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Fundamental solutions of generalized non-local
Schrodinger operators

Tan Duc Do

Abstract. Let de{1,2,3,...} and s€(0,1) be such that d>2s. We consider a generalized
non-local Schrodinger operator of the form
L=Lg+v,
where Ly is a non-local operator with kernel K that includes the fractional Laplacian (—A)$
for s€(0,1) as a special case. The potential v is a doubling measure subjected to a certain
constraint. We show that the fundamental solution of L exists, is positive and possesses extra
decaying properties.

1. Introduction

The idea of fundamental solutions lies at the core of partial differential equa-
tions. The well-known Malgrange—Ehrenpreis theorem essentially states that a non-
zero linear differential operator with constant coefficients always has a fundamental
solution. Nevertheless the situation becomes much more complicated for differential
operators with variable coefficients. A satisfactory answer is obtained in the frame-
work of Schrodinger operator with non-negative potential in the reverse Holder class,
cf. [She95] and also a related work [She99]. Specifically, the fundamental solutions
under such circumstances exist and enjoy a further decaying property. Generaliza-
tions in this spirit include [MP19] for magnetic Schrodinger operators, [KS00b] for
uniformly elliptic operators and [CW88], [KS00a] for degenerate elliptic operators.
Recently [CK18a] provided a counterpart of [She95, Theorem 2.7] in a non-local
setting which covers the fractional Laplacian as a special case. The non-local term
in such a setting was in turn inspired by [DCKP14], [DCKP16] and [KMS15].

Key words and phrases: generalized fractional Schrodinger operator, fundamental solution,
off-diagonal estimates.
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Apart from these extensions, fundamental solutions for parabolic differential
equations and for elliptic systems are also studied. For instances, cf. [Gue66],
[Kur00], [HKO7] and the references therein.

Motivated by the works of [She99] and [CK18a], in this paper we aim to in-
vestigate the existence of a non-local Schrodinger-type operator whose potential is
a measure together with its decaying estimates. This in particular takes part in
the ongoing study of non-local elliptic equations with measure data. In this realm,
we refer the readers to important papers such as [CV14], [CQ18], [CW21], etc., for
further discussions.

Back to our setting, the details are as follows. Let d€{1,2,3,...} and s€(0,1)
be such that d>2s. Consider the operator

1

Li=gp. | (2u@)=ula-+y)=ua—1) K) dy.

where K:R%\ {0} — (0, 00) satisfies there exists ¢4 >0 and A, A>0 such that

A A
Cd,s W <K(y)=K(-y)<cas |y|d+2s

for all ye R4\ {0}. Here c,4 s is the normalizing constant given by

l1—cos(z1) ,
(1) Cd,s /Rd —|x‘d+28 dx=1.
In particular, this notion of L is general enough to include the fractional Laplacian
(—A).
Next define
L=Lg+v,

where v is a doubling measure on R? such that there exist constants Cy>0 and

(2) 0>2s— %
such that
r\ d—2s5+0
(3) v(B@,)<Co (5)  v(B.R))

for all zeR? and R>7>0. Hereafter, by a doubling measure ¥ we mean a non-
negative Radon measure such that there exists a constant Dy>1 satisfying

(4) v(2B) < Dyv(B)

for all ball BCR?. We call Dy the doubling constant of v.
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A more general version p of such a v first appeared in [She99], in which the au-
thor investigated the fundamental solution of the generalized Schrodinger operator
—A+pu. However u does not fit well into our non-local framework, which leads us to
consider the doubling measure v instead. It is worth mentioning that this general
family of potentials strictly extends the reverse Holder class previously studied in
[She95] so that the fundamental solution’s estimate [She95, Theorem 2.7] remains
valid. In fact, it was pointed out in [She99, Remark 0.10] that p and also our v
need not be absolutely continuous with respect to the Lebesgue measure. To be
specific, we have the following remark.

Remark 1. We provide three examples below to illustrate the measure v in our
setting. In fact, the measures in these examples are taken from [She99, Remark
0.10], in which the author verified that (3) holds for them. We emphasize that our
v is required to be doubling. Hence we focus and discuss more on the doubling
property of the measures in these examples.

(i) Let d€{1,2,3,...} and V belong to the reverse Holder class RH, with ¢> ¢,

in the sense that Y
q
() <
1Bl /B Bl /B

holds for every ball BCR?. Define

dv=V(z)dx.

Then it follows from [She95, (1.1) and Lemma 1.2] v is a doubling measure which
satisfies (3).
(ii) Let de{3,4,5,...} and o be a doubling measure on R?. Set

dv=do(x1,z2) dxs...dxg.

