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Fundamental solutions of generalized non-local
Schrodinger operators

Tan Duc Do

Abstract. Let d∈{1, 2, 3, ...} and s∈(0, 1) be such that d>2s. We consider a generalized
non-local Schrodinger operator of the form

L=LK+ν,

where LK is a non-local operator with kernel K that includes the fractional Laplacian (−Δ)s

for s∈(0, 1) as a special case. The potential ν is a doubling measure subjected to a certain
constraint. We show that the fundamental solution of L exists, is positive and possesses extra
decaying properties.

1. Introduction

The idea of fundamental solutions lies at the core of partial differential equa-
tions. The well-known Malgrange–Ehrenpreis theorem essentially states that a non-
zero linear differential operator with constant coefficients always has a fundamental
solution. Nevertheless the situation becomes much more complicated for differential
operators with variable coefficients. A satisfactory answer is obtained in the frame-
work of Schrodinger operator with non-negative potential in the reverse Holder class,
cf. [She95] and also a related work [She99]. Specifically, the fundamental solutions
under such circumstances exist and enjoy a further decaying property. Generaliza-
tions in this spirit include [MP19] for magnetic Schrodinger operators, [KS00b] for
uniformly elliptic operators and [CW88], [KS00a] for degenerate elliptic operators.
Recently [CK18a] provided a counterpart of [She95, Theorem 2.7] in a non-local
setting which covers the fractional Laplacian as a special case. The non-local term
in such a setting was in turn inspired by [DCKP14], [DCKP16] and [KMS15].

Key words and phrases: generalized fractional Schrodinger operator, fundamental solution,
off-diagonal estimates.
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Apart from these extensions, fundamental solutions for parabolic differential
equations and for elliptic systems are also studied. For instances, cf. [Gue66],
[Kur00], [HK07] and the references therein.

Motivated by the works of [She99] and [CK18a], in this paper we aim to in-
vestigate the existence of a non-local Schrodinger-type operator whose potential is
a measure together with its decaying estimates. This in particular takes part in
the ongoing study of non-local elliptic equations with measure data. In this realm,
we refer the readers to important papers such as [CV14], [CQ18], [CW21], etc., for
further discussions.

Back to our setting, the details are as follows. Let d∈{1, 2, 3, ...} and s∈(0, 1)
be such that d>2s. Consider the operator

LK = 1
2 p.v.

∫
Rd

(
2u(x)−u(x+y)−u(x−y)

)
K(y) dy,

where K :Rd\{0}−→(0,∞) satisfies there exists cd,s>0 and λ,Λ>0 such that

cd,s
λ

|y|d+2s ≤K(y)=K(−y)≤ cd,s
Λ

|y|d+2s

for all y∈Rd\{0}. Here cd,s is the normalizing constant given by

(1) cd,s

∫
Rd

1−cos(x1)
|x|d+2s dx=1.

In particular, this notion of LK is general enough to include the fractional Laplacian
(−Δ)s.

Next define
L=LK+ν,

where ν is a doubling measure on Rd such that there exist constants C0>0 and

(2) δ > 2s− ds

d−s

such that

(3) ν(B(x, r))≤C0

( r

R

)d−2s+δ

ν(B(x,R))

for all x∈Rd and R>r>0. Hereafter, by a doubling measure ν we mean a non-
negative Radon measure such that there exists a constant D0>1 satisfying

(4) ν(2B)≤D0 ν(B)

for all ball B⊂Rd. We call D0 the doubling constant of ν.
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A more general version μ of such a ν first appeared in [She99], in which the au-
thor investigated the fundamental solution of the generalized Schrodinger operator
−Δ+μ. However μ does not fit well into our non-local framework, which leads us to
consider the doubling measure ν instead. It is worth mentioning that this general
family of potentials strictly extends the reverse Holder class previously studied in
[She95] so that the fundamental solution’s estimate [She95, Theorem 2.7] remains
valid. In fact, it was pointed out in [She99, Remark 0.10] that μ and also our ν

need not be absolutely continuous with respect to the Lebesgue measure. To be
specific, we have the following remark.

Remark 1. We provide three examples below to illustrate the measure ν in our
setting. In fact, the measures in these examples are taken from [She99, Remark
0.10], in which the author verified that (3) holds for them. We emphasize that our
ν is required to be doubling. Hence we focus and discuss more on the doubling
property of the measures in these examples.

(i) Let d∈{1, 2, 3, ...} and V belong to the reverse Holder class RHq with q≥ d
2 ,

in the sense that (
1
|B|

∫
B

V q

)1/q

≤ C(q, V )
|B|

∫
B

V

holds for every ball B⊂Rd. Define

dν =V (x) dx.

Then it follows from [She95, (1.1) and Lemma 1.2] ν is a doubling measure which
satisfies (3).

(ii) Let d∈{3, 4, 5, ...} and σ be a doubling measure on R2. Set

dν = dσ(x1, x2) dx3...dxd.

Then ν is a doubling measure which satisfies (3). Note that σ, and hence ν, may
not be absolutely continuous with respect to the Lebesgue measure.

(iii) Let d∈{2, 3, 4, ...}, ϕ:Rd−1−→R be a Lipschitz function and σ be the
surface measure on

S =
{
(x′, ϕ(x′))∈Rd :x′ ∈Rd−1} .

