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On the spectrum of the multiplicative Hilbert
matrix

Karl-Mikael Perfekt and Alexander Pushnitski

Abstract. We study the multiplicative Hilbert matrix, i.e. the infinite matrix with entries
(
√
mn log(mn))−1 for m,n≥2. This matrix was recently introduced within the context of the

theory of Dirichlet series, and it was shown that the multiplicative Hilbert matrix has no eigenval-
ues and that its continuous spectrum coincides with [0, π]. Here we prove that the multiplicative
Hilbert matrix has no singular continuous spectrum and that its absolutely continuous spectrum
has multiplicity one. Our argument relies on spectral perturbation theory and scattering theory.
Finding an explicit diagonalisation of the multiplicative Hilbert matrix remains an interesting open
problem.

1. Introduction

Let {h(n)}∞n=0 be a sequence of complex numbers. A Hankel matrix is an
infinite matrix of the form

{h(n+m)}∞n,m=0,

considered as a linear operator on �2(Z+), Z+={0, 1, 2, ...}. One of the key examples
of Hankel matrices is the Hilbert matrix:

(1.1) {(n+m+a)−1}∞n,m=0, a> 0.

Magnus [7] studied the spectrum of the Hilbert matrix for a=1, proving that it
is given by the interval [0, π] and that it is purely continuous, i.e. there are no
eigenvalues. Later, Rosenblum [11] proved the following theorem.

Key words and phrases: multiplicative Hilbert matrix, Helson matrix, absolutely continuous
spectrum.

2010 Mathematics Subject Classification: 47B32, 47B35.



164 Karl-Mikael Perfekt and Alexander Pushnitski

Theorem A For any a>0, the absolutely continuous (a.c.) spectrum of the

Hilbert matrix (1.1) is [0, π] with multiplicity one. There is no singular continuous

spectrum.

(i) If a≥1/2, there are no eigenvalues.

(ii) If 0<a<1/2, there is one simple eigenvalue π/ cos(π(a−1/2)), and no other

eigenvalues.

In fact, Rosenblum gave an explicit diagonalisation of the Hilbert matrix for
all a∈R, a �=0,−1,−2, ..., from which one can read off the above description of the
spectrum.

The Hilbert matrix is remarkable, in particular, for being the simplest bounded
non-compact Hankel matrix. It exhibits the following borderline behaviour:

• If nh(n)→0 as n→∞, then {h(n+m)}∞n,m=0 is compact on �2(Z+);
• If nh(n)→∞ as n→∞, then {h(n+m)}∞n,m=0 is unbounded on �2(Z+).
In this paper we discuss a similarly remarkable borderline operator in the class

of multiplicative Hankel matrices, i.e. in the class of infinite matrices of the form

M(g)= {g(nm)}∞n,m=1,

considered as linear operators on �2(N), N={1, 2, ...}. Here the (n,m)’th entry of
the matrix depends on the product nm instead of the sum n+m. Following [10],
we call such operators Helson matrices, in honour of H. Helson’s pioneering work
[3] on the subject.

The special Helson matrix we consider corresponds to the sequence

(1.2) ga(n)= 1√
n(a+logn)

, n≥ 1, a> 0.

It is not difficult to see that M(ga) is a bounded self-adjoint operator on �2(N) (see
Theorem 2.2). Similarly to the case of the Hilbert matrix, the Helson matrix M(ga)
is borderline in the following sense:

• If (
√
n logn)g(n)→0 as n→∞, then M(g) is compact on �2(N);

• If (
√
n logn)g(n)→∞ as n→∞, then M(g) is unbounded on �2(N).

Even though it is not possible to take a=0 in the definition (1.2), one can do
so if the indices n,m are restricted to N2={2, 3, ...}. We will denote by M2(g) the
operator on �2(N2) corresponding to the matrix {g(nm)}n,m≥2. Hence, when a=0,
one can consider M2(g0), with g0 defined as in (1.2), i.e.

M2(g0)= {(
√
mn log(mn))−1}∞n,m=2.

Following [2], we call M2(g0) the multiplicative Hilbert matrix.
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We now state our main results.

Theorem 1.1. The multiplicative Hankel matrix M2(g0) has a purely a.c.

spectrum (no singular continuous spectrum, no eigenvalues) which coincides with

[0, π] and has multiplicity one.

Theorem 1.2. For any a>0, the a.c. spectrum of M(ga) coincides with [0, π]
and has multiplicity one. The singular continuous spectrum of M(ga) is absent.

There is a critical value a∗>0 such that:

(i) If a≥a∗, then M(ga) has no eigenvalues.

