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A breakdown of injectivity for weighted ray
transforms in multidimensions

F. O. Goncharov and R. G. Novikov

Abstract. We consider weighted ray-transforms PW (weighted Radon transforms along
oriented straight lines) in Rd, d≥2, with strictly positive weights W . We construct an example
of such a transform with non-trivial kernel in the space of infinitely smooth compactly supported
functions on Rd. In addition, the constructed weight W is rotation-invariant continuous and is
infinitely smooth almost everywhere on Rd×Sd−1. In particular, by this construction we give
counterexamples to some well-known injectivity results for weighted ray transforms for the case
when the regularity of W is slightly relaxed. We also give examples of continous strictly positive
W such that dimkerPW ≥n in the space of infinitely smooth compactly supported functions on
Rd for arbitrary n∈N∪{∞}, where W are infinitely smooth for d=2 and infinitely smooth almost
everywhere for d≥3.

1. Introduction

We consider the weighted ray transforms PW defined by

PW f(x, θ)=
∫
R

W (x+tθ, θ)f(x+tθ) dt, (x, θ)∈TSd−1, d≥ 2,(1.1)

TSd−1 = {(x, θ)∈R
d×S

d−1 :xθ=0},(1.2)

where f=f(x), W=W (x, θ), x∈Rd, θ∈Sd−1. Here, W is the weight, f is a test
function on R

d. In addition, we interpret TSd−1 as the set of all rays in R
d. As a ray

γ we understand a straight line with fixed orientation. If γ=γ(x, θ), (x, θ)∈TSd−1,
then

γ(x, θ)= {y ∈R
d : y=x+tθ, t∈R} (up to orientation),(1.3)
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where θ gives the orientation of γ.

We assume that

W =W ≥ c> 0, W ∈L∞(Rd×S
d−1),(1.4)

where W denotes the complex conjugate of W , c is a constant.
Note also that

(1.5) PW f(x, θ)=
∫
γ

W (y, γ)f(y) dy, γ = γ(x, θ),

where

(1.6) W (y, γ)=W (y, θ) for y ∈ γ, γ = γ(x, θ), (x, θ)∈TSd−1.

The aforementioned transforms PW arise in various domains of pure and ap-
plied mathematics; see [LB73], [TM80], [Q83], [Be84], [MQ85], [Fi86], [BQ87],
[Sh92], [Kun92], [BQ93], [B93], [Sh93], [KLM95], [Pa96], [ABK98], [Na01], [N02a],
[N02b], [BS04], [Bal09], [Gi10], [BJ11], [PG13], [N14], [I16], [Ng17] and references
therein.

In particular, the related results are the most developed for the case when
W≡1. In this case PW is reduced to the classical ray-transform P (Radon trans-
form along straight lines). The transform P arises, in particular, in the X-ray
transmission tomography. We refer to [R17], [J38], [C64], [GGG82], [H01], [Na01]
and references therein in connection with basic results for this classical case.

At present, many important results on transforms PW with other weights W

satisfying (1.4) are also known; see the publications mentioned above with non-
constant W and references therein.

In particular, assuming (1.4) we have the following injectivity results.

Injectivity 1. (see [Fi86]) Suppose that d≥3 and W∈C2(Rd×S
d−1). Then PW

is injective on Lp
0(Rd) for p>2, where Lp

0 denotes compactly supported functions
from Lp.

Injectivity 2. (see [MQ85]) Suppose that d=2, W∈C2(R2×S
1) and

0<c0 ≤W, ‖W‖C2(R2×S1) ≤N,(1.7)

for some constants c0 and N . Then, for any p>2, there is δ=δ(c0, N, p)>0 such
that PW is injective on Lp(B(x0, δ)) for any x0∈R2, where

Lp(B(x0, δ))= {f ∈Lp(R2) : supp f ⊂B(x0, δ)},
B(x0, δ)= {x∈R

2 : |x−x0| ≤ δ}.
(1.8)
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Injectivity 3. (see [Q83]) Suppose that d=2, W∈C1(R2×S
1) and W is rotation

invariant (see formula (2.18) below). Then PW is injective on Lp
0(R2) for p≥2.

In a similar way with [Q83], we say that W is rotation invariant if and only if

W (x, γ) is independent of the orientation of γ,

W (x, γ)=W (Ax,Aγ) for x∈ γ, γ ∈TSd−1, A∈O(d),
(1.9)

where TSd−1 is defined in (1.2), O(d) denotes the group of orthogonal transforma-
tions of Rd.

Note also that property (1.9) can be rewritten in the form (2.18), (2.19) or
(2.20), (2.21); see Section 2.

Injectivity 4. (see [BQ87]) Suppose that d=2, W is real-analytic on R
2×S

1.
Then PW is injective on Lp

0(R2) for p≥2.

Injectivity 1 is a global injectivity for d≥3. Injectivity 2 is a local injectivity
for d=2. Injectivity 3 is a global injectivity for d=2 for the rotation invariant case.
Injectivity 4 is a global injectivity for d=2 for the real-analytic case.

The results of Injectivity 1 and Injectivity 2 remain valid with Cα, α>1, in
place of C2 in the assumptions on W ; see [I16].

Injectivity 1 follows from Injectivity 2 in the framework of the layer-by-layer
reconstruction approach. See [Fi86], [N02a], [I16] and references therein in connec-
tion with the layer-by-layer reconstruction approach for weighted and non-abelian
ray transforms in dimension d≥3.

The work [B93] gives a counterexample to Injectivity 4 for PW in C∞
0 (R2) for

the case when the assumption that W is real-analytic is relaxed to the assump-
tion that W is infinitely smooth, where C∞

0 denotes infinitely smooth compactly
supported functions.

In somewhat similar way with [B93], in the present work we obtain counterex-
amples to Injectivity 1, Injectivity 2 and Injectivity 3 for the case when the regu-
larity of W is slightly relaxed. In particular, by these counterexamples we continue
related studies of [MQ85], [B93] and [GN18].

More precisely, in the present work we construct W and f such that

PW f ≡ 0 on TSd−1, d≥ 2,(1.10)

where W satisfies (1.4), W is rotation-invariant (i.e., satisfies (1.9)),

W is infinitely smooth almost everywhere on R
d×S

d−1 and

W ∈Cα(Rd×S
d−1), at least, for any α∈ (0, α0), where α0 =1/16;(1.11)
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f is a non-zero spherically symmetric infinitely smooth and
compactly supported function on R

d;(1.12)

see Theorem 1 of Section 3.
These W and f directly give the aforementioned counterexamples to Injectiv-

ity 1 and Injectivity 3.
Our counterexample to Injectivity 1 is of particular interest (and is rather

surprising) in view of the fact that the problem of finding f on R
d from PW f on

TSd−1 for known W is strongly overdetermined for d≥3. Indeed,

dimR
d = d, dimTSd−1 =2d−2,

d< 2d−2 for d≥ 3.

This counterexample to Injectivity 1 is also rather surprising in view of the afore-
mentioned layer-by-layer reconstruction approach in dimension d≥3.

Our counterexample to Injectivity 3 is considerably stronger than the preceed-
ing counterexample of [MQ85], where W is not yet continuous and is not yet strictly
positive (i.e., is not yet separated from zero by a positive constant).

Using our W and f of (1.11), (1.12) for d=3 we also obtain the aforementioned
counterexample to Injectivity 2; see Corollary 1 of Section 3.

Finally, in the present work we also give examples of W satisfying (1.4) such
that dim kerPW ≥n in C∞

0 (Rd) for arbitrary n∈N∪{∞}, where W∈C∞(R2×S
1) for

d=2 and W satisfy (1.11) for d≥3; see Theorem 2 of Section 3. To our knowledge,
examples of W satisfying (1.4), where dim kerPW ≥n (for example in L2

0(Rd)) were
not yet given in the literature even for n=1 in dimension d≥3 and even for n=2 in
dimension d=2.

In the present work we adopt and develop considerations of the famous work
[B93] and of our very recent work [GN18].

In Section 2 we give some preliminaries and notations.
Main results are presented in detail in Sections 3.
Related proofs are given in Sections 4–9.

2. Some preliminaries

Notations Let

Ω =R
d×S

d−1,(2.1)
r(x, θ)= |x−(xθ)θ|, (x, θ)∈Ω,(2.2)
Ω0(δ)= {(x, θ)∈Ω : r(x, θ)>δ},(2.3)
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Ω1(δ)=Ω\Ω0(δ)= {(x, θ)∈Ω : r(x, θ)≤ δ}, δ > 0,(2.4)
Ω(Λ)= {(x, θ)∈R

d×S
d−1 : r(x, θ)∈Λ}, Λ⊂ [0,+∞),(2.5)

T0(δ)= {(x, θ)∈TSd−1 : |x|>δ},(2.6)
T1(δ)= {(x, θ)∈TSd−1 : |x| ≤ δ}, δ > 0,(2.7)
T (Λ)= {(x, θ)∈TSd−1 : |x| ∈Λ}, Λ⊂ [0,+∞),(2.8)
Jr,ε =(r−ε, r+ε)∩[0,+∞), r∈ [0,+∞), ε> 0.(2.9)

The set T0(δ) in (2.6) is considered as the set of all rays in R
d which are located

at distance greater than δ from the origin.
The set T1(δ) in (2.7) is considered as the set of all rays in Rd which are located

at distance less or equal than δ from the origin.
We also consider the projection

π : Ω−→TSd−1,(2.10)
π(x, θ)= (πθx, θ), (x, θ)∈Ω,(2.11)
πθx=x−(xθ)θ.(2.12)

In addition, r(x, θ) of (2.2) is the distance from the origin {0}∈Rd to the ray
γ=γ(π(x, θ)) (i.e., r(x, θ)=|πθx|). The rays will be also denoted by

(2.13) γ = γ(x, θ) def= γ(π(x, θ)), (x, θ)∈Ω.