Set
dν =σ(A∩S)

for each open subset A of Rd. Then ν satisfies (3) but is not doubling. Indeed,
take a ball B⊂Rd such that σ(2B∩S) �=0 and B∩S=∅. Then ν(2B) �=0, whereas
ν(B)=0. As such (4) can not hold. Also ν need not be absolutely continuous with
respect to the Lebesgue measure.
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A transparent technical difficulty arises when a measure potential is employed.
That is, pointwise estimates concerning such a potential is no longer available. De-
spite this we will show that under the condition (2) the existence of the fundamental
solution and some of its properties persist. We note that in the case when a non-
negative potential V in the reverse Holder class RHq for some q> d

2 is considered,
[She95, Lemma 1.2] reveals that δ=2s− d

q and so (2) reads q> d
s−1, which is stronger

in comparison with the condition q> d
2s in [CK18a] for the operator LK+V . This

compensates the aforementioned fact that ν can merely be a measure.
Back to our setting, for all x∈Rd define the critical function

(5) ρ(x, ν) := 1
m(x, ν) := sup

{
r > 0 : ν(B(x, r))

rd−2s ≤D0

}
,

where D0 is the doubling constant of ν. This is an indispensable tool in our analysis
of the generalized non-local Schrodinger operator L.

Before stating the main result, we need one more definition. For each p∈[1,∞)
let

Lp
s(Rd) :=

{
u∈Lp

loc(R
d) :
∫
Rd

|u(x)|p
(1+|x|)d+2s dx<∞

}

be endowed with the norm

‖u‖Lp
s(Rd) :=

(∫
Rd

|u(x)|p
(1+|x|)d+2s dx

)1/p

.

As noticed in [CK18b, (1.6)], the chain of inclusions

(6) Lp
s(Rd)⊂L1

s(Rd)⊂S ′
s(Rd)⊂S ′(Rd)⊂D′(Rd)

hold for all p∈[1,∞), where D′(Rd) and S ′(Rd) denote the spaces of distributions
and tempered distributions on Rd respectively and S ′

s(Rd) is the dual space of

Ss(Rd) :=
{
f ∈C∞(Rd) : sup

x∈Rd

(1+|x|)d+2s |Dαf(x)|<∞ for all α∈Nd

}
.

The main result of this paper is as follows.

Theorem 1.1. Let d∈{1, 2, 3, ...} and s∈(0, 1) be such that d>2s. Let ν be a

doubling measure which satisfies (3). Then there exists a fundamental solution Γν

of L such that Γν∈Lp
s(Rd) for all p∈(1, d

d−2s ) and

LΓν = δ0 in the sense of D′(Rd),

where δ0 is the Dirac delta function concentrated at 0.
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Moreover, for all k∈N there exists a C=C(d, s, λ,Λ, k)>0 such that

0≤Γν(x−y)≤ C(
1+|x−y|m(x0, ν)

)k 1
|x−y|d−2s

for all x, y∈Rd such that x �=y.

We emphasize that the extra decaying property so derived is due to ν which
is a doubling measure satisfying (3). According to [CK18b, Theorem 1.1], if the
potential is only an element of Lp

loc(Rd), then the fundamental solution can at best
be bounded above by the principal term 1

|x−y|d−2s . For similar results to ours, cf.
[She95, Theorem 2.7], [She99, Theorem 0.8] and [CK18a, Theorem 1.1].

As a by-product we obtain the following off-diagonal estimates.

Proposition 1.2. Let d∈{1, 2, 3, ...} and s∈(0, 1) be such that d>2s. Let ν be

a doubling measure which satisfies (3). Let θ∈[0, d) and define

Δθ =
{

(p, q)∈ (1,∞)2 : p≤ q and
1
p
− 1
q

= θ

d

}
.

Then the following statements hold.

(a) If θ∈[0, 2s) and (p, q)∈Δθ∪(∞,∞), then there exists a C=C(d, s, λ, p) such
that

‖m(·, ν)2s−θ L−1f‖Lq(Rd) ≤C ‖f‖Lp(Rd).

(b) If p=1 then there exists a C=C(d, s, λ, θ)>0 such that

‖m(·, ν)2s−θ L−1f‖Lq,∞(Rd) ≤C ‖f‖L1(Rd),

where Lq,∞(Rd) is the usual Lorentz space on Rd.

(c) If (p, q)∈Δ2s, then there exists a C=C(d, s, λ, p) such that

‖L−1f‖Lq,∞(Rd) ≤C ‖f‖Lp(Rd).

The paper is outlined as follows. In Section 2 we provide essential facts about
the critical functions. In the following section we derive Fefferman-Phong, a weak
Harnack’s and Caccioppoli’s inequalities. With these we are in a position to prove
Theorem 1.1 and Proposition 1.2 in Section 4.

Notations. Throughout the paper the following set of notation is used
without mentioning. Set N={0, 1, 2, 3, ...} and N∗={1, 2, 3, ...}. Given a λ>0 and
a ball B=B(x, r), we let λB=B(x, λr). For all a, b∈R, a∧b=min{a, b} and a∨b=
max{a, b}. For all ball B⊂Rd we write ν(B):=

∫
B
dν for a given measure ν. The

constants C and c are always assumed to be positive and independent of the main
parameters whose values change from line to line. For any two functions f and
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g, we write f�g and f∼g to mean f≤Cg and cg≤f≤Cg respectively. Given a
p∈[1,∞), the conjugate index of p is denoted by p′. We write L2(Rd) to mean the
space of square-integrable function with respect to the Lebesgue measure dx. When
a different measure ν is used, we will use the notation L2

ν(Rd)=L2(Rd, dν).
Throughout assumptions. In the whole paper let d∈N∗ and s∈(0, 1) be

such that d>2s. The domain Ω⊂Rd is open bounded with Lipschitz boundary.
The potential ν is a doubling measure which satisfies (3).

2. Critical functions

In this section we explore several basic estimates on the critical function which
are useful for later development.

Recall from (3) that δ>2s− ds
d−s . By continuity it is possible to choose a suffi-

ciently small ε0>0, which will be fixed from here onward, such that

(7) δ > 2s−
(

d

d−s
−ε0

)
(s−ε0).