(ii) If 0<a<a∗, then M(ga) has one simple eigenvalue λ(a)>π, and no other

eigenvalues. The eigenvalue λ(a) is a continuous non-increasing function of a∈
(0, a∗), with lima→a−

∗
λ(a)=π and lima→0+ λ(a)=∞.

Despite the similarity with Theorem A, we do not have an explicit diagonali-
sation of either M(ga) or M2(g0); to find one is an interesting open problem. We
are also unable to explicitly compute the critical value a∗, and the same is true for
the eigenvalue λ(a). We only have the crude estimates

1
π
≤ a∗ ≤ 2 and 1

a
≤λ(a)≤π+ 1

a
,

see Section 5.
The multiplicative Hilbert matrix M2(g0) was introduced in [2], where it was

placed in the context of the study of operators acting on Hardy spaces of Dirich-
let series. The multiplicative Hilbert matrix is especially interesting, because al-
though its analogy to the classical Hilbert matrix is unambiguous, questions about
its place within the theory of Dirichlet series are open. In particular, it is not
known whether M2(g0) has a bounded symbol — see Problem 3.2 in [12] for a
precise statement.

The fact that the spectrum of M2(g0) is purely continuous and coincides with
[0, π] was already proven in [2], but we give a more streamlined version of the proof.

Our main contributions in this paper are:
• the proof that the singular continuous spectra of M2(g0) and M(ga) are

absent and that the respective a.c. spectra have multiplicity one;
• a clarification of the connection between M2(g0), M(ga) and certain integral

Hankel operators. This lies at the heart of our proof — see Section 2.
We also attempt to push the analogy with the Hilbert matrix a little further

by introducing the one-parameter family M(ga), with the hope of stimulating some
further progress.
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2. The strategy of the proof

2.1. Reduction to integral Hankel operators

Key to our analysis is a unitary equivalence between M(ga), M2(g0) and cer-
tain integral Hankel operators. We start by recalling the definition of this class of
operators. For a kernel function h∈L1

loc(R+), let us denote by H(h) the integral
Hankel operator in L2(R+), formally defined by

(H(h)f)(t)=
∫ ∞

0
h(t+s)f(s) ds, t> 0, f ∈L2(R+).

We need a simple sufficient condition for the boundedness of integral Hankel op-
erators. Let H(1/t) be the Carleman operator, i.e. the integral Hankel operator
with the kernel function h(t)=1/t. Recall that H(1/t) is bounded on L2(R+) with
norm π; we will come back to the spectral properties of H(1/t) in Section 4.2. From
the boundedness of H(1/t) we immediately get the following estimate, which is both
well known and easy to prove.

Lemma 2.1. Let h be a kernel function with |h(t)|≤A/t for some A>0. Then
‖H(h)‖≤Aπ.

Proof. For f1, f2∈L2(R+), we have

|(H(h)f1, f2)| ≤A(H(1/t)|f1|, |f2|)≤Aπ‖|f1|‖‖|f2|‖=Aπ‖f1‖‖f2‖. �

Let

ζ(t)=
∞∑

n=1
n−t, t > 1,

be the Riemann zeta function. As usual, for a bounded operator H in a Hilbert
space, we say that H is non-negative, H≥0, if (Hx, x)≥0 for all elements x in the
Hilbert space.

Now we are ready to state the unitary equivalence between M2(g0), M(ga),
and integral Hankel operators.

Theorem 2.2.
(i) The operator M2(g0) is bounded, non-negative, has trivial kernel, and is

unitarily equivalent to

H(h0)|(KerH(h0))⊥ , h0(t)= ζ(t+1)−1.

(ii) For any a>0, the operator M(ga) is bounded, non-negative, has trivial ker-

nel, and is unitarily equivalent to

H(ha)|(KerH(ha))⊥ , ha(t)= ζ(t+1)e−at/2.
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In fact, it is not difficult to see that the kernels of H(h0) and H(ha) are also
trivial. However, we will not need this observation in our proof.

Proof. (i) Consider the operator N0 :L2(R+)→�2(N2), given by

(N0f)n =
∫ ∞

0
n− 1

2−tf(t) dt, n∈N2, f ∈L2(R+).

For f1, f2∈L2(R+), we have that

(N0f1,N0f2) =
∞∑

n=2

∫ ∞

0

∫ ∞

0
n−1−t−sf1(s)f2(t) ds dt

=
∫ ∞

0

∫ ∞

0
(ζ(t+s+1)−1)f1(s)f2(t) ds dt.

Thus
(N0f1,N0f2)= (H(h0)f1, f2), h0(t)= ζ(t+1)−1.

We have the elementary bound

(2.1) h0(t)=
∞∑

n=2
n−t−1 ≤

∫ ∞

1

dx

xt+1 = 1
t
, t> 0.