We also consider

(2.14) PW f(x, θ)=PW f(π(x, θ)) for (x, θ)∈Ω.

We also define
B(x0, δ)= {x∈R

d : |x−x0|<δ},
B(x0, δ)= {x∈R

d : |x−x0| ≤ δ}, x0 ∈R
d, δ > 0,

(2.15)

B =B(0, 1), B =B(0, 1).(2.16)

For a function f on Rd we denote its restriction to a subset Σ⊂Rd by f |Σ.
By C0, C∞

0 we denote continuous compactly supported and infinitely smooth
compactly supported functions, respectively.

By Cα(Y ), α∈(0, 1), we denote the space of α-Hölder functions on Y with the
norm:

‖u‖Cα(Y ) = ‖u‖C(Y )+‖u‖′Cα(Y ),

‖u‖′Cα(Y ) = sup
y1,y2∈Y

|y1−y2|≤1

|u(y1)−u(y2)|
|y1−y2|α

,(2.17)

where ‖u‖C(Y ) denotes the supremum of |u| on Y .
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Rotation invariance Using formula (1.6), for positive and continous W , prop-
erty (1.9) can be rewritten in the following equivalent form:

(2.18) W (x, θ)=U(|x−(xθ)θ|, xθ), x∈R
d, θ∈S

d−1,

for some positive and continuous U such that

(2.19) U(r, s)=U(−r, s)=U(r,−s), r∈R, s∈R.

In addition, symmetries (2.18), (2.19) of W can be also written as

W (x, θ)= Ũ(|x|, xθ), (x, θ)∈Ω,(2.20)

Ũ(r, s)= Ũ(−r, s)= Ũ(r,−s), r∈R, s∈R.(2.21)

where Ũ is positive and continuous on R×R. Using the formula |x|2=|xθ|2+r2(x, θ),
one can see that symmetries (2.18), (2.19) and symmetries (2.20), (2.21) of W are
equivalent.

Partition of unity We recall the following classical result (see, e.g., Theorem 5.6
in [M92]):
Let M be a C∞-manifold, which is Hausdorff and has a countable base. Let also
{Ui}∞i=1 be an open locally-finite cover of M.

Then there exists a C∞-smooth locally-finite partition of unity {ψi}∞i=1 on M,
such that

(2.22) suppψi ⊂Ui.

In particular, any open interval (a, b)⊂R and Ω satisfy the conditions for M
of this statement. It will be used in Subsection 3.1.

3. Main results

Theorem 1. There exist a weight W satisfying (1.4) and a non-zero function

f∈C∞
0 (Rd), d≥2, such that

(3.1) PW f ≡ 0 on TSd−1,

where PW is defined in (1.1). In addition, W is rotation invariant, i.e., satisfies

(2.18), and f is spherically symmetric with supp f⊆B. Moreover,

W ∈C∞(Ω\Ω(1)),(3.2)
W ∈Cα(Rd×S

d−1) for any α∈ (0, α0), α0 =1/16,(3.3)
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W ≥ 1/2 on Ω and W ≡ 1 on Ω([1,+∞)),(3.4)
W (x, θ)≡ 1 for |x| ≥R> 1, θ∈S

d−1,(3.5)

where Ω, Ω(1), Ω([1,+∞)) are defined by (2.1), (2.5), R is a constant.

The construction of W and f proving Theorem 1 is presented below in Sub-
sections 3.1, 3.2. In addition, this construction consists of its version in dimension
d=2 (see Subsection 3.1) and its subsequent extension to the case of d≥3 (see
Subsection 3.2).

Theorem 1 directly gives counterexamples to Injectivity 1 and Injectivity 3 of
Introduction. Theorem 1 also implies the following counterexample to Injectivity 2
of Introduction:

Corollary 1. For any α∈(0, 1/16) there is N>0 such that for any δ>0 there

are Wδ, fδ satisfying

Wδ ≥ 1/2, Wδ ∈Cα(R2×S
1), ‖Wδ‖Cα(R2×S1) ≤N(3.6)

fδ ∈C∞(R2), fδ �≡ 0, supp fδ ⊆B(0, δ),(3.7)
PWδ

fδ ≡ 0 on TS1.(3.8)

The construction of Wδ, fδ proving Corollary 1 is presented in Subsection 5.1.

Theorem 2. For any n∈N∪{∞} there exists a weight Wn satisfying (1.4)
such that

(3.9) dim kerPWn ≥n in C∞
0 (Rd), d≥ 2,

where PW is defined in (1.1). Moreover,

Wn ∈C∞(R2×S
1) for d=2,(3.10)

Wn is infinitely smooth almost everywhere on R
d×S

d−1 and

Wn ∈Cα(Rd×S
d−1), α∈ (0, 1/16) for d≥ 3,

(3.11)

Wn(x, θ)≡ 1 for |x| ≥R> 1, θ∈S
d−1 for n∈N, d≥ 2,(3.12)

where R is a constant.

The construction of Wn proving Theorem 2 is presented in Section 4. In this
construction we proceed from Theorem 1 of the present work for d≥3 and from the
result of [B93] for d=2. In addition, for this construction it is essential that n<+∞
in (3.12).
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3.1. Construction of f and W for d=2

In dimension d=2, the construction of f and W adopts and develops consider-
ations of [B93] and [GN18]. In particular, we construct f , first, and then W (in this
construction we use notations of Section 2 for d=2). In addition, this construction
is commented in Remarks 1–5 below.

Construction of f The function f is constructed as follows:

f =
∞∑
k=1

fk
k! ,(3.13)

fk(x)= f̃k(|x|)=Φ(2k(1−|x|)) cos(8k|x|2), x∈R
2, k∈N,(3.14)

for arbitrary Φ∈C∞(R) such that

supp Φ = [4/5, 6/5],(3.15)
0<Φ(t)≤ 1 for t∈ (4/5, 6/5),(3.16)
Φ(t)= 1, for t∈ [9/10, 11/10],(3.17)
Φ monotonously increases on [4/5, 9/10]

and monotonously decreases on [11/10, 6/5].(3.18)

Properties (3.15), (3.16) imply that functions f̃k (and functions fk) in (3.14) have
disjoint supports:

suppf̃i∩suppf̃j =∅ if i �= j,

suppf̃k = [1−2−k

(
6
5

)
, 1−2−k

(
4
5

)
], i, j, k∈N.

(3.19)

This implies the convergence of series in (3.13) for every fixed x∈R2.

Lemma 1. Let f be defined by (3.13)–(3.17). Then f is spherically symmetric,

f∈C∞
0 (R2) and supp f⊆B. In addition, if γ∈TS1, γ∩B �=∅, then f |γ �≡0 and f |γ

has non-constant sign.

Lemma 1 is similar to Lemma 1 of [GN18] and it is, actually, proved in Sec-
tion 4.1 of [GN18].

Remark 1. Formulas (3.13)–(3.17) for f are similar to the formulas for f in
[B93], where PW was considered in R

2, and also to the formulas for f in [GN18],
where the weighted Radon transform RW along hyperplanes was considered in R

3.
The only difference between (3.13)–(3.17) and the related formulas in [GN18] is the
dimension d=2 in (3.13)–(3.17) instead of d=3 in [GN18]. At the same time, the
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important difference between (3.13)–(3.17) and the related formulas in [B93] is that
in formula (3.14) the factor cos(8k|x|2) depends only on |x|, whereas in [B93] the
corresponding factor is cos(3kφ) which depends only on the angle φ in the polar
coordinates in R

2. In a similar way with [B93], [GN18], we use the property that
the restriction of the function cos(8k|x|2) to an arbitrary ray γ intersecting the open
ball oscillates sufficiently fast (with change of the sign) for large k.

Construction of W In our example W is of the following form:

W (x, θ)=φ1(x)
(

N∑
i=0

ξi(r(x, θ))Wi(x, θ)
)

+φ2(x)

=φ1(x)
(
ξ0(r(x, θ))W0(x, θ)+

N∑
i=1

ξi(r(x, θ))Wi(x, θ)
)

+φ2(x),(3.20)

(x, θ)∈Ω,

where

φ1 =φ1(|x|), φ2 =φ2(|x|)
is a C∞-smooth partition of unity on R

2 such that,
φ1 ≡ 0 for |x| ≥R> 1, φ1 ≡ 1 for |x| ≤ 1,
φ2 ≡ 0 for |x| ≤ 1,

(3.21)

{ξi(s), s∈R}Ni=0 is a C∞-smooth partition of unity on R,(3.22)
ξi(s)= ξi(−s), s∈R, i= 0, N,(3.23)
Wi(x, θ) are bounded, continuous, strictly positive

and rotation invariant (according to (2.18)), (2.21) on
the open vicinities of supp ξi(r(x, θ)), i= 0, N, respectively.(3.24)

From the result of Lemma 1 and from (3.20), (3.21) it follows that

PW f(x, θ) = ξ0(|x|)PW0f(x, θ)+
N∑
i=1

ξi(|x|)PWif(x, θ), (x, θ)∈TS1,(3.25)

where W is given by (3.20). Here, we also used that r(x, θ)=|x| for (x, θ)∈TS1.
From (3.20)–(3.24) it follows that W of (3.20) satisfies the conditions (1.4),

(2.20), (2.21).
The weight W0 is constructed in next paragraph and has the following proper-

ties:

W0 is bounded, continuous and rotation invariant on Ω(1/2,+∞),(3.26)
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W0 ∈C∞(Ω ((1/2, 1)∪(1,+∞))) and
W0 ∈Cα(Ω(1/2,+∞)) for α∈ (0, 1/16),(3.27)
there exists δ0 ∈ (1/2, 1) such that:
W0(x, θ)≥ 1/2 if r(x, θ)>δ0,

W0(x, θ)= 1 if r(x, θ)≥ 1,
(3.28)

PW0f(x, θ)= 0 on Ω((1/2,+∞)),(3.29)

where PW0 is defined according to (1.1) for W=W0, f is given by (3.13), (3.14).
In addition,

supp ξ0 ⊂ (−∞,−δ0)∪(δ0,+∞),(3.30)
ξ0(s)= 1 for |s| ≥ 1,(3.31)

where δ0 is the number of (3.28).
In particular, from (3.28), (3.30) it follows that

(3.32) W0(x, θ)ξ0(r(x, θ))> 0 if ξ0(r(x, θ))> 0.