Let a∈[s−ε0, s], b∈
[

d
d−s−ε0, 2

]
. Define

ρa,b(x, ν) := 1
ma,b(x, ν) := sup

{
r > 0 : ν(B(x, r))

rd−ab
≤D0

}

for all x∈Rd, where D0 is the doubling constant of ν. When a=s and b=2 we
simply write m(·, ν) in place of ms,2(·, ν), which agrees with (5).

It is important to observe that

(8) δ′ := δ−2s+ab> 0

as a consequence of (7).

Proposition 2.1. The following statements hold.

(i) The function ρa,b(·, ν) is well-defined, i.e., ρa,b(x, ν)∈(0,∞) for every x∈
Rd.

(ii) For every x∈Rd one has

rd−ab <ν(B(x, r))≤D0 r
d−ab

with r=ρa,b(x, ν).
(iii) If |x−y|�ρa,b(x, ν), then ρa,b(x, ν)∼ρa,b(y, ν).
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(iv) There exist k0>0 and C>1 such that

C−1ma,b(y, ν)
(
1+|x−y|ma,b(y, ν)

)−k0/(k0+1)

≤ma,b(x, ν)

≤Cma,b(y, ν)
(
1+|x−y|ma,b(y, ν)

)k0

for all x, y∈Rd.

Proof. Let x, y∈Rd, r=ρa,b(x, ν) and R=ρa,b(y, ν).
(i) It follows from (3) that

lim
t→0

1
td−ab

ν(B(x, t))= 0 and lim
t→∞

1
td−ab

ν(B(x, t))=∞.

This, in combination with (3), implies ρa,b(x, ν)∈(0,∞).
(ii) By definition we have

ν(B(x, r))= lim
t→r−

ν(B(x, t))≤D0 r
d−ab.

Also
D0 (2r)d−ab ≤ ν(B(x, 2r))≤D0 ν(B(x, r)),

where we used the definition of ρa,b(·, ν) in the first step and the doubling property
of ν in the second step. Hence we deduce that

ν(B(x, r))>rd−ab.

(iii) Suppose that |x−y|<Cr for some C>0. Then B(y, r)⊂B(x, (C+1)r).
Using the doubling property of ν and (ii) we obtain

ν(B(x, (C+1)r))� ν(B(x, r))� rd−ab.

Consequently it follows from (3) that

1
(tr)d−ab

ν(B(y, tr))≤C0 t
δ′ 1
rd−ab

ν(B(y, r))

� tδ
′ 1
rd−ab

ν(B(x, (C+1)r))

� tδ
′
<D0,

where δ′ is given by (8) and t is chosen to be sufficiently small. Therefore R≥tr by
definition, where we recall that R=ρa,b(y, ν). This in turn implies |x−y|�R. By
swapping the roles of x and y in the above argument, we then obtain R�r.
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(iv) The case |x−y|<R is clear from (iii). So we assume that |x−y|≥R. Let
j∈N∗ be such that 2j−1 R≤|x−y|≤2jR. Then B(x,R)⊂B(y, (2j+1)R). By virtue
of (ii) and the doubling property of ν one has

ν(B(x,R))≤Dj+2
0 Rd−ab.

It follows from (3) that
1

(tR)d−ab
ν(B(y, tR))≤C0 t

δ′ 1
Rd−ab

ν(B(y,R))

� tδ
′ 1
Rd−ab

ν(B(x, (C+1)R))

� tδ
′
<D0,

where δ′ is given by (8) and t is chosen to be sufficiently small. So the definition of
ρ gives r≥tR or equivalently

(9) m(x, ν)≤ m(y, ν)
t

�m(y, ν)
(
1+|x−y|m(y, ν)

)k0

for some k0>0.
For the remaining inequality, using (9) we obtain that

1+|x−y|m(x, ν)�
(
1+|x−y|m(y, ν)

)k0+1
.

With this in mind we apply (9) once more to obtain

m(y, ν)�m(x, ν)
(
1+|x−y|m(x, ν)

)−k0/(k0+1)
.

The proof is complete. �

Lemma 2.2. There exist a sequence (xj)j∈N⊂Rd and a family of functions

(ψj)j∈N such that the following hold.

(i)
⋃

j∈N Bj=Rd, where ρj=ρa,b(xj , ν) and Bj=B(xj , ρj) for all j∈N.

(ii) For all τ≥1 there exist constants C, ζ0>0 such that∑
j∈N

χB(xj ,τρj) ≤C τ ζ0 .

(iii) suppψj⊂B(xj , ρj) and 0≤ψj≤1.
(iv) |∇ψj(x)|�1/ρj for all x, y∈Rd.

(v)
∑

j∈N ψj=1.

Proof. We note that ρa,b(·, ν) acquires all the properties analogous to those
of the critical functions given in [She99]. Hence the proof for this lemma is done
verbatim as in [She99, Proof of Lemma 3.3]. �
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3. Inequalities

We devote this section to deriving three crucial inequalities: Fefferman-Phong
inequality, a weak Harnack’s inequality and Caccioppoli’s inequality.

3.1. Fefferman-Phong inequality

Let a∈[s−ε0, s], b∈
[

d
d−s−ε0, 2

]
, where ε0 is given by (7). We start with an em-

bedding result that is a consequence of [BBM02, Theorem 1] and [MS02, Corollary
2] together.

Proposition 3.1. Let p≥1 be such that sp<d. Then there exists a C=C(d)>0
such that

‖u−uA‖pLp(B) ≤C
(1−s)

(d−sp)p−1 |A|sp/d
∫
A

∫
A

|u(x)−u(y)|p
|x−y|d+sp

dx dy

for all ball (or cube) A⊂Rd and u∈W s,p(A).