Together with Lemma 2.1, this bound shows that H(h0) is bounded on L2(R+).
Thus, N0 is also bounded and

H(h0)=N ∗
0 N0.

Next, consider the adjoint N ∗
0 :�2(N2)→L2(R+), given by

(N ∗
0 x)(t)=

∑
m≥2

xmm− 1
2−t, t > 0, x= {xm}∞m=2 ∈ �2(N2).

Since
g0(n)= (

√
n logn)−1 =

∫ ∞

0
n− 1

2−t dt, n≥ 2,

we see that the operator N0N ∗
0 on �2(N2) is given by

(N0N ∗
0 x)n =

∑
m≥2

g0(nm)xm, x∈ �2(N2),

i.e. N0N ∗
0 =M2(g0).
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It is well known that, for any bounded operator N , the operators

N ∗N|(KerN )⊥ and NN ∗|(KerN∗)⊥

are unitarily equivalent. This gives the required unitary equivalence between the
non-zero parts of M2(g0) and H(h0).

To complete the proof of part (i), it remains to show that the kernel of N ∗
0

is trivial. This is easy to check: if N ∗
0 x=0, then, inspecting the asymptotics of

(N ∗
0 x)(t) as t→∞, we inductively prove that xm=0 for m=2, 3, ....

(ii) For a fixed parameter a>0, let Na :L2(R+)→�2(N) be the linear operator
given by

(Naf)n =
∫ ∞

0
e−at/2n− 1

2−tf(t) dt, n∈N, f ∈L2(R+).

Similarly to part (i), we have

N ∗
aNa =H(ha), ha(t)= ζ(t+1)e−at/2.

Using (2.1), we get

ha(t)= e−at/2
∞∑

n=1
n−t−1 ≤ e−at/2(1+1/t)≤C(a)/t, t> 0,

and so H(ha) is bounded.
On the other hand, the adjoint N ∗

a :�2(N)→L2(R+) is given by

(N ∗
a x)(t)= e−at/2

∑
m≥1

xmm− 1
2−t, t > 0, x= {xm}m≥1 ∈ �2(N).

Since

ga(n)= 1√
n(a+logn)

=
∫ ∞

0
e−atn− 1

2−t dt, n≥ 1,

we obtain

NaN ∗
a =M(ga).

This gives the required unitary equivalence. Again it is easy to see that the kernel
of N ∗

a is trivial. �
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2.2. Some heuristics

Theorem 2.2 reduces the question to the analysis of integral Hankel operators
with specific kernel functions. Let us recall some basic facts about such opera-
tors.

It is well known that the Carleman operator has a purely a.c. spectrum [0, π] of
multiplicity two. In fact, H(1/t) is explicitly diagonalised by the Mellin transform,
see Section 4.2 below. From Lemma 2.1 it is easy to conclude that

h(t)= o(1/t) as t−→ 0 and as t−→∞ =⇒ H(h) is compact.

Heuristically, the behaviour 1/t of the kernel function is singular both as t→0
and as t→∞. The spectrum of H(1/t) has multiplicity two because each of these
singularities generates an interval of a.c. spectrum of multiplicity one. J. S. Howland
has made this observation more precise in [4] by proving, brushing some technical
details aside, that if

(2.2) h(t)=
{
c0/t+error term, t→0,
c∞/t+error term, t→∞,

then the a.c. spectrum of H(h) is given by the union of intervals

σac(H(h))= [0, πc0]∪[0, πc∞],

where each of the two intervals contributes multiplicity one to the spectrum. (How-
land was motivated, on the one hand, by the earlier work [8] of S. Power, which
concerns the essential spectrum of Hankel operators with piecewise continuous sym-
bols, and on the other hand, by similar results in scattering theory for Schrödinger
operators.) Howland’s results were further extended in [9], where a more general
class of kernel functions was considered.

Now let us come back to the kernel functions ha and h0 of Theorem 2.2. Recall
that zeta function ζ(z) has a simple pole at z=1 with residue 1 and so

(2.3) ζ(1+t)−1/t∈C∞([0,∞)),

and

(2.4) ζ(t)= 1+O(2−t), t−→∞.

It follows that ha satisfies

ha(t)=
{

1/t+O(1), t→0,
o(1/t), t→∞,

both for a=0 and for a>0. Thus, ha satisfies (2.2) with c0=1 and c∞=0 and
so, according to Howland’s paradigm, we should expect H(ha) to have the a.c.
spectrum [0, π] of multiplicity one. This is indeed what we will prove.
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2.3. The absolutely continuous spectrum

The statements about the absolutely continuous and the singular continuous
spectra of H(ha) are consequences of the following theorem.

