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On dicritical singularities of Levi-flat sets

Sergey Pinchuk, Rasul Shafikov and Alexandre Sukhov

Abstract. It is proved that dicritical singularities of real analytic Levi-flat sets coincide
with the set of Segre degenerate points.

1. Introduction

A real analytic Levi-flat set M in C
N is a real analytic set such that its regular

part is a Levi-flat CR manifold of hypersurface type. An important special case
(closely related to the theory of holomorphic foliations) arises when M is a hyper-
surface. The local geometry of a Levi-flat hypersurface near its singular locus has
been studied by several authors [2]–[5], [8], [9], [11] and [12]. One of the main ques-
tions here concerns an extension of the Levi foliation of the regular part of M as a
(singular) holomorphic foliation (or, more generally, a singular holomorphic web) to
a full neighbourhood of a singular point. The existence of such an extension allows
one to use the holomorphic resolution of singularities results for the study of local
geometry of singular Levi-flat hypersurfaces.

The present paper is concerned with local properties of real analytic Levi-flat
sets near their singularities. These sets arise in the study of Levi-flat hypersurfaces
when lifted to the projectivization of the cotangent bundle of the ambient space.
Our main result gives a complete characterization of dicritical singularities of such
sets in terms of their Segre varieties. Our method is a straightforward generalization
of arguments in [11] and [12] where the case of Levi-flat hypersurfaces is considered.
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2. Levi-flat subsets, Segre varieties

In this section we provide relevant background material on real analytic Levi-
flat sets (of higher codimension) and their Segre varieties. To the best of our
knowledge, this topic has not been considered in detail before; for convenience of
the reader we provide some details.

2.1. Real and complex analytic sets

Let Ω be a domain in C
N . We denote by z=(z1, ..., zN ) the standard complex

coordinates. A closed subset M⊂Ω is called a real (resp. complex) analytic subset
in Ω if it is locally defined by a finite collection of real analytic (resp. holomorphic)
functions.

For a real analytic M this means that for every point q∈Ω there exists a neigh-
bourhood U of q and real analytic vector function ρ=(ρ1, ..., ρk):U→R

k such that

M∩U = ρ−1(0)= {z ∈U : ρj(z, z)= 0, j =1, ..., k}.(1)

In fact, one can reduce the situation to the case k=1 by considering the defining
function ρ2

1+...+ρ2
k. Without loss of generality assume q=0 and choose a neigh-

bourhood U in (1) in the form of a polydisc Δ(ε)={z∈CN :|zj |<ε} of radius ε>0.
Then, for ε small enough, the (vector-valued) function ρ admits the Taylor expan-
sion convergent in U :

ρ(z, z)=
∑
IJ

cIJz
IzJ , cIJ ∈C, I, J ∈N

N .(2)

Here and below we use the multi-index notation I=(i1, ..., iN ) and |I|=i1+...+iN .
The (Ck-valued) coefficients cIJ satisfy the condition

cIJ = cJI ,(3)

since ρ is a real (Rk-valued) function.
An analytic subset M is called irreducible if it cannot be represented as a

union M=M1∪M2 where Mj are analytic subsets of Ω different from M . Similarly,
an analytic subset is irreducible as a germ at a point p∈M if its germ cannot be
represented as a union of germs of two real analytic sets. All considerations of the
present paper are local and we always assume irreducibility of germs even if it is
not specified explicitly.

A set M can be decomposed into a disjoint union M=Mreg∪Msing, the regular
and the singular part respectively. The regular part Mreg is a nonempty and open
subset of M . In the real analytic case we adopt the following convention: M is a
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real analytic submanifold of maximal dimension in a neighbourhood of every point
of Mreg. This dimension is called the dimension of M and is denoted by dimM .
The set Msing is a real semianalytic subset of Ω of dimension <dimM . Unlike
complex analytic sets, for a real analytic M , the set Msing may contain manifolds
of smaller dimension which are not in the closure of Mreg, as seen in the classical
example of the Whitney umbrella. Therefore, in general Mreg is not dense in M .