In what follows, we denote W a,b
c (Rd) to be the set of functions in W a,b(Rd)

with compact supports. The Fefferman-Phong inequality is as follows.

Proposition 3.2. Let u∈W a,b
c (Rd). Then the following statements hold.

(i) If u∈Lb(Rd, dν) then ma,b(·, ν)a u∈Lb(Rd) and∫
Rd

|u|b ma,b(x, ν)ab dx≤C
(
‖u‖Wa,b(Rd)+‖u‖Lb(Rd,dν)

)
for some C=C(d, a)>0.

(ii) If ma,b(·, ν)a u∈Lb(Rd) then u∈Lb(Rd, dν) and

‖u‖Lb(Rd,dν) ≤C

(
‖u‖Wa,b(Rd)+

∫
Rd

|u|b ma,b(x, ν)ab dx
)

for some C=C(d, a)>0.

Proof. Let x0∈Rd and r0=ρa,b(x0, ν). Set B=B(x0, r0).
(i) Let u∈W a,b

c (Rd)∩Lb(Rd, dν). By Proposition 2.1 (ii) we have

I :=
∫
B

(
rd−ab
0 ∧ν(B)

)
|u|b dx≥ rd−ab

0

∫
B

|u|b dx.

Also it follows from Proposition 3.1 that

I �
∫
B

∫
B

1
rab0

|u(x)−u(y)|b dx dy+|B|
∫
B

|u(y)|b dν(y)
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� rd0

(∫
B

∫
B

|u(x)−u(y)|b
|x−y|d+ab

dx dy+
∫
B

|u(x)|b dν(x)
)
.

Hence

(10) 1
rab0

∫
B

|u|b dx�
∫
B

∫
B

|u(x)−u(y)|b
|x−y|d+ab

dx dy+
∫
B

|u|b dν

or equivalently∫
B

|u|b ma,b(·, ν)d+ab dx�
∫
B

∫
B

|u(x)−u(y)|b
|x−y|d+ab

ma,b(x, ν)d dx dy

+
∫
B

|u|b ma,b(·, ν)d dν,

as ma,b(x, ν)∼1/r0 for all x∈B by Proposition 2.1(iii).
Integrating both sides with respect to x0 on Rd, keeping in mind that for each

x∈B one has∫
|x−x0|<ρa,b(x0,ν)

dx0 ∼
∫
|x−x0|<ρa,b(x,ν)

dx0 ∼ma,b(x, ν)−d

and then applying Fubini’s theorem, we arrive at the conclusion.
(ii) The proof is similar to (i). Let u∈W a,b

c (Rd) and ma,b(·, ν)a u∈Lb(Rd). The
main idea is to establish the counterpart of (10) in this case. The rest follows the
same argument as in (i).

First observe that (3) holds if we replace a ball B with a closed cube Q. That
is,

(11) ν(Q(x, r))≤C0

( r

R

)d−2s+δ

ν(Q(x,R))

for all x∈Rd and R>r>0, where Q(x, r) denotes the closed cube centered at x

whose side length is r (cf. [She99, Proof of Lemma 2.24]).
Secondly, let ˇ>0 be sufficiently small such that a−ˇ∈[s−ε0, s]. Using [KS00b,

Theorem 2.3] (also cf. [VW95, Theorem A] and [SWZ96, Theorem 1.3]) we deduce
that ∫

Q

(∫
Q

|f(y)|
|x−y|d−a+ˇ

dy

)b

dμ(x)�
∫
Q

|f(y)|b dy

for all f∈Lb(Q), provided that

(12)
∫
A

(∫
A

dμ(x)
|x−y|d−a+ˇ

)b′

dy�μ(A)

for all cube A⊂Q.
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In view of (11) we may choose

dμ=
r
d−(a−ˇ)b
Q

ν(2Q) dν with Q :=Q(xQ, rQ).

Then μ satisfies (12). Explicitly we have

(13)
∫
Q

(∫
Q

|f(y)|
|x−y|d−a+ˇ

dy

)b

dν(x)� ν(2Q)
r
d−(a−ˇ)b
Q

∫
Q

|f(y)|b dy

for all f∈Lb(Q).
With the above tools in mind, we now have∫
Q

|u(x)|b dν(x)�
∫
Q

|u(x)−uQ|b dν(x)+
∫
Q

|uQ|b dν(x)

�
∫
Q

(∫
Q

|g(y)|
|x−y|d−a+ˇ

dy

)b

dν(x)+r−d
Q ν(Q)

∫
Q

|u(y)|b dy

� ν(2Q)
r
d−(a−ˇ)b
Q

∫
Q

|g(x)|b dx+r−d
Q ν(Q)

∫
Q

|u(y)|b dy

� ν(2Q)
rd−ab
Q

∫
Q

∫
Q

|u(x)−u(y)|b
|x−y|d+ab

dx dy+r−d
Q ν(Q)

∫
Q

|u(y)|b dy,

where we used [DIV16, Theorem 2.5] with

g(y)=
∫
Q(y,ry)

|u(y)−u(z)|
|y−z|d+a−ˇ

dz and ry := dist(y, ∂Q)

in the second step and then applied (13) in the third step as well as Holder’s
inequality in the fourth step. Hence

(14)
∫
Q

|u|b dν� ν(2Q)
rd−ab
Q

∫
Q

∫
Q

|u(x)−u(y)|b
|x−y|d+ab

dx dy+ ν(Q)
rdQ

∫
Q

|u|b dx.

