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On the arithmetic of monoids of ideals

Alfred Geroldinger and M. Azeem Khadam

Abstract. We study the algebraic and arithmetic structure of monoids of invertible ideals
(more precisely, of r-invertible r-ideals for certain ideal systems r) of Krull and weakly Krull Mori
domains. We also investigate monoids of all nonzero ideals of polynomial rings with at least two
indeterminates over noetherian domains. Among others, we show that they are not transfer Krull
but they share several arithmetic phenomena with Krull monoids having infinite class group and
prime divisors in all classes.

1. Introduction

Let R be a (commutative integral) domain, r be an ideal system on R, Ir(R)
be the semigroup of nonzero r-ideals with r-multiplication, and I∗

r (R)⊂Ir(R) be
the subsemigroup of r-invertible r-ideals. As usual, we denote by v the system of
divisorial ideals and for the d-system of usual ring ideals we omit all suffices (i.e.,
I(R)=Id(R), and so on). Factoring ideals into finite products of special ideals (such
as prime ideals, radical ideals, and more) is a central topic of multiplicative ideal
theory. The monograph [32] of Fontana, Houston, and Lucas shows the rich vari-
ations of this theme. Algebraic and arithmetic properties of ideal semigroups help
to understand the multiplicative structure of the underlying domain. To mention
some classical results, R is a Dedekind domain if and only if I(R)=I∗(R) if and
only if I(R) is a factorial monoid, and R is a Krull domain if and only if I∗

v (R)
is a factorial monoid. Recent progress in such directions can be found in the work
by Anderson, Chang, Juett, Kim, Klingler, Olberding, Reinhart, and others (e.g.,
[21],[54], [63], [53], [3], [55], [61], [62] and [57]).

In the present paper, we first study factorizations of r-invertible r-ideals into
multiplicatively irreducible r-ideals of weakly Krull Mori domains and, in particular,
of Krull domains. Clearly, monoids I∗

r (R) of r-invertible r-ideals are commutative
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cancellative monoids. After some preparations in the setting of abstract monoids in
Section 3, we show in Section 4 that the monoid of invertible ideals of a weakly Krull
Mori domain is a weakly Krull Mori monoid again and that a domain R is Krull if
and only if the monoid I∗

r (R) (with r-multiplication) is a Krull monoid (Theorems
4.3 and 4.5). Much is known about the arithmetic of weakly Krull monoids and, in
particular, of Krull monoids. The arithmetic of the latter is uniquely determined
by its class group and the distribution of prime divisors in the classes. We focus
on two arithmetical properties, namely on the structure of unions of sets of lengths
and on being fully elastic (definitions are recalled at the beginning of Section 3).
Our arithmetic results on the monoids of invertible ideals (as given in Corollary 4.4
and Proposition 4.9) are based on our understanding of their algebraic structure.

In Section 5, we study the semigroup of all nonzero ideals. In general, these
semigroups are not cancellative, and for this reason only first steps have been
made towards the understanding of their arithmetic. However, under natural ideal-
theoretic assumptions they are unit-cancellative and even BF-monoids (Propositions
2.1 and 2.2). In the last years, parts of the existing machinery of factorization the-
ory, developed in the setting of cancellative monoids, was generalized to the setting
of unit-cancellative monoids (for a first paper, see [30]). In Section 2, we introduce
all the required arithmetical concepts in the setting of unit-cancellative monoids.
The monoid of all nonzero ideals was studied for orders in Dedekind domains with
finite class group [18], [42], [15]. In this setting, monoids of all nonzero ideals share
arithmetical finiteness properties with monoids of invertible ideals and, more gener-
ally, with Krull monoids having finite class group. Our main result in Section 5 deals
with the monoid of nonzero ideals of polynomial rings R with at least two variables
over noetherian domains, and they show a completely different behaviour. Theorem
5.1 shows that I(R) is not transfer Krull and that factorizations in I(R) are as wild
as possible. Indeed, they share arithmetical phenomena with Krull monoids having
infinite class group and prime divisors in all classes (see Theorem 5.1, Conjecture
5.12, Example 5.13 and the preceding discussion). The methods, used in the proof
of Theorem 5.1, stem from the theory of Gröbner bases in polynomial ideal theory.

2. Background on the ideal theory and the arithmetic of monoids

We denote by N the set of positive integers and we set N0=N∪{0}. For real
numbers a, b∈R, we let [a, b]={x∈Z : a≤x≤b} denote the discrete interval between
a and b. Let A and B be sets. We use the symbol A⊂B to mean that A is contained
in B but may be equal to B. Suppose that A and B are subsets of Z. Then
A+B={a+b : a∈A, b∈B} denotes their sumset and the set of distances Δ(A)⊂N
is the set of all d∈N for which there is a∈A such that A∩[a, a+d]={a, a+d}. If
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A⊂N, then ρ(A)=supA/minA∈Q≥1∪{∞} denotes the elasticity of A, and we set
ρ({0})=1.

Let H be a multiplicatively written commutative semigroup with identity ele-
ment. We denote by H× the group of invertible elements of H, and we say that H

is reduced if H×={1}. An element a∈H is said to be
– cancellative if b, c∈H and ab=ac implies that b=c, and
– unit-cancellative if a∈H and a=au implies that u∈H×.

By definition, every cancellative element is unit-cancellative. The semigroup H is
said to be cancellative (resp. unit-cancellative) if every element a∈H is cancellative
(resp. unit-cancellative).

Throughout this paper, a monoid means a
commutative unit-cancellative semigroup with identity element.

For a set P , we denote by F(P ) the free abelian monoid with basis P . Elements
a∈F(P ) are written in the form

a=
∏
p∈P

pvp(a) , where vp : F(P )−→N0

is the p-adic valuation. We denote by |a|=
∑

p∈P vp(a)∈N0 the length of a and by
supp(a)={p∈P : vp(a)>0}⊂P the support of a. Let H be a monoid. A monoid H

is cancellative if and only if it has a quotient group, which will be denoted by q(H).
Let H be a cancellative monoid. We denote by

– H ′={x∈q(H) : there is N∈N such that xn∈H for all n≥N}⊂q(H) the
seminormalization of H, and by

– Ĥ={x∈q(H) : there is c∈H such that cxn∈H for all n∈N}⊂q(H) the com-
plete integral closure of H.
Then H⊂H ′⊂Ĥ⊂q(H), and H is called

– seminormal if H=H ′ (equivalently, if x∈q(H) and x2, x3∈H, then x∈H),
and

– completely integrally closed if H=Ĥ.
A submonoid S⊂H is called divisor-closed if a∈S and b∈H with b|a implies that
b∈S. For a subset S⊂H, we denote by [[S]] the smallest divisor-closed submonoid
generated by S. Let ϕ : H→D be a monoid homomorphism to a cancellative monoid
D. We set Hϕ={a−1b : a, b∈H,ϕ(a)|Dϕ(b)} and we say that ϕ is a divisor ho-
momorphism if a, b∈H and ϕ(a)|ϕ(b) in D implies that a|b in H (equivalently,
Hϕ=H).

Ideal Theory of Monoids. Our notation of ideal theory follows [51], but
note that the monoids in this paper do not contain a zero element. An ideal system
on a cancellative monoid H is a map r : P(H)→P(H), where P(H) is the power
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set of H, such that the following conditions are satisfied for all subsets X,Y ⊂H

and all elements a∈H:
– X⊂Xr,
– X⊂Yr implies that Xr⊂Yr,
– aH⊂{a}r, and
– aXr=(aX)r.

We say that r is finitary if, for all X⊂H, Xr is the union of all Er over all finite
subsets E⊂X. As usual, the v-system denotes the system of divisorial ideals. The
monoid H is said to be

– a Mori monoid if it is cancellative and satisfies the ACC on divisorial ideals,
and

– a Krull monoid if it is a completely integrally closed Mori monoid.
Let r be any ideal system on H. A subset I⊂H is called an r-ideal if Ir=I, and
Ir(H) is the set of nonempty r-ideals. Then Ir(H) together with r-multiplication
(defined by I ·rJ=(IJ)r for all I, J∈Ir(H)) is a reduced semigroup with identity
element H. Let Fr(H) denote the semigroup of fractional r-ideals and Fr(H)×
the group of r-invertible fractional r-ideals. Then I∗

r (H)=Fr(H)×∩Ir(H) is the
cancellative monoid of r-invertible r-ideals with r-multiplication and I∗

r (H)⊂Ir(H)
is a divisor-closed submonoid. If q is a further ideal system on H with Iq(H)⊂
Ir(H), then, by [51, Theorem 12.1],

Fr(H)× ⊂Fq(H)× ⊂Fv(H)× are subgroups and(2.1)
I∗
r (H)⊂I∗

q (H)⊂I∗
v (H) are submonoids .

The cokernel of the group homomorphism q(H)→Fr(H)×, a 	→aH, is called the
r-class group of H. It will be denoted by Cr(H) and written additively. Thus,
if I, J∈Fr(H)×, then [I ·rJ ]=[I]+[J ]∈Cr(H). We denote by X(H) the set of all
minimal nonempty prime s-ideals of H and note that X(H)⊂t-spec(H). We say
that H satisfies the r-Krull Intersection Theorem if⋂

n≥0
(In)r =∅ for all I ∈Ir(H)\{H} .

Arithmetic of Monoids. Let H be a monoid. An element p∈H is said to
be

– irreducible (an atom) if p /∈H× and p=ab with a, b∈H implies that a∈H× or
b∈H×,

– primary if p /∈H× and p|ab with a, b∈H implies that p|a or p|bn for some
n∈N, and

– prime if p /∈H× and p|ab with a, b∈H implies that p|a or p|b.
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We denote by A(H) the set of atoms of H. The free abelian monoid Z(H)=
F(A(Hred)) is the factorization monoid of H and π : Z(H)→Hred, defined by π(u)=
u for all u∈A(Hred), denotes the factorization homomorphism of H. For a∈H,

– ZH(a)=Z(a)=π−1(aH×)⊂Z(H) is the set of factorizations of a,
– LH(a)=L(a)={|z| : z∈Z(a)}⊂N0 is the set of lengths of a, and
– L(H)={L(a) : a∈H} is the system of sets of lengths of H.

If S⊂H is a divisor-closed submonoid and a∈S, then Z(S)⊂Z(H), ZS(a)=ZH(a),
and LS(a)=LH(a). We say that H is

– atomic if L(a) is nonempty for all a∈H,
– half-factorial if |L(a)|=1 for all a∈H,
– a BF-monoid if L(a) is finite and nonempty for all a∈H,
– an FF-monoid if Z(a) is finite and nonempty for all a∈H, and
– locally finitely generated if [[a]]red⊂Hred is finitely generated for all a∈H.

Every Mori monoid H is a BF-monoid and if, in addition, r-max(H)=X(H), then
H is of finite r-character ([38, Theorems 2.2.5.1 and 2.2.9]). Krull monoids are
locally finitely generated and locally finitely generated monoids are FF-monoids
([38, Proposition 2.7.8]).

The next lemma gathers the properties of ideal semigroups needed in the sequel.

Proposition 2.1. Let H be a cancellative monoid and r be an ideal system

on H.

1. If H is a Mori monoid, then⋂
n≥0

(In)r =∅ for all I ∈I∗
r (H)\{H} .

2. If H is r-noetherian, then (I∗
r (H), ·r) is a Mori monoid.

3. If (I∗
r (H), ·r) is a Mori monoid, then H is a Mori monoid.

4. If r is finitary and H satisfies the r-Krull Intersection Theorem, then Ir(H)
is unit-cancellative and if, in addition, H has finite r-character, then Ir(H) is a

BF-monoid.

Proof. 1. See [51, Theorem 12.5].
2. and 3. follow from [39, Example 2.1].
4. See [15, Lemma 4.1] and [42, Section 4]. �

Rings. By a ring, we mean a commutative ring with identity element and by
a domain, we mean a commutative integral domain with identity element. Let R

be a ring. Then its multiplicative semigroup R˝ of regular elements is a cancellative
monoid. All arithmetic concepts introduced for monoids will be used for the monoids
of regular elements of rings. Thus, we say that R is atomic (factorial, and so on)
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if R˝ has the respective property and we set ρ(R):=ρ(R˝) and similarly for all
arithmetical invariants. If R is a v-Marot ring, then R is a Mori ring resp. a Krull
ring if and only if R˝ is a Mori monoid resp. a Krull monoid ([41, Theorem 3.5]).

