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Hamiltonian Carleman approximation and the
density property for coadjoint orbits

Fusheng Deng and Erlend Fornæss Wold

Abstract. For a complex Lie group G with a real form G0⊂G, we prove that any
Hamiltonian automorphism φ of a coadjoint orbit O0 of G0 whose connected components are
simply connected, may be approximated by holomorphic O0-invariant symplectic automorphism
of the corresponding coadjoint orbit of G in the sense of Carleman, provided that O is closed. In
the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits
of all complex Lie groups.

1. Introduction

Let ω0=dx1∧dxn+1+...+dxn∧dx2n be the standard symplectic form on R
2n,

and let ω=dz1∧dzn+1+...+dzn∧dz2n be the standard holomorphic symplectic form
on C2n. We denote by Symp(R2n, ω0) the group of smooth symplectic automor-
phisms of (R2n, ω), and by Symp(C2n, ω) the group of holomorphic symplectic au-
tomorphisms of (C2n, ω) (throughout this paper, smooth will mean C∞-smooth).
The following problem was proposed by N. Sibony (private communication):

Problem 1.1. Can any element in Symp(R2n, ω0) be approximated in the

sense of Carleman by elements in Symp(C2n, ω) leaving R
2n invariant?

Motivated by this problem, and also connections to physics (see below), in
this article we will consider the analoguous problem in the more general setting
of complexifications of coadjoint orbits of real Lie groups. For a real or complex
manifold X with a symplectic form ω we will denote by Ham(X,ω) the smooth path-
connected component of the identity in Symp(X,ω). We will prove the following.

Theorem 1.2. Let G be a complex Lie group, and let G0⊂G be a real form.

Let O0⊂g∗0 be a coadjoint orbit whose connected components are simply connected,

let O⊂g∗ be the coadjoint orbit containing O0. Assume that O is closed, and let
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ω0 (resp. ω) denote the canonical symplectic form on O0 (resp. O). Then given

φ∈Ham(O0, ω0), a positive continuous function ε(x) on O0, and r∈N, there exists

ψ∈Ham(O, ω) such that ψ(O0)=O0 and

||ψ(x)−φ(x)||Cr <ε(x)

for all x∈R2n.

Here the Cr-approximation may be obtained with respect to any given Rie-
mannian metric on the appropriate jet-space of O0. The connection with Problem
1.1 is that if G (resp. G0) is the complex (resp. real) Heisenberg group, then there
are coadjoint orbits (O0,O)≈(R2,C2) with (R2,C2) equipped with the standard
symplectic structures as above. The case of an arbitrary n is obtained by taking
products. Note that Symp(R2n, ω0) coincides with Ham(R2n, ω0) and Symp(C2n, ω)
coincides with Ham(C2n, ω).

For information about Carleman approximation by functions, please see the
recent survey [6]. Related to Theorem 1.2, it was proved in [14] that any diffeo-
morphism of Rk can be approximated by holomorphic automorphisms of Cn in the
Carleman sense, provided that k<n, however, in that case Rk was not left invariant.

In the course of the proof we will also prove the following, which follows from
quite standard arguments in Andersén-Lempert theory, as soon as one considers the
right setup.

Theorem 1.3. All closed coadjoint orbits of a complex Lie group have the

Hamiltonian density property.

The corresponding theorem for C
2n was proved by F. Forstnerič [5]. The

volume density property of closed coadjoint orbits of a complex Lie group G in the
case that G is an algebraic group is a corollary of Theorem 1.3 in [9] due to Kaliman
and Kutzschebauch.

Symplectic manifolds are very important objects in physics. In a recent pro-
gram called “Quantization via Complexification” proposed by Gukov and Witten,
the quantization of a symplectic manifold (M,ω0) is studied through the quantiza-
tion of its complexification (X,ω, τ) ([8][7][18]). In general, the physical symmetry
on (M,ω0) is given by Symp(M,ω0) (resp. Ham(M,ω0)), while that of the complex-
ification (X,ω, τ) is given by Symp(X,ω, τ) (resp. Ham(X,ω, τ)). So in physical
terminology, our result is transferred to the following: no symmetry is broken after
complexification.

The article is organized as follows. In Section 2 we will give the relevant
background on coadjoint oribits. In Section 3 we start by setting up a general
framework for our approximation. Then we give some results on Cr regularity of
flows of families of smooth vector fields and Cr-convergence of consistent algorithms,
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following the unpublished Diplomarbeit [16] by B. Schär at the University of Bern,
and we prove some results of Andersén-Lempert type, leaving invariant a totally
real center. Finally we prove the main theorem. In Section 4 we include some
standard examples of coadjoint orbits.

Acknowledgement. The first author is partially supported by the NSFC grant
11871451. The second author is supported by the NRC grant number 240569.

2. Preliminaries on coadjoint orbits of Lie groups and complexfications

2.1. Canonical symplectic structures on coadjoint orbits

In this subsection we will collect some standard material on co-adjoint orbits
(see [13] for more details). Let G be a real Lie group with Lie algebra g. As a vector
space, we can identify g with TeG, the tangent space of G at the identity. For g∈G,
the conjugate map from G to itself given by x �→gxg−1 fixes e, and hence induces
a linear isomorphism of g. In this manner, we get a linear representation Ad of G
on g, which is called the adjoint representation of G. The adjoint representation
of G induces a representation of G on the dual space g∗ of g, which is called the
coadjoint representation of g and will be denoted by Ad∗. More precisely, the
coadjoint representation is defined as

(Ad∗(g)ξ, v) :=
(
ξ,Ad(g−1)v

)
, g ∈G, ξ ∈ g∗, v ∈ g,

where (·, ·) denotes the pairing between g∗ and g. The orbits of elements in g∗ under
the action of G are called coadjoint orbits.