Lastly, we take a closed cube Q⊂Rd such that

1
2B⊂Q⊂B,

where B=B(x0, r0) and r0=ρa,b(x0, ν). Then (14) reads∫
1
2B

|u|b dν� ν(2B)
rd−ab
0

∫
B

∫
B

|u(x)−u(y)|b
|x−y|d+ab

dx dy+ ν(B)
rd0

∫
B

|u|b dx
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� ν(B)
rd−ab
0

∫
B

∫
B

|u(x)−u(y)|b
|x−y|d+ab

dx dy+ ν(B)
rd0

∫
B

|u|b dx

�
∫
B

∫
B

|u(x)−u(y)|b
|x−y|d+ab

dx dy+ 1
rab0

∫
B

|u|b dx,

where we used the doubling property of ν in the second step and Proposition 2.1(ii)
in the third step. This is the counterpart of (10) in (i). �

As a consequence, the following embedding result is available.

Lemma 3.3. Let B⊂Rd be a ball. Then the embedding

W a,b
c (B)↪−→Lb(B, dν)

is compact.

Proof. Let {xj}j∈N and {ψj}j∈N be as in Lemma 2.2. Since B is compact we
can cover it by a finite number of balls Bj :=B(xj , ρj). Without loss of generality
assume that B⊂∪j0

j=1Bj for some j0∈N∗.
Therefore using Proposition 3.2(ii) one has∫

B

|u|b dν� ‖u‖Wa,b(Rd)+
∫
B

|u|b ma,b(·, ν)ab dx

≤‖u‖Wa,b(B)+
j0∑
j=1

∫
B∩Bj

|u|b ma,b(·, ν)ab dx

� ‖u‖Wa,b(B)+
j0∑
j=1

ma,b(xj , ν)ab
∫
B∩Bj

|u|b dx

≤

⎛
⎝1∨

j0∑
j=1

ma,b(xj , ν)ab
⎞
⎠ ‖u‖Wa,b(B) <∞(15)

for all u∈W a,b
c (B), where we used [BRS16, Lemma 1.3] in the second step and

Proposition 2.1(iii) in the third step.
The compactness of the embedding follows from (15) using a standard argument

as in [She95, Lemma 2.24]. For the sake of clarity, we present a detailed proof.
Let Q be a closed cube containing B. It suffices to show that

(16) W a,b
c (Q)↪−→Lb(Q, dν)

is compact.



Fundamental solutions of generalized non-local Schrodinger operators 55

Denote R to be the side length of Q. We partition Q into finite closed sub-
cubes {Qj}j0j=1 whose side lengths are identically r∈(0, R), where j0∈N∗. We apply
(14) to each Qj to obtain∫
Qj

|u|b dν� ν(2Qj)
rd−ab

∫
Qj

∫
Qj

|u(x)−u(y)|b
|x−y|d+ab

dx dy+ ν(Qj)
rd

∫
Qj

|u|b dx

� ν(3Q)
Rd−ab

[( r

R

)δ′ ∫
Qj

∫
Qj

|u(x)−u(y)|b
|x−y|d+ab

dx dy+ 1
rab

( r

R

)δ′ ∫
Qj

|u|b dx
]

� ν(3Q)
Rd−ab

[( r

R

)δ′
‖u‖bWa,b(Qj)+

1
rab

( r

R

)δ′ ∫
Qj

|u|b dx
]
,

where in the second step we used (3) and the fact that R
r 2Qj⊂3Q for all j∈

{1, ..., j0}. Here λQ means the dilated cube with the same center as Q whose side
length is λR. Summing this estimate over j yields∫

Q

|u|b dν� ν(2Q)
Rd−ab

[( r

R

)δ′
‖u‖bWa,b(Q)+

1
rab

( r

R

)δ′ ∫
Q

|u|b dx
]
.

If r is chosen to be sufficiently small, we arrive at the statement: For each ε>0
there exists a Cε>0 such that

(17)
∫
Q

|u|b dν� ν(Q)
Rd−ab

[
ε ‖u‖bWa,b(Q) dx dy+Cε

∫
Q

|u|b dx
]
.

This can be considered as a fractional version of the Friedrich-type inequality [She95,
(2.26) in Lemma 2.24]. To obtain the compactness of the embedding (16), we argue
as follows.

Let {un}n∈N⊂W a,b
c (Q) be bounded (in norm) by K>0. Observe that the

embedding W a,b
c (Q)↪→Lb(Q) is compact. Hence {un}n∈N has a strongly convergent

subsequence {unj}j∈N in Lb(Q). At the same time, {unj}j∈N⊂Lb(Q, ν) due to (15).
Then (17) applied to {unj}j∈N reads∫

Q

|unj−unj′ |
b dν� ν(2Q)

Rd−ab

[
ε ‖unj−unj′‖

b
Wa,b(Q)+Cε

∫
Q

|unj−unj′ |
b dx

]

� ν(2Q)
Rd−ab

[
2εKb+Cε

∫
Q

|unj−unj′ |
b dx

]

for all j∈N. Hence by the strong convergence of {unj}j∈N in Lb(Q), we may choose
n0∈N such that

Cε

∫
Q

|unj−unj′ |
b dx<ε
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for all j, j′≥n0. This leads to∫
Q

|unj−unj′ |
b dν� (2Kb+1) ε

for all j, j′≥n0. Since ε>0 is arbitrary, this last display implies that {unj}j∈N is a
Cauchy sequence in Lb(Q, dν). Hence the embedding (16) is compact.

This verifies our claim. �

3.2. Weak Harnack’s inequality

In what follows, let M(Rd) be the set of measurable functions on Rd. Denote

R2d
Ω =R2d\(ΩC×ΩC).

The following spaces are significant in subsequent analysis:

• X(Ω)=
{
u∈M(Rd) :u|Ω ∈L2(Ω) and

∫ ∫
R2d

Ω

|u(x)−u(y)|2
|x−y|d+2s dx dy <∞

}
.