Let R be a domain. We denote by H(R) the monoid of nonzero principal ideals
of R, and note that H(R)∼=R˝

red. Let r be an ideal system on R. Then r restricts to
an ideal system r′ on R˝, whence for every subset I⊂R, we have Ir=(I˝)r′∪{0}. We
use all ideal theoretic concepts introduced for monoids for domains. In particular,
Ir(R) is the semigroup of nonzero r-ideals of R, I∗

r (R) is the subsemigroup of
r-invertible r-ideals of R, and Cr(R)=Fr(R)×/q(H(R)) is the r-class group of R.

The usual ring ideals form a finitary ideal system (the d-system), and for these
ideals we omit all suffices, whence I(R)=Id(R), and the d-class group Cd(R)=
F(R)×/q(H(R)) is the Picard group Pic(R) of R. Throughout this paper, we
suppose that Ir(R)⊂I(R), whence

(2.2) I∗(R)⊂I∗
r (R)⊂I∗

v (R) .

If R satisfies the r-Krull Intersection Theorem, then Ir(R) is unit-cancellative by
Proposition 2.1.4. If R is a Mori domain, then (I∗

v (R), ·v) is a Mori monoid by
Proposition 2.1.2. If R is a one-dimensional Mori domain, then I∗

v (R)=I∗(R), R
has finite character by [35, Lemma 3.11], I(R) is unit-cancellative by [42, Corollary
4.4], whence I(R) is a BF-monoid by Proposition 2.1.4. For I∈I(R), we define
ω′(I)∈N0∪{∞} to be the smallest N having the following property:

If n∈N and J1, ..., Jn∈I(R) with J1 ·...·Jn⊂I, then there exists a subset Ω⊂
[1, n] such that |Ω|≤N and

∏
λ∈Ω Jλ⊂I.

The invariant ω′(I) is closely related to a well-studied invariant ω(·) where, in the
definition, containment is replaced by divisibility (see, for example, [30] and [39]).
Thus, for invertible ideals I∈I∗(R), we have ω(I)=ω′(I).

Suppose that R is noetherian. Then the integral closure R is a Krull domain
by the Theorem of Mori-Nagata. Since noetherian domains are Mori, they are BF-
domains but they need not be FF-domains. An algebraic characterization of when
noetherian domains are locally finitely generated is given in [56, Theorem 1]. The
next proposition shows that I(R) is a BF-monoid.

Proposition 2.2. Let R be a noetherian domain and I∈I(R).
1. If J∈I(R) with I⊂J and J/I∼=R/P (as R-modules) for some prime ideal

P⊂R, then ω′(I)≤ω′(J)+1.
2. ω′(I)<∞.

3. sup LI(R)(I)≤ω′(I). In particular, I(R) is a BF-monoid.

Proof. Since R satisfies Krull’s Intersection Theorem, I(R) is unit-cancellative
by Proposition 2.1.4.
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1. Since J/I∼=R/P , we obtain PJ⊂I and P={s∈R : sr∈I} for every r∈J \I.
If J1, ..., Jn∈I(R) with J1 ·...·Jn⊂I, then J1 ·...·Jn⊂J . Therefore, there exists a
subset Ω⊂[1, n] such that |Ω|≤ω′(J) and

∏
λ∈Ω Jλ⊂J . If

∏
λ∈Ω Jλ⊂I, then the

statement follows. If
∏

λ∈Ω Jλ �⊂I, then there exists r∈R with r∈
∏

λ∈Ω Jλ\I⊂J \I.
Thus, we have

r ·
∏

λ∈[1,n]\Ω
Jλ ⊂J1 ·...·Jn⊂ I ,

and so
∏

λ∈[1,n]\Ω Jλ⊂P . Therefore, there exists �∈[1, n]\Ω such that J�⊂P ,
whence

J� ·
∏
λ∈Ω

Jλ ⊂PJ ⊂ I .

2. We need the following module theoretic result: if M is a nonzero finitely
generated R-module and N⊂M a submodule, then there exist a chain of submodules
N=N0⊂N1⊂...⊂Nm=M and prime ideals Pi⊂R such that Ni+1/Ni

∼=R/Pi for all
i∈[0,m−1] ([58, Theorem 6.4]). Thus since ω′(R)=0, the claim follows by 1.

3. Let I, J1, ..., Jn∈I(R) with I=J1 ·...·Jn. Then there exists a subset Ω⊂[1, n]
such that |Ω|≤ω′(I) and J ′=

∏
λ∈Ω Jλ⊂I. Setting J ′′=

∏
λ∈[1,n]\Ω Jλ, we obtain

that
J ′ ⊂ I =J ′J ′′ ⊂J ′ ,

whence J ′=J ′J ′′. Therefore J ′′=R, Ω=[1, n], and n=|Ω|≤ω′(I). Finally, the in
particular statement follows now by 2. �

3. On unions of sets of lengths and sets of elasticities

Let H be a BF-monoid. Then

Δ(H)=
⋃

L∈L(H)

Δ(L) ⊂N

is the set of distances of H. Let k∈N0. If H=H×, then we set Uk(H)={k}, and
otherwise we set

Uk(H)=
⋃

k∈L,L∈L(H)

L ⊂N0

is the union of sets of lengths containing k. Then ρk(H)=supUk(H) is the k-th
elasticity of H and

ρ(H)= sup{ρ(L) : L∈L(H)}= lim
k→∞

ρk(H)
k
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is the elasticity of H. We say that H has accepted elasticity if there is L∈L(H)
with ρ(L)=ρ(H). By definition, H is half-factorial if and only if Δ(H)=∅ if and
only if ρ(H)=1. If H is not half-factorial, then min Δ(H)=gcd Δ(H).

We start with a discussion on elasticities. In [23] and [14], Chapman et al.
initiated the study of the set {ρ(L) : L∈L(H)}⊂Q≥1 of elasticities of all sets of
lengths. By definition, H is half-factorial if and only if {ρ(L) : L∈L(H)}={1}. The
reverse extremal case, namely when the set of elasticities is as large as possible,
found special attention. We say that H is fully elastic if for every rational number
q with 1<q<ρ(H) there is an L∈L(H) such that ρ(L)=q. Thus, by definition,
every half-factorial monoid is fully elastic. For a detailed study of sets of elasticities
in the setting of locally finitely generated monoids we refer to [66].

Next we discuss the structure of sets of lengths and of their unions. To do so,
we need the concept of almost arithmetic (multi) progressions. Let d∈N, M∈N0,
and {0, d}⊂D⊂[0, d]. A subset L⊂Z is called an

– almost arithmetic multiprogression (AAMP) with difference d, period D, and
bound M if

L= y+(L′∪L∗∪L′′)⊂ y+D+dZ ,

where y∈Z is a shift parameter, L∗ is finite nonempty, with minL∗=0 and L∗=
(D+dZ)∩[0,maxL∗], L′⊂[−M,−1], and L′′⊂maxL∗+[1,M ], and

– almost arithmetic progression (AAP) with difference d and bound M if L can
be written in the form

L= y+(L′∪L∗∪L′′)⊂ y+dZ ,

where y∈Z is a shift parameter, L′⊂[−M,−1], L∗ is a nonempty arithmetic pro-
gression with difference d and minL∗=0, L′′⊂maxL∗+[1,M ] if L∗ is finite, and
L′′=∅ if L∗ is infinite.
Note that AAPs need not be finite, whereas AAMPs are finite. Moreover, an AAMP
with period D={0, d} is an AAP with difference d. We say that H satisfies the

– Structure Theorem for Sets of Lengths if there are M∈N0 and a finite
nonempty set Δ⊂N such that every L∈L(H) is an AAMP with difference d∈Δ
and bound M , and

– Structure Theorem for Unions if there are d∈N and M∈N0 such that Uk(H)
is an AAP with difference d and bound M for all sufficiently large k∈N.
We refer to [38, Chapter 4.7] for background on the Structure Theorem for Sets
of Lengths and to [36], [30], [65], [67], [17, Theorem 6.6], [22, Proposition 4.9],
[12, Theorem 1.1], [11, Theorem 3.9], [60, Theorem 5.4], [59, Theorem 5.5] for
background and recent progress on the Structure Theorem for Unions.

The next lemma gathers simple properties of unions of sets of lengths which
we need in the sequel.
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Lemma 3.1. Let H be a BF-monoid and k, �∈N.
1. Uk(H)+U�(H)⊂Uk+�(H).
2. We have k∈U�(H) if and only if �∈Uk(H).
3. If U2(H)=N≥2, then Uk(H)=N≥2 for all k≥2.

Proof. 1. and 2. follow immediately by the definitions.
3. Suppose that U2(H)=N≥2. We proceed by induction on k. Let k≥2 and

suppose that Uk(H)=N≥2. Then 1. implies that

N≥3 =1+N≥2 =1+Uk(H)⊂Uk+1(H) .

Since k+1∈U2(H), 2. implies that 2∈Uk+1(H). Thus, we obtain that Uk+1(H)=
N≥2. �

In [13] it was proved that every commutative cancellative monoid having a
prime element and accepted elasticity is fully elastic. We generalize this result.

Proposition 3.2. Let H be a BF-monoid. Consider the following conditions.

(a) There are submonoids H1 and H2 such that H=H1×H2, where H1 is half-

factorial but not a group. This holds true in particular if H has a cancellative prime

element.

(b) For every q∈Q with 1<q<ρ(H), there is an element c∈H such that

ρ(L(ck))= ρ(L(c))>q for all k∈N .

This holds true in particular if H has accepted elasticity.

(b’) For every m∈N≥2 there is L∈L(H2) with minL=2 and maxL=m.

If Conditions (a) and (b) or Conditions (a) and (b’) hold, then H is fully elastic.

Proof. If ρ(H)=1, then Condition (b) holds trivially, H is half-factorial, and
hence it is fully elastic. From now on we suppose that ρ(H)>1.

1. We first check the two in particular statements stated in (a) and (b).
(i) If p∈H is a cancellative prime element of H, then

H =F({p})×T ,where T = {a∈H : p � a} .

If a∈H and k∈N, then

max L(ak)≥ kmax L(a) and min L(ak)≤ kmin L(a) ,

whence

(3.1) ρ(L(ak))= max L(ak)
min L(ak) ≥ kmax L(a)

kmin L(a) = ρ(L(a)) .
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(ii) Suppose that H has accepted elasticity, say ρ(L(a))=ρ(H). By (3.1), we
infer that ρ(L(ak))=ρ(L(a))=ρ(H) for all k∈N and, if ρ(L(ak))=ρ(L(a)) for some
k∈N, then

(3.2) max L(ak)= kmax L(a) and min L(ak)= kmin L(a) .

(iii) Suppose that (a) and (b) hold. To show that H is fully elastic, we choose
an atom p∈H1. Then for every a=a1a2∈H=H1×H2 and every k∈N, we have

(3.3) LH(pka)= LH1(pka1)+LH2(a2)= k+LH1(a1)+LH2(a2)= k+LH(a) .

Let q∈Q with 1<q<ρ(H), and let c∈H with

ρ(L(ck))= ρ(L(c))>q for all k∈N .

We set
q= r

s
with r, s∈N ,

i= r−s, j = smax L(c)−rmin L(c), and b= cipj .

Then, by (3.2) and (3.3),

max L(b)= j+imax L(c) and min L(b)= j+imin L(c) .

Putting all together we obtain that

ρ(L(b)) = max L(b)
min L(b) = j+imax L(c)

j+imin L(c)

= (r−s)max L(c)+smax L(c)−rmin L(c)
(r−s)min L(c)+smax L(c)−rmin L(c)

= r(max L(c)−min L(c))
s(max L(c)−min L(c))

= r

s
= q .

2. Suppose that (a) and (b’) hold and let q∈Q with 1<q<ρ(H). Then there
are r, s∈N such that q=r/s. By assumption, there is a2∈H2 such that min L(a2)=2
and max L(a2)=r−s+2. We choose an atom u∈H1 and define

b=us−2a2 .