A fundamental fact about coadjoint orbits O is that they carry canonical
G-invariant symplectic structures, which are defined as follows. For a vector v∈g,
we have that Ad∗ induces an action of the one-parameter subgroup {exp(tv); t∈R}
of G generated by v on O, where exp:g→G is the exponential map. So we get a
smooth vector field Xv on O whose value at ξ∈O is given by

Xv(ξ)= d

dt
|t=0Ad∗(exp(tv))ξ.

For ξ∈O, we have that {Xv(ξ); v∈g}=TξO since the action of G on O is transitive.
The kernel of the linear map v �→Xv(ξ) from g to TξO is gξ, which is the Lie

algebra of the isotropy subgroup Gξ :={g∈G; gξ=ξ} of G at ξ. The symplectic form
ω on O is defined by

ω(Xu(ξ), Xv(ξ)) := ξ([u, v]), u, v ∈ g.

We check that ω is a well-defined symplectic form on O:
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• ω is well defined. It suffices to check that for u∈g with Xu(ξ)=0 we have
ξ([u, v])=0 for all v∈g. If Xu(ξ)=0, then u∈gξ, the Lie algebra of the isotropy
subgroup Gξ. Hence Ad∗(exp(tu))ξ=ξ for all t∈R, which is equivalent to that
(Ad∗(exp(tu))ξ, v)=(ξ, v) for all t∈R and v∈g. Note that (Ad∗(exp(tu))ξ, v)=
(ξ,Ad(exp(−tu))v), taking derivative with t at t=0 we get ξ([u, v])=−(ξ, [−u, v])=
0.

• ω is nondegenerate. For u∈g, we need to show that ω(Xu(ξ), Xv(ξ))=0 for
all v∈g implies Xu(ξ)=0. By definition,

ω(Xu(ξ), Xv(ξ)) =−ξ([−u, v])

=−
(
ξ,

d

dt
|t=0Ad(exp(−tu))v

)

=−
(

d

dt
|t=0Ad∗(exp(tu))ξ, v

)
.

So ω(Xu(ξ), Xv(ξ))=0 for all v∈g implies d
dt |t=0Ad∗(exp(tu))ξ=Xu(ξ)=0.

• ω is closed.
Since all Xu(u∈g) generate TξO for all ξ∈O, and ω(Xu, Xv) are smooth func-

tions on O, we have that ω is a smooth 2-form on O. Letting u, v, w∈g, we have

Xuω(Xv(ξ), Xw(ξ))

= d

dt
|t=0ω(Ad∗(exp(tu))ξ) (Xv(Ad∗(exp(tu))ξ), Xw(Ad∗(exp(tu))ξ))

= d

dt
|t=0 (Ad∗(exp(tu))ξ, [v, w]) |

= d

dt
|t=0 (ξ, Ad(exp(−tu))[v, w]) |

=−(ξ, [u, [v, w]]).

By a basic formula about exterior differentiation, we have

dω(Xu, Xv, Xw)
=Xuω(Xv, Xw)−Xvω(Xu, Xw)+Xwω(Xu, Xv)
−ω([Xu, Xv], Xw)+ω([Xu, Xw], Xv)−ω([Xv, Xw], Xu),

which vanishes for all u, v, w∈g by the Jacobi identity and the above formula. Hence
dω=0.

For u∈g, we can view u as a function on g∗ and hence a smooth function on
the orbit O. A basic fact is the following.
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Lemma 2.1. For any u∈g, the vector field Xu on O is Hamiltonian with

respect to ω and it’s potential is u itself. In particular, the symplectic structure ω

on O is invariant under the action of identity component of G.

Proof. It suffices to show that

du(Xv)(ξ)= iXuω(Xv)(ξ)= ξ([u, v])

for all v∈g. Note that

du(Xv)

= d

dt
(Ad∗ (exp(tv))ξ, u) |t=0

=
(
ξ,

d

dt
Ad(exp(−tv))u|t=0

)
=ξ([u, v]). �

The following lemma, which is a direct corollary of Theorem 2.13 in [15], is
also useful.

Lemma 2.2. For ξ∈g∗, if the coadjoint orbit O=G·ξ is closed in g∗, then the

canonical map G/Gξ→g∗ with image Oξ is a proper embedding and hence Oξ is a

closed submanifold of g∗.

The above construction starts from a real Lie group. In the same way, we
can start from a complex Lie group and carry out the same procedure. Then all
coadjoint orbits in g∗ are complex manifolds with canonical G-invariant holomorphic
symplectic forms, and the statements parallel to Lemma 2.1 and Lemma 2.2 hold.