Theorem 2.3. Let h(t), t>0, be a real-valued kernel function such that

|h(t)−1/t| ≤Ct−1+ε, 0<t≤ 1,
|h(t)| ≤Ct−1−ε, t≥ 1,

(2.5)

with some ε>0 and C>0. Then the Hankel operator H(h) is bounded and has the

essential spectrum [0, π]. The absolutely continuous spectrum of H(h) has multi-

plicity one and coincides with the same interval [0, π]. The singular continuous

spectrum of H(h) is absent.

The proof is given in Section 3. In fact, this theorem follows from [4, Theo-
rem 2], established with Mourre’s inequality, or from [9, Theorem 7.10], where the
smooth method of scattering theory is used. However, in both of these references
the argument is much more complicated than necessary for our purposes. The
kernels considered in [4] and [9] have two or more singularities, which leads to an
a.c. spectrum of multiplicity two or more, necessitating the use of multi-channel
scattering theory. Here we give a much simpler single-channel argument.

Conditions (2.5) can be relaxed somewhat by replacing t±ε by suitable powers
of |log t|, see [9].

2.4. The absence of embedded eigenvalues

The absence of eigenvalues of H(ha) in the interval (0, π] will be established
through the following theorem.

Theorem 2.4. Let h be as in Theorem 2.3. Assume in addition that H(h)≥0,
that the function h̃(t)=h(t)−1/t satisfies h̃∈C2([0,∞)), and that

(2.6)
(

d

dt

)k
h̃(t)=O(t−1−k), t−→∞, k=1, 2.

Then H(h) has no eigenvalues in (0, π].

The proof, which is given in Section 4, is an extension of an argument from
[2]. We note that the argument in [2] was somewhat obscured by the fact that the
equivalence between M2(g0) and the integral Hankel operator H(h0) was not fully
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understood. Because of this, the argument in [2] is presented in terms of functions
given by Dirichlet series, which makes it a little more complicated than necessary.
Here we give a more streamlined (and more general) version.

The conditions on h in Theorem 2.4 are certainly not optimal, but they are
sufficient for proving our main results, since the kernels h0 and ha satisfy them.

2.5. The structure of the paper

In Section 3, we prove Theorem 2.3. In Section 4, we prove Theorem 2.4. In
Section 5, we use these two results, and some additional concrete analysis related
to the eigenvalues in the interval (π,∞), to prove Theorems 1.1 and 1.2.

3. The absolutely continuous spectrum: proof of Theorem 2.3

3.1. Preliminaries

The idea of the proof is as follows. Consider the integral Hankel operator H(h∗)
with the kernel function

h∗(t)= e−t/2

t
, t> 0.

This kernel function satisfies (2.2) with c0=1 and c∞=0, and so, according to How-
land’s paradigm, we expect the a.c. spectrum of H(h∗) to be [0, π] with multiplicity
one. This is indeed the case, and in fact, an explicit diagonalisation of H(h∗) is
available [5], [6], [11], and [14]. This operator has a purely a.c. spectrum [0, π] with
multiplicity one (no singular continuous spectrum, no eigenvalues), and the family
of generalised eigenfunctions of the continuous spectrum is known in explicit form,
as described in the next subsection.

Let h be as in Theorem 2.3; as a warm-up, let us check that σess(H(h))=[0, π].
We have

H(h)=H(h∗)+H(w),

where w(t)=h(t)−h∗(t) satisfies

w(t)=
{
O(t−1+ε), t→0,
O(t−1−ε), t→∞.

It follows that
∫ ∞
0 t|w(t)|2 dt<∞, and therefore the integral kernel w(t+s) of H(w)

is in L2(R+×R+). Thus, H(w) is Hilbert-Schmidt, and therefore compact. By
Weyl’s theorem on the invariance of the essential spectrum under compact pertur-
bations, we obtain that σess(H(h))=σess(H(h∗))=[0, π], as required.
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Now let us outline the idea of proof of the rest of Theorem 2.3. Under our
assumptions, we will prove that H(h) has the representation

(3.1) H(h)=H(h∗)+G∗AG,

where G is a strongly H(h∗)-smooth operator, in the terminology of [15], and A is a
compact operator. Roughly speaking, this means that the difference H(h)−H(h∗)
can be represented as an operator with a sufficiently regular integral kernel in
the spectral representation of H(h∗). The proof that (3.1) holds consists of two
ingredients: a detailed analysis of the explicit diagonalisation of H(h∗) together
with an identification of a class of H(h∗)-smooth operators, and an (easy) proof of
the compactness of the operator A.