Then

ρ(L(b))= max L(b)
min L(b) = max L(us−2)+max L(a2)

min L(us−2)+min L(a2)
= (s−2)+(r−s+2)

(s−2)+2 = q . �
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Example 3.3.
1. Consider the additive monoid H2=(N2∪{(0, 0)},+)⊂(N2

0,+). For every
m≥ 2, (m−1, 1), (1,m−1)∈A(H2) and we have

(m,m)= (m−1, 1)+(1,m−1)= (1, 1)+...+(1, 1)︸ ︷︷ ︸
m−times

,

whence min L((m,m))=2 and max L((m,m))=m. Thus, Condition (b’) of Propo-
sition 3.2 is satisfied. Moreover, U2(H)=N≥2, whence Uk(H)=N≥2 for all k≥2 by
Lemma 3.1. The forthcoming Proposition 4.2 shows that H2 is not fully elastic
(because H2 is strongly primary). However, if H1 is any half-factorial monoid, then
H1×H2 is fully elastic by Proposition 3.2.

2. In Section 5, we show that the monoid of nonzero ideals of a polynomial ring
with at least two variables also satisfy Conditions (a) and (b’) of Proposition 3.2
(Theorem 5.1).

4. On monoids of invertible ideals of weakly Krull domains

In this section we study the algebraic structure of monoids of invertible ide-
als and we derive some consequences for their arithmetic. Our focus will be on
weakly Krull domains and Krull domains. We start with a result in the setting of
r-invertible r-ideals. Then our discussion is divided into four subsections, namely
on weakly Krull domains 4.1, Krull domains 4.2, transfer Krull monoids 4.3, and
on the arithmetic of transfer Krull monoids 4.4.

Let H be a cancellative monoid and r be an ideal system on H. An ideal I∈
Fr(H) is called an r-cancellation ideal if whenever I ·rJ1=I ·rJ2 for J1, J2∈Ir(H),
we have J1=J2. It is easily seen that I is an r-cancellative if and only if whenever
I ·rJ1⊂I ·rJ2 for all J1, J2∈Ir(H), we have J1⊂J2. All r-invertible ideals (whence
all principal ideals) are r-cancellation ideals, whence I∗

r (H) is a cancellative monoid.
A divisorial ideal is v-invertible if and only if it is v-cancellative ([51, Chapter 13.4]).
Let R be a domain. A nonzero ideal I of R is a cancellation ideal if and only if I is
locally principal ([5] and [34]), and I(R) is a cancellative monoid if and only if R is
almost Dedekind ([51, Theorem 23.2]). If R is a Mori domain, then every nonzero
locally principal ideal is invertible ([6, Corollary 1]). If p∈R is prime, then pR is
a cancellative prime element of I∗(R) and of I(R). Moreover, if R is noetherian,
then p is also a prime element of R ([26, Lemma 4.7]; for more on prime elements
in noetherian domains, we refer to [25]).

Theorem 4.1. Let H be a cancellative monoid and let r be an r-noetherian

ideal system of H.
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1. If I∗
r (H) has a prime element, and if either I∗

r (H) has accepted elasticity or

is locally finitely generated, then I∗
r (H) is fully elastic.

2. Suppose that H has finite r-character and satisfies the r-Krull Intersection

Theorem. If H has an r-invertible prime r-ideal, and if either Ir(H) or all divisor-

closed submonoids generated by one element have accepted elasticity, then Ir(H) is

fully elastic.

Proof. In both cases we verify the assumptions of Proposition 3.2.
1. Since r is r-noetherian, I∗

r (H) is a Mori monoid by Proposition 2.1.2 and
hence it is a BF-monoid. Let P∈I∗

r (H) be a prime element. Since I∗
r (H) is a

cancellative monoid, P is a cancellative prime element.
Let q be a rational number with 1<q<ρ(I∗(H)). If I∗

r (H) has accepted elas-
ticity, then there is J∈I∗

r (H) such that ρ(L(J))=ρ(I∗
r (H)), whence

ρ(L(Jk))= ρ(L(J))>q for all k∈N .

Now suppose that I∗
r (H) is locally finitely generated. We choose an ideal I∈I∗

r (H)
with ρ(L(I))>q. We consider the divisor-closed submonoid S= [[I]]⊂I∗

r (H). Then
S is a finitely generated monoid. Thus, by [38, Theorem 3.1.4], there is an ideal
J∈S with ρ(S)=ρ(LS(J))≥ρ(LS(I))=ρ(LI∗

r (H)(I))>q. Therefore, we obtain that

ρ(L(Jk))= ρ(L(J))>q for all k∈N .

Thus, Conditions (a) and (b) of Proposition 3.2 are satisfied, whence the assertion
follows.

2. Since H is r-noetherian, r is a finitary ideal system by [51, Theorem 3.5].
Thus Ir(H) is a BF-monoid by Proposition 2.1.4. Let P be an r-invertible prime
r-ideal. Then P is a cancellative prime element of Ir(H). Arguing as in 1., we
obtain an r-ideal J such that

ρ(L(Jk))= ρ(L(J))>q for all k∈N .

Thus, Conditions (a) and (b) of Proposition 3.2 are satisfied, whence the assertion
follows. �

4.1. Weakly Krull domains

In this subsection, we consider weakly Krull domains. We start with the local
case and for this we need the concept of primary monoids. Let H be a cancellative
monoid and m=H\H×. Then H is called

– primary if H �=H× and for all a, b∈m there is n∈N such that bn∈aH, and
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– strongly primary if H �=H× and for every a∈m there is n∈N such that mn⊂
aH (we denote by M(a) the smallest n∈N having this property).
Primary Mori monoids are strongly primary and strongly primary monoids are BF-
monoids. The multiplicative monoid of nonzero elements of a domain is primary if
and only if the domain is one-dimensional and local. If R is a one-dimensional local
Mori domain, then I∗

v (R)=I∗(R)∼=R˝ and R˝ is locally tame strongly primary ([43,
Corollary 3.10]).

Proposition 4.2. Let H be a strongly primary monoid.

1. If H is not half-factorial, then there is β∈Q>1 such that ρ(L)≥β for all

L∈L(H) with ρ(L) �=1. In particular, H is fully elastic if and only if it is half-

factorial.

2. If H is locally tame, then H satisfies the Structure Theorem for Sets of

Lengths and the Structure Theorem for Unions.

Proof. 1. The first statement follows by [44, Theorem 5.5]. Since half-factorial
monoids are fully elastic, the in particular statement holds.

2. This follows from [37, Theorem 4.1]. �

A family of monoid homomorphisms ϕ=(ϕp : H→Dp)p∈P is said to be
– of finite character if the set {p∈P : ϕp(a) /∈D×

p } is finite for all a∈H, and
– a defining family (for H) if it is of finite character and

H =
⋂
p∈P

Hϕp .

If ϕ is of finite character, then it induces a monoid homomorphism

ϕ : H −→D=
∐
p∈P

(Dp)red , defined by ϕ(a)=
(
ϕp(a)D×

p

)
p∈P

,

and ϕ is a defining family if and only if ϕ is a divisor homomorphism.
We recall the concept of weak divisor theories and weakly Krull monoids ([50],

[51, Chapter 22]). A monoid is said to be weakly factorial if it is cancellative
and every nonunit is a finite product of primary elements. Every reduced weakly
factorial monoid has a unique decomposition in the form

D=
∐
p∈P

Dp, where Dp ⊂D are reduced primary submonoids .

Let D be a reduced weakly factorial monoid as above. If (a(i))i∈I is a family of
elements a(i)∈D with components a

(i)
p , then a is called a strict greatest common

divisor of (a(i))i∈I , we write
a=∧(a(i))i∈I ,

if the following two properties are satisfied for all p∈P :
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– ap |a(i)
p for all i∈I, and

– ap=a
(i)
p for at least one i∈I.

A monoid homomorphism ∂ : H→D is called a weak divisor theory if the following
two conditions are satisfied:

(a) ∂ is a divisor homomorphism and D is reduced weakly factorial.
(b) For every a∈D, there are a1, ..., am∈H such that a=∂(a1)∧...∧∂(am).

A monoid is said to be a weakly Krull monoid if it is cancellative and one of the
following equivalent conditions is satisfied:

– H has a weak divisor theory ∂ : H→D.
– The family of embeddings (ϕp : H↪→Hp)p∈X(H) is a defining family for H.
– ϕ : H→

∐
p∈X(H)(Hp)red is a weak divisor theory.

By the uniqueness of weak divisor theories, the (weak divisor) class group C(H)=
q(D)/q(∂(H)) depends on H only and it is isomorphic to the t-class group Ct(H) of
H ([51, Theorems 20.4 and 20.5]). If H is weakly Krull Mori, then C(H)∼=Ct(H)=
Cv(H). A monoid is weakly factorial if and only if it is weakly Krull with trivial
class group. The localizations Hp are primary for all p∈X(H).

A domain R is a weakly Krull domain if R˝ is a weakly Krull monoid. If
R is a one-dimensional Mori domain, then R is a weakly Krull Mori domain,
I∗
v (R)=I∗(R), and Cv(R)=Pic(R) ([38, Proposition 2.10.5]). In particular, orders

in holomorphy rings of global fields are weakly Krull Mori domains and every class
of their Picard group contains infinitely many invertible prime ideals ([38, Corol-
lary 2.11.16 and Proposition 8.9.7]). To mention higher-dimensional weakly Krull
domains, recall that all Cohen-Macaulay domains are weakly Krull. We mention
a recent characterization of when monoid algebras are weakly Krull. Let D be a
domain with quotient field K and let S be a cancellative monoid with torsion-free
quotient group G=q(S). Suppose that G satisfies the ACC on cyclic subgroups.
Then the monoid algebra D[S] is weakly Krull if and only if D is a weakly Krull
domain satisfying the G-UMT property and S is a weakly Krull monoid satisfying
the K-UMT property ([28, Theorem 3.7]). Monoid algebras, that are weakly Krull
Mori and have height-one prime ideals in all classes, are studied in [27].

Theorem 4.3. Let R be a weakly Krull Mori domain. Then I∗
v (R) is a re-

duced weakly factorial Mori monoid. The inclusion I∗(R)↪→I∗
v (R) is a weak divisor

theory, I∗(R) is a weakly Krull Mori monoid and its class group is isomorphic to

Cv(R)/Pic(R). If every class of Cv(R) contains at least one (resp. infinitely many)

p∈X(R), then every class of Cv(I∗(R)) contains at least one (resp. infinitely many)

q∈X(I∗(R)).
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Proof. By [40, Proposition 5.3], we have a monoid isomorphism

(4.1) I∗
v (R)−→

∐
p∈X(R)

(R˝

p)red ,

whence I∗
v (R) is a reduced weakly factorial Mori monoid (the Mori property follows

from Proposition 2.1.2). Since R is a weakly Krull Mori domain, the inclusion
H(R)↪→I∗

v (R) is a weak divisor theory. To verify that the inclusion I∗(R)↪→I∗
v (R)

is a divisor homomorphism, let I, J⊂R be invertible ideals such that I |J in I∗
v (R).

Then I−1J∈F(R)×∩I∗
v (R)⊂F(R)×∩I(R)=I∗(R). Thus, the inclusion I∗(R)↪→

I∗
v (R) is a divisor homomorphism. This implies that I∗(R) is a Mori monoid by

[38, Proposition 2.4.4]. Since H(R)↪→I∗
v (R) is a weak divisor theory, every I∈I∗

v (R)
is a strict greatest common divisor of principal ideals and hence a strict greatest
common divisor of invertible ideals. Therefore, I∗(R)↪→I∗

v (R) is a weak divisor
theory and for the class group we have

q(I∗
v (R))/q(I∗(R)) =Fv(R)×/F(R)×

∼=
(
Fv(R)×/q(H(R))

)/(
F(R)×/q(H(R))

)
= Cv(R)/Pic(R) .

The claim on the distribution of prime divisors q∈X(I∗(R)) follows immediately
from the above isomorphisms. �

Let D be a weakly Krull monoid. If H⊂D is a submonoid such that H↪→D is
a divisor homomorphism and the class group q(D)/D×q(H) is torsion, then H is a
weakly Krull monoid by [40, Lemma 5.1]. This abstract result applies to the setting
H(R)↪→I∗(R)↪→I∗

v (R), provided that the respective class groups are torsion. But,
we did not check the general case.

