'S), and a functor I'g from %5(1, j) to k-mod
which takes F' to Hom g4, (T, F'S). We can extend these uniquely to left-exact func-
tors I' and I’y from €'(i, j) and 6,(4, j) respectively to k-mod.

We now introduce the equivalent of the representative 1-morphisms in [MMMT16,
Section 4.1]. Since I'y is left exact, by [GD71, Section 1.8], it is pro-representable;
that is, a small filtered colimit of representable functors. However by definition
%o(i, j) has enough injectives and the functor category is closed under small filtered
colimits, and thus the functor is in fact representable. We denote this representative
by [S, Tlo.

We have the following analogy of [MMMT16, Lemma 4.2] that we will find
useful:
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Lemma 6.18. For any He ][ %0(1,3),
Homg, (T, HS) %Homﬁ(i,j)([& Tlo, H)
in k-mod.

Proof. Take H€%y(i,j). Then H has an exact sequence H<— I — F, where
F;€%(4, j) for both i. We have left exact functors Homp, (7, —S) and Homg([S,
T)o, —) and a diagram

Hom%(T, HS) Homﬁ([S7 Tlo, H)

Homyy, (T, F1S) —— Homg, ([S, T)o, F1)

| |

HOHIMO (T7 FQS) —— Hom(@([S, T]O, FQ)
of vector spaces. The result then follows from an application of the five lemma. O

The functor T is representable by [MMMT16], with representative 1-morphism
[S,T].

Proposition 6.19. If S=T, then i=j and AS=[S,S] has the structure of a
coalgebra 1-morphism in €(i,1) and A5=[S,S]o has the structure of a coalgebra
1-morphism in 6o (i, 1).

Proof. The first result is Lemma 3.2 and the second result is mutatis mutandis
the first. O

6.5. The main results

Let €, 6y, A% and A§ be as in the previous section. The reason we wish to
study A3 is that we do not a priori know anything about the component degrees of
the internal 2-morphisms for the counit and comultiplication 2-morphisms for AS.
However, we know by definition the corresponding component 2-morphisms for A5
have to be homogeneous of degree zero. We will show that we can take A® to be
precisely A5 with its counit and comultiplication 2-morphisms. We use the natural
inclusion of éj into € to state the following lemma:

Lemma 6.20. For any F€%(i,1i) and H€%(i,1), in k-mod

Home (H, F) = €P) Home, (H, F[g]).
geG
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Proof. Let H=(X,k,Y;, a;), using the injective fan Freyd abelianisation no-
tation from Definition 3.1. Then as F'=(F,0,0,0), a morphism from H to F in
% is of the form [(p,0)] with p:X—F a morphism in ¢ and the equivalence re-
lation is spanned by those p such that there exist ¢;:Y;—F with _ ¢;a;=p. We
let p=3_ cq Py for some finite sum. Assume that [(5,0)] is equivalent to [0] with
morphisms ¢; as specified. Since H€%,(i,1), the a; are homogeneous of degree
zero. In particular, if we decompose each ¢; as ¢;=), . ¢,n, then by comparison
of degree if follows that p,=>, ¢; go;. Therefore if [(p,0)] is a general morphism
from H to F, then [(p,0)]=3_ cc[(pg,0)] where the equivalence relation is spanned
by those p, such that there exist g4 ,:Y;—F homogeneous of degree g such that
Pg=2_; %i,g%-

We thus define the map

P Home, (H, F[g]) — Homy (H, F)
geG

by taking > -[(pg,0)] to [(3-,cqPg,0)]. This is clearly a vector space homo-
morphism, and the above working shows that this map is well-defined and injec-
tive. If we have some [(p,0)]€Home (H, F), then as [(p,0)]=>_ .s[(pg,0)], and
as any py:H—F corresponds to a degree zero 2-morphism py:H— F[g], the asso-
caited 2-morphism } . c;[(pg, 0)| €D, Home, (H, F[g]) maps to [(p,0)], the map
is surjective and we have the required isomorphism. [l

We can now give one of the main results of the paper.

Theorem 6.21. A~ A in €. In addition, we can choose a representative
of the isomorphism class of AS in € such that, when considered as a coalgebra
1-morphism, its coalgebra and comultiplication 2-morphisms have components ho-
mogeneous of degree zero.

Proof. For F€€(i,1) or %p(i,1),

Homm (S, F'S) = Homm (S, F'S)

and similarly

Homyy, (S, F'S) = Homy, (S, F'S).

By the definition of the grading on M,

Hompy (S, FS) 2 @) Hom, (S, F[g]9).
geG
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But by the definition of A,

@D Homy, (S, Fllg]S) = €D Home, (A7, Flg]).

geG geG

Applying Lemma 6.20 for H=A§, we have that Homp (S, F.S)~Homy (Aj, F') for
all FE€(i,1). But by the definition of the representative,

Homp (S, FS) =2 Homy (A5 F)

and A® is unique with this property up to isomorphism, hence A° =~ A§ as required.
Taking A5 of the isomorphism class of A, we have the following diagram of
vector spaces:

Homyy, (S, §) ————— Homg, (A§, 11)

| l

Hompn (S, §) ————— Homg (4§, 1)
where the vertical arrows are the natural inclusions and the horizontal arrows are the
representation isomorphisms. By choice of Ag , this diagram is strictly commutative.
Taking idg in Hompy, (S, .S), its image along the top path is the image of £y under
the natural injection (i.e. o considered as a 2-morphism in &) while the image
under the lower path is the counit of A5 as a coalgebra in €. It follows that
this counit is equal to €g, and thus has components (or more accurately, non-zero
component) homogeneous of degree zero. By constructing similar diagrams for the
coevaluation and hence comultiplication 2-morphisms, the second claim follows. [

6.6. An application: 2-Kac—Moody algebras

We return to considering the locally fiat 2-category % found in Subsection 5.2.
The following is an immediate consequence of the definition of a cyclotomic KLR
algebra:

Proposition 6.22. %, is a locally (restricted) Z-finitary 2-category.