Then v is a doubling measure which satisfies (3). Note that o, and hence v, may
not be absolutely continuous with respect to the Lebesgue measure.
(iii) Let d€{2,3,4,...}, p:R4"'—R be a Lipschitz function and o be the
surface measure on
S={(2,p(a') eR%:2’ e R} .

Set
dv=0(ANS)

for each open subset A of R?. Then v satisfies (3) but is not doubling. Indeed,
take a ball BCRY such that ¢(2BNS)#0 and BNS=2. Then v(2B)#0, whereas
v(B)=0. As such (4) can not hold. Also v need not be absolutely continuous with
respect to the Lebesgue measure.
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A transparent technical difficulty arises when a measure potential is employed.
That is, pointwise estimates concerning such a potential is no longer available. De-
spite this we will show that under the condition (2) the existence of the fundamental
solution and some of its properties persist. We note that in the case when a non-
negative potential V' in the reverse Holder class RH, for some q>% is considered,

[She95, Lemma 1.2] reveals that 6=2s— % and so (2) reads ¢> % —1, which is stronger

in comparison with the condition q>% in [CK18a] for the operator Lx+V. This

compensates the aforementioned fact that v can merely be a measure.
Back to our setting, for all z€R¢ define the critical function

v(B(z,r))
5 T,V)i= =supsr>0: ————=<Dg,,
( ) p( ) m(x,u) p{ T(i—ZS =0
where Dy is the doubling constant of v. This is an indispensable tool in our analysis
of the generalized non-local Schrodinger operator L.
Before stating the main result, we need one more definition. For each pe€|l, 00)

let
u(z)?

p dy._ p dy .
LE(R%) := {UGLIOC(]R )./]Rd (T [2])& 2 dx<oo}

be endowed with the norm

P(Rd) - — / |U(I)|p N dx l/p
LE(R9) - ra (14 |z])d+2s )

As noticed in [CK18b, (1.6)], the chain of inclusions

[[ul

(6) LE(RY) € Ly(RT) € S{(R?) ¢ S'(R) € D'(RY)

hold for all p€[1,00), where D’(R%) and S’(R?) denote the spaces of distributions
and tempered distributions on R? respectively and S’ (R%) is the dual space of

Ss(R%) := {f € C*®(RY): sup (1+|z|)? 2% | D f(x)| < oo for all a€ ]Nd} .
zER4
The main result of this paper is as follows.

Theorem 1.1. Let d€{1,2,3,...} and s€(0,1) be such that d>2s. Let v be a
doubling measure which satisfies (3). Then there exists a fundamental solution T,
of L such that T', € LE(R?) for all pe(1, %) and

LT, =6y in the sense of D'(RY),

where &g is the Dirac delta function concentrated at 0.
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Moreover, for all k€N there exists a C=C(d, s, A\, A, k)>0 such that

C 1

OSFV(I*y)< —
(14]z—y| m(zo, 1/))}~C |z —yl|d-2

for all z,yeR? such that x#1.

We emphasize that the extra decaying property so derived is due to v which
is a doubling measure satisfying (3). According to [CK18b, Theorem 1.1], if the
P (R%), then the fundamental solution can at best
be bounded above by the principal term W For similar results to ours, cf.
[She95, Theorem 2.7], [She99, Theorem 0.8] and [CK18a, Theorem 1.1].

As a by-product we obtain the following off-diagonal estimates.

potential is only an element of L

Proposition 1.2. Let de{1,2,3,...} and s€(0,1) be such that d>2s. Let v be
a doubling measure which satisfies (3). Let 6€[0,d) and define

1 1 0
Aa—{ p,q) € (1,00)%*:p<q and —}.
(p.4) € (1,00) o
Then the following statements hold.
(a) If6€[0,2s) and (p,q) EAgU(00, ), then there exists a C=C(d, s, A, p) such
that
Im(-, )%~ L™ fll pawray < C | fll o ey

(b) If p=1 then there exists a C=C(d, s, A,0)>0 such that

Im(-,v)** ™ L™ fll oo (ray < C | £l 22 (e

where L (R%) is the usual Lorentz space on RY.
(c) If (p, q) € Ags, then there exists a C=C(d, s, A, p) such that

||L71fHLq’°°(Rd) <O\ fllermay-

The paper is outlined as follows. In Section 2 we provide essential facts about
the critical functions. In the following section we derive Fefferman-Phong, a weak
Harnack’s and Caccioppoli’s inequalities. With these we are in a position to prove
Theorem 1.1 and Proposition 1.2 in Section 4.