In addition,

ξi(r(x, θ))Wi(x, θ) are bounded, rotation invariant and C∞ on Ω,(3.33)
Wi(x, θ)≥ 1/2 if ξi(r(x, θ)) �=0,(3.34)
PWif(x, θ)= 0 on (x, θ)∈TS1, such that ξi(r(x, θ)) �=0,(3.35)

i=1, N, (x, θ)∈Ω.

Weights W1, ...,WN of (3.20) and {ξi}Ni=0 are constructed in Subsection 3.1.
Theorem 1 for d=2 follows from Lemma 1 and formulas (3.20)–(3.29),

(3.32)–(3.35).
We point out that the construction of W0 of (3.20) is substantially different

from the construction of W1, ...,WN . The weight W0 is defined for the rays γ∈TS1

which can be close to the boundary ∂B of B which results in restrictions on global
smoothness of W0.

Remark 2. The construction of W summarized above in formulas (3.20)–(3.35)
arises in the framework of finding W such that

PW f ≡ 0 on TS1 for f defined in (3.13)–(3.18),(3.36)

under the condition that W is strictly positive, sufficiently regular and rotation in-
variant (see formulas (1.4), (2.18), (2.19)). In addition, the weights Wi, i=0, ..., N ,
in (3.20) are constructed in a such a way that

(3.37) PWif =0 on Vi, i=0, ..., N,
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under the condition that Wi=Wi(x, γ) are strictly positive, sufficiently regular and
rotation invariant for x∈γ, γ∈Vi⊂TS1, i=0, ..., N , where

{Vi}Ni=0 is an open cover of TS1 and V0 =T0(δ0),(3.38)
Vi =T (Λi) for some open Λi ⊂R, i=0, ..., N,(3.39)

where T0 is defined in (2.6), δ0 is the number of (3.28), T (Λ) is defined in (2.8).
In addition, the functions ξi, i=0, ..., N , in (3.20) can be interpreted as a parti-
tion of unity on TS1 subordinated to the open cover {Vi}Ni=0. The aforementioned
construction of W is a two-dimensional analog of the construction developed in
[GN18], where the weighted Radon transform RW along hyperplanes was consid-
ered in R

3. At the same time, the construction of W of the present work is similar
to the construction in [B93] with the important difference that in the present work
f is spherically symmetric and W, Wi, i=0, ..., N , are rotation invariant.

Construction of W0 Let {ψk}∞k=1 be a C∞ partition of unity on (1/2, 1) such
that

suppψk ⊂ (1−2−k+1, 1−2−k−1), k∈N,(3.40)
first derivatives ψ′

k satisfy the bounds: sup |ψ′
k| ≤C2k,(3.41)

where C is a positive constant. Actually, functions {ψk}∞k=1 satisfying (3.40), (3.41)
were used in considerations of [B93].

Note that

(3.42) 1−2−(k−2)−1 < 1−2−k(6/5), k≥ 3.

Therefore,

(3.43) for all s0, t0 ∈R, s0 ∈ suppψk−2, t0 ∈ supp Φ(2k(1−t))=⇒ s0 <t0, k≥ 3.

Weight W0 is defined by the following formulas

W0(x, θ)=

⎧⎨⎩1−G(x, θ)
∞∑
k=3

k!fk(x)ψk−2(r(x, θ))
Hk(x, θ)

, 1/2<r(x, θ)<1,

1, r(x, θ)≥1,
(3.44)

G(x, θ)=
∫

γ(x,θ)

f(y) dy, Hk(x, θ)=
∫

γ(x,θ)

f2
k (y) dy, x∈R

2, θ∈S
1,(3.45)

where f, fk are defined in (3.13), (3.14), respectively, rays γ(x, θ) are given by
(2.13).

Formula (3.44) implies that W0 is defined on Ω0(1/2)⊂Ω.
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Due to (3.14)–(3.17), (3.40), (3.43), in (3.45) we have that

Hk(x, θ) �=0 if ψk−2(r(x, θ)) �=0, (x, θ)∈Ω,(3.46)
ψk−2(r(x, θ))

Hk(x, θ)
∈C∞(Ω(1/2, 1)),(3.47)

where r(x, θ) is defined in (2.2), Ω, Ω(·) are defined in (2.1), (2.5), d=2.
Also, for any fixed (x, θ)∈Ω, 1/2<r(x, θ), the series in the right hand-side of

(3.44) has only a finite number of non-zero terms (in fact, no more than two) and,
hence, the weight W0 is well-defined.

By the spherical symmetry of f , functions G,Hk in (3.44) are of the type (2.18)
(and (2.20)). Therefore, W0 is rotation invariant (in the sense of (2.18) and (2.20)).

Actually, formula (3.29) follows from (3.13), (3.14), (3.44), (3.45) (see Subsec-
tion 6.2 for details).

Using the construction of W0 and the assumption that r(x, θ)>1/2 one can see
that W0 is C∞ on its domain of definition, possibly, except points with r(x, θ)=1.

Note also that due to (3.13), (3.14), the functions fk, G,Hk, used in (3.44),
(3.45) can be considered as functions of one-dimensional arguments.

Formulas (3.26)–(3.28) are proved in Subsection 6.1.

Remark 3. Formulas (3.44), (3.45) given above for the weight W0 are considered
for the rays from T0(δ0) (mentioned in Remark 2) and, in particular, for rays close
to the tangent rays to ∂B. These formulas are direct two-dimensional analogs of the
related formulas in [GN18]. At the same time, formulas (3.44), (3.45) are similar to
the related formulas in [B93] with the important difference that f, fk are spherically
symmetric in the present work and, as a corollary, W0 is rotation invariant. Also,
in a similar way with [B93], [GN18], in the present work we show that G(x, θ) tends
to zero sufficiently fast as r(x, θ)→1. This is a very essential point for continuity of
W0 and it is given in Lemma 3 of Subsection 6.1.

Construction of W1, ...,WN and ξ0, ..., ξN

Lemma 2. Let f∈C∞
0 (R2) be spherically symmetric, (x0, θ0)∈TS1,

f |γ(x0,θ0) �≡0 and f |γ(x0,θ0) changes the sign. Then there exist ε0>0 and weight

W(x0,θ0),ε0 such that

PW(x0,θ0),ε0
f =0 on Ω(Jr(x0,θ0),ε0),(3.48)

W(x0,θ0),ε0 is bounded, infinitely smooth,

strictly positive and rotation invariant on Ω(Jr(x0,θ0),ε0),(3.49)

where Ω(Jr,ε0),Jr,ε0 are defined in (2.5) and (2.9), respectively.
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Lemma 2 is proved in Section 7. This lemma is a two-dimensional analog of
the related lemma in [GN18].

Remark 4. In Lemma 2 the construction of W(x0,θ0),ε0 arises from
1. finding strictly positive and regular weight W(x0,θ0),ε on the rays γ=γ(x, θ)

with fixed θ=θ0, where r(x, θ0)∈Jr(x0,θ0),ε for some ε>0, such that (3.48) holds for
θ=θ0 and under the condition that
(3.50)

W(x0,θ0),ε(y, γ)=W(x0,θ0),ε(|yθ0|, γ), y ∈ γ = γ(x, θ0), r(x, θ0)∈Jr(x0,θ0),ε;

2. extending Wr(x0,θ0),ε to all rays γ=γ(x, θ), r(x, θ)∈Jr(x0,θ0),ε, θ∈S1, via
formula (1.9).
We recall that r(x, θ) is defined in (2.2).

Let f be the function of (3.13), (3.14). Then, using Lemmas 1, 2 one can see
that

for all δ ∈ (0, 1) there exist {Ji =Jri,εi ,Wi =W(xi,θi),εi}Ni=1

such that Ji, i=1, N, is an open cover of [0, δ] in R,

and Wi satisfy (3.48) and (3.49) on Ω(Ji), respectively.(3.51)

Actually, we consider (3.51) for the case of δ=δ0 of (3.28).
Note that in this case {Ω(Ji)}Ni=1 for Ji of (3.51) is the open cover of Ω1(δ0).
To the set Ω0(δ0) we associate the open set

(3.52) J0 =(δ0,+∞)⊂R.

Therefore, the collection of intervals {±Ji, i=0, N} is an open cover of R, where
−Ji is the symmetrical reflection of Ji with respect to {0}∈R.

We construct the partition of unity {ξi}Ni=0 as follows:

ξi(s)= ξi(|s|)= 1
2(ξ̃i(s)+ξ̃i(−s)), s∈R,(3.53)

supp ξi ⊂Ji∪(−Ji), i= 0, N,(3.54)

where {ξ̃i}Ni=0 is a partition of unity for the open cover {Ji∪(−Ji)}Ni=0 (see Section 2,
Partition of unity, for Ui=Ji∪(−Ji)).