2.2. Complexification of coadjoint orbits of real Lie groups

Let G be a connected complex Lie group with a real form G0, i.e., G0 is a
Lie subgroup of G (not necessarily closed) and g=g0⊕ig0, where g and g0 are the
Lie algebras of G and G0 respectively. We want to show that coadjoint orbits of
G are complexifications of the corresponding coadjoint orbits of G0. We start by
introducing the following

Definition 2.3. A complexification of a symplectic manifold (M2n, ω0) is a triple
(X2n, ω, τ):

• (X,ω) is a holomorphic symplectic manifold,
• τ is an anti-holomorphic involution of X,
• M↪→X (proper embedding) and ω|M =ω0,
• τ |M =Id, τ∗ω=ω̄.
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For a point ξ∈g∗0 (resp. g∗), the coadjoint orbit through ξ in g∗0 (resp. g∗) will
be denoted by OR

ξ (resp. Oξ). The canonical symplectic form on OR

ξ (defined in
§2.1) is denoted by ω0, and the canonical holomorphic symplectic form on Oξ is
denoted by ω. For a point ξ∈g∗0, we can also view ξ as an element in g∗. Then it is
clear that OR

ξ ⊂Oξ and ω|OR

ξ
=ω0.

We will focus on closed orbits. In the case that G0 is reductive, the adjoint
representation of G0 (resp. G) on g0 (resp. g) and the coadjoint representation
G0 (resp. G) on g∗0 (resp. g∗) are isomorphic, and hence the adjoint orbits and
coadjoint orbits coincide. For ξ∈g0, the closedness of OR

ξ in g is equivalent to the
closedness of Oξ in g, and they are equivalent to that ξ is semisimple, that is Adξ,
viewed as an operator on both g0 and g, is diagonalizable. In the general case, we
will show that if Oξ is closed then OR

ξ is also closed. We will prove the following.

Theorem 2.4. If ξ∈g∗0 is such that Oξ⊂g∗ is closed, then the following holds.

(1) Oξ is a closed complex submanifold of g∗;

(2) OR

ξ consists of some connected components of Oξ∩g∗0 and is a closed sub-

manifold of Oξ;

(3) (Oξ, ω, τ) is a complexification of (OR

ξ , ω0) in the sense of Definition 2.3.

Note that (1) in the above theorem is a direct corollary of Theorem 2.13 in
[15].

Proof. We start by giving a lemma.

Lemma 2.5. Let ξ∈g∗0 be such that Oξ⊂g∗ is closed. Then the following holds.

(1) G0,ξ is a real form of Gξ, where G0,ξ and Gξ are the isotropy subgroups of

G0 and G at ξ respectively.

(2) OR

ξ is a totally real submanifold of Oξ of maximal dimension.

Proof. Let σ0 :G0→OR

ξ , σ :G→Oξ be the orbit maps given by g �→gξ with
differentials at the identity dσ0 :g0→TξOR

ξ ⊂g∗0 and dσ :g→TξOξ⊂g∗. We have
dσ0(u)=Xu for u∈g0 and dσ(u)=Xu for u∈g. For u=a+ib∈g with a, b∈g0, Xu=0
is equivalent to ω(Xu, Xv)(ξ)=ξ([u, v])=0 for all v∈g0. But this is equivalent to
ξ([a, v])=ξ([b, v])=0 for all v∈g0. Hence a, b∈ker dσ0 and ker dσ=ker dσ0⊕i ker dσ0
and so G0,ξ is a real form of Gξ. This implies that OR

ξ is a totally real submanifold
of Oξ of maximal dimension. �

Let Oξ be as in the above lemma. We now define an anti-holomorphic involu-
tion on Oξ. Let τ :g∗→g∗ be the conjugation map given by τ(a+ib)=a−ib, u, v∈g∗0.
Then τ is anti-holomorphic and is an involution, i.e., τ2=Id. It is clear that τ(Oξ)
is also a complex submanifold of g∗. Note that by Lemma 2.5 we have that OR

ξ is
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a totally real submanifold of both Oξ and τ(Oξ) of maximal dimension, by iden-
tity theorem for holomorphic functions we have Oξ=τ(Oξ), and so τ is an anti-
holomorphic involution on Oξ.

We move forward to prove that OR

ξ is a closed submanifold of Oξ and hence a
closed submanifold of g∗0. By Theorem 2.13 in [15] and noting that Oξ is closed in
g∗, it suffices to prove that OR

ξ is a closed subset of Oξ. Note that since a closed
connected component of the set of fixed points of a compact Lie group acting on a
smooth manifold is a closed submanifold (see Theorem 5.1 in [11]), any connected
component of Oξ∩g∗0, which is the fixed point set of τ , is a closed submanifold of
Oξ. Note also that Oξ∩g∗0 is a union of coadjoint orbits of G0 and any orbit of
G0 contained in Oξ is a totally real submanifold of Oξ of maximal dimension by
Lemma 2.5, so OR

ξ is closed in Oξ since its complement in Oξ, which is a union of
some orbits of G0, is open in Oξ.

Since ω|OR

ξ
=ω0 is real, we have (τ∗(ω))=ω on OR

ξ . By the identity theorem,
we see that τ∗(ω)=ω̄. �

3. The density property and Hamiltonian Carleman approximation

By the considerations in the previous section, to prove Theorem 1.2 we may
consider the following framework. We let Z⊂C

N be a closed connected complex
manifold equipped with a holomorphic symplectic form ω. Assume that Z0 is the
union of some smooth connected components of Z∩RN with dimRZ

j
0=dimC(Z)

for each component Zj
0 , and such that ω0 :=ω|Z0 is a real symplectic form on Z0.