Notations. Throughout the paper the following set of notation is used
without mentioning. Set N={0,1,2,3,...} and N*={1,2,3,...}. Given a A>0 and
a ball B=B(z,r), we let AB=B(z, Ar). For all a,b€R, aAb=min{a, b} and aVb=
max{a,b}. For all ball BCR? we write v(B):= [, dv for a given measure v. The
constants C' and c are always assumed to be positive and independent of the main
parameters whose values change from line to line. For any two functions f and
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g, we write f<g and f~g to mean f<Cg and cg<f<Cg respectively. Given a
p€Jl, 00), the conjugate index of p is denoted by p’. We write L?(R?) to mean the
space of square-integrable function with respect to the Lebesgue measure dz. When
a different measure v is used, we will use the notation L2(R¢)=L?*(R%, dv).

Throughout assumptions. In the whole paper let deIN* and s€(0, 1) be
such that d>2s. The domain QCR? is open bounded with Lipschitz boundary.
The potential v is a doubling measure which satisfies (3).

2. Critical functions

In this section we explore several basic estimates on the critical function which
are useful for later development.

Recall from (3) that 6>2s— ddfs. By continuity it is possible to choose a suffi-

ciently small €y >0, which will be fixed from here onward, such that

(7) 5>2s—<di—eo) (s—c0).

Let a€[s—eq, s], b€ [74 —¢0,2]. Define

1 v(B(x,r
pa7b(l',l/) = m =8sup {T>O: % SDO}

for all zeR%, where Dy is the doubling constant of v. When a=s and b=2 we
simply write m(-,v) in place of mgo(-,v), which agrees with (5).
It is important to observe that

(8) 8 :=0—2s+ab>0

as a consequence of (7).

Proposition 2.1. The following statements hold.

(i) The function pep(-,v) is well-defined, i.e., pqp(x,v)€(0,00) for every z€
RA.

(ii) For every z€R? one has

rd—ab ~ v(B(z,r)) < Dy pd-ab

with r=pq.p(z, V).
(iii) If |2 =y Spap(x,v), then pap(x,v)~pas(y,v).
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(iv) There exist ko>0 and C>1 such that

_ —ko/(ko+1
c lma,b(y7y) (1+|x_y|ma,b<yay)> o/ (hot1)

S ma,b(xa V)

k
S Cma,b(yu V) (1+|1’—y| ma,b(y7 V)) ’
for all x,ycR?.
Proof. Let x,y€RY, r=p, p(z,v) and R=p,;(y,v).
(i) It follows from (3) that

lim

totd_—abl/(B(x,t)):O and limLV(B(x,t)):oo.
5

t—oo td—ab
This, in combination with (3), implies pq(z, ) €(0, x0).
(ii) By definition we have
v(B(z,r)) = lim v(B(z,t)) < Dyri .

t—=r—

Also
Dy (2r)d7ab <v(B(z,2r)) < Dov(B(z,r)),

where we used the definition of pg (-, 7) in the first step and the doubling property
of v in the second step. Hence we deduce that

v(B(z,r)) >ria,

(iii) Suppose that |x—y|<Cr for some C>0. Then B(y,r)CB(z, (C+1)r).
Using the doubling property of v and (ii) we obtain

v(B(z, (C+1)r)) Sv(B(z,7r)) < pdab,

Consequently it follows from (3) that

1

1
(O

i Y(Bly.1)

B(y,tr)) <Cot”

s 1
St v(B(a, (C+1)r))

<t < Dy,

where ¢’ is given by (8) and ¢ is chosen to be sufficiently small. Therefore R>tr by
definition, where we recall that R=p, (y,v). This in turn implies |[z—y|SR. By
swapping the roles of z and y in the above argument, we then obtain R<r.
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(iv) The case |x—y|<R is clear from (iii). So we assume that |z—y|>R. Let
jE€IN* be such that 2771 R<|x—y|<2/R. Then B(z, R)C B(y, (2 +1)R). By virtue
of (ii) and the doubling property of v one has

v(B(z, R)) < D)™ R,

It follows from (3) that

T VB R) < ot s v(B(y. )

1

<4
St Rd—ab ¥

(B(z, (C+1)R))

<t < Dy,

where §’ is given by (8) and ¢ is chosen to be sufficiently small. So the definition of
p gives r>tR or equivalently

m(Z’”) <m(y,v) (1+|z—y| m(y, )"

(9) m(z,v) <

for some ko >0.
For the remaining inequality, using (9) we obtain that

1+|z—y[m(z,v) S (1+]z—y| m(y, V))kOH-

With this in mind we apply (9) once more to obtain

m(y,v) Zm(z,v) (1+|z—y|m(z, V))—ko/(ko-i-l).