By standard results of smooth scattering theory, the representation (3.1) im-
plies the existence and completeness of wave operators for the pair of operators
(H(h), H(h∗)), yielding the statement about the a.c. spectrum of H(h). The same
considerations of scattering theory also yield the absence of the singular continuous
spectrum of H(h).

3.2. Diagonalization of H(h∗)

Let Kν(z) be the modified Bessel function of the third kind; for Re ν>−1/2
and Re z>0 it is given by the integral representation [1, Section 7.3.5, formula (15)]

(3.2) Γ(ν+ 1
2 )Kν(z)=

√
π
(
z
2
)ν ∫ ∞

1
e−zu(u2−1)− 1

2+ν du.

For k>0 and t>0, set

ψk(t)= 1
π

√
2k sinh(πk)t− 1

2Kik(t/2).

Formally, {ψk}k>0 gives a complete normalised set of generalised eigenfunctions of
H(h∗):

H(h∗)ψk =λ(k)ψk, where λ(k)= π

cosh(πk) , k > 0.

More precisely, we have the following statement [5], [6], [11], and [14].

Proposition 3.1. For f∈C∞
comp(R+), let

(Uf)(k)=
∫ ∞

0
f(t)ψk(t) dt, k > 0.

Then U extends to a unitary operator on L2(R+). For any f∈L2(R+), it holds that

(3.3) (UH(h∗)U∗f)(k)=λ(k)f(k), k > 0.
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One reads off the spectrum of H(h∗) from (3.3): it is given by the closure
of the range of λ(k), k>0, which coincides with the interval [0, π]. Additionally,
since λ(k) is a continuous and strictly decreasing function of k≥0, limk→∞ λ(k)=0,
the spectrum is purely a.c. and has multiplicity one. More explicitly, the unitary
operator U0 :L2(R+)→L2(0, π),

(U0f)(λ)=
(dλ(k)

dk

)−1/2(Uf)(k), λ=λ(k)∈ (0, π),

reduces H(h∗) to the operator of multiplication by the independent variable on
L2(0, π),

(U0H(h∗)U∗
0 f)(λ)=λf(λ), λ∈ (0, π).

3.3. Strong smoothness

Let us fix the following function q∈L∞(R+),

q(t)=
{
|log t|−1, t∈(0, 1/2),
(log 2)−1, t≥1/2.

Denote by Q the operator of multiplication by q(t) in L2(R+). For β>0, we will
also consider the power Qβ . In this subsection, we will prove the following result.

Theorem 3.2. Let β>1/2. Then, in the terminology of [15, Section 4.4], Qβ is

strongly H(h∗)-smooth with any exponent γ in the range 0<γ<min{1, β−1/2} on

any compact sub-interval of (0, π).

The strong smoothness here means the following. Let δ⊂(0, π) be a compact
interval and let γ be as in the theorem. Then there exists a constant C=C(δ, γ)
such that for any f∈L2(R+) we have the estimates

|(U0Q
βf)(λ)| ≤C‖f‖, λ∈ δ,

|(U0Q
βf)(λ)−(U0Q

βf)(λ′)| ≤C|λ−λ′|γ‖f‖, λ, λ′ ∈ δ.

In other words, the linear functional

L2(R+)� f 
−→ (U0Q
βf)(λ)

is norm-Hölder continuous in λ∈δ with the exponent γ.
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Proof of Theorem 3.2. Since λ=λ(k) is a C∞-smooth function of k>0 and the
derivative λ′(k) does not vanish for k>0, it suffices to prove that, for any compact
interval Δ⊂(0,∞) and for any γ<min{1, β−1/2}, the linear functional

L2(R+)� f 
−→ (UQβf)(k)

is norm-Hölder continuous in k∈Δ with the exponent γ. Recalling the formula
for U , we see that this functional is given by

f 
−→
∫ ∞

0
f(t)ψk(t)q(t)β dt, k > 0.

Thus, we need to prove the estimates∫ ∞

0
|ψk(t)|2q(t)2β dt≤C, k∈Δ,∫ ∞

0
|ψk(t)−ψk′(t)|2q(t)2β dt≤C|k−k′|2γ , k, k′ ∈Δ.

By the explicit form of ψk, it suffices to prove the estimates∫ ∞

0
|Kik(t/2)|2t−1q(t)2β dt≤C, k∈Δ,(3.4) ∫ ∞

0
|Kik(t/2)−Kik′(t/2)|2t−1q(t)2β dt≤C|k−k′|2γ , k, k′ ∈Δ.(3.5)

Let us split the domain of integration in (3.4) and (3.5) into (0, 1/2) and (1/2,∞)
and estimate the corresponding integrals separately.