Letting uj , j=1, ..., N , denote the coordinates on C
N , we assume further that for

any linear function u=
∑N

j=1 cj ·uj the vector field Xu defined on Z by ιXuω=∂u is
complete.

We let Vh(Z) denote the Lie algebra of holomorphic Hamiltonian vector fields
on Z, and we let VI

h(Z) denote the Lie sub-algebra of Vh(Z) generated by complete
vector fields.

3.1. The density property for Vh(Z)

The following lemma follows easily from the assumptions above and standard
arguments in Andersén-Lempert theory.

Lemma 3.1. In the setting above we have that VI
h(Z) is dense in Vh(Z).

Moreover, if A⊂R
n is compact, and if Xy is a continuous family of smooth vec-

tor fields on Z0 with Xy∈Vh(Z0) for all y∈A, then if ε>0, r∈N, and if K⊂Z0
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is compact, there exists a continuous family of complete holomorphic vector fields

Yy,1, ..., Yy,n∈VI
h(Z), all tangent to Z0, such that

‖Xy−
n∑

j=1
Yy,j‖Cr(K) <ε.

Proof. We write uj=xj+iyj . We start with the case of Xy∈Vh(Z0) for each
fixed y∈A. Let uy be a family of potentials for Xy, continuous in Cr+1-norm in
the (x)-variables with respect to y. By Weierstrass’ Approximation Theorem we
may approximate u arbitrarily well in Cr+1-norm by polynomials P in x depending
continuously on y, and so for the purpose of approximating X we will consider
the vector fields X̃y defined on Z0 by dPy=ι

˜Xy
ω0. First we let P o

y denote the
polynomials Py extended in the obvious way to polynomials in the variables uj , and
we let X̃o

y denote the holomorphic vector fields defined on Z by ∂P o
y =ι

˜X
o

y
ω.

We will first show that X̃o
y is tangent to Z0. For any point ζ∈Z0, since Z0 is real

analytic, there exists a real holomorphic embedding g :U→Z with g(R2n∩U)=Z0∩
g(U), where U is a neighbourhood of the origin in C

2n and g(0)=ζ. Setting ω̂=g∗ω

and P̂y=g∗P o
y it suffices to show that the vector fields X̂y defined by ∂P̂y=ι

̂Xy
ω̂ is

tangent to R
2n. Note that P̂y and ω̂ are real. In particular

ω(z)=
∑
i<j

aij(z)dzi∧dzj

where all aij are real holomorphic functions. Furthermore, we have that

αy(z)= ∂P̂y(z)=
2n∑
j=1

bj(z)dzj ,

with bj(z) real holomorphic functions, so it is straight forward to see that X̂y are
all real holomorphic vector fields.

We may now write

(1) P o
y (u)=

∑
|α|≤N

ay,αu
α,

where the ay,α’s are real valued continuous functions on A.
It is a fundamental result in Andersén-Lempert Theory that

(2) uα =
Mα∑
k=1

bαk ·(cαk,1 ·u1+···+cαk,N ·uN )|α|,
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where all coefficients may be taken to be real. Hence, we have that Py(u) is a sum
of real polynomials of the form

(3) gαy,k(u)= dαy,k ·(cαk,1 ·u1+···+cαk,N ·uN )|α| = dαy,k ·(fα
y,k(u))|α|,

where by assumption Xfα
y,k

is complete on Z. Since we have that

X(fα
y,k)α = |α|(fα

y,k)|α|−1Xfα
y,k

we see that X(fα
y,k)α is complete, and this concludes the proof of the lemma. �

3.2. Convergence in Cr-norm

For the lack of a suitable reference we will in this subsection include a result
on Cr-regularity of solutions of ODE’s (the following lemma), and a result on Cr-
approximation by consistent algorithms (see Theorem 3.4 below). We will need the
results for vector fields on smooth manifolds, but since they are all local in nature,
we state and prove them in R

n.

Lemma 3.2. Let D be an open set in R
n and let Xj , X :[0, 1]×D→R

n be

smooth maps, j≥1. We view Xj
t :=Xj(t, ·) and Xt=X(t, ·) as time dependent

smooth vector fields on D. Assume that φj , φ:[0, 1]×D→D are flows on D gen-

erated by Xj and X with φj(0, x)=φ(0, x)≡x, namely

(4) dφj(t, x)
dt

=Xj(t, φj(t, x)), dφ(t, x)
dt

=X(t, φ(t, x)).

Then if

lim
j→∞

||Xj
t −Xt||Cr(K) −→ 0

uniformly for all t on any compact subset K in D, then we have

lim
j→∞

||φj
t−φt||Cr(K) −→ 0

uniformly for all t on any compact subset K in D (for which φt exists). Here r≥0
is a fixed integer, φj

t =φj(t, ·), and ||f ||Cr(K) denotes the Cr-norm of f on K, i.e.,

the maximum of the L∞ norms of all partial derivatives of f up to order r on K

with respect to the variables x.