Recall that the dimension of a complex analytic set A at a point a∈A is defined
as

dima A := lim
Areg�z→a

dimz A,

and that the function z �→dimz A is upper semicontinuous. Suppose that A is an
irreducible complex analytic subset of a domain Ω and let F :A→X be a holomorphic
mapping into some complex manifold X. The local dimension of F at a point z∈A
is defined as dimz F=dimA−dimz F

−1(F (z)) and the dimension of F is set to be
dimF=maxz∈A dimz F . Note that the equality dimz F=dimF holds on a Zariski
open subset of A, and that dimF coincides with the rank of the map F , see [6].

2.2. Complexification and Segre varieties

Let M be the germ at the origin of an irreducible real analytic subset of CN

defined by (2). We are interested in the geometry of M in an arbitrarily small
neighbourhood of 0. We may consider a sufficiently small open neighbourhood U

of the origin and a representative of the germ which is also irreducible, see [10] for
details. In what follows we will not distinguish between the germ of M and its
particular representative in a suitable neighbourhood of the origin.

Denote by J the standard complex structure of CN and consider the opposite
structure −J . Consider the space C

2N
˝

:=(CN
z , J)×(CN

w ,−J) and the diagonal

Δ=
{
(z, w)∈C

2N
˝

: z =w
}
.

The set M can be lifted to C2N
˝

as the real analytic subset

M̂ :=
{
(z, z)∈C

2N
˝

: z ∈M
}
.

There exists a unique irreducible complex analytic subset MC in C
2N
˝

of complex
dimension equal to the real dimension of M such that M̂=MC∩Δ (see [10]). The
set MC is called the complexification of M . The antiholomorphic involution

τ :C2N
˝

−→C
2N
˝

, τ : (z, w) �−→ (w, z)

leaves MC invariant and M̂ is the set of fixed points of τ |MC .
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The complexification MC is equipped with two canonical holomorphic projec-
tions πz :(z, w) �→z and πw :(z, w) �→w. We always suppose by convention that the
domain of these projections is MC. The triple (MC, πz, πw) is represented by the
following diagram

MC

(CN , J) (CN ,−J)

πz πw

which leads to the central notion of the present paper. The Segre variety of a point
w∈CN is defined as

Qw := (πz ¨π
−1
w )(w)=

{
z ∈C

N : (z, w)∈MC
}
.

When M is a hypersurface defined by (1) (with k=1) this definition coincides with
the usual definition

Qw = {z : ρ(z, w)= 0} .

Of course, here we suppose that ρ is a minimal function, that is, it generates the
ideal of real analytic functions vanishing on M .

The following properties of Segre varieties are well-known for hypersurfaces.

Proposition 2.1. Let M be the germ of a real analytic subset in CN . Then

(a) z∈Qz⇐⇒z∈M .

(b) z∈Qw⇐⇒w∈Qz.

(c) (invariance property) Let M1 be a real analytic CR manifold, and M2 be

a real analytic germ in C
N and C

K respectively. Let p∈M1, q∈M2, and U1	p,
U2	q be small neighbourhoods. Let also f :U1→U2 be a holomorphic map such that

f(M1∩U1)⊂M2∩U2. Then

f(Q1
w)⊂Q2

f(w)

for all w close to p. If, in addition, M2 is nonsingular and f :U1→U2 is biholomor-

phic, then f(Q1
w)=Q2

f(w). Here Q1
w and Q2

f(w) are Segre varieties associated with

M1 and M2 respectively.

Proof. (a) Note that z∈Qz if and only if (z, z)∈MC, which is equivalent to
(z, z)∈M̂ .

(b) The relation (z, w)∈MC holds if and only if τ(z, w)=(w, z)∈MC.
(c) Suppose that M1 is defined near p by the equations ρ1=...=ρk=0 and dρ1∧

...∧dρk �=0. Similarly, suppose that M2 is defined by the equations φ1=...=φl=0.
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Then the Segre varieties are respectively given by Q1
w={z :ρj(z, w)=0, j=1, ..., k}

and Q2
w={z :φs(z, w)=0, s=1, ..., l}. By assumption we have φs(f(z), f(z))=0

when z∈M1. This implies that there exist real analytic functions λj , j=1, ..., k,
such that

φs(f(z), f(z))=
k∑
1

λsj(z, z)ρj(z, z).