Consider first the integrals over (0, 1/2). We recall the following representation
for the modified Bessel function Kν :

Kν(z)= π

2 sin(νπ) (I−ν(z)−Iν(z)),

where Iν(z) is the modified Bessel function of the first kind, given by the convergent
series

Iν(z)=
∞∑

m=0

(z/2)2m+ν

m!Γ(m+ν+1) .

For k>0, let us write

I±ik(z)= (z/2)±ik Ĩ±ik(z) and Ĩ±ik(z)=
∞∑

m=0

(z/2)2m

m!Γ(m±ik+1) .
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By inspection, both Ĩ±ik(z) and (d/dk)Ĩ±ik(z) are entire functions of z, bounded
uniformly for z∈(0, 1) and k∈Δ. Using the elementary estimate |eia−eib|≤2|a−b|γ
for 0<γ<1, we get

|(z/2)ik−(z/2)ik
′ |= |eik log(z/2)−eik

′ log(z/2)| ≤ 2|k−k′|γ |log(z/2)|γ .

Using this, we obtain the estimates

|Kik(t/2)| ≤C, k∈Δ, t∈ (0, 1/2),
|Kik(t/2)−Kik′(t/2)| ≤C|k−k′|γ |log t|γ , k, k′ ∈Δ, t∈ (0, 1/2).

Now it is clear that for β>γ+1/2 the estimates (3.4) and (3.5) hold with the
integrals taken over (0, 1/2).

Next, let us consider the integrals over (1/2,∞). Here we use the integral
representation (3.2) for Kν . Let us rewrite it as follows,

Kik(t/2)=
√
π

Γ(ik+ 1
2 )

(t/4)ik
∫ ∞

1
e−tu/2(u2−1)− 1

2+ik du.

For t≥1/2, one can estimate the exponential in the integral for Kik as

e−tu/2 = e−tu/4e−tu/4 ≤ e−t/4e−u/8.

This allows one to conclude that Kik satisfies

|Kik(t/2)|+|(d/dk)Kik(t/2)| ≤C|log(t/4)|e−t/4, t > 1/2, k∈Δ.

Thus, we obtain the estimates (3.4) and (3.5) with the integrals taken over (1/2,∞).
Here we do not need any restrictions on γ and β. �

3.4. Putting the results together

We use the following statement from scattering theory. For the proof and
further details, see [15, Section 4.7].

Proposition 3.3. Let H0 be a bounded self-adjoint operator in a Hilbert space.

Assume that the spectrum of H0 is purely a.c., has constant multiplicity m, and

coincides with the interval [a, b]. Let G be a bounded operator, which is strongly

H0-smooth with an exponent γ>1/2 on any compact sub-interval of (a, b). Let

H =H0+G∗AG,

where A is a compact self-adjoint operator. Then
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(i) the a.c. spectrum of H coincides with [a, b] and has a constant multiplic-

ity m,

(ii) H has no singular continuous spectrum,

(iii) and all eigenvalues of H, distinct from a and b, have finite multiplicities

and can accumulate only to a and b.

We will not need part (iii) of this proposition, since the absence of eigenvalues
is proven in Section 4 by a different method.

Proof of Theorem 2.3. We fix β>1 and write

H(h)=H(h∗)+QβAQβ ,

where A is the integral operator with the integral kernel

a(t, s)= q(t)−β(h(t+s)−h∗(t+s))q(s)−β , t, s∈R+.

In view of (2.5) it is easy to see that a∈L2(R+×R+) and so A is Hilbert-Schmidt,
hence compact. Now it remains to use Proposition 3.3 with H=H(h), H0=H(h∗)
and G=Qβ . �

4. Absence of embedded eigenvalues: proof of Theorem 2.4

4.1. Preliminaries

The key element of the proof is the following lemma.

Lemma 4.1. Let H(h) be as in Theorem 2.4. If H(h)f=Ef for some function

f∈L2(R+) and a constant E, 0<E≤π, then f ′∈L2(R+) and f(0)=0.

Before embarking on the proof of Lemma 4.1, let us show how it leads to a
proof of Theorem 2.4.

Proof of Theorem 2.4. Differentiating the eigenvalue equation H(h)f=Ef , we
get

(4.1)
∫ ∞

0
h′(t+s)f(s) ds=Ef ′(t), t > 0.