Properties (3.30), (3.54) follow from (2.22) for {ξ̃i}Ni=0 with Ui=Ji∪(−Ji), the
symmetry of Ji∪(−Ji), i=1, N , choice of J0 in (3.52) and from (3.53).

In turn, (3.31) follows from (3.52) and the construction of Ji, i=1, N , from
(3.51) (see the proof of Lemma 2 and properties (3.51) in Section 7 for details).

Properties (3.33)–(3.35) follow from (3.51) for δ=δ0 and from (3.52)–(3.54).
This completes the description of W1, ...,WN and {ξi}Ni=0.
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Remark 5. We have that Ji=Λi, i=1, ..., N , where Λi are the intervals in
formula (3.39) of Remark 2 and Ji are the intervals considered in (3.51), (3.52).

3.2. Construction of W and f for d≥3

Consider f and W of Theorem 1, for d=2, constructed in Subsection 3.1. For
these f and W consider f̃ and Ũ such that

(3.55) f(x)= f̃(|x|), W (x, θ)= Ũ(|x|, |xθ|), x∈R
2, θ∈S

1.

Proposition 1. Let W and f , for d≥3, be defined as

W (x, θ)= Ũ(|x|, |xθ|), (x, θ)∈R
d×S

d−1,(3.56)
f(x)= f̃(|x|), x∈R

d,(3.57)

where Ũ , f̃ are the functions of (3.55). Then

(3.58) PW f ≡ 0 on TSd−1.

In addition, weight W satisfies properties (3.2)–(3.5), f is spherically symmetric

infinitely smooth and compactly supported on R
d, f �≡0.

Proposition 1 is proved in Subsection 5.2.
This completes the proof of Theorem 1.

4. Proof of Theorem 2

4.1. Proof for d≥3

Let

W be the weight of Theorem 1 for d≥ 3,(4.1)
R be the number in (3.5) for d≥ 3,(4.2)
{yi}∞i=1 be a sequence of vectors in R

d such that y1 =0, |yi−yj |> 2R
for i �= j, i, j ∈N,(4.3)

{Bi}∞i=1 be the closed balls in R
d of radius R centered at yi

(see (4.2), (4.3)).(4.4)
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The weight Wn is defined as follows

Wn(x, θ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x �∈
n⋃

i=1
Bi,

W (x−y1, θ)=W (x, θ) if x∈B1,

W (x−y2, θ) if x∈B2,

...,

W (x−yk, θ) if x∈Bk,

...,

W (x−yn, θ) if x∈Bn,

(4.5)

θ∈S
d−1, n∈N∪{∞}, d≥ 3,

where W is defined in (4.1), yi and Bi are defined in (4.3), (4.4), respectively.
Properties (1.4), (3.11) and (3.12) for Wn, defined in (4.5), for d≥3, follow

from (3.2)–(3.5), (4.1), (4.2).
Let

f1(x) def= f(x), f2(x) def= f(x−y2), ..., fn(x) def= f(x−yn), x∈R
d, d≥ 3,(4.6)

where yi are defined in (4.3) and

(4.7) f is the function of Theorem 1 for d≥ 3.

One can see that

(4.8) fi ∈C∞
0 (Rd), d≥ 3, fi �≡ 0, supp fi ⊂Bi, Bi∩Bj =∅ for i �= j,

where Bi are defined in (4.4), i=1, ..., n.
The point is that

PWnfi ≡ 0 on TSd−1, d≥ 3, i=1, ..., n,(4.9)
fi are linearly independent in C∞

0 (Rd), d≥ 3, i=1, ..., n,(4.10)

where Wn is defined in (4.5), fi are defined in (4.6).
To prove (4.9) we use, in particular, the following general formula:

PWyfy(x, θ) =
∫

γ(x,θ)

W (y′−y, θ)f(y′−y)dy′

=
∫

γ(x−y,θ)

W (y′, θ)f(y′)dy′ =PW f(x−y, θ), x∈R
d, θ∈S

d−1,(4.11)
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Wy(x, θ) =W (x−y, θ), fy = f(x−y), x, y ∈R
d, θ∈S

d−1.(4.12)

where W is an arbitrary weight satisfying (1.4), f is a test-function, γ(x, θ) is defined
according to (2.13).

Formula (4.9) follows from formula (3.1), definitions (4.5), (4.6), (4.7), proper-
ties (4.8) and from formulas (4.11), (4.12).

Formula (4.10) follows from definitions (4.6), (4.7) and properties (4.8).
This completes the proof of Theorem 2 for d≥3.

4.2. Proof for d=2

In [B93], there were constructed a weight W and a function f for d=2, such
that:

PW f ≡ 0 on TS1,(4.13)
W =W ≥ c> 0, W ∈C∞(R2×S

1),(4.14)
f ∈C∞

0 (R2), f �≡ 0, suppf ⊂B,(4.15)

where c is a constant, B is defined in (2.16).
We define

(4.16) W̃ (x, θ)= c−1φ1(x)W (x, θ)+φ2(x), x∈R
2, θ∈S

1,

where W is the weight of (4.13), (4.14), c is a constant of (4.14).

φ1 =φ1(x), φ2 =φ2(x) is a C∞-smooth partition of unity on R
2 such that,

φ1 ≡ 0 for |x| ≥R> 1, φ1 ≡ 1 for |x| ≤ 1, φ1 ≥ 0 on R
2,

φ2 ≡ 0 for |x| ≤ 1, φ2 ≥ 0 on R
2,

(4.17)

where R is a constant.
From (4.13)–(4.17) it follows that

P
˜W
f ≡ 0 on TS1,(4.18)

W̃ ≥ 1, W̃ ∈C∞(R2×S
1),

W̃ (x, θ)≡ 1 for |x| ≥R> 1, θ∈S
1.

(4.19)

The proof of Theorem 2 for d=2 proceeding from (4.15), (4.16), (4.18), (4.19) is
completely similar to the proof of Theorem 2 for d≥3, proceeding from Theorem 1.

Theorem 2 is proved.
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5. Proofs of Corollary 1 and Proposition 1

5.1. Proof of Corollary 1

Let

Xr = {x1e1+x2e2+re3 : (x1, x2)∈R
2}, 0≤ r < 1,(5.1)

S =X0∩S2 = {(cosφ, sinφ, 0)∈R
3 :φ∈ [0, 2π)}�S

1.(5.2)

where (e1, e2, e3) is the standard orthonormal basis in R
3.

Without loss of generality we assume that 0<δ<1. Choosing r so that
√

1−δ2≤
r<1, we have that the intersection of the three dimensional ball B(0, 1) with Xr

is the two-dimensional disk B(0, δ′), δ′≤δ (with respect to the coordinates (x1, x2)
induced by basis (e1, e2) on Xr).

We define N, Wδ on R
2×S

1 and fδ on R
2 as follows:

N = ‖W‖Cα(R3×S2),(5.3)

Wδ :=W |Xr×S ,(5.4)

fδ := f |Xr ,

for r=
√

1−δ2,(5.5)

where W and f are the functions of Theorem 1 for d=3.
Due to (3.2)–(3.4), (5.3), (5.4) we have that

(5.6) Wδ ≥ 1/2, ‖Wδ‖Cα(R2×S1) ≤N.

Properties (5.6) imply (3.6).
In view of Lemma 1 for the function f of Theorem 1, we have that fδ is

spherically symmetric, fδ∈C∞
0 (B(0, δ′)), fδ �≡0.

Using (3.1), (5.4), (5.5) one can see that (3.8) holds.
This completes the proof of Corollary 1.

5.2. Proof of Proposition 1

Let

(5.7) I(r)=
∫
γr

Ũ(|y|, r)f̃(|y|) dy, r≥ 0, γr = γ(re2, e1),

where γ(x, θ) is defined by (1.3), (e1, ..., ed) is the standard basis in R
d.
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Due to formula (3.1) of Theorem 1 for d=2 and formulas (3.55), (5.7) we have
that

(5.8) I(r)=PW f(re2, e1)= 0 for r≥ 0.

Next, using (1.1), (3.55), (5.8) we have also that

PW f(x, θ)=
∫

γ(x,θ)

Ũ(|y|, |y−(yθ)θ|)f̃(|y|) dy= I(|x|)= 0 for (x, θ)∈TSd−1,(5.9)

where γ(x, θ) is defined in (1.3).
Formula (5.9) implies (3.58). Properties of W and f mentioned in Proposition 1

follow from properties (3.2)–(3.5) of W and of f of Theorem 1 for d=2.
This completes the proof of Proposition 1.