Let R be a weakly Krull Mori domain. Many aspects of the arithmetic of
I∗
v (R) have been studied in a variety of settings, from orders in quadratic number

fields to seminormal weakly Krull domains to stable weakly Krull domains (see [40,
Theorem 5.8], [44, Theorem 5.8], [45, Corollary 4.6], [18, Theorem 1.1], [42, Theorem
5.13], [15, Theorem 5.10]). The following corollary characterizes when - under some
additional assumptions - I∗

v (R) is fully elastic (compare with Proposition 4.9.1).
For the sake of completeness and in order to compare it with Theorem 5.1, we also
recall two results on the structure of sets of lengths and their unions.

Corollary 4.4. Let R be a weakly Krull Mori domain with nonzero conductor

(R:R̂).
1. I∗

v (R) satisfies the Structure Theorem for Sets of Lengths.
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2. Suppose that R̂p

×
/R×

p is a torsion group for all p∈X(R) and that I∗
v (R) has

finite elasticity. Then I∗
v (R) satisfies the Structure Theorem for Unions, and it is

fully elastic if and only if there is q∈X(R) such that Rq is half-factorial. If I∗
v (R) is

not fully elastic, then R is a one-dimensional semilocal Mori domain with Cv(R)=0.

Proof. 1. See [47, Theorem 7.4.3].
2. The additional assumptions imply that I∗

v (R) has accepted elasticity ([45,
Theorem 4.4.(ii)]), whence it satisfies the Structure Theorem of Unions by [65,
Theorem 1.2]. We set f=(R:R̂), P∗={p∈X(R) : p⊃f}, P=X(R)\P∗, and

T =
∐

p∈P∗

(R˝

p)red .

By (4.1), we obtain that

(4.2) I∗
v (R)∼=

∐
p∈X(R)

(R˝

p)red =
∐
p∈P

(R˝

p)red×T ∼=F(P)×T .

The localization Rp is a discrete valuation domain if and only if p∈P. For all p∈P∗,
R˝

p is a primary Mori domain, whence it is strongly primary.
(i) Let q∈X(R) such that Rq is half-factorial. Then

I∗
v (R)∼= (R˝

q)red︸ ︷︷ ︸
H1

×
∐

p∈P\{q}
(R˝

p)red︸ ︷︷ ︸
H2,1

×
∐

p∈P∗\{q}
(R˝

p)red︸ ︷︷ ︸
H2,2

.

If X(R)={q}, then I∗
v (H) is half-factorial, whence it is fully elastic. Suppose that

X(R) �={q}. Then H2 :=H2,1×H2,2 is a nontrivial monoid. Since H2,1 is free abelian,
it has accepted elasticity. Since R̂p

×
/R×

p is a torsion group for all p∈X(R) and since
I∗
v (R) has finite elasticity, (R˝

p)red has accepted elasticity by [45, Lemma 4.1 and
Theorem 4.4] for all p∈P∗\{q}. Thus H2 has accepted elasticity by [45, Lemma
2.6]. Therefore, I∗

v (R) is fully elastic by Proposition 3.2.
(ii) Suppose that Rq is not half-factorial for all q∈X(R). Then X(R)=P∗ is

finite, whence I∗
v (R)∼=T is a finite product of non-half-factorial strongly primary

monoids, say T=T1×...×Tn. Let i∈[1, n]. By Proposition 4.2, there is β∈Q>1
such that ρ(L)≥β for all L∈L(Ti) with ρ(L) �=1. We set mi=Ti\T×

i and we choose
a∗i ∈mi with |L(a∗i )|>1. If M=max{M(a∗1), ...,M(a∗n)}, then

mM
i ⊂m

M(a∗
i )

i ⊂ a∗i Ti .

Now let a∈T with ρ(L(a))>1. Then a=a1 ·...·an and, after renumbering if necessary,
we may assume that ρ(L(ai))>1 for all i∈[1,m] and ρ(L(ai))=1 for all i∈[m+1, n]
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with m∈[1, n]. If i∈[m+1, n], then ρ(L(ai))=1 implies that ai /∈mM
i , whence L(ai)=

{ki} for some ki∈[0,M−1]. Then

ρ(L(a1 ·...·am))= max L(a1 ·...·am)
min L(a1 ·...·am) = max L(a1)+...+max L(am)

min L(a1)+...+min L(am) ≥β ,

and
ρ(L(a))= max L(a1 ·...·am)+km+1+...+kn

min L(a1 ·...·am)+km+1+...+kn
.

Thus, there is β∗∈Q>1 such that ρ(L(a))≥β∗ for all a∈T with ρ(L(a))>1, whence
T∼=I∗

v (R) is not fully elastic.
(iii) Suppose that I∗

v (R) is not fully elastic. Since v-spec(R)=X(R) ([51, The-
orem 24.5]), the equivalence of (i) and (ii) shows that v-spec(R) is finite. Thus,
v-max(R)=max(R) and R is one-dimensional with Cv(R)=0 by [38, Propositions
2.10.4 and 2.10.5]. �

4.2. Krull domains

Let H be a cancellative monoid. A divisor theory for H is a weak divisor
theory ϕ : H→D, where D is a free abelian monoid. The following statements are
equivalent ([38, Chapter 2.4].

(a) H is a Krull monoid (i.e., H is a completely integrally closed Mori monoid).
(b) The map ∂ : H→I∗

v (H), defined by a 	→aH for all a∈H, is a divisor theory.
(c) H has a divisor theory ϕ : H→F(P ).
(d) There is a divisor homomorphism ϕ : H→D, where D is a factorial monoid.

Let H be a Krull monoid. Then there is a free abelian monoid F(P ) such that the
inclusion Hred↪→F(P ) is a divisor theory. Then

C(H)= q(F(P ))/q(Hred)

is called the (divisor) class group of H and GP ={[p]=pq(Hred) : p∈P}⊂C(H) is
the set of classes containing prime divisors. By the uniqueness of divisor theories,
C(H) and the set GP ⊂C(H) depend on H only. In particular, C(H) is isomorphic
to Cv(H).

Theorem 4.5. Let R be a domain and r be an ideal system on R with Ir(R)⊂
I(R). Then the following statements are equivalent.

(a) R is a Krull domain.

(b) The monoid of principal ideals H(R) is a Krull monoid.

(c) The monoid of invertible ideals I∗(R) is a Krull monoid.

(d) The monoid of r-invertible r-ideals I∗
r (R) is a Krull monoid.

(e) The monoid of v-invertible v-ideals I∗
v (R) is a Krull monoid.
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If these conditions hold, then the inclusion I∗
r (R)↪→I∗

v (R) is a divisor theory

with class group C(I∗
r (R)) being isomorphic to Cv(R)/Cr(R). Moreover, if every

class of Cv(R) contains at least one prime divisor resp. infinitely many prime divi-

sors, then the same is true for C(I∗
r (R)).

Remark. Clearly, there is a redundancy in the above formulation. If r=d is
the system of usual ideals, then I∗

r (R)=I∗(R) and if r=v is the system of divisorial
ideals, then I∗

r (R)=I∗
v (R). But, we want to emphasize these two important special

cases.

Proof. A monoid H is Krull if and only if the associated reduced monoid Hred is
Krull and, clearly, H(R)∼=(R˝)red. Thus (a) and (b) are equivalent by [38, Chapter
2]. Therefore, it remains to verify that (a) and (b) are equivalent to (d). We have

q(I∗
r (R))=Fr(R)× and q(I∗

v (R))=Fv(R)× .

By Equation (2.1), Fr(R)× is a subgroup of Fv(R)× and, in particular, r-ideal
multiplication in Fr(R)× coincides with the v-multiplication. We continue with
three assertions.

A1. H(R)↪→I∗
r (R) is a divisor homomorphism.

A2. I∗
r (R)↪→I∗

v (R) is a divisor homomorphism.
A3. If D is a Krull monoid and H↪→D is a divisor homomorphism, then H is

a Krull monoid.

Proof of A1. If a, b∈R˝ such that aR|bR in I∗
r (R), then bR=aR·rI for some

I∈I∗
r (R), and a−1bR=I⊂R implies that a|b in R.

Proof of A2. Let I, J∈I∗
r (R) such that I divides J in I∗

v (R). Then I−1 ·rJ∈
Fr(R)×∩I∗

v (R)⊂Fr(R)×∩I(R)=I∗
r (R). Thus, the inclusion I∗

r (R)↪→I∗
v (R) is a

divisor homomorphism.

Proof of A3. If D is Krull, then there is a divisor homomorphism ϕ : D→F ,
where F is a factorial monoid. Since the composition of divisor homomorphisms
is a divisor homomorphism again, we obtain a divisor homomorphism H↪→D→F

from H to a factorial monoid, whence H is a Krull monoid.

Suppose that (a) and (b) hold. Then I∗
v (R) is free abelian by [38, Theorem

2.3.11] and hence Krull. Thus, I∗
r (R) is Krull by A2 and A3, which means that

(d) holds. Conversely, if (d) holds, then H(R) is Krull by A1 and A3.
Now suppose that (a) – (e) hold. Since the inclusion H(R)↪→I∗

v (R) is a divisor
theory, every I∈I∗

v (R) is a greatest common divisor of principal ideals and hence
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a greatest common divisor of r-invertible r-ideals. This, together with A2, shows
that the inclusion I∗

r (R)↪→I∗
v (R) is a divisor theory with class group

q(I∗
v (R))/q(I∗

r (R)) =Fv(R)×/Fr(R)×

∼=
(
Fv(R)×/q(H(R))

)/(
Fr(R)×/q(H(R))

)
= Cv(R)/Cr(R) .

The monoid I∗
v (R) is free abelian with basis v-spec(R). If every class of Cv(R)

contains at least one resp. infinitely many prime v-ideals, then the same is true for
the factor group Cv(R)/Cr(R). �

Thus, if R is a Krull domain, then the monoid I∗(R) of invertible ideals is
a Krull monoid with class group isomorphic to Cv(R)/Pic(R). This factor group
shows a wide range of behavior. Daniel D. Anderson gave a characterization when
the factor group is a torsion group and he showed that the factor group is trivial if
and only if Rm is factorial for all m∈max(R) ([2, Theorems 3.1 and 3.3]; see also [7]).
We consider monoid algebras that are Krull. For a domain D and a cancellative
monoid S, the monoid algebra D[S] has the following properties:

– D[S] is Krull if and only if D is Krull, S is Krull, q(S) is torsion-free, and
S× satisfies the ACC on cyclic subgroups (this was first proved by Chouinard in
[24]; see also [48, Theorem 15.6]).

– D[S] is seminormal if and only if D and S are seminormal ([19, Theorem
4.76]).

Corollary 4.6. Let D be a domain and S be a cancellative monoid such that

the monoid algebra R=D[S] is Krull. Then I∗(R) is a Krull monoid with class

group C(I∗(R))∼=Cv(R)/Pic(R), Cv(R)∼=Cv(D)⊕Cv(S), Pic(R)∼=Pic(D), and every

class of Cv(I∗(R)) contains infinitely many prime divisors.

Proof. Since D[S] is Krull, the previous remark implies that D is a Krull
domain and S is a Krull monoid, whence D and S are seminormal. Thus, the
natural map

Pic(D[S])−→Pic(D)

is an isomorphism by [8, Corollary 1] (note, since D is completely integrally closed,
D is strongly quasinormal in the sense of [8]). We have Cv(R)∼=Cv(D)⊕Cv(S) by [48,
Corollary 16.8]. Since every class of Cv(R) contains infinitely many prime divisors
by [29, Theorem], the same is true for the factor group Cv(I∗(R)) by Theorem 4.5.
�

Most arithmetical results, valid for weakly Krull Mori monoids H, are estab-
lished under the additional assumption that H has nonempty conductor (H:Ĥ) to
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its complete integral closure. Now let R be a weakly Krull Mori domain. We al-
ready know that I∗(R) is a weakly Krull Mori monoid. The next corollary shows
that, if R has nonzero conductor (R:R̂), then also I∗(R) has nonempty conductor,
whence all arithmetical results, valid for weakly Krull Mori monoids with nonempty
conductor, also apply to I∗(R).