Consider first the case where M1 is a generic manifold, that is, ∂ρ1∧...∧∂ρk �=0.
Let f∗ be a holomorphic function such that f∗(w)=f(w). Since M1 is generic, it is
the uniqueness set for holomorphic functions. Therefore, by analyticity we have

φs(f(z), f∗(w))=
k∑
1

λsj(z, w)ρj(z, w),

for all z and w. This concludes the proof for the case when M1 is generic.
Let now M1 be a CR manifold which is not generic. Then, by real analyticity,

M1 can be represented as the graph of (the restriction of) a holomorphic (vec-
tor) function over a real analytic generic manifold M̃1 of real codimension l in C

d,
for some l and d. More precisely, set z=(z′, z′′), z′=(z1, ..., zd), z′′=(zd+1, ..., zN ).
Then M̃1={z′ :ψj(z′, z′)=0, j=1, ..., l} and M1={(z′, z′′):z′∈N1, z

′′=g(z′)}, where
ψj are real analytic functions and g is a holomorphic (vector) function. Then
every Segre variety Q1

w of M1 is the graph of g over the Segre variety of M̃1.
Indeed, Q1

w={(z′, z′′):φj(z′, w′)=0, j=1, ..., l, z′′=g(z′)}. The holomorphic map
f̃(z′)=f(z′, g(z′)) transforms the generating manifold M̃1 to M2. Since we already
proved the result for generic submanifolds in the source, we conclude that the map f̃

transforms Segre varieties of the manifold M̃1 to Segre varieties of the manifold M2.
This implies the required statement. �

2.3. Levi-flat sets

We say that an irreducible real analytic set M⊂C
n+m is Levi-flat if dimM=

2n−1 and Mreg is locally foliated by complex manifolds of complex dimension n−1.
In particular, Mreg is a CR manifold of hypersurface type. The most known case
arises when m=0, i.e., when M is a Levi-flat hypersurface in C

n.
We use the notation z′′=(zn+1, ..., zn+m), and similarly for the w variable.

It follows from the Frobenius theorem and the implicit function theorem that for
every point q∈Mreg there exist an open neighbourhood U and a local biholomorphic
change of coordinates F :(U, q)→(F (U), 0) such that F (M) has the form

{z ∈F (U) : zn+zn =0, z′′ =0}.(4)
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The subspace F (M) is foliated by complex affine subspaces Lc={zn=ic, z′′=0,
c∈R}, which gives a foliation of Mreg∩U by complex submanifolds F−1(Lc). This
defines a foliation on Mreg which is called the Levi foliation and denoted by L.
Every leaf of L is tangent to the complex tangent space of Mreg. The complex
affine subspaces

{zn = c, z′′ =0} , c∈C,(5)

in local coordinates given by (4) are precisely the Segre varieties of M for every
complex c. Thus, the Levi foliation is closely related to Segre varieties. The com-
plexification MC is given by

MC = {(z, w) : zn+wn =0, z′′ =0, w′′ =0}.(6)

For M defined by (4) its Segre varieties (5) fill the complex subspace z′′=0 of Cn+m.
In particular, if w is not in this subspace, then Qw is empty.

In arbitrary coordinates, in a neighbourhood U⊂C
n+m(z) of a regular point

z0∈M the Levi flat set is the transverse intersection of a real analytic hypersurface
with a complex n-dimensional manifold, that is

M = {z ∈U :hj(z)= 0, j =1, ...,m, r(z, z)= 0}.(7)

Here hj are functions holomorphic on U and r :U−→R is a real analytic function.
Furthermore, ∂r∧dh1∧...∧dhm �=0. Then

MC = {(z, w)∈U×U : r(z, w)= 0, hj(z)= 0, hj(w)= 0, j =1, ...,m}(8)

in a neighbourhood U×U of (z0, z0).
We need to study some general properties of projections πz and πw. Let π be

one of the projections πz or πw. Introduce the dimension of π by setting dim π=
max(z,w)∈MC dim(z,w) π. If M is irreducible as a germ, then so is MC (see [10,
p. 92]). Hence, (MC)reg is a connected complex manifold of dimension 2n−1. Then
the equality dim(z,w) π=dim π holds on a Zariski open set

(9) MC

∗ := (MC\X)⊂ (MC)reg,

where X is a complex analytic subset of dimension <2n−1. Here dim π coincides
with the rank of π|MC

∗
. Furthermore, dim(π|(MC)sing)≤dim π.

Lemma 2.2. Let π be one of the projections πz or πw.