6. Proofs of formulas (3.26)–(3.29)

6.1. Proof of formulas (3.26)–(3.28)

Lemma 3. Let W0 be defined by (3.44), (3.45). Then W0 admits the following

representation:

W0(x, θ)=U0(|x−(xθ)θ|, xθ), , (x, θ)∈Ω((1/2,+∞)),(6.1)

U0(r, s)=

⎧⎪⎨⎪⎩1−G̃(r)
∞∑
k=3

k!f̃k((s2+r2)1/2)ψk−2(r)
H̃k(r)

, 1/2<r<1,

1, r≥1,
(6.2)

G̃(r) def=
∫
γr

f̃(|y|) dy, H̃k(r)
def=

∫
γr

f̃2
k (|y|) dy, f̃ =

∞∑
k=1

f̃k
k! ,(6.3)

s∈R, x∈R
2, γr is an arbitrary ray in T (r), r > 1/2,

where f̃k are defined by (3.14), T (r) is defined by (2.8), d=2. In addition:

U0 is infinitely smooth on {(1/2, 1)∪(1,+∞)}×R,(6.4)
U0(r, s)−→ 1 as r−→ 1 (uniformly in s∈R),(6.5)
U0(r, s)= 1 if s2+r2 ≥ 1,(6.6)

|1−U0(r, s)| ≤C0(1−r)1/2 log4
2

(
1

1−r

)
,(6.7)

for 1/2<r< 1, s∈R,
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|U0(r, s)−U0(r′, s′)| ≤C1|s−s′|α+C1|r−r′|α,

for α∈ (0, 1/16), r, r′ > 1/2, s, s′ ∈R, |r−r′| ≤ 1, |s−s′| ≤ 1,(6.8)

where C0, C1 are positive constants depending on Φ of (3.15)–(3.17).

Lemma 3 is proved Section 8.
Lemma 3 implies (3.26)–(3.28) as follows.
The continuity and rotation invariancy of W0 in (3.26) follow from (2.18),

(2.19), (6.1), (6.8).
Due to (3.40), (6.1), (6.2), (6.3) we have also that

(6.9) U0 admits a continuous extension to [1/2,+∞)×R.

Properties (6.6), (6.9) imply the boundedness of W0 on Ω0(1/2), where Ω0(·) is
defined in (2.3), d=2. This completes the proof of (3.26).

Formula (3.27) follows from (6.1), (6.4), (6.8) and from the fact that xθ,
|x−(xθ)θ| are infinitely smooth functions on Ω0(1/2) and are Lipshitz in (x, θ)
for x∈B(0, R), R>1.

Formula (3.28) follows from (3.26), (6.1), (6.2), (6.5), (6.6).
This completes the proof of (3.26)–(3.28).

6.2. Proof of formula (3.29)

From (1.1), (3.13)–(3.16), (3.40), (3.44), (3.45) it follows that:

PW0f(x, θ) =
∫

γ(x,θ)

f(y) dy−G(x, θ)
∞∑
k=3

k!ψk−2(r(x, θ))

∫
γ(x,θ)

f(y)fk(y)dy

Hk(x, θ)

=
∫

γ(x,θ)

f(y) dy−
∫

γ(x,θ)

f(y) dy
∞∑
k=3

ψk−2(r(x, θ))

∫
γ(x,θ)

f2
k (y)dy∫

γ(x,θ)
f2
k (y) dy

=
∫

γ(x,θ)

f(y) dy−
∫

γ(x,θ)

f(y) dy
∞∑
k=3

ψk−2(r(x, θ))= 0 for (x, θ)∈Ω0(1/2),(6.10)

where γ(x, θ) is defined in (1.3), Ω0(·) is defined in (2.3), d=2.
Formula (3.29) is proved.
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7. Proof of Lemma 2

By u∈R we denote the coordinates on a fixed ray γ(x, θ), (x, θ)∈Ω, d=2,
taking into account the orientation, where u=0 at the point x−(xθ)θ∈γ(x, θ); see
notation (2.13).

Using Lemma 1, one can see that

(7.1) f |γ(x,θ) ∈C∞
0 (R), f |γ(x,θ)(u)= f |γ(x,θ)(|u|), u∈R.

Using (7.1) and the assumption that f |γ(x0,θ0)(u) changes the sign, one can see
that there exists ψ(x0,θ0) such that

ψ(x0,θ0) ∈C∞
0 (R), ψ(x0,θ0) ≥ 0, ψ(x0,θ0)(u)=ψ(x0,θ0)(|u|), u∈R,(7.2) ∫

γ(x0,θ0)

fψ(x0,θ0) dσ �=0,(7.3)

and if

(7.4)
∫

γ(x0,θ0)

f dσ �=0

then also

sgn(
∫

γ(x0,θ0)

f dσ) sgn(
∫

γ(x0,θ0)

fψ(x0,θ0) dσ)=−1,(7.5)

where dσ=du (i.e., σ is the standard Euclidean measure on γ(x, θ)).
Let

(7.6) W(x0,θ0)(x, θ)= 1−ψ(x0,θ0)(xθ)

∫
γ(x,θ)

f dσ∫
γ(x,θ) fψ(x0,θ0) dσ

, x∈R
2, θ∈S

1,

where dσ=du, where u is the coordinate on γ(x, θ).
Lemma 1 and property (7.2) imply that∫

γ(x,θ)

f dσ and
∫

γ(x,θ)

fψ(x0,θ0) dσ depend only on r(x, θ),(7.7)

where (x, θ)∈Ω,

where r(x, θ) is defined in (2.2), Ω is defined in (2.1), d=2.
From (7.2), (7.6), (7.7) it follows that W(x0,θ0) is rotation-invariant in the sense

(2.18).
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Formulas (7.3), (7.6), (7.7), properties of f of Lemma 1 and properties of
ψ(x0,θ0) of (7.2) imply that

∃ε1 > 0 :
∫

γ(x,θ)

fψ(x0,θ0) dσ �=0 for (x, θ)∈Ω(Jr(x0,θ0),ε1),(7.8)

where sets Ω(Js,ε), Js,ε are defined in (2.5), (2.9), respectively.
In addition, using properties of f of Lemma 1 and also using (3.13), (3.19),

(7.2), (7.6), (7.8), one can see that

W(x0,θ0) ∈C∞(Ω(Jr(x0,θ0),ε1)).(7.9)

In addition, from (7.1)–(7.7) it follows that

if r(x, θ)= r(x0, θ0) then W(x0,θ0)(x, θ) = 1−ψ(x0,θ0)(xθ)

∫
γ(x0,θ0)

f dσ∫
γ(x0,θ0)

fψ(x0,θ0) dσ

=1−ψ(x0,θ0)(xθ)

∫
γ(x0,θ0)

f dσ∫
γ(x0,θ0)

fψ(x0,θ0) dσ
≥ 1,(7.10)

where r(x, θ) is defined in (2.2), d=2.
From properties of f of Lemma 1, properties of ψ(x0,θ0) of (7.2) and from

formulas (7.6), (7.8), (7.9), (7.10) it follows that

(7.11) ∃ε0 > 0 (ε0 <ε1) :W(x0,θ0)(x, θ)≥ 1/2 for (x, θ)∈Ω(Jr(x0,θ0),ε0).

Let

(7.12) W(x0,θ0),ε0 :=W(x0,θ0) for (x, θ)∈Ω(Jr(x0,θ0),ε0),

where W(x0,θ0) is defined in (7.6).
Properties (7.7), (7.9), (7.11) imply (3.49) for W(x0,θ0),ε0 of (7.12).
Using (1.1), (7.6), (7.8), (7.12) one can see that

PW(x0,θ0),ε0
f(x, θ)=

∫
γ(x,θ)

W(x0,θ0)(·, θ)f dσ

=
∫

γ(x,θ)

f dσ −

∫
γ(x,θ)

f dσ∫
γ(x,θ)

fψ(x0,θ0) dσ

∫
γ(x,θ)

fψ(x0,θ0) dσ=0(7.13)

for (x, θ)∈Ω(Jr(x0,θ0),ε0),
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where Ω(·) is defined in (2.5), d=2, Jr,ε is defined in (2.9). Formula (3.48) follows
from (7.13).

Lemma 2 is proved.

8. Proof of Lemma 3

Proof of (6.1)–(6.3) Using (2.2), (3.13), (3.14), (3.45), (6.3) we obtain

G(x, θ)= G̃(r(x, θ))=
∫

γ(x,θ)

f(x) dx,(8.1)

Hk(x, θ)= H̃k(r(x, θ))=
∫

γ(x,θ)

f2
k (x) dx,(8.2)

f̃k(|x|)= f̃k((|xθ|2+|x−(xθ)θ|2)1/2), (x, θ)∈Ω0(1/2),(8.3)

where Ω0(·) is defined in (2.3), d=2, γ(x, θ) is defined as in (2.13).
Formulas (3.44), (3.45), (8.1)–(8.3) imply (6.1)–(6.3).

Proof of (6.4) Let

(8.4) Λk =(1−2−k+3, 1−2−k+1), k∈N, k≥ 4.

From (3.40) it follows that, for k≥4:

suppψk−1 ⊂ (1−2−k+2, 1−2−k),(8.5)
suppψk−2 ⊂ (1−2−k+3, 1−2−k+1)=Λk,(8.6)
suppψk−3 ⊂ (1−2−k+4, 1−2−k+2).(8.7)

Due to (6.2), (6.3), (8.5)–(8.7), we have the following formula for U0:

U0(r, s)= 1−G̃(r)
(

(k−1)!f̃k−1((s2+r2)1/2) ψk−3(r)
H̃k−1(r)

+k!f̃k((s2+r2)1/2)ψk−2(r)
H̃k(r)

(8.8)

+(k+1)!f̃k+1((s2+r2)1/2) ψk−1(r)
H̃k+1(r)

)
for r∈Λk, s∈R, k≥ 4.
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From (6.3), (8.8) it follows that

∂nU0

∂sn
(r, s)=−G̃(r)

(
(k−1)!∂

nf̃k−1((s2+r2)1/2)
∂sn

ψk−3(r)
H̃k−1(r)

+k!∂
nf̃k((s2+r2)1/2)

∂sn
ψk−2(r)
H̃k(r)

(8.9)

+(k+1)!∂
nf̃k+1((s2+r2)1/2)

∂sn
ψk−1(r)
H̃k+1(r)

)
,

∂nG̃

∂rn
(r)=

+∞∫
−∞

∂n

∂rn
f̃((s2+r2)1/2) ds,

∂nH̃m

∂rn
(r)=

+∞∫
−∞

∂n

∂rn
f̃2
m((s2+r2)1/2) ds,(8.10)

r∈Λk, s∈R, m≥ 1, n≥ 0, k≥ 4,

where G̃, H̃m are defined in (6.3).
Using Lemma 1 and formulas (3.13), (3.14), (3.40)–(3.47), (6.3) one can see

that:

f̃ , f̃m−2, G̃, H̃m belong to C∞
0 (R),

ψm−2

H̃m

belongs to C∞
0 ((1/2, 1)) for any m≥ 3.