Corollary 4.7. Let R be a weakly Krull Mori domain with (R:R̂) �={0}. Then
I∗
v (R) and I∗(R) are weakly Krull Mori monoids with (I∗

v (R):Î∗
v (R)) �=∅ and with

(I∗(R):Î∗(R)) �=∅.

Proof. I∗
v (R) and I∗(R) are weakly Krull Mori monoids by Theorem 4.3,

whence it remains to prove the statements on the conductor.
(i) To prove the claim on I∗

v (R), we use the same notation as in the proof of
Corollary 4.4. Thus, we set f=(R:R̂), P∗={p∈X(R) : p⊃f}, P=X(R)\P∗, and by
Equation (4.2) we have

(4.3) I∗
v (R)∼=

∐
p∈X(R)

(R˝

p)red ∼=F(P)×
∐

p∈P∗

(R˝

p)red .

Note that P∗ is finite. We use the following simple facts on the complete integral
closure of cancellative monoids S1, S2, and S.

(a) If S=S1×S2, then Ŝ=Ŝ1×Ŝ2. Thus, if (Si:Ŝi) �=∅ for all i∈[1, 2], then
(S:Ŝ) �=∅.

(b) If (S:Ŝ) �=∅ and p∈X(S) �=∅, then (Sp:̂Sp) �=∅.
Since (R:R̂) �={0}, it follows that (R˝

p:R̂˝

p) �=∅ for all p∈P∗. Thus, by the isomorphism
in (4.3) and by Property (a), it follows that (I∗

v (R):Î∗
v (R)) �=∅.

(ii) Next we show that (I∗(R):Î∗(R)) �=∅. By Theorem 4.5, the inclusion
I∗(R)↪→I∗

v (R) is a divisor theory, whence I∗
v (R)∩q

(
I∗(R)

)
=I∗(R). By (i), there

is I∈(I∗
v (R):Î∗

v (R)) �=∅. Then there is J∈I∗
v (R) and a∈R such that I ·vJ=(IJ)v=

aR∈(I∗
v (R):Î∗

v (R)). Then

(aR)Î∗(R)⊂ (aR)Î∗
v (R)∩q

(
I∗(R)

)
⊂I∗

v (R)∩q
(
I∗(R)

)
= I∗(R) ,

whence aR∈(I∗(R):Î∗(R)) �=∅. �

4.3. Transfer Krull monoids

A monoid homomorphism θ : H→B is called a transfer homomorphism if it
has the following properties:

(T 1) B=θ(H)B× and θ−1(B×)=H×.
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(T 2) If u∈H, b, c∈B and θ(u)=bc, then there exist v, w∈H such that u=vw,
θ(v)∈bB×, and θ(w)∈cB×.
Transfer homomorphisms allow to pull back arithmetical properties from B to H.
In particular, we have LH(a)=LB(θ(a)) for all a∈H, whence L(H)=L(B). This
implies that an element a∈H is an atom of H if and only if θ(a) is an atom of B.
A monoid H is called transfer Krull if there are a Krull monoid B and a transfer
homomorphism θ : H→B. A commutative ring R is said to be transfer Krull if its
monoid R˝ of regular elements is a transfer Krull monoid.

If H is half-factorial, then θ : H→(N0,+), defined by θ(u)=1 for all u∈A(H)
and θ(ε)=0 for every ε∈H×, is a transfer homomorphism, whence all half-factorial
monoids are transfer Krull. Furthermore, all Krull monoids are transfer Krull
(with θ being the identity). Since transfer homomorphisms preserve lengths of
factorizations, all transfer Krull monoids are BF-monoids but they need neither be
v-noetherian nor completely integrally closed. A list of transfer Krull monoids and
domains that are not Krull can be found in [47, Example 5.4], and we refer to [16]
for a systematic study of the transfer Krull property. On the other hand, here are
some monoids that are not transfer Krull.

– Int(Z) is not transfer Krull, by [33, Remark 12].
– The monoid of polynomials having nonnegative integer coefficients is not

transfer Krull, by [20, Remark 54.].
– The monoid of finite nonempty subsets of the nonnegative integers (with

set addition as operation) is not transfer Krull, by [31, Proposition 4.12] (see the
discussion after Conjecture 5.12).
Moreover, let R be a weakly Krull Mori domain. Then I∗

v (R) is transfer Krull if
and only if it is half-factorial (in the local case this follows from Proposition 4.2.1
and Proposition 4.9; the general case is a simple consequence, see [47, Proposition
7.3] and also [15, Theorem 5.9]). For more results of this flavor, see the references
given in the discussion before Corollary 4.4).

We continue with a simple lemma which we will use to show that the monoid
of nonzero ideals over a polynomial ring with at least two variables is not transfer
Krull (Theorem 5.1).

Lemma 4.8. Let H be a cancellative monoid and r be an ideal system on H.

Suppose there is a non-r-cancellative ideal I∈Ir(H), an ideal J1∈A(Ir(H)), and a

J2∈Ir(H)\A(Ir(H)) such that I ·rJ1=I ·rJ2. Then Ir(H) is not a transfer Krull

monoid.

Proof. Assume to the contrary that there are a Krull monoid B and a trans-
fer homomorphism θ : Ir(H)→B. Then θ(I)θ(J1)=θ(I)θ(J2), whence θ(J1)=θ(J2)



88 Alfred Geroldinger and M. Azeem Khadam

because B is cancellative. Since J1 is an atom of Ir(H), θ(J1)=θ(J2) is an atom of
B and hence J2 is an atom of Ir(H), a contradiction. �

4.4. Arithmetic of transfer Krull monoids

The arithmetic of Krull monoids is determined by their class groups and the
distribution of prime divisors in the classes. There is an abundance of literature on
the arithmetic of Krull monoids (see [38] and the survey [64]). We briefly summarize
some results valid not only for Krull monoids but more generally for transfer Krull
monoids, but we restrict for results on sets of lengths. This will allow us to compare
them with the arithmetic of the monoids of ideals discussed in Section 5. In order
to do so we recall the monoid of zero-sum sequences over an abelian group.

Let G be an additive abelian group and G0⊂G be a subset. An element
S=g1 ·...·g�∈F(G0), with �∈N0 and g1, ..., g�∈G0, is called a sequence over G0.
Then |S|=�∈N0 is the length of S, σ(S)=g1+...+g�∈G is the sum of S, and

B(G0)= {T ∈F(G0) : σ(T )= 0}⊂F(G0)

is the monoid of zero-sum sequences over G0. Since the inclusion B(G0)↪→F(G0)
is a divisor homomorphism, B(G0) is a Krull monoid. As usual, we set L(G0):=
L(B(G0)), ρ(G0):=ρ(B(G0)), and Uk(G0):=Uk(B(G0)) for all k∈N.

Let B be a Krull monoid, ϕ : B→D=F(P ) be a divisor theory, and let GP =
{[p] : p∈P}⊂G denote the set of classes containing prime divisors. The map

β : B−→B(GP ), defined by β(a)= [p1]·...·[p�] ,

where ϕ(a)=p1 ·...·p� with p1, ..., p�∈P , is a transfer homomorphism.
Let H be a transfer Krull monoid and θ1 : H→B be a transfer homomorphism

to a Krull monoid B. If G is an abelian group, G0⊂G a subset, and θ2 : B→B(G0),
then θ=θ2¨θ1 : H→B(G0) is a transfer homomorphism from H to the monoid of
zero-sum sequences over G0. In this case, we say that H is a transfer Krull monoid
over G0. Since every Krull monoid has a transfer homomorphism onto a monoid of
zero-sum sequences, every transfer Krull monoid has a transfer homomorphism to
a monoid of zero-sum sequences. If H is a Krull monoid with class group G and
every class contains at least one prime divisor, then H is a transfer Krull monoid
over the class group G.

Proposition 4.9. Let H be a transfer Krull monoid and let θ : H→B(G0) be

a transfer homomorphism, where G0⊂G is a subset of an abelian group.

1. H is fully elastic.



On the arithmetic of monoids of ideals 89

2. If G0 is finite, then the elasticity ρ(H)<∞, H satisfies the Structure Theo-

rem for Sets of Lengths as well as the Structure Theorem for Unions.

3. If G0 contains an infinite abelian group, then for every finite subset L⊂N≥2,

there is a∈H such that L(a)=L, whence Uk(H)=N≥2 for all k≥2.

Proof. 1. This follows from [46, Theorem 3.1].
2. Suppose that G0 is finite. We have L(H)=L(G0), whence ρ(H)=ρ(G0),

and Uk(H)=Uk(G0) for all k∈N. Since G0 is finite, B(G0) is finitely generated,
whence ρ(G0)<∞ by [38, Theorem 3.1.4]. Furthermore, H satisfies the Structure
Theorem for Sets of Lengths by [38, Chapter 4.7] and the Structure Theorem for
Unions by [36, Corollary 3.6 and Theorem 4.2].

3. Suppose that G0 contains an infinite abelian group G1. By [38, Theorem
7.4.1], every finite subset L⊂N≥2 lies in L(G1), and hence L∈L(G1)⊂L(G0)=L(H).
Since {2, k}∈L(H) for every k∈N≥2, it follows that U2(H)=N≥2, whence Uk(H)=
N≥2 for every k≥2 by Lemma 3.1. �

Let θ : H→B(G0) be as above. If G0 is a finite abelian group, then there is a
rich literature on invariants controlling the structure of sets of lengths ([64]). The
elasticity ρ(H) can be finite even if G0 is infinite (if G is finitely generated, then
[49] offers a characterization of when ρ(H) is finite, and if ρ(H)<∞, then also the
Structure Theorem for Unions holds). The unions Uk(H) are intervals if G0 is a
group, but they need not be intervals in general. There are Krull monoids that do
not satisfy the Structure Theorem for Unions ([30, Theorem 4.2]), and there are
Krull monoids that neither satisfy the Structure Theorem for Sets of Lengths nor
does every finite subset L⊂N≥2 occur as a set of lengths.

5. On the monoid of nonzero ideals of polynomial rings

The main goal of this section is to prove the result given in Theorem 5.1. We
start with a couple of remarks. Let D be a noetherian domain, n≥2, S=(Nn

0 ,+),
and R=D[S]=D[X1, ..., Xn]. Then D is Krull if and only if D is integrally closed
if and only if R is Krull if and only if I∗(D) resp. I∗(R) are Krull (see Theorem
4.5). Furthermore, C(D) and C(R) are isomorphic, D is factorial if and only if R is
factorial if and only if C(D) is trivial. If D is factorial (for example, if D is a field),
then

{aR : a∈R˝}= I∗(R)= I∗
v (R)= Iv(R) and all these monoids are factorial.

(5.1)

In orders of Dedekind domains with finite class group, monoids of all nonzero ideals
and monoids of invertible ideals have similar arithmetical properties ([18], [42] and
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[15]). In contrast to (5.1) and in contrast to orders in Dedekind domains, our
conjecture (Conjecture 5.12) is that the arithmetic of the monoid I(R) is completely
different from the arithmetic of I∗(R) and that it is as wild as it is for Krull monoids
with infinite class group and prime divisors in all classes (see Proposition 4.9.3). The
main result of this section (Theorem 5.1) is a first step towards this conjecture.

Theorem 5.1. Let R=D[X1, ..., Xn] be the polynomial ring in n≥2 indeter-

minates over a domain D, and suppose that I(R) is a BF-monoid.

1. I(R) is neither transfer Krull nor locally finitely generated. Moreover, if D×

is infinite, then I(R) is not an FF-monoid.

2. Uk(I(R))=N≥2 for all k≥2.
3. LI(R)(〈X1, X2〉k)=[2, k] for all k≥2.
4. I(R) is fully elastic.

We briefly discuss the assumption that I(R) is a BF-monoid (made in Theorem
5.1, Lemma 5.3, Proposition 5.10, and Conjecture 5.12). If R is noetherian or a
one-dimensional Mori domain, then I(R) is a BF-monoid (see Proposition 2.2 and
the discussion after Proposition 2.1). But the property, that I(R) is a BF-monoid,
seems to be much weaker than the above two assumptions. A crucial property in
this context is Krull’s Intersection Theorem, which guarantees that the semigroup
I(R) is unit-cancellative. We mention two further classes of polynomial rings which
satisfy Krull’s Intersection Theorem (for more on the validity of Krull’s Intersection
Theorem, we refer to [4] and [51]).