The proof is complete. O

Lemma 2.2. There exist a sequence (7;)jen CRY and a family of functions
(1j)jen such that the following hold.
(1) Ujew Bj=R<, where pj=pap(zj,v) and B;j=B(zj, p;) for all j€N.
(ii) For all 7>1 there exist constants C,(p>0 such that
Z XB(zj,p;) = Cré.
JEN
(iii) supp ¥; CB(xj, pj) and 0<t; <1.
(iv) |Vap;(2)|<1/pj for all x,yeR.
v) Zje]N Yi=1.
Proof. We note that p, (-, ) acquires all the properties analogous to those

of the critical functions given in [She99]. Hence the proof for this lemma is done
verbatim as in [She99, Proof of Lemma 3.3]. O
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3. Inequalities

We devote this section to deriving three crucial inequalities: Fefferman-Phong
inequality, a weak Harnack’s inequality and Caccioppoli’s inequality.

3.1. Fefferman-Phong inequality

Let a€[s—eg, s, bE [d;fs —ep, 2], where ¢ is given by (7). We start with an em-
bedding result that is a consequence of [BBM02, Theorem 1] and [MS02, Corollary
2] together.

Proposition 3.1. Let p>1 be such that sp<d. Then there exists a C=C(d)>0
such that

e (1-5) sp/d |u(@) —u(y)|”
e UAHLP(B)SC(dfsp)]”*1 ‘A| AJA \I*y|d+5p e dy

for all ball (or cube) ACRY and ue W*P(A).

In what follows, we denote W2*(R%) to be the set of functions in W®?(R9)
with compact supports. The Fefferman-Phong inequality is as follows.

Proposition 3.2. Let uc¢ W**(R%). Then the following statements hold.
(i) If ue L*(R%, dv) then mqp(-,v)* u€ LP(RY) and

[l s o < (s +Hll e )

for some C=C(d, a)>0.
(ii) If map (-, v)* u€ LY (RY) then ue L°(RY, dv) and

s <€ (Hawooort [ ful mos(e.)® do)
R

for some C=C(d,a)>0.

Proof. Let zo€R® and r0=pa,b(To, V). Set B=B(zg,ro).
(i) Let ue W2 (R4)NLY(RE, dv). By Proposition 2.1 (ii) we have

I::/ (rgfab/\u(B)) |u|bdx2rgfab/ lul® dz.
B

Also it follows from Proposition 3.1 that

</ [ = e —uly) dedy+1B] [ Ju(w)" dvly)
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u(z)—u(y)|?
<rd (/B : [u@) ~u@)]® |;)y|d§i2| dxdy—i—/B lu(x)|® du(x)) )
Hence

1 u(x) —u(y)|® b
10 —/ ubdas§/ Y drd +/ ul® dv
(10) rab B‘ | pJp |r—ylttab Y B| |

or equivalently

b
b d+ab [u(z) —u(y)| d
/B|u| Map (V) dxg/B 37|x—y|d+“b Map(z, V)" drdy

—|—/ |u|b Map (-, l/)d dv,
B

as Mg p(z,v)~1/ry for all € B by Proposition 2.1(iii).
Integrating both sides with respect to ro on R%, keeping in mind that for each
x €D one has

/ dxg ~ / dzg~mep(z,v)”
|z—z0|<pa,b(z0,v) |z—zo|<pa,b(z,v)

and then applying Fubini’s theorem, we arrive at the conclusion.

(ii) The proof is similar to (i). Let ue W2*(R?) and mq (-, ) u€ L*(R?). The
main idea is to establish the counterpart of (10) in this case. The rest follows the
same argument as in (i).

First observe that (3) holds if we replace a ball B with a closed cube Q. That

d

is,
r ) d—2s5+6

(11) v(Q(,m) <Co (5

for all zeR? and R>7r>0, where Q(x,r) denotes the closed cube centered at
whose side length is r (cf. [She99, Proof of Lemma 2.24]).