• X0(Ω)= {v ∈X(Ω) : v=0 a.e. in ΩC}.
• X±

g (Ω)= {v ∈X(Ω) : (g−v)± ∈X0(Ω)}, where g∈Hs(Rd).
• Xg(Ω)=X+

g (Ω)∩X−
g (Ω), where g∈Hs(Rd).

When dealing with these spaces, it is useful to keep the following relations in
mind.

Lemma 3.4. ([CK18a, Lemma 2.1]) Let u∈X0(Ω). Then the following hold.

(i) One has

1
r2

∫
|x−y|<r

|x−y|2 K(x−y) dy+
∫
|x−y|≥r

K(x−y) dy≤ Λωd

s

1
r2s

for all x∈Rd, where ωd denotes the surface measure of the unit sphere in Rd.

(ii) One has

1
Λ cd,s

∫
Ω

∫
Ω
|u(x)−u(y)|2 K(x−y) dx dy≤‖u‖Hs(Ω)

≤ 1
λ cd,s

∫
Ω

∫
Ω
|u(x)−u(y)|2 K(x−y) dx dy,

where cd,s is given by (1).

Now let g∈Hs(Rd). Consider the problem

(NSE0)
{
LKu=0 in Ω,

u=g in Rd\Ω.
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Definition 1. A function u∈Xg(Ω) is called a weak solution of (NSE0) if∫ ∫
R2d

(
u(x)−u(y)

) (
φ(x)−φ(y)

)
K(x−y) dx dy=0

for all φ∈X0(Ω).
Next a function u∈X−

g (Ω) is called a sub-solution of (NSE0) if∫ ∫
R2d

(
u(x)−u(y)

) (
φ(x)−φ(y)

)
K(x−y) dx dy≤ 0

for all 0≤φ∈X0(Ω).
Similarly a function u∈X+

g (Ω) is called a super-solution of (NSE0) if∫ ∫
R2d

(
u(x)−u(y)

) (
φ(x)−φ(y)

)
K(x−y) dx dy≥ 0

for all 0≤φ∈X0(Ω).

Following [DCKP14] we take into account the tail T (u;x0, R) defined by

T (u;x0, R) :=R2s
∫

(B(x0,R))C

|v(x)|
|x−x0|n+2s dx

for all function u∈Hs(Rd) and B(x0, R)⊂Rd. It turns out that this notion plays a
significant role in a non-local setting.

The next two results provide Harnack-type inequalities for a non-negative sub-
solution of (NSE0).

Lemma 3.5. ([CK18a, Theorem 4.4]) Let g∈Hs(Rd) and u∈X−
g (Ω) be a sub-

solution of (NSE0). Set B=B(x0, r)⊂Ω. Then there exists a c=c(d, s, λ,Λ) such

that

sup
1
2B

u≤ δ T (u+;x0, r/2)+cδ−d/4s
(

1
|B|

∫ (
u+(x)

)2
dx

)1/2

,

for all δ∈(0, 1].
Moreover, if u≥0 in B(x0, R) with R>r then there is a C=C(d, s, λ,Λ) such

that

T (u+;x0, r)≤ c sup
B(x0,r)

u+C
( r

R

)2s
T (u−;x0, R).

Lemma 3.6. ([CK18a, Proposition 2]) Let g∈Hs(Rd) and u∈Xg(Ω) be a non-

negative sub-solution of (NSE0). Set B=B(x0, r)⊂Ω to be a ball. Then there exists

a constant C=C(d, s, λ,Λ) such that

sup
1
2B

u≤C

(
1
|B|

∫
B

u(y)2 dy
)1/2

.
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3.3. Caccioppoli’s estimate

Recall that L=LK+ν. Consider the non-local Schrodinger equation

(NSE)
{
Lu=0 in Ω,

u=g in Rd\Ω,

where g∈Hs(Rd).
The analysis of this problem requires the following function spaces:

• Y (Ω)= {u∈Xg(Ω) :
∫
Rd

u2 dν <∞}.

• Y ±
g (Ω)= {v ∈Y (Ω) : (g−v)± ∈X0(Ω)}.

• Yg(Ω)=Y +
g (Ω)∩Y −

g (Ω).

Definition 2. A function u∈Yg(Ω) is called a weak solution of (NSE) if

∫ ∫
R2d

(
u(x)−u(y)

) (
φ(x)−φ(y)

)
K(x−y) dx dy+

∫
Rd

u(x)φ(x) dν(x)= 0

for all φ∈X0(Ω).
Next a function u∈Y −

g (Ω) is called a sub-solution of (NSE) if

(18)
∫ ∫

R2d

(
u(x)−u(y)

) (
φ(x)−φ(y)

)
K(x−y) dx dy+

∫
Rd

u(x)φ(x) dν(x)≤ 0

for all 0≤φ∈X0(Ω).
Similarly a function u∈Y +

g (Ω) is called a super-solution of (NSE) if

∫ ∫
R2d

(
u(x)−u(y)

) (
φ(x)−φ(y)

)
K(x−y) dx dy+

∫
Rd

u(x)φ(x) dν(x)≥ 0

for all 0≤φ∈X0(Ω).

We also need the following cut-off function for later use. Given R>r>0 and
x0∈Rd, denote

(19) φr,R,x0(x) :=
(
R−|x−x0|

R−r
∨0
)
∧1

for all x∈Rd. Note that φr,R,x0∈W 1,∞
0 (B(x0, R)).
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One can construct the Caccioppoli’s inequality for a solution of (NSE) as
shown below.