(i) Let D be a domain, D its integral closure (in the quotient field of D), and
let D∗ be any domain with D⊂D∗⊂D. The integral closure of D[X1, ..., Xn] equals
D[X1, ..., Xn], and we have

D[X1, ..., Xn]⊂D∗[X1, ..., Xn]⊂D[X1, ..., Xn] .

If D is noetherian, then D[X1, ..., Xn] is noetherian, whence D∗[X1, ..., Xn] satisfies
Krull’s Intersection Theorem by [1, Theorem 5]. Moreover, if D is noetherian, then
D is Krull and if D is Krull, then D[X1, ..., Xn] is a Krull domain with class group
isomorphic to C(D) and infinitely many prime divisors in all classes (compare with
Corollary 4.6).

(ii) If the integral closure R of R=D[X1, ..., Xn] in some field extension of the
quotient field of R is noetherian, then R satisfies Krull’s Intersection Theorem by
[52, Proposition 2.6].

We proceed in a series of lemmas. Let R be a domain and X1, X2∈R˝. For all
i∈N, we consider the following four families of nonzero ideals of R:

(i) ai(X1, X2):=〈X1, X2〉i,
(ii) bi(X1, X2):=〈Xi

1, X
i
2〉,
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(iii) c2i+1(X1, X2):=〈{X2i+1
1 , X2i

1 X2}∪{X2i−j
1 Xj+1

2 : j∈[1, 2i+1] is even}〉,
and

(iv) c2i(X1, X2):=〈{X2i
1 , X2i−1

1 X2}∪{X2i−j
1 Xj

2 : j∈[1, 2i] is even}〉.

Lemma 5.2. Let R be a domain and X1, X2∈R˝.

1. a1(X1, X2)k=ak(X1, X2) for all k∈N.
2. ak(X1, X2)·b�(X1, X2)=ak+�(X1, X2) for all k, �∈N with k≥�−1.
3. a1(X1, X2)·c2k+1(X1, X2)=a2k+2(X1, X2) for all k∈N.
4. a1(X1, X2)·c2k(X1, X2)=a2k+1(X1, X2) for all k∈N.

Proof. This follows by direct calculations. �

Lemma 5.3. Let R be a domain such that I(R) is a BF-monoid. Suppose

there exist distinct X1, X2∈R˝ such that a1(X1, X2), b2(X1, X2), and c2i+1(X1, X2)
are atoms of I(R) for all i∈N. Then I(R) has the following properties.

1. I(R) is not a transfer Krull monoid.

2. I(R) is not locally finitely generated.

3. Uk(I(R))=N≥2 for all k≥2.

Proof. 1. By Lemma 5.2 (items 1 and 2), we obtain that

a1(X1, X2)·b2(X1, X2)= a3(X1, X2)= a1(X1, X2)·a2(X1, X2) .

Therefore, Lemma 4.8 implies that I(R) is not transfer Krull.
2. By Lemma 5.2.3, the divisor-closed submonoid [[a1(X1, X2)]]⊂I(R) contains

infinitely many atoms, whence I(R) is not locally finitely generated.
3. By Lemma 3.1.3, it suffices to prove that U2(I(R))=N≥2. Since c2i+1(X1, X2)

is an atom of I(R) for all i∈N, Lemma 5.2.3 implies that

{ν ∈N : ν≡ 0 mod 2}⊂U2(I(R)).

Furthermore, by Lemma 5.2 (items 2 and 3), we observe that

a2i(X1, X2)·b2(X1, X2)= a2i−1(X1, X2)·a3(X1, X2)= a2i+2(X1, X2)
= a1(X1, X2)·c2i+1(X1, X2)

for all i∈N, whence

{ν ∈N≥3 : ν≡ 1 mod 2}⊂U2(I(R)) . �

Lemma 5.4. Let R be a domain and q be a p-primary ideal of R for some

p∈spec(R). Let q=IJ , where I and J are ideals of R such that q�I, J�R. Then

Rad I=Rad J=p.
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Proof. Since p=Rad q=Rad I∩Rad J , so either Rad I=p or RadJ=p, say
Rad I=p. It remains to prove that RadJ=p. Clearly p⊂Rad J . Conversely, if
g∈RadJ , then there exists some positive integer s such that gs∈J . Since q�I,
there exists an element f∈I\q. As fgs∈IJ=q and f �∈q, there exists some positive
integer t such that gst∈q and hence g∈Rad q=p. �

From now on till the end of the proof of Theorem 5.1, we fix the following
notation. Let D be a domain with quotient field K, and let R=D[X1, ..., Xn]
and S=K[X1, ..., Xn] be polynomial rings in n≥2 variables X1, ..., Xn. They are
equipped with the natural N-grading such that deg(X1)=...=deg(Xn)=1. We set

R=
⊕
t≥0

Rt, and S =
⊕
t≥0

St ,

where Rt⊂St are the corresponding t-components. Every f∈S can be written
uniquely in the form f=

∑
i≥0 fi, where fi∈Si for all i∈N0 and fi=0 for all but

finitely many i∈N0. We denote by < the lexicographic order on monomials of
K[X1, ..., Xn] with X1>X2>...>Xn. For f∈K[X1, ..., Xn], we denote by in(f) the
initial monomial of f with respect to the order <.

The min-degree m-deg(f) of a nonzero polynomial f∈S is the smallest nonneg-
ative integer d such that fd is nonzero. We set m-deg(0)=+∞. The m-deg function
satisfies the following two properties for all f, g∈S:

(i) m-deg(fg)=m-deg(f)+m-deg(g), and
(ii) m-deg(f+g)≥min {m-deg(f), m-deg(g)}, with equality if m-deg(f) �=

m-deg(g).
Next we introduce the minimal degree of an ideal of R. Let I⊂R be a nonzero ideal.
We define the min-degree m-deg(I) of I to be the smallest nonnegative integer d

such that I contains a polynomial whose min-degree is equal to d. We set the
min-degree of the zero ideal equal to +∞.

The next lemma says that the map

m-deg : I(R)−→N0 given by I 	−→m-deg(I)

is a semigroup homomorphism.

Lemma 5.5. For every I, J∈I(R), we have m-deg(IJ)=m-deg(I)+m-deg(J).

Proof. We set d=m-deg(I), e=m-deg(J), m=m-deg(IJ), and we choose f∈I
with m-deg(f)=d, g∈J with m-deg(g)=e, and h∈IJ such that m-deg(h)=m.
By the above property (i), we have m≤d+e. On the other hand, we have h=
f1g1+...+fsgs, where fi∈I and gi∈J for all i∈[1, s]. Then the above property (ii)
implies that

m=m-deg(h) ≥ min{m-deg(fi)+m-deg(gi) : i∈ [1, s]}≥ d+e . �
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Let I, J∈I(R). We set I[i]={fi : f∈I} and note that I[i]⊂Ri is a D-module.
For i, j∈N0,

I[i]·J [j] =
{ k∑

s=1
asbs : k≥ 1, as ∈ I[i], bs ∈J [j]

}
is also a D-module. Let IK [i]=SpanK{ I[i] }, JK [j]=SpanK{ J [j] } and, for m∈N0,
(IJ)K [m]=SpanK{ (IJ)[m] }. Clearly, IK [i]⊂Si, JK [j]⊂Sj , and (IJ)K [m]⊂Sm,
whence IK [i], JK [j], (IJ)K [m] are finite dimensional K-vector spaces.

Lemma 5.6. Let I, J∈I(R) with m-deg(I)=d, m-deg(J)=e, and m-deg(IJ)=
m.

1. (IJ)[m]=I[d]·J [e].
2. (IJ)K [m]=IK [d]·JK [e].

Proof. 1. Let a∈(IJ)[m]. Then there exists h∈IJ such that hm=a, say h=∑k
i=1 f

(i)g(i), where f (i)∈I and g(i)∈J for all i∈[1, k]. By Lemma 5.5, we obtain
that a=hm=

∑k
i=1 f

(i)
d g

(i)
e , whence a∈I[d]·J [e]. Conversely, if a∈I[d]·J [e], then

a=
∑k

i=1 aibi where ai∈I[d], bi∈J [e] for all i∈[1, k]. Thus, there exist f (i)∈I, g(i)∈J
such that f

(i)
d =ai and g

(i)
e =bi for all i∈[1, k]. Hence h=

∑k
i=1 f

(i)g(i)∈IJ with
hm=a∈(IJ)[m].

2. Let a∈(IJ)K [m]. Then, by definition, a=
∑r

ν=1(αν/βν)hν , where r∈
N, hν∈(IJ)[m], αν , βν∈D and βν �=0 for every ν∈[1, r]. By 1. , we obtain hν=∑sν

jν=1 a
(ν)
jν

b
(ν)
jν

, where a
(ν)
jν

∈I[d] and b
(ν)
jν

∈J [e] for every jν∈[1, sν ]. Hence,

a=
r∑

ν=1

sν∑
jν=1

(αν/βν)a(ν)
jν

b
(ν)
jν

∈ IK [d]·JK [e] .

Conversely, let
∑r

ν=1 aνbν∈IK [d]·JK [e]. Then

aν =
sν∑

jν=1
(αν,jν/βν,jν )a(ν)

jν
and bν =

tν∑
kν=1

(γν,kν/θν,kν )b(ν)
kν

,

where a
(ν)
jν

∈I[d], b
(ν)
kν

∈J [e] and αν,jν , βν,jν , γν,kν , θν,kν ∈D with βν,jν �=0 �=θν,kν for
all ν, jν , kν . If we denote βν=

∏sν
jν=1 βν,jν and θν=

∏tν
kν=1 θν,kν , then aνbν can be

written as

aνbν =(1/βνθν)
sν∑

jν=1

tν∑
kν=1

τjν ,kνa
(ν)
jν

b
(ν)
kν

,

where all τjν ,kν ∈D. Setting β=
∏r

ν=1 βν and θ=
∏r

ν=1 θν we obtain that
r∑

ν=1
aνbν =(1/βθ)

r∑
ν=1

sν∑
jν=1

tν∑
kν=1

ρjν ,kνa
(ν)
jν

b
(ν)
kν

,
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where all ρjν ,kν ∈D. Therefore, βθ(
∑r

ν=1 aνbν)∈I[d]·J [e] and hence, again by using
1. , we get

βθ(
r∑

ν=1
aνbν)=hm,

where h∈IJ . Thus, we obtain that
∑r

ν=1 aνbν∈(IJ)K [m]. �

Before moving further we demonstrate in simple special cases how our tech-
niques work for studying factorizations in the monoid of nonzero ideals of polynomial
rings.

Example 5.7.
1. We claim that the ideal 〈X2, Y 2〉⊂K[X,Y ] is an atom of I(K[X,Y ]). As-

sume to the contrary that there are two nonzero proper ideals I, J of K[X,Y ] with
m-deg(I)=d, m-deg(J)=e and

〈X2, Y 2〉= IJ.

By Lemma 5.6 we obtain

(5.2) SpanK{X2, Y 2}= IK [d]·JK [e],

and we have d+e=2 by Lemma 5.5. Furthermore, we have Rad I=Rad J=〈X,Y 〉,
whence d=e=1. Clearly dimK I[d]≥1 and dimK J [e]≥1. Assume to the con-
trary that one of these dimensions equals one, say IK [d]=SpanK{f} and JK [e]=
SpanK{g1, ..., gs}. Then X2=

∑s
j=1 αjfgj where αj∈K for all j∈[1, s]. This implies

that f=αX for some α∈K×, which is not possible since Y 2∈IK [d]·JK [e]. There-
fore, dimK IK [d]≥2 and dimK J [e]≥2. Since IK [d], JK [e]⊂SpanK{X,Y }, it follows
that IK [d]=JK [e]=SpanK{X,Y }. This implies that IK [d]·JK [e]=SpanK{X2, XY,

Y 2}, a contradiction to (5.2).
2. We claim that the ideal 〈X3+Y 3, X2Y,XY 2〉⊂K[X,Y ] is an atom of

I(K[X,Y ]). Assume to the contrary that there are two nonzero proper ideals I, J

of K[X,Y ] with m-deg(I)=d, m-deg(J)=e and

〈X3+Y 3, X2Y,XY 2〉= IJ.