Secondly, let >0 be sufficiently small such that a—»€[s—eq, s]. Using [KS00b,
Theorem 2.3] (also cf. [VW95, Theorem A] and [SWZ96, Theorem 1.3]) we deduce

that

for all f€L®(Q), provided that

(12) / ( d”i(g”))bl dy < (A)

A lz—yldmot=

v(Q(z, R))

for all cube ACQ.
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In view of (11) we may choose

Td—(a—z)b

v(2Q)
Then p satisfies (12). Explicitly we have

(13 /Q(/Q%dy)d(x S o [ 1wy

for all f€L%(Q).
With the above tools in mind, we now have

/|u )P dv(x) /|u ) —ugl|® dv(z) /|uQ|de
g/ (/%dy) dv(zx) +rQ v( /|u )P dy
Q Q\x—y| at

b O RO

v2Q) [ [ )l
st [ e g @ [l

where we used [DIV16, Theorem 2.5] with

dp= dv  with Q:=Q(zg,79)-

|u(y) —u(z)| ;
gy :/ T iy, 4z and 1y, :=dist(y, 0Q
) Q) =21 ! (0:0Q)

in the second step and then applied (13) in the third step as well as Holder’s
inequality in the fourth step. Hence

by 2Q) u(@)—u@)® o Q) [
(14) /l "d d 2 /Q P y o /QI " dz.

Lastly, we take a closed cube Q CR? such that

1
§BchB,

where B=DB(x¢,r0) and ro=pq(zo,v). Then (14) reads

b
b <V(2B)/ |u(z) —u(y)] / b
I N e e WAL

2
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WB) [ [ Juw)—uly)l o
< /B ] do dy+ 218 /| bd

Tg ab |1.7y|d+ab

u(x) —u(y)]® /
< B~ 3 dy g [ lul’da,
/B g |lr—yldtaed fuf

where we used the doubling property of v in the second step and Proposition 2.1(ii)
in the third step. This is the counterpart of (10) in (i). O

As a consequence, the following embedding result is available.
Lemma 3.3. Let BCRY be a ball. Then the embedding
Wab(B)—Lb(B, dv)
1s compact.

Proof. Let {z;}jen and {¢;}jen be as in Lemma 2.2. Since B is compact we
can cover it by a finite number of balls Bj:=B(xz;, p;). Without loss of generality
assume that BCU?‘J:IB]- for some joeIN*.

Therefore using Proposition 3.2(ii) one has

[t S el + [ Jult maoo) de
B B

Jo
<ullwr s+ / ful? 120 (-, ) d
j:1 BﬂBj

Jo

S ltllwesgsy+3 " map (s, 1) /B e
N

j=1 ’
(15) <\ VD map(zi, )™ | ullwesz) < oo

for all ueWa*(B), where we used [BRS16, Lemma 1.3] in the second step and
Proposition 2.1(iii) in the third step.
The compactness of the embedding follows from (15) using a standard argument
as in [She95, Lemma 2.24]. For the sake of clarity, we present a detailed proof.
Let Q be a closed cube containing B. It suffices to show that

(16) Wb (Q)—L"(Q, dv)

is compact.
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Denote R to be the side length of Q. We partition () into finite closed sub-
cubes {QJ ° , whose side lengths are identically € (0, R), where jo€IN*. We apply
(14) to each Q; to obtain

v(2Q;) (Q )
b b
/’. [l duN e — / / |x y|d+ab d dy+—-—= /Q lu|® dx

J J

v(3Q) 1 /N ,
<
~ Rd—ab / / \m y‘d+ab d dy + (R) /Qj |ul” da
V(?’Q) r & b 1 T &’ b
'SRdfab (E) ||uHW’lvb(Qj)+m (E) /Q |u]” dz| ,
J

where in the second step we used (3) and the fact that % 2Q;C3Q for all je
{1,...,jo}. Here A\Q means the dilated cube with the same center as @) whose side
length is A R. Summing this estimate over j yields

T
[t s 5002 Wty s () o]

If r is chosen to be sufficiently small, we arrive at the statement: For each £>0
there exists a C. >0 such that

(17) [ttt s 2L [ty dodyec [ uas].
Q Q

This can be considered as a fractional version of the Friedrich-type inequality [She95,
(2.26) in Lemma 2.24]. To obtain the compactness of the embedding (16), we argue
as follows.

Let {tn}new CWP(Q) be bounded (in norm) by K>0. Observe that the
embedding W2?(Q)— L*(Q) is compact. Hence {u, }nen has a strongly convergent
subsequence {un, }jew in L°(Q). At the same time, {u,, };en CL?(Q,v) due to (15).
Then (17) applied to {uy, }jen reads

v(2Q)
/Q |Un; —un,, 1P dv < Ri—a |© ([tn,; —tn,, \\I{/Va,b(Q)—i—CE o U, —unj,|b dx

v(2
NR(d_Cig {2€Kb+CE/Q|unj—unj,|bdx]

for all j€IN. Hence by the strong convergence of {u,, }jen in L°(Q), we may choose
ng€IN such that