Proof. It is a basic fact about differential equations (see e.g. Theorem 2.8 in
[17]) that the lemma holds in the case r=0 since Xt and the Xj

t s are assumed to be
smooth (in particular Lipschitz). It is also a fact (however not as basic) that since
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Xt (resp. Xj
t ) is smooth, we have that φ(t, x) (resp. φj(t, x)) is smooth (see e.g.

Theorem 2.10 in [17]).
We will proceed by induction on r, and as induction hypothesis (Ir) we will

assume that the theorem holds for some r−1 with r≥1. As just pointed out we
have that (I1) holds.

Letting A(t, x) (resp. Aj(t, x)) denote the Jacobian of Xt (resp. Xj
t ), and

using the chain rule and the equality of mixed partials in (4), we see that ∂φ
∂xi

(t, x)
(resp. ∂φj

∂xi
(t, x)) is a solution to the initial value problem (variational equation)

(5) ·
y=A(t, φ(t, x))·y

(resp. ·
y=Aj(t, φj(t, x))·y) with initial value x0=(0, ..., 1, ...0) with the 1 at the ith

spot. Now A(t, φ(t, x)) (resp. Aj(t, φj(t, x))) is smooth, and since

Aj(t, φj(t, x))−→A(t, φ(t, x))

in the (r−1)-norm as j→∞, it follows by the induction hypothesis that ∂φj

∂xi
(t, x)→

∂φ
∂xi

(t, x) in (r−1)-norm as j→∞. �

3.3. Consistent algorithms and Cr-norms

Let D⊂R
n be a domain, let A be a compact subset of Rm, and let X(y, x):

A×D→Rn be a smooth map, which for each fixed y we interpret as a vector field
on D. Let φt,y denote the phase flow of Xy. A consistent algorithm for X is a
smooth map ψ :I×A×D→R

n (here I⊂R is an unspecified interval containing the
origin) such that

(6) d

dt
|t=0ψy,t(x)=Xy(x).

The following is a basic result on approximation of flows by means of consistent
algorithms.

Theorem 3.3. With notation as above, let ψy,t(x) be a consistent algorithm for

X. Let K⊂D be a compact set, let T>0, and assume that the flow φy,t(x) exists for
all x∈K, y∈A and all 0≤t≤T . Then for each (t, x)∈IT ×A×K (IT =[0, T ]) we have
that ψn

y,t/n(x) exists for all sufficiently large n. Moreover ψn
y,t(y)/n(x)→φy,t(y)(x)

uniformly as n→∞, where t:A→IT is a continuous function.

In [1], Theorem 2.1.26, this was stated and proved without the uniformity in
(t, x), and without the parameter space A. Although the proof in our case is exactly
the same, we include it for completeness.
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Proof. Fix a constant C>0 such that the following holds.
(1) ‖ψy,t(x)−φy,t(x)‖≤C ·t2, and
(2) ‖φy,t(x)−φy,t(x′)‖≤eC·t ·‖x−x′‖,

for all x, x′ in an open neighbourhood Ω of the full φ(t, y, ·)-orbit of K, and for all
t sufficiently small. We let Ω⊂D. Fix two points x∈K, y∈A, and for a fixed n∈N
(large) we define

xk :=ψk
y,t(y)/n(x) and yk :=φy,k·t(y)/n(x)=φk

y,t(y)/n.

It is not a priori clear that xk is well defined even for large n, this will follow from
the following. Fix an initial n∈N such that ψy,T/n is exists on Ω for all y∈A. We
claim that the following holds:

(7) ‖xk−yk‖≤C ·( t(y)
n

)2 ·k ·e(k−1)·C· t(y)
n ,

for all k≤n. That this holds for k=1 follows immediately from (1), and to prove
it for arbitrary k≤n we proceed by induction. By possibly having to increase n we
see from (7) that xk∈Ω, and so xk+1 is well defined by the initial condition on n.
We then get that

‖ψy,t(y)/n(xk)−φy,t(y)/n(yk)‖≤‖ψy,t(y)/n(xk)−φy,t(y)/n(xk)‖
+‖φy,t(y)/n(xk)−φy,t(y)/n(yk)‖

≤C ·( t(y)
n

)2+eC· t(y)
n ·C ·( t(y)

n
)2 ·k ·e(k−1)·C· t(y)

n

≤C ·( t(y)
n

)2(1+k ·ek·C· t(y)
n )

≤C ·( t(y)
n

)2 ·(k+1)·ek·C· t(y)
n .

This finishes the induction step, and we see that for sufficiently large n we have
that xk is well defined for k≤n independently of x∈D and y∈A, and we have that
‖xk−yk‖≤C ·(Tn )2 ·(k+1)·ek·C·Tn . �

We will need the following generalisation of Theorem 3.3 which was proved in
[16].

Theorem 3.4. With the setup as in Theorem 3.3 we have that ψn
y,t/n(x)→

φt(x) uniformly in Cr-norm with respect to the variables (x)on IT ×A×K as n→∞,

for any fixed r∈N.

Since the proof of this theorem was given in the unpublished diplomarbeit [16]
we will include it here.
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Proof. We start by considering the C1-norm. For this we define a smooth
vector field on Rn×Rn2 by

(8) Yy(x, z)= (X(x), ∂Xy

∂x
(x)z).