(8.11)

From (8.9)–(8.11) it follows that U0(r, s) has continuous partial derivatives of
all orders with respect to r∈Λk, s∈R. It implies that U0∈C∞(Λk×R). From the
fact that Λk, k≥4, is an open cover of (1/2, 1) and from definition (6.2) of U0, it
follows that U0∈C∞({(1/2, 1)∪(1,+∞)}×R).

This completes the proof of (6.4).

Proof of (6.6) From (3.14)–(3.17) it follows that

(8.12) f̃k(|x|)= 0 if |x| ≥ 1 for k∈N.

Formula |x|2=|xθ|2+|x−(xθ)θ|2, x∈R2, θ∈S1, and formulas (6.2), (8.12) imply
(6.6).
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Proofs of (6.7)–(6.8)

Lemma 4. There are positive constants c, k1 depending on Φ of (3.15)–(3.17),
such that

(i) for all k∈N the following estimates hold:

|f̃k| ≤ 1,(8.13)

|f̃ ′
k| ≤ c8k,(8.14)

where f̃ ′
k denotes the derivative of f̃k defined in (6.3).

(ii) for k≥k1 and 1/2<r≤1 the following estimates hold:

∣∣∣∣∣ψk−2(r)
H̃k(r)

∣∣∣∣∣≤ c2k,(8.15)

∣∣∣∣∣ ddr
(
ψk−2(r)
H̃k(r)

)∣∣∣∣∣≤ c25k,(8.16)

where ψk are defined in (3.40), H̃k is defined in (6.3).
(iii) for k≥3 and r≥1−2−k the following estimates hold:

|G̃(r)| ≤ c
(2
√

2)−k

k! ,(8.17) ∣∣∣∣∣dG̃dr (r)

∣∣∣∣∣≤ c
8k

k! ,(8.18)

where G̃ is defined in (6.3).

Lemma 5. Let U0 be defined by (6.2)–(6.3). Then the following estimates are

valid: ∣∣∣∣∂U0

∂s
(r, s)

∣∣∣∣≤ C

(1−r)3 ,
∣∣∣∣∂U0

∂r
(r, s)

∣∣∣∣≤ C

(1−r)5 for r∈ (1/2, 1), s∈R,(8.19)

where C is a constant depending only on Φ of (3.15)–(3.17).

Lemmas 4, 5 are proved in Subsections 9.1, 9.2, respectively.
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Proof of (6.7) From (8.15), (8.17) it follows that

|G̃(r)| ≤ c(2
√

2)−k+3/(k−3)!,(8.20) ∣∣∣∣∣ψk−2(r)
H̃k(r)

∣∣∣∣∣≤ c2k,

for r∈Λk, k≥max(4, k1),(8.21)

where Λk is defined in (8.4).
Properties (8.5)–(8.7) and estimate (8.15) imply that⎧⎪⎪⎨⎪⎪⎩

ψk−1(r)=0,∣∣∣∣∣ ψk−3(r)
H̃k−1(r)

∣∣∣∣∣≤c2k−1
if r∈ (1−2−k+3, 1−2−k+2),(8.22)

⎧⎪⎪⎨⎪⎪⎩
ψk−2(r)=0,∣∣∣∣∣ ψk−1(r)
H̃k+1(r)

∣∣∣∣∣≤c2k+1
if r∈ (1−2−k+2, 1−2−k+1),(8.23)

⎧⎨⎩ψk−1(r)=0,

ψk−3(r)=0
if r=1−2−k+2,(8.24)

for k≥max(4, k1).
Note that the assumption that r∈Λk is splitted into the assumptions on r of

(8.22), (8.23), (8.24).
Using formulas (8.8), (8.20)–(8.24), we obtain the following estimates:

|1−U0(r, s)|= |G̃(r)|
∣∣∣∣∣(k−1)!f̃k−1((s2+r2)1/2) ψk−3(r)

H̃k−1(r)
+k!f̃k((s2+r2)1/2)ψk−2(r)

H̃k(r)

∣∣∣∣∣
≤ c(2

√
2)−k+3(c(k−2)(k−1)2k−1+c(k−2)(k−1)k2k)

≤ 25√2c22−k/2k3 if r∈ (1−2−k+3, 1−2−k+2),(8.25)

|1−U0(r, s)|= |G̃(r)|
∣∣∣∣∣k!f̃k((s2+r2)1/2)ψk−2(r)

H̃k(r)
+(k+1)!f̃k+1((p2+r2)1/2) ψk−1(r)

H̃k+1(r)

∣∣∣∣∣
≤ c(2

√
2)−k+3(c2k(k−2)(k−1)k+c2k+1(k−2)(k−1)k(k+1))

≤ 210√2c22−k/2k4 if r∈ (1−2−k+2, 1−2−k+1),(8.26)
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|1−U0(r, s)|= |G̃(r)|
∣∣∣∣∣k!f̃k((s2+r2)1/2)ψk−2(r)

H̃k(r)

∣∣∣∣∣
≤ 24√2c22−k/2k3 if r=1−2−k+2,(8.27)

for s∈R, k≥max(4, k1). Estimates (8.25)–(8.27) imply that

|1−U0(r, s)| ≤C 2−k/2k4, r∈Λk, s∈R, k≥max(4, k1),(8.28)

where C is a positive constant depending on c of Lemma 4.
In addition, for r∈Λk we have that 2−k+1<(1−r)<2−k+3, which together with

(8.28) imply (6.7).
This completes the proof of (6.7).

Proof of (6.8) We consider the following cases of s, s′, r, r′ in (6.8):
1. Let

(8.29) s, s′ ∈R and r, r′ ≥ 1.

Due to (6.2) we have that

(8.30) U0(r, s)= 1, U0(r′, s′)= 1.

Identities in (8.30) and assumption (8.29) imply (6.8) for this case.
2. Let

(8.31) s, s′ ∈R, 1/2<r< 1 and r′ ≥ 1.

Then, due to (6.2), (6.7) we have that

|1−U0(r, s)| ≤C(1−r)1/3,(8.32)

U0(r′, s′)= 1,(8.33)

where s, s′, r, r′ satisfy assumption (8.31), C is a constant depending only on Φ. In
particular, inequality (8.32) follows from (6.7) due to the following simple property
of the logarithm:

(8.34) loga2
(

1
1−r

)
≤C(a, ε)(1−r)−ε for any ε> 0, r∈ [0, 1), a> 0,

where C(a, ε) is some positive constant depending only on a and ε.
Due to (8.31), (8.32), (8.33) we have that

|U0(r′, s′)−U0(r, s)|= |1−U0(r, s)| ≤C(1−r)1/3

≤C|r−r′|1/3 ≤C(|r−r′|1/3+|s−s′|1/3),(8.35)

where C is a constant depending only on Φ.
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Estimate (8.35) and assumptions (8.31) imply (6.8) for this case. Note that
the case when s, s′∈R, 1/2<r′<1 and r≥1 is completely similar to (8.31).

3. Let

(8.36) s, s′ ∈R and r, r′ ∈ (1/2, 1).

In addition, without loss of generality we assume that r>r′.
Next, using (6.4) one can see that

|U0(r, s)−U0(r′, s′)|= |U0(r, s)−U0(r, s′)+U0(r, s′)−U0(r′, s′)|
≤ |U0(r, s)−U0(r, s′)|+|U0(r, s′)−U0(r′, s′)|

≤
∣∣∣∣∂U0

∂s
(r, ŝ)

∣∣∣∣ |s−s′|+
∣∣∣∣∂U0

∂r
(r̂, s′)

∣∣∣∣ |r−r′|,(8.37)

for s, s′ ∈R, r, r′ > 1/2, and for appropriate ŝ, r̂.

Note that ŝ, r̂ belong to open intervals (s, s′), (r′, r), respectively.
Using (6.7), (8.19), (8.32), (8.37) and the property that 1/2<r′<r̂<r<1 we

obtain

|U0(r, s)−U0(r′, s′)| ≤C((1−r)1/3+(1−r′)1/3),(8.38)

|U0(r, s)−U0(r′, s′)| ≤
C

(1−r)5 (|s−s′|+|r−r′|),(8.39)

where C is a constant depending only on Φ.
We have that

(1−r)1/3+(1−r′)1/3 =(1−r)1/3+((1−r)+(r−r′))1/3

≤ 2(1−r)1/3+|r−r′|1/3

≤
{

3|r−r′|1/3 if 1−r≤|r−r′|,
3(1−r)1/3 if 1−r>|r−r′|,

(8.40)

where r, r′ satisfy (8.36). Note that in (8.40) we used the following inequality:

(8.41) (a+b)1/m ≤ a1/m+b1/m for a≥ 0, b≥ 0, m∈N.