(a) We have dim π=n.

(b) The image π(MC) is contained in the (at most) countable union of complex

analytic sets of dimension ≤n.
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Proof. (a) Consider the case where π=πw. In view of (8) the image of an
open neighbourhood a regular point (z0, z0) in MC coincides with the complex
n-dimensional manifold {w:hj(w)=0, j=1, ...,m}. This implies (a).

(b) This is a consequence of (a), see [6]. �

It follows from the lemma above that generically, i.e., for w∈πw(MC
∗ ), the

complex analytic set Qw has dimension n−1, and that Qw can have dimension n if
(z, w) /∈MC

∗ . Of course, Qw is empty if w does not belong to πw(MC).
A singular point q∈M is called Segre degenerate if dimQq=n. Note that the

set of Segre degenerate points is contained in a complex analytic subset of dimension
n−2. The proof, which we omit, is quite similar to that in [12], where this claim is
established for hypersurfaces.

Let q∈Mreg. Denote by Lq the leaf of the Levi foliation through q. Note
that by definition this is a connected complex submanifold of complex dimension
n−1 that is closed in Mreg. Denote by M∗⊂Mreg the image of M̂∩MC

∗ under the
projection π, where MC

∗ is defined as in (9). This set coincides with Mreg\A for
some proper complex analytic subset A.

As a simple consequence of Proposition 2.1 we have quite similarly to [12] the
following.

Corollary 2.3. Let a∈M∗. Then the following holds:

(a) The leaf La is contained in a unique irreducible component Sa of Qa of di-

mension n−1. In particular, Qa is a nonempty complex analytic set of pure dimen-

sion n−1. In a small neighbourhood U of a the intersection Sa∩U is also a unique

complex submanifold of complex dimension n−1 through a which is contained in M .

(b) For every a∈M∗ the complex variety Sa is contained in M .

(c) For every a, b∈M∗ one has b∈Sa⇐⇒Sa=Sb.

(d) Suppose that a∈M∗ and La touches a point q∈M (the point q may be

singular). Then Qq contains Sa. If, additionally, dimC Qq=n−1, then Sa is an

irreducible component of Qq.

Proof. (a) We first make an elementary, but important, observation. Suppose
that M is a representative in a domain U of the germ of a real analytic set {ρ=0}.
Let a∈M and V be a neighbourhood of a, V ⊂U . Suppose that we used a different
function ρ̃ to define M∩V , i.e., M∩V ={ρ̃=0}. Applying Proposition 2.1 to the
inclusion map V ↪→U we conclude that the Segre varieties of M∩V defined by
complexifying ρ̃ are contained in the Segre varieties of M defined by complexifying
the function ρ. More precisely, the Segre varieties with respect to ρ̃ are coincide with
the intersection with V of some components of Segre varieties with respect to ρ.

In view of the invariance of the Levi form under biholomorphic maps, the Levi
foliation is an intrinsic notion, i.e., it is independent of the choice of (local) holo-
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morphic coordinates. Similarly, in view of the biholomorphic invariance of Segre
varieties described in Proposition 2.1(c), these are also intrinsic objects. There exist
a small neighbourhood U of a and a holomorphic map which takes a to the origin
and is one-to-one between U and a neighbourhood U ′ of the origin, such that the
image of M has the form (4). Hence, without loss of generality we may assume that
a=0 and may view (4) as a representation of M∩U in the above local coordinates.
Then Q0∩U={zn=0, z′′=0}. Hence, going back to the original coordinates, we ob-
tain, by the invariance of Segre varieties, that the intersection Qa∩U is a complex
submanifold of dimension n−1 in M∩U which coincides with La∩U . In particular,
it belongs to a unique irreducible component of Qa of dimension n−1. It follows
also from (4) that it is a unique complex submanifold of dimension n−1 through a

contained in a neighbourhood of a in M .
(b) Recall that we consider M defined by (1). Since Sa is contained in M near

a, it follows by analyticity of ρ and the uniqueness that ρ|Sa≡0, i.e., Sa is contained
in M .