By Lemma 5.6 we obtain

(5.3) SpanK{X3+Y 3, X2Y,XY 2}= IK [d]·JK [e],

and we have d+e=3 by Lemma 5.5. Since 〈X,Y 〉4⊂〈X3+Y 3, X2Y,XY 2〉, we infer
that Rad I=Rad J=〈X,Y 〉. Thus, d, e≥1, and after renumbering if necessary we
suppose that d=1 and e=2. Clearly dimK I[d]≥1 and dimK J [e]≥1. Assume to
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the contrary that one of these dimensions equals one, say IK [d]=SpanK{f} and
JK [e]=SpanK{g1, ..., gs}. Then X2Y =

∑s
j=1 αjfgj where αj∈K for all j∈[1, s].

This implies that f=αX or f=α′Y for some α, α′∈K×, which is not possible
since X3+Y 3∈IK [d]·JK [e]. Therefore, dimK IK [d]≥2 and dimK J [e]≥2. Since
IK [d]⊂SpanK{X,Y }, it follows that IK [d]=SpanK{X,Y }. For every i∈[1, s], we
have Xgi∈IK [d]·JK [e] and thus, by (5.3),

Xgi =βi,1(X3+Y 3)+βi,2X
2Y +βi,3XY 2

where βi,j∈K for every j∈[1, 3]. This implies that βi,1=0 and gi=βi,2XY +βi,3Y
2.

Similarly, Y gi∈IK [d]·JK [e] yields

Y gi = γi,1(X3+Y 3)+γi,2X
2Y +γi,3XY 2

where γi,j∈K for every j∈[1, 3]. This implies that γi,1=0 and gi=γi,2X
2+γi,3XY .

Hence βi,3=γi,2=0 and gi=βi,2XY . Therefore, JK [e]=SpanK{XY }, a contradic-
tion to dimK JK [e]≥2.

3. The following equation

〈X2, Y 2〉〈X3+Y 3, X2Y,XY 2〉= 〈X,Y 〉5

involves only atoms of I(K[X,Y ]), whence it shows that 2, 5∈LI(K[X,Y ])(〈X,Y 〉5).

Example 5.7.1 was already settled in [52, Proposition 4.6], but our techniques
allow us to study polynomial ideals over domains whose semigroup of nonzero ideals
is a BF-monoid (see Proposition 5.10). For m∈N0, let Mm;1,2 denote the set of all
monomials of the form Xr

1X
s
2 with r+s=m and r, s∈N0.

Lemma 5.8. The ideals

c′(X1, X2)= 〈X3
1 +X3

2 , X
2
1X2, X1X

2
2 〉 and a(X1, X2)= 〈{Xm

1 , Xm
2 }∪N〉 ,

where m∈N and N⊂Mm;1,2 is any subset, are 〈X1, X2〉-primary in R. In partic-

ular, if c′(X1, X2)=IJ or a(X1, X2)=IJ , where I and J are ideals of R such that

c′(X1, X2)�I, J�R or a(X1, X2)�I, J�R, then m-deg(I)≥1 and m-deg(J)≥1.

Proof. We set c′ :=c′(X1, X2) and a:=a(X1, X2). It is a well known fact that if
an ideal q⊂R is p-primary, then its extension q[X]⊂R[X] is p[X]-primary, cf. [10,
Exercise 4.7 (iii)]. We proceed by induction on the number of indeterminates n≥2.

Let n=2. Then the ideal extensions c′K[X1, X2] and aK[X1, X2] are 〈X1,

X2〉K[X1, X2]-primary, because 〈X1, X2〉K[X1, X2]4⊂c′K[X1, X2], 〈X1, X2〉K[X1,

X2]2m−1⊂aK[X1, X2] and 〈X1, X2〉K[X1, X2] is a maximal ideal. Therefore the
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ideal contractions c′K[X1, X2]∩D[X1, X2] and aK[X1, X2]∩D[X1, X2] are
〈X1, X2〉K[X1, X2]∩D[X1, X2]-primary. If we prove that

〈X1, X2〉K[X1, X2]∩D[X1, X2]⊂〈X1, X2〉, c′K[X1, X2]∩D[X1, X2]⊂ c′ and
aK[X1, X2]∩D[X1, X2]⊂ a,

then we are done. Let f/α=g∈〈X1, X2〉K[X1, X2]∩D[X1, X2], where f∈〈X1, X2〉,
g∈D[X1, X2] and α∈D˝. Then αg∈〈X1, X2〉 and hence g∈〈X1, X2〉.

Let now f/α=g∈c′K[X1, X2]∩D[X1, X2], where f∈c′, g∈D[X1, X2] and α∈
D˝. Then αg∈c′ and it only requires to show that g∈c′. But αg∈c′ implies that g=
β(X3

1 +X3
2 )+g21X

2
1X2+g12X1X

2
2 +g′, where β, g21, g12∈D and g′∈D[X1, X2] with

m-deg(g′)=4. Since g′∈〈X1, X2〉4⊂c′, so g∈c′.
Let now f/α=g∈aK[X1, X2]∩D[X1, X2], where f∈a, g∈D[X1, X2] and α∈D˝.

Then αg∈a and hence by using similar calculations as above we get g∈a.
Assume now the result is true for n≥2 and consider the ring R[Xn+1]. So

c′[Xn+1] and a[Xn+1] are 〈X1, X2〉[Xn+1]-primary ideals of R[Xn+1], but in R[Xn+1]
we have

c′[Xn+1] = c′, a[Xn+1] = a and 〈X1, X2〉[Xn+1] = 〈X1, X2〉.

Thus a and c′ are 〈X1, X2〉-primary. The in particular statement follows by
Lemma 5.4. �

Lemma 5.9. Let V ⊂Sd, with d∈N, be a K-vector subspace of dimension

dimK(V )=s. Then there are linearly independent elements f1, ..., fs∈V such that

in(f1)>...>in(fs).

Proof. Let g1, ..., gs be linearly independent elements of V . If we consider the
canonical isomorphism Sd

∼=K
(d+n−1

d

)
, then g1, ..., gs will represent the corresponding

linearly independent vectors of V ⊂K
(d+n−1

d

)
. Let A be an s×

(
d+n−1

d

)
matrix whose

rows are g1, ..., gs. Now we apply the Gaussian elimination on A and reduce it to
row echelon form. The resulting matrix is represented by rows, say f1, ..., fs∈V ,
which are again linearly independent elements and satisfy our requirement in(f1)>
...>in(fs). �

Proposition 5.10. Suppose that I(R) is a BF-monoid. Then the following

ideals are atoms of I(R).
1. bi(X1, X2) for every i∈N,
2. c2i+1(X1, X2) for every i∈N,
3. c2i(X1, X2) for every i∈N≥3, and

4. c′(X1, X2)=〈X3
1 +X3

2 , X
2
1X2, X1X

2
2 〉.
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Proof. For all i∈N, we use the abbreviations bi :=bi(X1, X2), c2i+1 :=
c2i+1(X1, X2), c2i :=c2i(X1, X2), and c′ :=c′(X1, X2). In order to show that an ideal
a is an atom of I(R), it suffices to show that there are no ideals I, J∈I(R) with
a�I, J�R such that a=IJ , because I(R) is a reduced unit-cancellative semigroup.

1. Let i∈N and assume to the contrary that bi=IJ with bi�I, J�R such that
m-deg(I)=d and m-deg(J)=e. Then, by Lemma 5.8, we have d≥1 and e≥1, and
by Lemma 5.6.2 we obtain that

(5.4) SpanK{Xi
1, X

i
2}= IK [d]·JK [e].

Note that IK [d] and JK [e] are finite vector spaces and by Equation 5.4 it is not
possible that dimK IK [d]=dimK JK [e]=1. Thus, without loss of generality, we may
assume that dimK IK [d]≥2 and dimK JK [e]≥1. Let f1, f2∈IK [d] be linearly inde-
pendent and g∈JK [e] any nonzero element.

By Lemma 5.9, we may assume that in(f1)>in(f2). If in(fi) does not equal Xd
1

or Xd
2 , then in(fig) (=in(fi) in(g)) does not equal Xi

1 or Xi
2, which is not possible

by (5.4). This means we must have in(f1)=Xd
1 and in(f2)=Xd

2 . If in(g)=Xe
1 , then

in(f2g)=Xe
1X

d
2 , a contradiction to (5.4). If in(g) �=Xe

1 , say in(g)=Xa1
1 ·...·Xan

n such
that

∑n
j=1 ai=e with a1<e and aj≥1 for some j∈[2, n], then in(f1g) is divisible by

X1Xj , again a contradiction to (5.4).
2. Let i∈N and assume to the contrary that c2i+1=IJ with c2i+1�I, J�R

such that m-deg(I)=d and m-deg(J)=e. Then, by Lemma 5.8, we have d≥1 and
e≥1, by Lemma 5.5, we have 2i+1=d+e, and Lemma 5.6.2 implies that

SpanK{{X2i+1
1 , X2i

1 X2}∪{X2i−j
1 Xj+1

2 : j ∈ [1, 2i+1] and j≡ 0 mod 2}}(5.5)
= IK [d]·JK [e].

We claim that dimK I[d]≥2 and dimK J [e]≥2. Indeed, if IK [d]=SpanK{f} and
JK [e]=SpanK{g1, ..., gs}, then IK [d]·JK [e]=SpanK{fg1, ..., fgs}. From (5.5), we
get

X2i+1
1 =

s∑
j=1

αjfgj , where αj ∈K for all j ∈ [1, s] ,

and we deduce f=αXd
1 for some α∈K×. Hence X2i+1

2 cannot belong to IK [d]·JK [e],
a contradiction to (5.5).

Let dimK I[d]=r≥2 and f1, f2, ..., fr∈IK [d] be linearly independent such that
in(f1)>in(f2)>...>in(fr) (we use Lemma 5.9). Similarly, let dimK JK [e]=s≥2
and let g1, ..., gs∈JK [e] be linearly independent such that in(g1)>...>in(gs). If
in(f1) �=Xd

1 , then in(f1g) �=X2i+1
1 for any g∈JK [e], which is not possible by 5.5.

Thus, we have in(f1)=Xd
1 , and hence in(g1)=Xe

1 . Without loss of generality as-
sume that d is odd, while e is even. If in(f2)=Xd−u

1 Xu
2 for an even u∈N, then
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in(f2g1)=Xd+e−u
1 Xu

2 , a contradiction to (5.5). If in(f2)=Xd−u
1 Xu

2 for an odd u∈N,
then we consider in(g2). If in(g2)=Xe−v

1 Xv
2 for an odd v∈N, we get a contradiction

as in(f2g2)=Xd+e−u−v
1 Xu+v

2 . If in(g2)=Xe−v
1 Xv

2 for an even v∈N, we get a contra-
diction as in(f1g2)=Xd+e−v

1 Xv
2 . Note that a case of in(fi0)=Xj1

1 ·...·Xjn
n (similarly

for gi0) with
∑n

ν=1 jν=d and jν>0 for some ν∈[3, n] is not possible by the same
argument.

3. Let i∈N≥3 and assume to the contrary that c2i=IJ with c2i�I, J�R such
that m-deg(I)=d and m-deg(J)=e. Then, by Lemma 5.8, we have d≥1 and e≥1,
by Lemma 5.5, we have 2i=d+e, and Lemma 5.6.2 implies that

SpanK{{X2i
1 , X2i−1

1 X2}∪{X2i−j
1 Xj

2 : j ∈ [1, 2i] and j≡ 0 mod 2}}= IK [d]·JK [e].
(5.6)

As in 2., IK [d] and JK [e] are finite dimensional vector spaces of dimension at least
two. Moreover, since i≥3, dimK IK [d] or dimK JK [e] must be at least three, say
dimK I[d]≥3. Let dimK I[d]=r≥3 and let f1, ..., fr∈IK [d] be linearly indepen-
dent such that in(f1)>in(f2)>...>in(fr) (again we use Lemma 5.9). Similarly,
let dimK JK [e]=s≥2 and let g1, ..., gs∈JK [e] be linearly independent such that
in(g1)>...>in(gs). As in 2., we have in(f1)=Xd

1 , and hence in(g1)=Xe
1 .