C. / [tin; —Un,, |b dr<e
Q
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for all j, ' >ng. This leads to
/Q Uy —Un,, IPdv < (2K +1)e

for all j, j’>ng. Since £>0 is arbitrary, this last display implies that {u,, }jen is a
Cauchy sequence in L°(Q, dv). Hence the embedding (16) is compact.
This verifies our claim. [

3.2. Weak Harnack’s inequality
In what follows, let M (RY) be the set of measurable functions on R?. Denote
RY =R\ (29 x Q).
The following spaces are significant in subsequent analysis:

e X(Q)= {uEM(Rd) ulo € L*(R2) and //}R2dﬁdmdy<m}.

e Xo(Q)={veX(Q):v=0a.e. in Q°Y}.

o XF(Q)={veX(Q):(g—v)* € Xo(Q)}, where g€ H*(R?).

o X,() =X (Q)NX, (), where ge H*(R?).

When dealing with these spaces, it is useful to keep the following relations in
mind.

Lemma 3.4. ([CK18a, Lemma 2.1]) Let u€ Xo(Q?). Then the following hold.

(i) One has
1 Awg 1
- Iw—ylzK(x—y)der/ K(z—y)dy< —2 —
T Jz—yl<r le—y|>r s T

for all xeRd, where wy denotes the surface measure of the unit sphere in R
) One has

K(z—y)dxdy < ||ul #=0)

where cq 5 is given by (1).
Now let g€ H*(R?). Consider the problem

Lgu=0in Q,

(NSEp) {uzg in R4\ Q.
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Definition 1. A function ue X4(Q2) is called a weak solution of (NSEy) if

/ /R u(@) —u(y)) (6(z)~6(y)) K (e—y) du dy =0

for all g€ Xo(?)
Next a functlon u€ X, (Q) is called a sub-solution of (NSEy) if

//]R2d u l’ )(d)(x)qu(y)) K(T/*y)dxdyg()

for all 0<pe X (2
Similarly a functlon u€ X S (Q) is called a super-solution of (NSEy) if

/ / (ulw)=uly)) (92)~0(y)) K(w—y) drdy >0
R
for all 0<pe X (2
Following [DCKP14] we take into account the tail T (u;xo, R) defined by

T (u; 2o, R) := R** / v(z)]

Ix —x9 |n+23
(B(z0,R))°
for all function u€ H*(RY) and B(z, R)CRY. It turns out that this notion plays a
significant role in a non-local setting.

The next two results provide Harnack-type inequalities for a non-negative sub-
solution of (NSEjp).

Lemma 3.5. ([CK18a, Theorem 4.4]) Let ge H*(R%) and ue X, (Q) be a sub-
solution of (NSEy). Set B=B(xzg,r)CS2. Then there ezists a c=c(d, s, A\, ) such
that

1 ) 1/2
supu <67 (u™; xo,r/2)+6(5_d/4s (E / (u+(x)) dm) ,
ip
2
for all 5€(0,1].
Moreover, if u>0 in B(xg, R) with R>r then there is a C=C(d, s, \,A) such
that
7\ 28
T(u";29,7)<c sup u+C (—) T(u™;z0, R).
B(zo,r) R

Lemma 3.6. ([CK18a, Proposition 2]) Let g€ H*(R?) and u€ X () be a non-
negative sub-solution of (NSEy). Set B=B(xo,7)CQ to be a ball. Then there exists
a constant C=C(d, s, A\, A) such that

1 1/2
supu<C < / u(y 2dy) .
pe=C s S, Y
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3.3. Caccioppoli’s estimate

Recall that L=Lg +v. Consider the non-local Schrodinger equation

Lu=0in €,
(NSE) {u:g in R\,

where g€ H*(R).
The analysis of this problem requires the following function spaces:

e V() ={ueX,(Q) /d u? dv < oo},

YV E(Q)={veY(Q): (;,R—v)i € Xo(Q)}.
o Yy () =Y,F(Q)NY, (Q).

Definition 2. A function ueY, () is called a weak solution of (NSE) if
[ @) -uw) (60)-6)) Ko=) dedy+ | uta) 6(o) dva) =0
R2d RA

for all p€Xo(Q).
Next a function u€Y,~(Q2) is called a sub-solution of (NSE) if

) [ [ (lo)=u) (6@)=0) Kla=y)dvd+ [ ulz) o) dviz) <0

for all 0<¢peXo(2).
Similarly a function u€Y,"(Q) is called a super-solution of (NSE) if

/ / (u(2)—u(y)) (6(x) —d()) K (z—y) d dy+ / u(x) dla) dv(x) >0
RQd ]R,d

for all 0<¢peXo(92).