We claim first that

(9) Φy(t, x)= (φy(t, x), ∂φy

∂x
(t, x))

is the phase flow of Y with initial value (x, Id). This follows by using the chain rule
to see that

(10) d

dt

∂φy

∂x
(t, x)= ∂

∂x

dφy

dt
(t, x)= ∂(Xy ¨φy)

∂x
(t, x)= ∂Xy

∂x
(φy(t, x))∂φy

∂x
(t, x).

The next step is to write down a convenient consistent algorithm for Yy. We
have that

(11) d

dt
|t=0

∂ψy,t(x)
∂x

= ∂

∂x

d

dt
|t=0ψy,t(x)= ∂Xy

∂x
(x).

Therefore, the map

(12) Ψy(t, x, y)= (ψy(t, x), ∂ψy

∂x
(t, x)z)

is a consistent algorithm for the vector field Yy, and so we have that

lim
n→∞

Ψn
y,t/n −→Φy,t

uniformly as n→∞.
We will now show that the second component of Ψn

y,t/n(x, Id) is equal to
∂ψn

y,t/n

∂x (x), from which it will follow that

∂ψn
y,t/n

∂x
(x)−→ ∂φy

∂x
(t, x)

uniformly as n→∞ (by convergence of consistent algorithms in C0-norm). We will
show this by induction.

Note first that

Ψy,t/n(x, y)= (ψy(t/n, x), ∂ψy

∂x
(t/n, x)y),

so if we set y=Id, we see that the second component of Ψ1
y,t/n(x, Id) is equal to

∂ψ1
y,t/n

∂x (x). As our induction hypothesis Im (1≤m<n) we now assume that the
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second component of Ψm
y,t/n(x, Id) is equal to ∂ψm

y,t/n

∂x (x) (as we have seen I1 holds).
We then have that

Ψm
y,t/n(x, Id)= (ψm

y,t/n(x),
∂ψm

y,t/n

∂x
(x).

We get that

Ψm+1
y,t,n(x, Id)= (ψm+1

y,t/n(x),
∂ψy,t/n

∂x
(ψm

y,t/n(x))
∂ψm

y,t/n

∂x
(x)).

And on the other hand, by the chain rule we have that

∂

∂x
ψy,t/n(ψm

y,t/n(x))=
∂ψy,t/n

∂x
(ψn

y,t/n(x))
∂ψm

y,t/n

∂x
(x)).

This completes the proof of convergence in C1-norm, and the general case follows
by induction on r. �

For the following corollary we introduce some notation. Let X :I×D→R
n be a

smooth map which we interpret as a time dependent vector field on a domain D⊂R
n.

Fix an n∈N. For each j=0, 1, 2, ..., n−1 and t∈IT we let Xjt/n(x) denote the time
independent vector field X(tj)/n(x), and we let ψ

jt/n
s denote its flow. Finally, on

any compact set K⊂D and any for all t where the following is well defined, we set

(13) ψn
t :=ψ

(n−1)t/n
t/n ¨ψ

(n−2)t/n
t/n ¨ ··· ¨ψt/n

t/n ¨ψ0
t/n.

We have the following corollary to Theorem 3.4.

Corollary 3.5. Let X :I×D→Rn be a smooth map which we interpret as a

time dependent vector field on a domain D⊂R
n, and let φt denote its phase flow.

Let K⊂D be a compact set and let IT be an interval such that φt(x) exists on IT×K.

Then ψn
t (x)→φt(x) uniformly and in Ck-norm in the variables (x) on IT ×K as

n→∞ (where ψn
t is defined as in (13)).

Proof. We consider the time independent vector field Y on the orbit (t, φt(D)
by

Y (t, x) := (1, X(t, x)).

Then the flow of Y is given by

Φs(t, x) := (t+s, φt+s(φ−1
t (x))).

Now for each t we let ψt
s denote the flow of the time independent vector field Xt

where t is fixed, and we define

Ψs(t, x)= (t+s, ψt
s(x)).
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Then Ψs is a consistent algorithm for Y , and so Ψn
s/n→Φs uniformly on I×K in

Ck-norm as n→∞. Now starting from t=0 and x∈K it is easy to see by induction
on j that

(14) Ψj
s/n(x)= (js/n, ψ(j−1)s/n

s/n ¨ ··· ¨ψ0
s/n(x)),

for j≤n, and for j=n we see that the second component gives (13) after substituting
t for s. �

3.4. An Andersén-Lempert type Theorem

With the setup from the beginning of this section, we now prove a theorem
that will be the key ingredient in the proof of Theorem 1.2.

Theorem 3.6. Assume that all connected components of Z0 are simply con-

nected and, and let ψ :[0, 1]×Z0→Z0 be a smooth map such that ψt∈Symp(Z0, ω0)
for each t∈[0, 1]. Assume further that ψ0=id, and that there exists an R≥0 such

that ψt(x)=x for all ‖x‖≤R, for all t∈[0, 1]. Then for any r∈N and a>0, 0<b<R,

there exists a sequence Ψj,t :Z→Z with Ψj,t∈Symp(Z, ω) for all j∈N, t∈[0, 1], and
with Ψj,t Z0-invariant, such that

(15) lim
j→∞

‖Ψj,t−ψt‖Cr(aBN
R
∩Z0)

=0

and

(16) lim
j→∞

‖Ψj,t−id‖
Cr(bBN∩Z) =0

uniformly in t.