Lemma 3.7. Let x0∈Ω and u be a non-negative sub-solution of (NSE). Then
there exists a C=C(d, s, λ,Λ)>0 such that

‖φu‖2
Hs(Rd)+

∫
B(x0,r)

|u|2 dν≤ C

(R−r)2s

(
R

R−r

)d ∫
B(x0,R)

|u|2 dx

for all r∈
(
0,dist(x0, ∂Ω)/2

)
, R∈(r, 2r], where φ=φr,σ,x0 and σ= r+R

2 .

Proof. Let r∈
(
0,dist(x0, ∂Ω)/2

)
, R∈(r, 2r]. Set ψ=φ2 u to be a test function

in (18). Then∫ ∫
R2d

(
u(x)−u(y)

) (
ψ(x)−ψ(y)

)
K(x−y) dx dy+

∫
Rd

u(x)ψ(x) dν(x)≤ 0.

Observe that ∫ ∫
R2d

(
u(x)−u(y)

) (
ψ(x)−ψ(y)

)
K(x−y) dx dy

=
∫ ∫

R2d
Ω

(
u(x)−u(y)

) (
ψ(x)−ψ(y)

)
K(x−y) dx dy

=
∫ ∫

B(x0,r)2

(
u(x)−u(y)

)2
K(x−y) dx dy

+
∫ ∫

R2d
Ω \B(x0,r)2

(
φ(x)u(x)−φ(y)u(y)

)2
K(x−y) dx dy

−
∫ ∫

R2d
Ω \B(x0,r)2

(
φ(x)−φ(y)

)2
u(x)u(y)K(x−y) dx dy,

where B(x0, r)2 :=B(x0, r)×B(x0, r).
Consequently we obtain∫ ∫

R2d
Ω

(
φ(x)u(x)−φ(y)u(y)

)2
K(x−y) dx dy+

∫
B(x0,r)

u(x)ψ(x) dν(x)

≤
∫ ∫

R2d
Ω \B(x0,r)2

(
φ(x)−φ(y)

)2
u(x)u(y)K(x−y) dx dy

=: I.
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Next

I ≤ 1
2

∫ ∫
B(x0,R)2\B(x0,r)2

(
φ(x)−φ(y)

)2 (
u(x)+u(y)

)2
K(x−y) dx dy

+2
∫ ∫

B(x0,R)×B(x0,R)C
φ(x)2 u(x)u(y)K(x−y) dx dy

≤
∫ ∫

B(x0,R)2

(
φ(x)−φ(y)

)2
u(x)2 K(x−y) dx dy

+2
∫
B(x0,R)

φ2(x)u(x)
(∫

B2R(x0)C
u(y)K(x−y) dy

)
dx

≤ C

(R−r)2s ‖u‖2
L2(B(x0,R))+CΛ

(
2R
R−r

)d+2s

‖u‖L1(B(x0,R))

×
∫
B(x0,R)C

|u(y)|
|y−x0|d+2s dy

for some C=C(d, s)>0, where we used Lemma 3.4(i) and the fact that

sup
x,y∈Rd

(
φ(x)−φ(y)

)2
|x−y|2 ≤

(
1

σ−r

)2

≤ 4
(R−r)2

and
|x−y| ≥ |x0−y|−|x0−x| ≥ (R−r) |x0−y|

2R
for all (x, y)∈B(x0, σ)×B(x0, R)C in the last step.

The non-negativity of u implies T (u−, x0, R)=0 and whence(
2R
R−r

)d+2s

‖u‖L1(B(x0,R))

∫
B(x0,R)C

|u(y)|
|y−x0|d+2s dy

≤C

(
R

R−r

)d+2s

|B(x0, R)|1/2 ‖u‖L2(B(x0,R))

(
R

2

)−2s

T (u, x0, R/2)

≤ C

(R−r)2s

(
R

R−r

)d

|B(x0, R)|1/2 ‖u‖L2(B(x0,R)) sup
BR/2(x0)

u

≤ C

(R−r)2s

(
R

R−r

)d

|B(x0, R)|1/2‖u‖L2(B(x0,R))

(
1

|B(x0, R)|

∫
B(x0,R)

u(y)2dy
)1/2

= C

(R−r)2s

(
R

R−r

)d

‖u‖2
L2(B(x0,R))
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for some C=C(d, s, λ,Λ), where we used Lemma 3.5 in the first and second steps
and Lemma 3.6 in the third step.

Combining the above estimates together gives∫ ∫
R2d

Ω

(
φ(x)u(x)−φ(y)u(y)

)2
K(x−y) dx dy+

∫
B(x0,r)

u(x)ψ(x) dν(x)

≤ C

(R−r)2s

(
R

R−r

)d

‖u‖2
L2(B(x0,R))

for some C=C(d, s, λ,Λ), as required. �

4. Proof of main result

We are now ready to prove the main theorem. For convenience we first prove
an auxiliary result.

Lemma 4.1. Let x0∈Rd, R>0 and B=B(x0, R). Let u be a solution of Lu=0
in 4B. Then for all k∈N there exists a C=C(d, s, k)>0 such that

sup
B

|u| ≤ C(
1+Rmw(x0, ν)

)k
(

1
|2B|

∫
2B

|u|2 dx
)1/2

.

Proof. Let k∈N, B=B(x0, R) and Bk=B(x0, Rk):=(1+2−k)B. Then Lemma
3.6 gives

sup
B

|u|�
(

1
|Bk|

∫
Bk

|u|2 dx
)1/2

.

Hence the claim is clear if k=0.
Next suppose k≥1. Let η=φRk,Rk−1,x0 , where φRk,Rk−1,x0 is given by (19).