Integrating by parts, we obtain

H(h)f ′ =−Ef ′;

the boundary term at zero vanishes because f(0)=0 by Lemma 4.1. This means
that −E is an eigenvalue of H(h) with the eigenfunction f ′, and f ′∈L2(R+) by
Lemma 4.1. Since H(h)≥0, this is impossible unless f ′≡0, which implies that
f≡0. �
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4.2. Lemmas on the Mellin transform

The remainder of this section is devoted to proving Lemma 4.1. Our main tool,
following [2], is the Mellin transform. See for example [13] for the background. For
f∈L2(R+), the Mellin transform is defined by

Mf(z)=
∫ ∞

0
sz−1f(s) ds, z ∈C,

as long as the integral converges. It can be shown that the Mellin transform,
initially defined on a suitable dense subset of L2(R+), extends to an isometry be-
tween L2(R+) and the L2 space on the vertical line Re z=1/2. In other words, the
Plancherel identity

(4.2) 1
2π

∫ ∞

−∞
|Mf(1

2 +iτ)|2 dτ =
∫ ∞

0
|f(s)|2 ds, f ∈L2(R+)

holds. In this context, the inversion formula for the Mellin transform reads as

(4.3) f(s)= 1
2πi

∫ 1
2+i∞

1
2−i∞

s−zMf(z) dz, f ∈L2(R+).

The Mellin transform is useful to us because it diagonalises the Carleman operator
H(1/t). More precisely, we have the identity

(4.4) MH(1/t)f(z)= π

sin(πz)Mf(z), Re z =1/2, f ∈L2(R+),

which is the consequence of the elementary formula∫ ∞

0

sz−1

t+s
ds= π

sin(πz) t
z−1, 0<Re z < 1.

Lemma 4.2. Let h, h̃ be as in Theorem 2.4, and let g=H(h̃)f for some f∈
RanH(h). Then the Mellin transform Mg(z) extends to a meromorphic function

in the strip

(4.5) −1
2−ε<Re z < 1

2 +ε

where 0<ε<1/2 is as in (2.5). This meromorphic extension has at most one pole in

the strip; this pole is simple and is located at the origin. The function Mg satisfies

the estimate

(4.6)
∫ ∞

−∞
|(σ+iτ)Mg(σ+iτ)| dτ ≤C(ε′), −1

2−ε′ <σ<
1
2 +ε′,

with any 0<ε′<ε.
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Proof. Since f∈RanH(h), from (2.5) and Cauchy-Schwarz we obtain

(4.7) f(t)=
{
O(t− 1

2 ), t→0,
O(t− 1

2−ε), t→∞.

Next, we have

g(k)(t)=
∫ ∞

0
h̃(k)(t+s)f(s) ds, k=0, 1, 2.

Combining (4.7) with our assumptions on h̃, we obtain that g∈C2([0,∞)) and

(4.8) g(k)(t)=O(t−k− 1
2−ε), t−→∞.

Further, for Re z=1/2, integrating by parts twice, we get

(4.9) zMg(z)=−
∫ ∞

0
szg′(s) ds= 1

z+1

∫ ∞

0
sz+1g′′(s) ds.

The integrals here converge absolutely by the estimates (4.8); the boundary terms
vanish by the same estimates. The same estimates also show that the right side in
(4.9) has an analytic extension into the strip (4.5).

Finally, again by (4.8) we have∫ ∞

0
(|g′′(s)|2+|s2+ε′g′′(s)|2) ds≤C(ε′), 0<ε′ <ε.

By the Plancherel identity (4.2) for the Mellin transform applied to sαg′′(s) with
0≤α≤2+ε′, we obtain that

∫ ∞
0 sz+1g′′(s) ds is in L2 on the vertical lines σ+iR

with −1/2−ε′≤σ≤1/2+ε′. Taking into account the factor 1/(z+1) in front of the
integral in (4.9), by Cauchy-Schwarz we arrive at the required bound (4.6). �

Lemma 4.3. Let h be as in Theorem 2.4, and let H(h)f=Ef for some f∈
L2(R+) and some 0<E≤π. Then the Mellin transform Mf(z) extends to an ana-

lytic function in the strip (4.5), satisfying the estimate

(4.10)
∫ ∞

−∞
|(σ+iτ)Mf(σ+iτ)| dτ ≤C(ε′), −1

2−ε′ <σ<
1
2 +ε′,

for every 0<ε′<ε.

Proof. Let us write the eigenvalue equation for f as

H(1/t)f−Ef =−H(h̃)f.
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Applying the Mellin transform, letting g=H(h̃)f , and using (4.4), we obtain the
equation

(4.11) Mf(z)=−Mg(z)/u(z), u(z)= π

sin(πz)−E.

Initially, this formula is valid for Re z=1/2, but Lemma 4.2 ensures that the right
side has a meromorphic extension to the strip (4.5).

Consider the poles of this extension. By Lemma 4.2, there may be a pole at
z=0; however, this pole is cancelled out by the pole of u(z) at z=0. There may
also be poles arising due to the zeros of u(z). Inspecting these, we find that the
only zeros of u(z) in the strip (4.5) are given by

z = 1
2±iθ, θ= 1

π
log

(
(π/E)−

√
(π/E)2−1

)
.