(c) By part (b), the complex submanifold Sa is contained in M . Therefore, in
a small neighbourhood of b we have Sa=Sb by part (a). Then also globally Sa=Sb

by the uniqueness theorem for irreducible complex analytic sets.
(d) Since q∈Qa, we have a∈Qq. The same holds for every point a′∈La in a

neighbourhood of a. Hence, Sa is contained in Qq by the uniqueness theorem for
complex analytic sets. Suppose now that dimC Qq=n−1. Since a is a regular point
of M , the leaf La is not contained in the set of singular points of M ; hence, regular
points of M form an open dense subset in this leaf. Consider a sequence of points
qm∈La∩Mreg converging to q. It follows by (c) that the complex n−1-submanifold
Sa=Sqm is independent of m and by (a) Sqm is an irreducible component of Qqm .
Passing to the limit we obtain that Sa is contained in Qq as an irreducible compo-
nent. �

3. Dicritical singularities of Levi-flat subsets

Let M be a real analytic Levi-flat subset of dimension 2n−1 in Cn+m. A sin-
gular point q∈M is called dicritical if q belongs to the closure of infinitely many
geometrically different leaves La. Singular points which are not dicritical are called
nondicritical. Our main result is the following.

Theorem 3.1. Let M be a real analytic Levi-flat subset of dimension 2n−1
in C

n+m, irreducible as a germ at 0∈Mreg . Then 0 is a dicritical point if and only

if dimC Q0=n.

For hypersurfaces this result is obtained in [11].
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A dicritical point is Segre degenerate; this follows by Corollary 2.3(d). From
now on we assume that 0 is a Segre degenerate point; our goal is to prove that 0 is
a dicritical point.

For every point w∈πw(MC) denote by Qc
w the union of irreducible compo-

nents of Qw containing the origin; we call it the canonical Segre variety. Note that
by Proposition 2.1(b), for every w from a neighbourhood of the origin in Q0 its
canonical Segre variety Qc

w is a nonempty complex analytic subset. Consider the
set

Σ = {(z, w)∈MC

∗ : z /∈Qc
w}.

If Σ is empty, then for every point w from a neighbourhood of the origin in
πw(MC

∗ ) the Segre variety Qw coincides with the canonical Segre variety Qc
w, i.e.,

all components of Qw contain the origin. But for a regular point w of M , its Levi
leaf is a component of Qw. Therefore, every Levi leaf contains the origin which is
then necessarily a dicritical point. Thus, in order to prove the theorem, it suffices
to establish the following

Proposition 3.2. Σ is the empty set.

Arguing by contradiction assume that Σ is not empty. The proof consists of
two main steps. First, we prove that the boundary of Σ is “small enough", and so
is a removable singularity for Σ. Second, we prove that the complement of Σ is not
empty. This will lead to a contradiction.

To begin, we need some technical preliminaries. Consider the complex 2n+m

dimensional analytic set

Z =C
n+m×Q0 = {(z, w) :w∈Q0}.

Here we view a copy of Q0 in C
n+m(w), that is defined by πw ¨π

−1
z (0).

Lemma 3.3. One has MC⊂Z. As a consequence, 0∈Qw for every (z, w)∈MC.

Essentially this result was proved by Brunella [2]. For the convenience of
readers we include the proof.

Proof. Denote by X the proper complex analytic subset of MC where the
dimension of fibres of πw is ≥n. Thus for every (z, w)∈MC\X the dimension of
the fibres π−1

w (w) is equal to n−1.
Note that the lift Q̃0={(z, w):z=0, w∈Q0} is contained in MC. First, we claim

that the intersection Q̃0∩(MC\X) is not empty. Arguing by contradiction, assume
that Q̃0 is contained in X. Then the dimension of the fibre of πw at every point
of Q̃0 is ≥n. Since dim Q̃0=n, the dimension of MC must be ≥2n, which is a
contradiction.
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Let (0, w0)∈MC\X. Slightly perturbing w0 one can assume that w0 is a regular
point of Q0. Let U be a sufficiently small open neighbourhood of w0 in Cn+m. The
fibres of πw over Q0∩U have the dimension n−1 so the preimage π−1

w (Q0∩U)
contains an open piece (of dimension 2n−1) of MC. Since MC is irreducible, we
conclude by the uniqueness theorem that MC⊂Z globally. �

The first step of proof consists of the following.

Lemma 3.4. We have

(a) Σ is an open subset of MC.

(b) The boundary of Σ is contained in a complex hypersurface in MC.