Applying Proposition 3.2(i) to u η and then using Lemma 3.7 we arrive at∫
Bk

m(·, ν)2s |u|2 dx� ‖u η‖Hs(Rd)+
∫
Bk−1

|u|2 dν� 2kd

R2s

∫
Bk−1

|u|2 dx.

Combining this with Proposition 2.1(iv) we yield∫
Bk

|u|2 dx� 1(
1+Rmw(x0, ν)

)2s/(k0+1)

∫
Bk−1

|u|2 dx.

Iterating the above estimate k times and using Lemma 3.6 we arrive at the conclu-
sion. �
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Proof of Theorem 1.1. We divide the proof into two parts: Existence of fun-
damental solution Γν and its decaying property.

Existence: Choose a radial function ϕ∈C∞
c (Rd) such that

ϕ≥ 0, suppϕ⊂B1(0) and
∫
Rd

ϕ=1.

Let r>0. For each t∈(0, r) define

ϕt = 1
td

ϕ
(x
t

)
and Vt =ϕt∗ν.

Then Vt∈C∞(Rd) for all t∈(0, r).
Now fix t∈(0, r) and ψ∈C∞

c (Rd). Suppose that suppψ⊂B. It follows from
[CK18b, Proof of Theorem 1.1] that there exists a fundamental solution ΓVt∈
Lp
s(Rd)∩W γ,q

loc (Rd) for all p∈[1, d
d−2s ), γ∈(0, s) and q∈[1, d

d−s ) such that

(20)
∫
B

ΓVt(x)Lψ(x) dx=
∫
B

ΓVt(x)LKψ(x) dx+
∫
B

ΓVt(x)Vt(x)ψ(x) dx=ψ(0)

and

(21) 0≤ΓVt(x)≤ C

|x|d−2s

for all x∈Rd\{0}, where C=C(d, s, λ,Λ).
Also [CK18b, Lemma 5.8 and Proof of Theorem 1.1] imply

‖ΓVt‖Wγ,q(2B) ≤C(d, s, λ, q, r)

for all t∈(0, r), γ∈(0, s) and q∈[1, d
d−s ).

Now fix a∈[s−ε0, s), b∈
[

d
d−s−ε0,

d
d−s

)
, where ε0 is given by (7). By the

Sobolev compact embedding, there exists a sequence {tj} and v∈W a,b(2B) such
that

(22)

⎧⎪⎨
⎪⎩

ΓVtj
−→v weakly in W a,b(2B),

ΓVtj
−→v strongly in Lb(2B) and

ΓVtj
−→v a.e. in 2B.

Observe that (21) and the pointwise convergence above yield

0≤ v(x)≤ C(d, s)
|x|d−2s

for all x∈Rd\{0}. This in turn implies

v ∈Lp
s(Rd)⊂L1

s(Rd)⊂S ′
s(Rd)
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for all p∈[1, d
d−2s ), where we made use of (6).

Next we apply Lebesgue’s dominated convergence theorem to obtain

ΓVtj
−→ v in L1

s(Rd).

It follows from [Buc16, p.4] that LKψ∈Ss(Rd). Therefore

lim
j→∞

∫
B

ΓVtj
(x)LKψ(x) dx=

∫
B

v LKψ(x) dx.

Next we write∫
B

ΓVtj
(x)Vtj (x)ψ(x) dx−

∫
B

v(x)ψ(x) dν

=
∫
B

(
ΓVtj

(x)−v(x)
)
Vtj (x)ψ(x) dx+

(∫
B

v(x)Vtj (x)ψ(x) dx−
∫
B

v(x)ψ(x) dν
)

=: I+II.

We have

|I|=
∣∣∣∣
∫
B

((
ΓVtj

(x)−v(x)
)
ψ
)
∗ϕtj dν

∣∣∣∣
≤ ν(2B)1/b

′
(∫

2B

∣∣∣((ΓVtj
(x)−v(x)

)
ψ
)
∗ϕtj

∣∣∣b dν

)1/b

≤ ν(2B)1/b
′
(∫

2B

∣∣∣(ΓVtj
(x)−v(x)

)
ψ
∣∣∣b dν

)1/b

−→ 0

where the last step follows from Lemma 3.3 and (22).
Also by the same token,

|II| ≤ ν(B)1/b
′
(∫

2B
|(v ψ)∗ϕtj−v ψ|b dν

)1/b

≤CB ‖(v ψ)∗ϕtj−v ψ‖Wa,b(2B) −→ 0

as j−→∞.
Hence

lim
j→∞

∫
B

ΓVtj
(x)Vtj (x)ψ(x) dx=

∫
B

v(x)ψ(x) dν.

Combining the above estimates together we deduce from (20) that∫
B

Γν(x)Lψ(x) dx :=
∫
B

v(x)Lψ(x) dx=ψ(0).
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Decaying property: Let x, y∈Rd be such that x �=y. Then the previous
consideration gives

(23) 0≤Γν(x−y)≤ C(d, s)
|x−y|d−2s .

For the extra decaying term, set R=|x−y| and B=B(x,R/4). Observe that u(·):=
Γν(·−y) is a weak solution of L in 2B. It follows that for all k∈N one has

sup
B

|u|� 1(
1+Rm(x, ν)

)k
(

1
|2B|

∫
2B

|u|2 dz
)1/2

� 1(
1+Rm(x, ν)

)k 1
Rd−2s ,

where we used Lemma 4.1 in the first step as well as (23) and the fact that |z−y|≥
|x−y|/2 for all z∈2B in the last step. �

Proof of Proposition 1.2. As shown in Proposition 2.1, the critical function
ρ(·, ν) acquires all the required properties stated in [CK18a, Lemma 3.1]. Therefore
[CK18a, Proof of Theorem 1.4] extends verbatim to our setting to derive Proposition
1.2. �
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