We also need the following cut-off function for later use. Given R>r>0 and
zo€R?, denote

(19) Gr. R0 (T) 1= (R_]Laj%xo\/o) Al

for all zeRY. Note that ¢, .., €Wy (B(zo, R)).
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One can construct the Caccioppoli’s inequality for a solution of (NSE) as
shown below.

Lemma 3.7. Let x9€S) and u be a non-negative sub-solution of (NSE). Then
there exists a C=C(d, s, A\, A)>0 such that

C R \*
¢U|2s d_|_/ u2dl/§—< ) / qu!B
16wl s (ma) B(ro,r)| | (R—r)% \R—r B(xo,R)‘ |

for all r€ (0, dist(zo, 0Q)/2), Re(r, 2r], where ¢=oy 5.4, and =",

Proof Let re (O dist(xo,é‘Q)/2), Re(r,2r]. Set =02 u to be a test function
n (18). Then

/ [ (6@ -u) (6(@)-0()) K=y dody+ [ (o) (o) do(a) <0.
RZd

R4

Observe that
J L, ) =utw) (90 =) Ko=) ey

= [ [, ) ut) (401 00) K- ety

[ ) Ky ey
B(zg,r)?
+//IRM\B o (¢(z) u(z)—(y) uly)) K(z—y)dedy

-/ (6() =010 ula) u(y) K () do
R\ B(zo, 7")2

where B(zg,7)%:=B(zg,7)x B(x0,7).
Consequently we obtain

/ / (6(2) u(z) — py) uy) } K (z—y) de dy+ / u(®) $(z) dv(z)
R

B(zo,r)

2
</ /Rad\mm |, (0)=60)) u(e) uly) Ka—y) de dy
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Next

1 , ,
- 5 //B(zo-,R 2\B(zg,r)? (¢(x)_¢(y)) (U(J?)—Fu(y)) K(l‘—y) dx dy
+2 // o B B R)C o(x)” u(z)u(y) K(x—y) dx dy

/ / o(2)—6(v)f u(e)? K (z—y) dz dy
B(zo, R)2

2 [y # e ( LK) dy> s

C

2R d+2s
< g Nl i+ O () s ey

lu(y)|
x I gy
/B(;co,R)C |y —wo|d+2s

for some C'=C(d, s)>0, where we used Lemma 3.4(i) and the fact that

(¢<x>—¢<y>)2§( | >2<( 4

2, yeRd |z —yl|? o—r) ~ (R—r)?

wnd (R—7)] |
—7) %oy

|z —y| > |xo—y|—|T0—2] > T~ or

for all (z,y)€ B(zo,0)x B(zo, R)® in the last step.
The non-negativity of u implies 7 (u ™, g, R)=0 and whence

d+2s
2R / u(y)|
Ul 1 T d
(R—r) lrlzs (B ao. B(ao,R)C [Y—T0|4F? Y

R d+2s R —2s
SC (R—T) ‘B($07R)|1/2 ||uHL2(B(a:0,R)) (5) T(U,Z‘O,R/z)

B(wo, R) | ||U||L2 B(zo,R sup  u
_r)2s R—r (z0,R)) B (o)

c R d 1/2
< = B(zo, R)|"*|[ull 12(B(zo,R 7/ y)*dy
(R*T)2S (R ’)") | | HL (B( |B 1,0’ | Blao.R) (

e R\’
_(R_T)QQ R—r |UHL2(B (zo,R))
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for some C'=C(d, s, A\, A), where we used Lemma 3.5 in the first and second steps
and Lemma 3.6 in the third step.
Combining the above estimates together gives

B(zo,r)

/ / (6(2) u(z) —dy) u(y) } K (x—y) dz dy-+ / ul() (x) dv(x)
R

__c¢ R\
= (R—T‘)QS R—r Hu||L2(B(fE07R))

for some C=C(d, s, \, A), as required. O

4. Proof of main result

We are now ready to prove the main theorem. For convenience we first prove
an auxiliary result.