In particular, using (8.38), (8.40) we have that

|U0(r, s)−U0(r′, s′)|15 ≤ 315C15(1−r)5 if 1−r > |r−r′|,(8.42)

where s, s′, r, r′ satisfy assumption (8.36), C is a constant of (8.38), (8.39).
Multiplying the left and the right hand-sides of (8.39), (8.42) we obtain

(8.43) |U0(r, s)−U0(r′, s′)|16 ≤ 315C16(|s−s′|+|r−r′|), if 1−r > |r−r′|.
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Using (8.38), (8.40) we obtain

|U0(r, s)−U0(r′, s′)| ≤ 3C|r−r′|1/3, if 1−r≤ |r−r′|,(8.44)

where C is a constant of (8.38), (8.39) depending only on Φ. Using (8.43) and
(8.41) for m=16, a=|s−s′|, b=|r−r′|, we have that

|U0(r, s)−U0(r′, s′)| ≤ 3C(|s−s′|1/16+|r−r′|1/16), if 1−r > |r−r′|,(8.45)

where s, s′, r, r′ satisfy assumption (8.36), C is a constant of (8.38), (8.39) which
depends only on Φ.

Formulas (8.44), (8.45) imply (6.8) for this case.
Note that assumptions (8.29), (8.31), (8.36) for cases 1, 2, 3, respectively, cover all
possible choices of s, s′, r, r′ in (6.8).

This completes the proof of (6.8).
This completes the proof of Lemma 3.

9. Proofs of Lemmas 4, 5
9.1. Proof of Lemma 4

Proof of (8.13), (8.14) Estimates (8.13), (8.14) follow directly from (3.14)–
(3.17).

Proof of (8.17) We will use the following parametrization of the points y on
γ(x, θ)∈TS1, (x, θ)∈Ω, r(x, θ) �=0 (see notations (2.1), (2.2), (2.13) for d=2):

y(β)=x−(xθ)θ+tan(β)r(x, θ)θ, β ∈ (−π/2, π/2),(9.1)

where β is the parameter.
We have that:

dσ(β)= r d(tan(β))= r dβ

cos2 β , r= r(x, θ),(9.2)

where σ is the standard Lebesgue measure on γ(x, θ).
From definitions (3.13), (6.3) it follows that

G̃(r)=
∞∑
k=1

G̃k(r)
k! ,(9.3)

G̃k(r)=
∫
γr

f̃k(|y|) dy, γr ∈T (r), r > 1/2,(9.4)

where T (r) is defined by (2.8).
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Using (3.14), (9.1), (9.2), (9.4) we obtain the following formula for G̃k:

G̃k(r)= r

π/2∫
−π/2

Φ
(

2k
(

1− r

cosβ

))
cos

(
8k r2

cos2 β

)
dβ

cos2 β

= {u=tan(β)}=2 r
+∞∫
0

Φ
(
2k

(
1−r

√
u2+1

))
cos

(
8kr2(u2+1)

)
du

= {t=u2}= r

+∞∫
0

Φ
(
2k

(
1−r

√
t+1

))
cos

(
8kr2(t+1)

) dt√
t

= r cos(8kr2)
+∞∫
0

Φ(2k(1−r
√
t+1))cos(8kr2t)√

t
dt

−r sin(8kr2)
+∞∫
0

Φ(2k(1−r
√
t+1))sin(8kr2t)√

t
dt

=8−k/2r−1 cos(8kr2)
+∞∫
0

Φk(t, r)
cos(t)√

t
dt

−8−k/2r−1 sin(8kr2)
+∞∫
0

Φk(t, r)
sin(t)√

t
dt, r > 1/2,(9.5)

where

Φk(t, r)=Φ(2k(1−r
√

8−kr−2t+1)), t≥ 0, r > 1/2, k∈N.(9.6)

For integrals arising in (9.5) the following estimates hold:∣∣∣∣∣∣
+∞∫
0

Φk(t, r)
sin(t)√

t
dt

∣∣∣∣∣∣≤C1 <+∞,(9.7) ∣∣∣∣∣∣
+∞∫
0

Φk(t, r)
cos(t)√

t
dt

∣∣∣∣∣∣≤C2 <+∞,(9.8)

for 1/2<r< 1, k≥ 1.

where Φk is defined in (9.6), C1, C2 are some positive constants depending only on
Φ and not depending on k and r.

Estimates (9.7), (9.8) are proved in Subsection 9.3.
From (9.5)–(9.8) it follows that

(9.9) |G̃k(r)| ≤ 2·8−k/2(C1+C2) for r > 1/2, k∈N.
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Note that for y∈γr, the following inequality holds:

2k(1−|y|)≤ 2k(1−r)≤ 2k−m ≤ 1/2< 4/5
for 1−2−m ≤ r < 1, k <m, m≥ 3,(9.10)

where γr is a ray in T (r) (see notations of (2.8), d=2).
Formulas (3.14), (3.15), (6.3), (9.10) imply that

(9.11) γr∩supp fk =∅ if r≥ 1−2−m, k <m,

In turn, (9.4), (9.11) imply that

(9.12) G̃k(r)= 0 for r≥ 1−2−m, k <m, m≥ 3.

Due to (9.3), (9.4), (9.9), (9.12) we have that:

|G̃(r)| ≤
∞∑

k=m

|G̃k(r)|/k!

≤ 2(C1+C2)
(2
√

2)−m

m!

∞∑
k=0

(2
√

2)−k = c1
(2
√

2)−m

m! ,

c1 =(C1+C2)
4
√

2
2
√

2−1
,

for r≥ 1−2−m, m≥ 3.

(9.13)

This completes the proof of estimate (8.17).

Proof of (8.18) Using (9.3), (9.4) we have that:∣∣∣∣∣dG̃dr (r)

∣∣∣∣∣≤
∞∑
k=1

1
k!

∣∣∣∣∣dG̃k(r)
dr

∣∣∣∣∣ .(9.14)

Formulas (3.14), (8.10) for n=1, (8.14), (9.4) imply that∣∣∣∣∣dG̃k

dr
(r)

∣∣∣∣∣=
∣∣∣∣∣∣

+∞∫
−∞

rf̃ ′
k((s2+r2)1/2)√

r2+s2
ds

∣∣∣∣∣∣
≤

+∞∫
−∞

|f̃ ′
k((s2+r2)1/2)| ds=

∫
γr

|f̃ ′
k(|y|)| dy

≤ c8k
∫

γr∩B(0,1)

dy≤ 2c8k,(9.15)

where B(0, 1) is defined in (2.16), d=2.
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At the same time, formula (9.12) implies that

(9.16) dG̃k(r)
dr

=0 for r≥ 1−2−m, k <m, m≥ 3.

Formulas (9.14), (9.15), (9.16) imply the following sequence of inequalities:∣∣∣∣∣dG̃(r)
dr

∣∣∣∣∣≤
∞∑

k=m

1
k!

∣∣∣∣∣dG̃k(r)
dr

∣∣∣∣∣≤ c
8m

m!

∞∑
k=0

m!8k

(k+m)! , r≥ 1−2−m, m≥ 3.(9.17)

The series in the right hand-side in (9.17) admits the following estimate:

(9.18)
∞∑
k=0

m!8k

(k+m)! ≤
∞∑
k=0

8k

k! = e8 and the estimate does not depend on m.

Formulas (9.17), (9.18) imply (8.18).

Proof of (8.15) For each ψk from (3.40) we have that

(9.19) |ψk| ≤ 1.

Therefore, it is sufficient to show that

(9.20) H̃k ≥C2−k for k≥ k1, C = c−1.

Proceeding from (6.3) and in a similar way with (9.5) we obtain the formulas

H̃k(r)= r

+∞∫
0

Φ2(2k(1−r
√
t+1))√

t
cos2(8kr2(t+1)) dt

= H̃k,1(r)+H̃k,2(r), r > 1/2,(9.21)

H̃k,1(r)= r

2

+∞∫
0

Φ2(2k(1−r
√
t+1))√

t
dt,(9.22)

H̃k,2(r)= r

2

+∞∫
0

Φ2(2k(1−r
√
t+1))√

t
cos(2·8kr2(t+1)) dt.(9.23)

In addition, we have that:

(9.24) supptΦ2(2k(1−r
√
t+1))⊂ [0, 3] for 1/2<r≤ 1−2−k+1, k≥ 3,
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where suppt denotes the support of the function in variable t. Property (9.24) is
proved below in this paragraph (see formulas (9.26)–(9.29)).

Note that

2k(1−r)≥ 2k ·2−k+1 ≥ 2> 6/5 for 1/2<r≤ 1−2−k+1, k≥ 3.(9.25)

From (3.15), (3.16) and from (9.25) we have that:

(9.26) supptΦ2(2k(1−r
√
t+1))⊂ [0,+∞) for 1/2<r≤ 1−2−k+1, k≥ 3.

We have that

∃t(k)
1 = t

(k)
1 (r)≥ 0, t

(k)
2 = t

(k)
2 (r)≥ 0, t

(k)
2 >t

(k)
1 , such that⎧⎪⎨⎪⎩

2k(1−r

√
t
(k)
1 +1)=11/10,

2k(1−r

√
t
(k)
2 +1)=9/10,

(9.27)

|t(k)
2 −t

(k)
1 | ≥

(√
t
(k)
2 +1−

√
t
(k)
1 +1

)
= 2−k

5 r−1 ≥ 2−k

5 ,(9.28)

for 1/2<r≤ 1−2−k+1, k≥ 3.

In addition, from (9.27) it follows that

t
(k)
1 =

(1−2−k 11
10 )2

r2 −1≤ 4(1−2−k 11
10)2−1≤ 3,

t
(k)
2 =

(1−2−k 9
10 )2

r2 −1≤ 4(1−2−k 11
10)2−1≤ 3,

for 1/2<r≤ 1−2−k+1, k≥ 3.