Consider now f2 and g2 such that in(f2)=Xd−a
1 Xa

2 and in(g2)=Xe−b
1 Xb

2, where
a, b∈N. We distinguish two cases.

Case 1. (a=1) If b is even, then in(f2g2)=Xd+e−b−1
1 Xb+1

2 which is not possible,
see (5.6). If b≥3 is odd, then in(f1g2)=Xd+e−b

1 Xb
2 which again is not possible. Thus,

b=1 and dimK JK [e]=2. Consider now f3 such that in(f3)=Xd−c
1 Xc

2 with c∈N≥2.
If c is even, then in(f3g2)=Xd+e−c−1

1 Xc+1
2 , a contradiction to (5.6), and if c is odd,

then in(f3g1)=Xd+e−c
1 Xc

2 , again a contradiction to (5.6). Hence dimK IK [d]=2,
which is not possible.

Case 2. (a≥2) If a is odd, then in(f2g1)=Xd+e−a
1 Xa

2 , which is a contradiction
to (5.6). Therefore, a is even and, hence b is also even. In general, there are only
the following possibilities for in(fu) and in(gv):

in(fu)=Xd−au
1 Xau

2 with all au even and 0 = a1 < ...< ar ≤ d

and
in(gv)=Xe−bv

1 Xbv
2 with all bv even and 0 = b1 < ...< bs ≤ e.

Now as X2i−1
1 X2∈IK [d]·JK [e], so X2i−1

1 X2=
∑r

u=1
∑s

v=1 αuvfugv with αuv∈K for
every u, v. If α11 �=0, then initial monomial of the right hand side would be X2i

1 , a
contradiction. If α11=0, then

X2i−1
1 X2 = in

(
r∑

u=1

s∑
v=1

αuvfugv

)
≤max

{
in(fugv) : u∈ [1, r], v ∈ [1, s]

}
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which is not possible, since the right hand side of the above inequality is
X

d+e−au0−bv0
1 X

au0+bv0
2 which is always less than X2i−1

1 X2.

4. Assume to the contrary that c′=IJ with c′�I, J�R such that m-deg(I)=d

and m-deg(J)=e. Then, by Lemma 5.8, we have d≥1 and e≥1, by Lemma 5.5, we
have d+e=3, and Lemma 5.6.2 implies that

(5.7) SpanK{X3
1 +X3

2 , X
2
1X2, X1X

2
2}= IK [d]·JK [e].

We may assume that d=1 and e=2. We claim that dimK I[d]≥2 and dimK J [e]≥
2. Indeed, if IK [d]=SpanK{f} and JK [e]=SpanK{g1, ..., gs}, then IK [d]·JK [e]=
SpanK{fg1, ..., fgs}. From (5.7), we get

X2
1X2 =

s∑
j=1

αjfgj , where αj ∈K for all j ∈ [1, s] ,

and we deduce either f=αX1 or f=α′X2 for some α, α′∈K×. Hence X3
1 +X3

2
cannot belong to IK [d]·JK [e], a contradiction to (5.7). Note that similar argument
works if we consider d=2.

Let dimK I[d]=r≥2 and let f1, ..., fr∈IK [d] be linearly independent such that
in(f1)>...>in(fr) (we use Lemma 5.9). Similarly, let dimK JK [e]=s≥2 and let
g1, ..., gs∈JK [e] be linearly independent such that in(g1)>...>in(gs). On the other
hand, for j∈[3, n] in(fi0)=Xj is not possible, whence dimK I[d]=2 and in(f1)=
X1, in(f2)=X2. Similarly, we obtain that dimK J [e]=2 and in(g1)=X2

1 , in(g2)=
X1X2. Assume g1=X2

1 +aX2
2 +... . Then by (5.7)

f2g1 =α1(X3
1 +X3

2 )+α2X
2
1X2+α3X1X

2
2 , where α1, α2, α3 ∈K

which implies that a=0. Similarly, the coefficient of the term X2
2 in g2 is zero as

well. This shows that X3
1 +X3

2 does not belong to IK [d]·JK [e], a contradiction. �

Remark 5.11. If 2 is a unit of D, then

c4(X1, X2)= 〈X4
1 , X

3
1X2, X

2
1X

2
2 , X

4
2 〉= 〈X2

1 , X1X2+X2
2 〉〈X2

1 , X1X2−X2
2 〉 ,

whence c4(X1, X2) is not an atom of I(R).

Proof of Theorem 5.1. 1. and 2. We need to show the claim concerning the
finite factorization property. All other statements follow by Lemma 5.3 and Propo-
sition 5.10 (clearly, a1(X1, X2) is an atom). Suppose that D× is infinite. For every
α∈D×, we have the identity

〈X1, X2〉·〈X2
1 +αX2

2 , X1X2〉= 〈X1, X2〉3 .
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If α, α′∈D× are distinct, then 〈X2
1 +αX2

2 , X1X2〉�=〈X2
1 +α′X2

2 , X1X2〉. Thus, the
element 〈X1, X2〉3 has infinitely many divisors, whence I(R) is not an FF-monoid
by [38, Proposition 1.5.5].

3. In order to show that LI(R)
(
ak(X1, X2)

)
=L

(
ak(X1, X2)

)
⊂[2, k] for all k≥2,

we choose �∈N≥2 and consider a factorization ak(X1, X2)=I1 ·...·I�, where I1, ..., I�
are atoms in I(R). By Lemma 5.8, we have m-deg(Ij)≥1 for all j∈[1, �]. Using
Lemma 5.5 we obtain that

k=m-deg(ak)=
�∑

j=1
m-deg(Ij)≥ � ,

whence �≤k and L
(
ak(X1, X2)

)
⊂[2, k]. To verify the reverse inclusion we proceed

by induction on k. This is clear for k=2. By Lemma 5.2.2 (with �=2 and k=1),
we obtain that

a3(X1, X2)= a1(X1, X2)·b2(X1, X2) .

Since the involved ideals are atoms by Proposition 5.10.1, the assertion holds for k=
3. Suppose that claim holds for k≥3. Since ak+1(X1, X2)=a1(X1, X2)·ak(X1, X2)
and a1(X1, X2) is an atom, it follows that

[3, k+1]⊂ 1+L
(
ak(X1, X2)

)
⊂ L

(
ak+1(X1, X2)

)
.

It remains to verify that 2∈L
(
ak+1(X1, X2)

)
. If k∈N≥3\{4}, then the following

identity (see Lemma 5.2)

ak+1(X1, X2)= a1(X1, X2)·ck(X1, X2)

together with Proposition 5.10 show that 2∈L
(
ak+1(X1, X2)

)
. If k=4, then 2∈

L
(
ak+1(X1, X2)

)
because a5(X1, X2)=b2(X1, X2)·c′(X1, X2) (use Proposition 5.10.4).

4. We set p0=〈X1〉, H1=F({p0}) and H2={a∈I(R) : p0 �a}. Since p0 is an
invertible prime ideal, it is a cancellative prime element of I(R), whence we get
that

I(R)=H1×H2 .

Note that ak(X1, X2)∈H2 for all k∈N. Thus, 3. shows that Conditions (a) and (b’)
of Proposition 3.2 hold, whence I(R) is fully elastic. �

Theorem 5.1 shows, among others, that unions of sets of lengths of the monoid
of all nonzero ideals are equal to N≥2, as it is true for transfer Krull monoids (which
include monoids of invertible ideals of Krull domains) with infinite class group and
prime divisors in all classes (Proposition 4.9). We post the conjecture that also
their sets of lengths coincide, namely that every finite subset L⊂N≥2 occurs as a
set of lengths.
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Conjecture 5.12. Let R=D[X1, ..., Xn] be the polynomial ring in n≥2 indeter-
minates over a domain D, and suppose that I(R) is a BF-monoid. Then, for every
finite subset L⊂N≥2, there is a∈I(R) such that LI(R)(a)=L.

To conclude this paper, we would like to compare the arithmetic of I(R),
in particular Theorem 5.1 and Conjecture 5.12, with the arithmetic of the power
monoid of N0. Following the terminology and notation of Fan and Tringali [31], we
denote by

– Pfin(N0) the power monoid of N0, that is the semigroup of finite nonempty
subsets of N0 with set addition as operation (i.e., for finite nonempty subsets A,B⊂
N0, their sumset A+B is defined as A+B={a+b : a∈A, b∈B}), and by

– Pfin,0(N0) the reduced power monoid of N0, that is the subsemigroup of
Pfin(N0) consisting of all finite nonempty subsets of N0 that contain 0.
Both, Pfin(N0) and Pfin,0(N0), are commutative reduced unit-cancellative semi-
groups (whence monoids in the present sense) and {0} is their zero-element. Power
monoids are objects of primary interest in additive combinatorics and their arith-
metic is studied in detail by Antoniou, Fan, and Tringali in [31] and [9]. Among
others, they show that Pfin(N0) is not transfer Krull, that unions of sets of lengths
of Pfin(N0) are equal to N≥2, and that the set of distances equals N. The standing
conjecture is that every finite subset L⊂N≥2 occurs as a set of lengths of Pfin(N0)
([31, Section 5]). Thus, the arithmetic of I(R) and the arithmetic of Pfin(N0) seem
to have pretty much in common. Our final result shows that the method, developed
to show that I(R) is fully elastic, also allows to show that Pfin(N0) is fully elastic,
a question that remained open in [31]. Moreover, I(R) has a submonoid that is
isomorphic to Pfin(N0).

Proposition 5.13.
1. The element {1} is a cancellative prime element of Pfin(N0), whence

Pfin(N0)=F×Pfin,0(N0), where F is the free abelian monoid generated by the prime

element {1}. Moreover, Pfin(N0) is fully elastic.

2. Pfin(N0) is isomorphic to a submonoid of I(R), where I(R) is as in Conjec-

ture 5.12.

Proof. 1. It is straightforward to verify that {1} is a cancellative prime element
of Pfin(N0). Since Pfin,0(N0)={A∈Pfin(N0) : {1} does not divide A}, it follows that
Pfin(N0)=F×Pfin,0(N0). Proposition 4.8 in [31] shows that, for every n≥2,

[2, n] = LPfin,0(N0)([0, n])= LPfin(N0)([0, n]) .

Thus, Condition (a) and Condition (b’) of Proposition 3.2 are satisfied, whence
Pfin(N0) is fully elastic.
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2. Let R=D[X1, ..., Xn] be the polynomial ring in n≥2 indeterminates over
a domain D, and suppose that I(R) is a BF-monoid. We consider the monoid
M(X1, X2) of all monomial ideals in the indeterminates X1, X2. This is a sub-
monoid of I(R). Recall that, for every m∈N0, we denote by Mm;1,2 the set of
all monomials of the form Xr

1X
s
2 with r+s=m and r, s∈N0. Let M2(X1, X2)⊂

M(X1, X2) consist of all ideals

〈N ∪{Xm
2 }〉 ,

where m∈N0 and N⊂Mm;1,2 is any subset (note that, for example, 〈X2〉 and
〈X3

1 , X
2
1X2, X

3
2 〉 are in M2(X1, X2), whereas 〈X3

1 , X
2
1X2〉 and 〈X2

1 〉 do not belong
to M2(X1, X2)). Then M2(X1, X2)⊂I(R) is a submonoid.

For A∈Pfin(N0), say A={m1, ...,m�} with �≥1 and 0≤m1<m2<...<m�. We
denote by

IA := 〈Xm�−m1
1 Xm1

2 , Xm�−m2
1 Xm2

2 , ..., X
m�−m�−1
1 X

m�−1
2 , Xm�

2 〉

an ideal which clearly belongs to M2(X1, X2). Thus, we obtain a map

Pfin(N0)−→M2(X1, X2) , given by A 	−→ IA ,

which is easily seen to be a monoid isomorphism. �
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