Lemma 4.1. Let xg€R?, R>0 and B=B(z¢, R). Let u be a solution of Lu=0
in 4B. Then for all k€N there exists a C=C(d, s, k)>0 such that

C 1 1z
sup |u| < lu|? dx .
L\ |2B
B (l—i—me(xo,y)) 12B| J2p

Proof. Let k€N, B=B(zg, R) and By =B(x¢, R;):=(1+27%)B. Then Lemma

3.6 gives
1 1/2
sup |u| S (— / |u)? dx) .
B |Br| /B,

Hence the claim is clear if £=0.
Next suppose k>1. Let n=¢r, Ry 1,20, Where ér, r._ ..z, is given by (19).
Applying Proposition 3.2(i) to un and then using Lemma 3.7 we arrive at

, 2kd
[ omCo P deslunlinot [ WPars s [ e
Bk Bk*l

By_1
Combining this with Proposition 2.1(iv) we yield

1
lul? de < " / lu|? da.
/B;C (1+me(x0,y))2 /(ko+1) Bi_1

Iterating the above estimate k times and using Lemma 3.6 we arrive at the conclu-
sion. [0
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Proof of Theorem 1.1. We divide the proof into two parts: Existence of fun-
damental solution I', and its decaying property.
Existence: Choose a radial function ¢€C2°(R?) such that

©>0, supppCB1(0) and /(p:l.
]Rd

Let 7>0. For each t€(0,r) define
1
Pt = 1 ¥ (%) and V= pp*v.

Then V;€C>(R?) for all t€(0,7).

Now fix t€(0,7) and ¢ €C>(R?). Suppose that suppyCB. It follows from
[CK18b, Proof of Theorem 1.1] that there exists a fundamental solution I'y, €
LYRHYNWIHRY) for all pe(l, 74-), v€(0, s) and g€[1, 74) such that

(20) /B Iy, (z) Lp(x) do = /B Dy, (@) Lt () dar+ /B Iy, (2) V() () dz = (0)

and

C
(21) OSFVt(:E)S |I‘d72s
for all z€ R\ {0}, where C=C(d, s, \, A).
Also [CK18b, Lemma 5.8 and Proof of Theorem 1.1] imply

HI‘Vt HW”"I(QB) < C(dv S, )‘7 q, 7’)

for all t€(0,7), v€(0, s) and g€[1, 74).

Now fix a€[s—eg,s), be[d;fs—so,ﬁ), where g is given by (7). By the
Sobolev compact embedding, there exists a sequence {t;} and veW**(2B) such
that

Iy, —wv  weakly in Web(2B),
(22) Iy, —wv  strongly in L*(2B) and
Ly,

. —v  a.e. in 2B.
J

Observe that (21) and the pointwise convergence above yield

C(d,s)
< <
0<v(z) < lz|d—2

for all z€R%\{0}. This in turn implies

ve LP(RY) c LY(RY) c S(RY)
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for all pe[1, 74-), where we made use of (6).

Next we apply Lebesgue’s dominated convergence theorem to obtain

Ty, — v in Ly(RY).

t

It follows from [Bucl6, p.4] that L1 €Ss(RY). Therefore

lim [ Ty, (z) Lxy(x) dx:/ v L (x) de.
jooo Jp oY B

Next we write

|t @ Vi@ @) de- [ o) i) dv
B B

= [ (v (@)t Vi @) e ([ ota) i, (0wt o [ ot vty av)
=:I+I1I.
We have

=] [ (0w, @)= 0(0) 0) s,

b 1/b
du)

<v(@B)WY (/23 ‘(rvtj (@) —v(x)) ¢‘b du) P 0

<v(2B)/Y <~/23 ‘((thj (z)—v(z)) 111) *Pt

where the last step follows from Lemma 3.3 and (22).
Also by the same token,

1/b
11| <(B)Y ( / |<vw>wtj—vw|bdv)
2B

<Cpll(vY)*pr, —v|lwasep —0

as j—00.
Hence

lim [ Ty, (z)V, () Y(x) de = / v(x) ¥(x) dv.

j—oo /B B

Combining the above estimates together we deduce from (20) that

/BF,,(JJ)LQ/)(x)daJ::/ o(@) L) dz = (0).

B
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Decaying property: Let z,y€R? be such that z#y. Then the previous
consideration gives

(23)

C(d,s)
<TI'y(z—y) < ———.
0<T(z—y)< |z —y[d—2s

For the extra decaying term, set R=|x—y| and B=B(z, R/4). Observe that u(-):=
I',(-—y) is a weak solution of L in 2B. It follows that for all k€N one has

1 1 1/2
sup ul S (i [, tuPas)
B (1+Rm(m,y))k 12B| Jap

< 1 1

~ (1+Rm(x,u))k Rd—237

where we used Lemma 4.1 in the first step as well as (23) and the fact that |z —y|>
|x—y|/2 for all z€2B in the last step. O

Proof of Proposition 1.2. As shown in Proposition 2.1, the critical function
p(+,v) acquires all the required properties stated in [CK18a, Lemma 3.1]. Therefore
[CK18a, Proof of Theorem 1.4] extends verbatim to our setting to derive Proposition

1.2. O
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