Proof. (a) The fact that the set Σ is open in MC
∗ follows immediately because

the defining functions of a complex variety Qw depend continuously on the param-
eter w.

(b) We are going to describe the boundary of Σ. Let (zk, wk), k=1, 2, ..., be a
sequence of points from Σ converging to some (z0, w0)∈MC

∗ . Every Segre variety Qw

(for w=w0 or w=wk) is a complex analytic subset of dimension n−1 containing the
origin. Assume that (z0, w0) does not belong to Σ, that is, (z0, w0) is a boundary
point of Σ. The point (z0, w0) is a regular point for MC, and the point z0 is a
regular point of the Segre variety Qw0 ; we may assume that the same holds for every
(zk, wk). For w=w0 or w=wk denote by K(w) the unique irreducible component of
Qw containing z0 or zk respectively. It follows from the definition of Σ that K(w0)
contains the origin, while K(wk) does not contain the origin, k=1, 2, .... The limit as
k→∞ (with respect to the Hausdorff distance) of the sequence {K(wk)} of complex
analytic subsets is an (n−1) dimensional complex analytic subset containing K(w0)
as an irreducible component. Indeed, this is true in a neighbourhood of the point z0

and then holds globally by the uniqueness theorem for irreducible complex analytic
subsets.

We use the notation z=(z′, zn, z′′)=(z1, ..., zn−1, zn, zn+1, ..., zn+m). Perform-
ing a complex linear change of coordinates in C

n+m(z) if necessary, we can assume
that the intersection of Qw0 with the complex linear subspace {z :z′=0′} is a dis-
crete set. Denote by D(zi1 , ..., zil) the unit polydisc {|zij |<1, j=1, ..., l} in the space
C(zi1 , ..., zil). Choose δ>0 small enough such that

(10) {z : (0′, z′′) : z′′ ∈ δD(zn, z′′)}∩Qw0 = {0}.

Using the notation w=(′w,′′ w), where ′w=(wi1 , ..., win), choose a suitable complex
affine subspace {′′w=′′w0} of C

n+m of dimension n such that the canonical pro-
jection of Q0⊂Cn+m(w) on Cn(′w) is proper. Recall that dimQ0=n. Shrinking δ,
one can assume that

Q0∩{w : ′w= ′w
0
, ′′w∈ ′′w

0+δD(′′w)}= {w0}.
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Denote by π the projection

π : (z, w) �−→ (z′, ′w).

Then the intersection π−1(0′, ′w0)∩MC is discrete (we use here Lemma 3.3). Thus,
there exist small enough neighbourhoods U ′ of 0′ in C

n−1(z′), ′V of ′w0 in C
n(′w),

and δ>0 such that the restriction

π :MC∩(U ′×δD(zn, z′′)×′V ×(′′w0+δD(′′w)))−→U ′×′V

is a proper map. This means that we have the following defining equations for
MC∩(U ′×δD(zn, z′′)×′V ×(′′w0+δD(′′w))):

⎧⎨
⎩(z, w) : ΦI(z′,′ w)(zn, z′′, ′′w) :=

∑
|J|≤d

φIJ(z′,′ w)(zn, z′′, (′′w−′′w
0))J =0, |I|= d

⎫⎬
⎭,

(11)

where the coefficients φIJ(z′,′ w) are holomorphic in (U ′×′V ). The Segre varieties
are obtained by fixing ′w in the above equations:

Qw =

⎧⎨
⎩z : ΦI(z′,′ w)(zn, z′′, ′′w) :=

∑
|J|≤d

φIJ(z′,′ w)(zn, z′′, (′′w−′′w
0))J =0, |I|= d

⎫⎬
⎭.

(12)

Note that φI0(0′,′ w)=0 for all I and all ′w because every Segre variety contains
the origin.

Denote by πj the projection

πj : (z, w) �−→ (z′, zj , w), j =n, n+1, ..., n+m.