Proof. We may assume that a>b. Let K⊂Z0 be a compact set containing the
entire ψt-orbit of aBN

R
∩Z0 in its interior.

Step 1: Define the time dependent vector field

Xt(ψt(x)) := d

dt
ψt(x).

Then ψt is the phase flow of X. Since ψt(x)=x for all ‖x‖≤R and t∈[0, 1] we may
extend Xt to be identically zero on an open neighbourhood of bB2n. Consider ψn

t as
in (13). By using Cartan’s formula one sees that each Xjt/n is Hamiltonian, hence
each ψ

jt/n
s is symplectic. By Corollary 3.5 we have that ψn

t →ψt uniformly in Cr-
norm with respect to the variables (x) uniformly in t. Hence, fixing a large enough
n it remains to prove that each t-parameter family of flows ψ

jt/n
s , is approximable



Hamiltonian Carleman approximation and the density property for coadjoint orbits 37

in Cr-norm in the variables (x) by a t-parameter family of flows ψ̃j,t
s uniformly in

(t, s), where ψ̃j,t
s ∈Symp(Z, ω) for each fixed t, and leaving Z0 invariant. By Lemma

3.2 it suffices to approximate the t-parameter family Xjt/n uniformly in Cr-norm
in the variables (x) uniformly in t, by complete holomorphic vector fields which are
tangent to Z0.

Step 2: The approximation of the family Xjt/n on K is now immediate from
Lemma 3.1, we just have to take some extra care to achieve that the approximation
is uniformly close to the identity on bBN∩Z. Let Pj,t denote the real potential for
Xjt/n on Z0 extended to a smooth function on R

N . Then Pj,t may be chosen to
be zero for ‖x‖≤R, and so Pj,t may be extended to be zero on R·BN

C
. Hence (by

possibly having to decrease R slightly) since R·BN
C
∪RN is polynomially convex, we

may approximate Pj,t to arbitrary precision on R·BN
C
∪K by a parameter family

Qj,t of holomorphic polynomials, and by setting Q̃j,t(u):= 1
2 (Qj,t(u)+Qj,t(u)) we

obtain a real holomorphic polynomial approximating Qj,t, and we get that X
˜Qj,t

approximates Xjt/n on K and the identity on R·BN
C

. Following the proof of Lemma
3.1 we obtain complete Hamiltonian vector fields Yt,k on Z such that

∑M
k=1 Yt,k=

X
˜Qj,t

.
Step 3: Let σt,k

s denote the flow of Yt,k for k=1, ...,M , and set

(17) Ψt,j
s :=σt,M

s ¨ ··· ¨σt,1
s .

Then Ψt,j
s is a consistent algorithm for X

˜Qj,t
, and so by Theorem 3.4 we have that

(Ψt,j
t/nm)m→ψ

jt/n
t/n as m→∞. �

3.5. Proof of Theorem 1.2

As explained in the previous section, we may prove the Carleman approxi-
mation in the context presented in the beginning of this section, i.e., for the pair
(Z,Z0). By assumption we have that φ is smoothly isotopic to the identity map,
and so there exists a smooth isotopy ψt, t∈[0, 1], of symplectomorphisms of Z0 such
that ψ0=id and ψ1=φ. For R>0 we set ZR=R·BN∩Z and Z0,R=R·BN∩Z0. We
will construct the approximating automorphism inductively.

Assume that we have constructed φj∈Symp(Z,Ω) leaving Z0 invariant, con-
structed an isotopy ψj

t with ψj
t ∈Ham(Z0, ω) for each t∈[0, 1], and found Rj

1, R
j
2∈N

with Rj
1≥j, Rj

2≥Rj
1+1, such that the following hold:

(1j) φj(Rj
1 ·BN )⊂Rj

2 ·BN ,
(2j) ‖φj−φj−1‖Rj−1

1 BN <εj (for j≥2),
(3j) ψj

0=id,
(4j) ψj

t (x)=x for ‖x‖≤Rj
2+εj for all t∈[0, 1], and
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(5j) ‖ψj
1¨φj−φ‖Cr(x)<ε(x) for all x∈Z0.

The inductive step is the following

(18) We may achieve (1j+1)–(5j+1) with εj+1 arbitrarily small.

Set Rj+1
1 =Rj

2+1 and fix S1 such that Z0,S1 contains the entire ψj
t -orbit and

(ψj
t )−1-orbit of Z0,Rj+1

1 +1 in its interior. Fix a cutoff function χ(z) such that χ(z)=0
for all ‖z‖≤S1 which is identically equal to 1 for ‖z‖≥S1+1. By Theorem 3.6 we
may approximate ψj

t to arbitrary precision near Z0,S1+2 by Z0-invariant symplec-
tomorphisms Ψj

t , which also approximates the identity to arbitrary precision near
Rj

2 ·BN . Next we set

(19) σj
t =(Ψj

t )−1
¨ψj

t ,

and note that we now may assume that this is as close as we like to the identity on
Z0,S+2.

Letting Pt denote the Hamiltonian potential for σj
t we may then consider the

isotopy σ̃j
t whose potential is the function χ·Pt. Then we may still assume that

σ̃t is close we like to the identity on Z0,S1+2, it is equal the identity on Z0,S1 ,
and it is equal to σj

t outside of Z0,S1+1. Note that we may now assume that Ψj
t ¨σ̃

j
t

approximates ψj
t to arbitrary precision on Z0 and also that (Ψj

t ¨σ̃
j
t )−1 approximates

(ψj
t )−1 to arbitrary precision on Z0.