(9.29)

Using (3.15)–(3.17), (9.22), (9.24), (9.27)–(9.29) we have that

H̃k,1(r)≥
r

2

t
(k)
2∫

t
(k)
1

dt√
t
≥ r

2

1+t
(k)
2∫

1+t
(k)
1

dt√
t

≥ r(
√

t
(k)
2 +1−

√
t
(k)
1 +1)≥ 2−k

10 for 1/2<r≤ 1−2−k+1, k≥ 3.(9.30)

On the other hand, proceeding from using (9.23) and, in a similar way with (9.5)–
(9.9), we have

|H̃k,2(r)|=
r

2

∣∣∣∣∣∣
+∞∫
0

Φ2(2k(1−r
√
t+1))√

t
cos(2·8kr2(t+1)) dt

∣∣∣∣∣∣
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≤ r

2 | cos(2·8kr2)|

∣∣∣∣∣∣
+∞∫
0

Φ2(2k(1−r
√
t+1))cos(2·8kr2t)√

t
dt

∣∣∣∣∣∣
+ r

2 | sin(2·8kr2)|

∣∣∣∣∣∣
+∞∫
0

Φ2(2k(1−r
√
t+1))sin(2·8kr2t)√

t
dt

∣∣∣∣∣∣
≤ 8−k/2 r

−1

2

∣∣∣∣∣∣
+∞∫
0

Φ2
k(t, r)

cos(2t)√
t

dt

∣∣∣∣∣∣+8−k/2 r
−1

2

∣∣∣∣∣∣
+∞∫
0

Φ2
k(t, r)

sin(2t)√
t

dt

∣∣∣∣∣∣
≤ 8−k/2C, for 1/2<r< 1−2−k+1, k≥ 3,(9.31)

where Φk(t, r) is defined in (9.6), C is some constant depending only on Φ and
not depending on k, r. In (9.31) we have also used that Φ2(t) satisfies assumptions
(3.15)–(3.17).

Note also that Φ2(t) satisfies assumptions (3.15)–(3.17) for Φ(t).
Using (9.21)–(9.23), (9.30), (9.31) we obtain

|H̃k(r)| ≥ |H̃k,1(r)|−|H̃k,2(r)|

≥ 2−k

10 −C ′ ·8−k/2

≥ 2−k

(
1
10−

C ′

(
√

2)k

)
≥C ·2−k for 1/2<r< 1−2−k+1, k≥ k1 ≥ 3,

C = 1
10−C ′(

√
2)−k1 ,

(9.32)

where C ′ depends only on Φ, k1 is arbitrary constant such that k1≥3 and C is
positive.

Formulas (8.15) follows from (3.40), (9.32).
This completes the proof (8.15).

Proof of (8.16) The following formula holds:

(9.33) d

dr

(
ψk−2(r)
H̃k(r)

)
=−

H̃ ′
k(r)ψk−2(r)−H̃k(r)ψ′

k−2(r)
H̃2

k(r)
, 1/2<r< 1,

where H̃ ′
k, ψ′

k−2 denote the derivatives of H̃k, ψk, defined in (6.3), (3.40), respec-
tively.
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Using (3.14), (6.3), (8.10), n=1, (8.13), (8.14) we have that

|H̃ ′
k(r)|=2

∣∣∣∣∣∣
+∞∫

−∞

r√
r2+s2

f̃k(
√

r2+s2)f̃ ′
k(
√

r2+s2) ds

∣∣∣∣∣∣
≤ 2

+∞∫
−∞

∣∣∣f̃k(√r2+s2)f̃ ′
k(
√
r2+s2)

∣∣∣ ds=2
∫
γr

|f̃k(|y|)f̃ ′
k(|y|)| dy

≤ 2c8k
∫

γr∩B(0,1)

dy≤ 4c8k, γr ∈T (r), k≥ 3, r > 1/2,(9.34)

where we use notations (2.8), (2.16), d=2.
Using (3.40), (3.41), (8.15), (9.32)–(9.34) we have that∣∣∣∣∣ ddr

(
ψk−2(r)
H̃k(r)

)∣∣∣∣∣≤C22k(|H̃ ′
k(r)|+|H̃k(r)|·|ψ′

k(r)|)≤C ′25k,(9.35)

for 1/2<r< 1−2−k+1, k≥ k1 ≥ 3,

where C ′ is a constant not depending on k and r and depending only on Φ.
This completes the proof of Lemma 4.

9.2. Proof of Lemma 5

It is sufficient to show that∣∣∣∣∂U0(r, s)
∂s

∣∣∣∣≤ C

(1−r)3 ,(9.36) ∣∣∣∣∂U0(r, s)
∂r

∣∣∣∣≤ C

(1−r)5 ,(9.37)

for s∈R, r∈Λk, k≥max(4, k1),

where C is a positive constant depending only on Φ of (3.14), Λk is defined in (8.4),
k1 is a constant arising in Lemma 4 and depending only on Φ.

Indeed, estimates (8.19) follow from (6.4), (9.36), (9.37) and the fact that
Λk, k≥4, is an open cover of (1/2, 1).

In turn, estimates (9.36), (9.37) follow from the estimates∣∣∣∣∂U0(r, s)
∂s

∣∣∣∣≤C ·8k,(9.38)
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∣∣∣∣∂U0(r, s)
∂r

∣∣∣∣≤C ·(32)k,(9.39)

for s∈R, r∈Λk,

and from the fact that 2−k+1<1−r<2−k+3, k≥max(4, k1), for r∈Λk, where C is
a positive constant depending only on Φ.

Estimate (9.38) follows from formula (8.9) for n=1 and estimates (8.14), (8.15),
(8.20)–(8.24).

Estimate (9.39) follows from (8.8), (8.13)–(8.16), (8.20)–(8.24) and from the
estimates: ∣∣∣∣∣ ddr

(
ψk−i(r)

H̃k−i+2(r)

)∣∣∣∣∣≤ c25(k+1),(9.40) ∣∣∣∣∣dG̃(r)
dr

∣∣∣∣∣≤ c
8−k+3

(k−3)! ,(9.41)

for r∈Λk, i∈{1, 2, 3},

where c is a constant arising in Lemma 4.
Estimate (9.40) follows from (8.16) (used with k−1, k, k+1 in place of k).

Estimate (9.41) follows from (8.18) (used with k−3 in place of k).
This completes the proof of Lemma 5.

9.3. Proof of estimates (9.7), (9.8)

We use the following Bonnet’s integration formulas (see, e.g., [F59], Chapter 2):

b∫
a

f1(t)h(t) dt= f1(a)
ξ1∫
a

h(t) dt,(9.42)

b∫
a

f2(t)h(t) dt= f2(b)
b∫

ξ2

h(t) dt,(9.43)

for some appropriate ξ1, ξ2∈[a, b], where

f1 is monotonously decreasing on [a, b], f1 ≥ 0,
f2 is monotonously increasing on [a, b], f2 ≥ 0,
h(t) is integrable on [a, b].

(9.44)
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Let

g1(t)= sin(t)√
t

, g2(t)= cos(t)√
t

, t> 0,(9.45)

G1(s)=
s∫

0

sin(t)√
t

dt, G2(s)=
s∫

0

cos(t)√
t

dt, s≥ 0.(9.46)

We recall that

(9.47) lim
s→+∞

G1(s)= lim
s→+∞

G2(s)=
√

π

2 .

From (9.45), (9.46), (9.47) it follows that

(9.48) G1, G2 are continuous and bounded on [0,+∞).

Due to (3.15)–(3.18), (9.6) and monotonicity of the function 2k(1−r
√

8−kr−2t+1)
in t on [0,+∞) it follows that

Φk(t, r) is monotonously decreasing on [0,+∞), if 2k(1−r)≤ 11/10,(9.49)
Φk(t, r) is monotonously increasing on [0, t0] for some t0 > 0(9.50)

and is monotonously decreasing on [t0,+∞), if 2k(1−r)> 11/10.
for r > 1/2, k∈N,

Moreover, due to (3.15)–(3.17), (9.6), for Tk=8k, k∈N, we have that

Φk(Tk, r)=Φ(2k(1−r
√

r−2+1))=Φ(2k(1−
√

1+r−2))= 0,(9.51)
Φk(t, r)= 0 for t≥Tk,(9.52)
|Φk(t, r)| ≤ 1 for t≥ 0,(9.53)
r > 1/2, k∈N.

Using (9.6), (9.45)–(9.50), (9.52) and (9.42)–(9.44) we obtain

+∞∫
0

Φk(t, r)gi(t) dt=
Tk∫
0

Φk(t, r)gi(t) dt=Φk(0, r)
ξ∫

0

gi(t) dt

=Φk(0, r)Gi(ξ) for appropriate ξ ∈ [0, Tk],
if 2k(1−r)≤ 11/10,(9.54)

∞∫
0

Φk(t, r)gi(t) dt=
Tk∫
0

Φk(t, r)gi(t) dt=
t0∫

0

Φk(t, r)gi(t) dt
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+
Tk∫
t0

Φk(t, r)gi(t) dt

=Φk(t0, r)
t0∫

ξ′

gi(t) dt+Φk(t0, r)
ξ′′∫

t0

gi(t) dt

=Φk(t0, r)(Gi(ξ′′)−Gi(ξ′))
for appropriate ξ′ ∈ [0, t0], ξ′′ ∈ [t0, Tk], if 2k(1−r)> 11/10,(9.55)

where i=1, 2.
Estimates (9.7), (9.8) follow from (9.45), (9.46), (9.48), (9.53)–(9.55).
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