We set RA:G}nZO RA(n), where R*(n) is the cyclotomic KLR algebra of de-
gree n.

Proposition 6.23. The indecomposable 1-morphisms of the form Q11AQ2,
where the Q; are 1-morphisms in Un, form a mazimal Z -cell in Up.

Proof. Since the hom-categories of % are idempotent complete, an indecom-
posable 1-morphism of the form Q1,Q> is isomorphic to a direct summand of a
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functor of the form Mje; @keaMo® pa —, where the e; are primitive idempotents
in RM and M, and M, are products of the ¢; and f;. In particular, we have that
Mie;=R%e; and eaMs=esRY. Tt follows that such a bimodule is a projective
RA-RA-bimodule.

Similarly, given some l-morphism @ that corresponds to a functor M ® ga —,
we can choose primitive idempotents e and f of R* such that eM f#0. Then for
any RMe/ @y f'RY (¢/ and f’ primitive),

RA€/®]1{€RA®RAM®RARAf®]kf/RA ~ (RA€/®]kf/RA)@m,

where m=dimeM f. Thus M @pa —< R @y f' R @ pa —. This shows in partic-
ular that any indecomposable 1-morphism isomorphic to a summand of a functor
of the form RYe®y fR ®pa — (for e and f primitive) is _#-equivalent to any other
1-morphism isomorphic to a functor of the same form.

It is immediate from the previous paragraph that the _#-cell containing (the
indecomposable summands of) functors of the form R*e®y fR*®za —, for e and
f primitive, is maximal, and it remains to show that these functors exhaust the
isomorphism classes of members of the ¢-cell. By construction e(8,4)R*(B+a;)
is a projective right R*(3+a;)-module (and hence a projective right R*-module),
while by [KK12, Theorem 4.5] it is a projective left R*(3)-module (and hence
a projective left R*-module). A similar argument gives that R*(3+a;)e(f,1) is a
projective left and projective right R*-module. As a consequence, every 1-morphism
in % is both left projective and right projective.

Let M be some (R*-R*)-bimodule with Q=M ®za — such that there exist
primitive idempotents e and f with Q> » RYe@i fR ®pa — in %,. This means
that there are some l-morphisms T'®za — and S®@pa — in %, such that M is a
direct summand of

T@pa R e@y fRY®@pa S = Te®y fS.

Since T is left projective and .S is right projective, M thus decomposes over k and is
a summand of a bimodule of the form R*e/®y f’R™ for some primitive idempotents
e’ and f’. Both of the remaining claims follow immediately, and the result is proved.
O

Lemma 6.24. FEvery cell 2-representation of %y is a graded simple transitive
2-representation.

Proof. Let § be a _#-cell in %,. By considering the 2-category %, s as
defined in Subsection 4.5, without loss of generality §=:¥x is the highest _#-cell of
%, which by Proposition 6.23 is the indecomposable 1-morphisms that factor over
A. Since these all correspond to tensoring with a projective (RA—RA)—bimodule7 we
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can embed §, into the 2-category €r associated to R (c.f. Subsection 3.2; since
the R*(/3) are not necessarily basic, see specifically the definition at the end of that
section). In fact, we claim that this embedding is an equivalence between ¥z and
%A,]-

To see this, by [VV11, Theorem 4.4] § contains R*e®yk for all primitive
idempotents e of R*. But then as ¥ is strongly regular, it is closed under adjunctions
and hence k®y fR* for all primitive idempotents f. But then as ¥ is closed under
direct summands of compositions, it also contains R*e®y fR* for all primitive
idempotents e and f. Therefore ¥ not only embeds into %g, but also essentially
surjects, giving the required equivalence.

This means that any .Z-cell of 5 will give an equivalent cell 2-representation
by Corollary 3.14, and we choose a particularly useful one. Consider the .Z-cell
. which embeds into ¢ as (the finite dimensional elements of) add{R*®ylk}.
To construct the cell 2-representation, we first construct the transitive (but not
necessarily simple transitive) 2-representation N g (c.f. Subsection 3.2). This is a
graded 2-representation by construction, and thus to show the cell 2-representation
is graded it suffices to show that the ideal .# of the 2-representation we quotient
by to form the simple transitive quotient is homogeneous. But given some in-
decomposable RYe®yk for some idempotent e, we recall from Proposition 3.10
that .# is generated by morphisms of the form ¢, ;: R e@ik— R e@ik where
Yab(e®1)=eae®b, with berad k. But rad k=0, and hence .# =0, which is trivially
a homogeneous ideal. The result follows. [

This gives us the following result:

Theorem 6.25. Any simple transitive 2-representation of % is in fact a
graded 2-representation, and is equivalent to a cell 2-representation.

Proof. This is a direct consequence of combining Lemma 6.24 and Theorem 5.8.
a
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