Next we fix Rj+1
2 such that Ψj

1(R
j+1
1 B

N )⊂⊂Rj+1
2 B

N . Choose T such that Z0,T
contains the entire σ̃j

t -orbit and (σ̃j
t )−1-orbit of Z0,Rj+1

2 +1 in its interior, let χ̃ be
a cutoff function such that χ̃(z)=0 for all ‖z‖≤T which is identically equal to 1
for ‖z‖≥T+1. Note that σ̃j

t may be extended continuously to the identity map
near Rj+1

1 BN , thus by arguing additionally as in the proof of Theorem 3.6, we may
get an approximating isotopy Ψ̃j

t as in Theorem 3.6, approximating σ̃j
t to arbitrary

precision near Z0,T+2, and the identity to arbitrary precision on Rj+1
1 B

N .
Next, we set

(20) σ̂j
t =ψj

t ¨ (Ψj
t ¨ Ψ̃j

t )−1

We let P̂t denote the potential of σ̂j
t , and we finally set ψj+1

t be the Hamiltonian
flow on Z0 whose potential is χ̃P̂t, and note that ψj+1

t is the identity near Rj+1
2 BN .

Finally, setting φj+1 :=Ψj
1¨Ψ̃

j
1¨φj , we see that we have established (1j+1)-(5j+1).

Finally, it is standard to construct the sequence φj , choosing each εj sufficiently
small, such that φj converges to the desired approximating automorphism of Z, we
leave the details to the reader.
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4. Some examples

In this section we present some typical example of coadjoint orbits of real Lie
groups and their complexifications.

Example 4.1. (The flat space) Let G0 be the Heisenberg group given by

G0 = {g=

⎛
⎝ 1 a c

0 1 b

0 0 1

⎞
⎠ : a, b, c∈R},

whose complexification G is defined by the same form by requiring a, b, c∈C.
• Coajoint orbits in g∗0.
We can identify g∗0 with R

3, with the coadjoint action given by

g ·(x1, x2, x3)= (x1+bx3, x2−ax3, x3).

We consider the coadjoint orbit OR
x through x=(x1, x2, x3). If x3=0, OR

x is a single
point; if x3 �=0, we can identify OR

x with (R2, ω0) by the map

(x1+bx3, x2−ax3) �−→ (x, y)∈R
2,

where ω0= 1
x3
dx1∧dx2. In particular, if x3=1, OR

x is isomorphic as symplectic
manifolds to R2 with the standard syplectic structure.

• Coajoint orbits in g∗0.
We can identify g∗ with C

3, with the adjoint action of G on g∗ given by the
same way. The coadjoint orbit Oz with z=(z1, z2, z3)∈C3 is a single point if z3=0,
and is isomorphic to (C2,Ω0) with Ω0=z−1

3 dz1∧dz2 if z3 �=0.
When z=x∈R3, (Oz,Ω0, τ) is a complexification of (Ox, ω0), with the anti-

holomorphic convolution τ given by the complex conjugate.

Example 4.2. (The parabolic space) Let G0=SO(3)≈SU(2) be the special or-
thogonal group. The complexification G of G0 is SO(3,C).

• Coajoint orbits in g∗0.
We can identify g∗0 with R

3, with the coadjoint action given by rotations. The
coadjoint orbits are parametrized by R≥0 and given by:

(21) x2
1+x2

2+x2
3 =R2,

with the canonical symplectic structure given by

ω= dx2∧dx3

x1
.

When R=0, the orbit is a single point, and when R=1, the orbit is isomorphic
to the Riemann sphere, with the symplectic structure given by the Fubini-Studty
metric.
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• Coajoint orbits in g∗.
We identify g∗=g∗0⊗C with C3. The origin is a closed coadjoint orbit, and

other closed coadjoint orbits are parametrized by C
∗ and have the form:

(22) z2
1 +z2

2 +z2
3 =R2, (R∈C

∗),

with the canonical holomorphic symplectic structure given by

Ω = dz2∧dz3

z1
.

When R∈R>0, the coajoint orbit of G given by (22) is a complexfication of the
coadjoint orbit of G0 given by (21), with the antiholomorphic convolution τ given
by the complex conjugate.

Example 4.3. (The hyperbolic space) Let G0=SO(2, 1)≈SL(2,R), whose com-
plexification is G=SO(2, 1,C)≈SL(2,C).

The coadjoint action is equivalent to the standard action of SO(2, 1) on R
3.

The orbits are parametrized by R and have the following form:

x2
3−x2

1−x2
2 =R.

The are divided into 3 types corresponding to R>0, R=0 and R<0. Here we just
consider the case that R>0, x3>0. For this case, the isotropy group of the coadjoint
action at (0, 0, R) is S1, and the coadjoint orbit is given by SL(2,R)/S1, which is
isomorphic to the upper half plane H with the symplectic structure given by the
Poincaré metric.

The coadjoint orbits in g∗≈C
3 are given by the same equations. They are

complexifications of coadjoint orbits of G0, with the antiholomorphic convolution τ

given by the complex conjugate.
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