Then the restrictions

πj :Qw∩(U ′×δD(zn, z′′))−→U ′×δD(zj)

are proper for every w∈′V ×(′′w0+δD(′′w)). The image πj(Qw) is a complex hy-
persurface in U ′×δD(zj) with a proper projection on U ′. Hence

πj(Qw)=
{
(z′, zj) :Pj(z′,′ w)(zj) := z

dj

j +ajdj−1(z′,′ w)zdj−1
j +...+aj0(z′,′ w)= 0

}
,

(13)

where the coefficients ajs are holomorphic in (z′,′ w)∈U ′×V . Indeed, the equations
(13) are obtained from the equations (12) by the standard elimination construction
using the resultants of pseudopolynomials ΦI from (12), see [6]. This assures the
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holomorphic dependence of the coefficients with respect to the parameter ′w. Note
that the first coefficient of each Pj can be made equal to 1 since the projections are
proper.

Recall that K(wk) does not contain the origin in C
n+m for k=1, 2, .... There-

fore, for each k there exists some j∈{n, n+1, ..., n+m} such that the zj coordinate
of some point of the fibre π−1(0′)∩K(wk) does not vanish. After passing to a sub-
sequence and relabeling the coordinates one can assume that for every k=1, 2, ...,
the zn-coordinate of some point of the fibre π−1(0′)∩K(wk) does not vanish. The
zn-coordinate of every point of the fibre π−1(0′)∩K(wk) satisfies (13) with j=n,
z′=0′ and w=wk. Hence, for every k this equation admits a nonzero solution.
Passing again to a subsequence one can also assume that there exists s such that
for every k=1, 2, ..., one has ans(0′,′ wk) �=0.

Set z′=0 in (13). Consider (ζ,′ w)∈C×′V satisfying the equation

ζdn +andn−1(0′,′ w)ζdn−1+...+an0(0′,′ w)= 0.(14)

This equation defines a dn-valued algebroid function ′w �→ζ(′w). Given ′w∈′V the
algebroid function ζ associates to it the set ζ(′w)={ζ1(′w), ..., ζs(′w)}, s=s(′w)≤dn,
of distinct roots of (14). Let j be the smallest index such that the coefficient
anj(0′,′ w) does not vanish identically. Dividing (14) by ζj we obtain

ζdn−j+andn−1(0′,′ w)ζdn−j−1+...+anj(0′,′ w)= 0.(15)

Every non-zero value of ζ satisfies this equation.
For each w=wk, k=1, 2, ... or w=w0 the fibre {(z′, zn):z′=0}∩πn(K(w)) is

a finite set {p1(w), ..., pl(w)}, l=l(k) in Cn(z′, zn). Each non-vanishing n-th co-
ordinate pμn(wk), k=1, 2, ... is a value of the algebroid function ζ at ′wk. By our
assumption we have pνn(wk) �=0 for some ν and every k=1, 2, ...; one can assume that
ν is the same for all k. These pνn(wk) satisfy (15) with ′w=′wk. On the other hand,
it follows by (10) that the fibre {(z′, zn):z′=0}∩πn(K(w0)) is the singleton {0} in
Cn(z′, zn); hence pμn(w0)=0 for all μ. The sequence (pνn(wk)), k=1, 2, ... tends to
some pνn(w0) as wk−→w0. Therefore, every such pνn(w0) also satisfies (15) with
′w=′w0. But pμn(w0)=0 for all μ and, in particular, pνn(w0)=0. This means that
anj(0′,′ w0)=0.

Thus the boundary of Σ in MC
∗ is contained in the complex analytic hypersur-

face
A1 = {(z, w)∈MC

∗ : anj(0′,′ w)= 0}.

The union A2=A1∪MC
sing∪(MC\MC

∗ ) is a complex hypersurface in MC with the
following property: if (z, w)∈MC is close enough to (z0, w0) and belongs to the
closure of Σ but does not belong to Σ, then (z, w)∈A2. �
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The second step of the proof is given by the following

Lemma 3.5. The complement of Σ has a nonempty interior in MC.

Proof. We begin with the choice of a suitable point w∗. First fix any point
(z∗, w∗)∈MC

∗ . We can assume that the rank of the projection πw is maximal and
is equal to n in a neighbourhood O of (z∗, w∗) in MC

∗ ; denote by S the image
πw(O). As above, we use the notation w=(′w,′′ w) and suppose that the projection
σ :S	(′w,′′ w)−→′w is one-to-one on a neighbourhood ′W of ′w∗ in C

n. Let l be
the maximal number of components of Qw for w with ′w∈′W , and let w∗ be such
that Qw∗ has exactly l geometrically distinct components. One can assume that a
neighbourhood ′W of ′w∗ is chosen such that Qw has exactly l components for all
w∈σ−1(′W )⊂S. Let K1(w), ...,Kl(w) be the irreducible components of Qw. Note
that the components Kj(w) depend continuously on w.

Consider the sets Fj={′w∈′W :0∈Kj(σ−1(′w))}. Every set Fj is closed in ′W .
Since 0∈Qw for every w∈S (by Lemma 3.3), we have ∪jFj=′W . Therefore, one
of this sets, say, F1, has a nonempty interior in ′W . This means that there exists
a small ball B in C

n(′w) centred at some ′w̃ such that K1(w) contains 0 for all
′w∈B∩′W . Choose a regular point z̃ in K1(w̃) where w̃=σ−1(′w̃). Then for every
(z, w)∈MC near (z̃, w̃), we have z∈K1(w), i.e., (z, w) /∈Σ. Hence, the complement
of Σ has a nonempty interior. �

Now by Lemma 3.4(b) and the Remmert-Stein theorem the closure Σ of Σ
coincides with an irreducible component of MC. Since the complexification MC is
irreducible, the closure Σ of Σ coincides with the whole MC. This contradiction
with Lemma 3.5 concludes the proof of Proposition 3.2 and proves Theorem 3.1.

References
1. Adamus, J. and Shafikov, R., On the holomorphic closure dimension of real analytic

sets, Trans. Amer. Math. Soc. 363 (2011), 5761–5772.
2. Brunella, M., Singular Levi-flat hypersurfaces and codimension one foliations, Ann.

Sc. Norm. Super. Pisa VI (2007), 661–672.
3. Brunella, M., Some remarks on meromorphic first integrals, Enseign. Math. 58

(2012), 315–324.
4. Cerveau, D. and Lins Neto, A., Local Levi-flat hypersurfaces invariants by a codi-

mension one foliation, Amer. J. Math. 133 (2011), 677–716.
5. Cerveau, D. and Sad, P., Fonctions et feuilletages Levi-flat. Etude locale, Ann. Sc.

Norm. Super. Pisa III (2004), 427–445.
6. Chirka, E., Complex Analytic Sets, Kluwer, 1989.
7. Diederich, K. and Pinchuk, S., The geometric reflection principle in several complex

variables: a survey, Complex Var. Elliptic Equ. 54 (2009), 223–241.



408
On dicritical singularities of Levi-flat sets

Sergey Pinchuk, Rasul Shafikov and Alexandre Sukhov:

8. Fernández-Pérez, A., On Levi-flat hypersurfaces with generic real singular set,
J. Geom. Anal. 23 (2013), 2020–2033.

9. Lebl, J., Singular set of a Levi-flat hypersurface is Levi-flat, Math. Ann. 355 (2013),
1177–1199.

10. Narasimhan, R., Introduction to the Theory of Analytic Spaces, Lecture Notes in
Mathematics 25, iii+143 pp., Springer, Berlin–New York, 1966.

11. Pinchuk, S., Shafikov, R. and Sukhov, A., Dicritical singularities and laminar
currents on Levi-flat hypersurfaces, Izv. Ross. Akad. Nauk Ser. Mat. 81 (2017),
150–164.

12. Shafikov, R. and Sukhov, A., Germs of singular Levi-flat hypersurfaces and holo-
morphic foliations, Comment. Math. Helv. 90 (2015), 479–502.

Sergey Pinchuk
Department of Mathematics
Indiana University
831 E 3rd St. Rawles Hall
Bloomington
IN 47405
U.S.A
pinchuk@indiana.edu

Rasul Shafikov
Department of Mathematics
the University of Western Ontario
London
Ontario, N6A 5B7
Canada
shafikov@uwo.ca

Alexandre Sukhov
Université de Lille (Sciences et Technolo-
gies)
U.F.R. de Mathématiques
FR 59655 Villeneuve d’Ascq Cedex
France
sukhov@math.univ-lille1.fr

Received August 21, 2017

mailto:pinchuk@indiana.edu
mailto:shafikov@uwo.ca
mailto:sukhov@math.univ-lille1.fr

	On dicritical singularities of Levi-flat sets
	1 Introduction
	2 Levi-flat subsets, Segre varieties
	3 Dicritical singularities of Levi-flat subsets
	References