If E=π, these two zeros coalesce into one double zero at z=1/2. However, by the
Plancherel identity (4.2) for the Mellin transform, the integral of |Mf(z)|2 over the
vertical line Re z=1/2 must be finite. This shows that Mf(z) in fact cannot have
poles on this line.

Summarizing, we see that (4.11) defines an analytic extension of Mf into the
strip (4.5). The estimate (4.10) follows from the estimate (4.6) and from the fact
that u(σ+iτ)→−E as |τ |→∞. �

4.3. Proof of Lemma 4.1

By (2.6), we have
h′(t)=O(t−2), t−→∞.

From here, applying the Cauchy-Schwarz inequality to (4.1), we obtain

f ′(t)=O(t−3/2), t−→∞.

Thus, it remains to inspect the behaviour of f(t) and f ′(t) for small t.
By the analyticity of Mf(z) in the strip (4.5) and by the estimate (4.10), we

can shift the contour of integration in the Mellin inversion formula (4.3) to Re z=σ

for any σ satisfying −1
2−ε<σ< 1

2 . This gives us that

f(s)= 1
2πi

∫ σ+i∞

σ−i∞
s−zMf(z) dz and f ′(s)=− 1

2πi

∫ σ+i∞

σ−i∞
zs−z−1Mf(z) dz.

Again using the estimate (4.10), we see that

|f(s)| ≤Cs−σ and |f ′(s)| ≤Cs−σ−1, s> 0.

It follows that f(0)=0 and that f ′∈L2(0, 1). �
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5. Proving Theorems 1.1 and 1.2

Proof of Theorem 1.1. By Theorem 2.2(i), it suffices to check that
H(h0)|(KerH(h0))⊥ has a purely a.c. spectrum [0, π] of multiplicity one. By the
properties of the zeta function (see (2.3), (2.4)) the function h0(t)−1/t is analytic
near t=0 and satisfies

h
(k)
0 (t)=O(2−t), t−→∞, k=0, 1, 2.

Thus, h0 satisfies the hypotheses of both Theorem 2.3 and Theorem 2.4. It follows
that H(h0) has the a.c. spectrum [0, π] of multiplicity one, no singular continuous
spectrum, and no eigenvalues in (0, π]. It remains to rule out the eigenvalues in
(π,∞). But by the estimate (2.1) and by Lemma 2.1, we have ‖H(h0)‖≤π, and so
H(h0) has no eigenvalues in (π,∞). �

Proof of Theorem 1.2. 1) Theorem 2.2(ii) reduces the question to analysing the
spectrum of H(ha)|(KerH(ha))⊥ . As in the proof of Theorem 1.1, by the properties of
the zeta function it is straightforward to check that the kernel function ha satisfies
the hypotheses of both Theorem 2.3 and Theorem 2.4. It follows that H(ha) has
the a.c. spectrum [0, π] of multiplicity one, no singular continuous spectrum, and
no eigenvalues in (0, π]. So it remains to analyse the eigenvalues of M(ga) (which
coincide with those of H(ha)) in the interval (π,∞).

2) For E≥π, let us denote by N((E,∞);M(ga)) the total number of eigen-
values of M(ga) in the interval (E,∞), counting multiplicity. Let us prove that
N((E,∞);M(ga)) is non-increasing in a>0. It suffices to prove that M(ga) is
monotone non-increasing in the standard quadratic form sense, i.e.

(5.1) (M(ga)x, x)≤ (M(gb)x, x), 0<b<a, x= {xn}∞n=1 ∈ �2(N).

By the calculation in the proof of Theorem 2.2, we have that

(M(ga)x, x)= (N ∗
a x,N ∗

a x)=
∫ ∞

0
e−at |f(t)|2 dt, f(t)=

∞∑
n=1

xnn
− 1

2−t.

The required monotonicity (5.1) obviously follows from this representation.
3) Let us prove that M(ga) is continuous in a>0 in the operator norm. Taking

0<b<a, we have, as in the previous step, and with f(t) as above,

((M(gb)−M(ga))x, x)=
∫ ∞

0
(e−bt−e−at)|f(t)|2 dt

=
∫ ∞

0
(1−e−(a−b)t)e−bt|f(t)|2 dt≤ sup

t>0
e−bt/2(1−e−(a−b)t)‖M(gb/2)x‖2.
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This supremum tends to zero as a→b, and we therefore obtain the desired claim.
4) By (2.1), we have

ha(t)= e−at/2
∞∑

n=1
n−t−1 ≤ e−at/2(1+1/t)= e−at/2

t
(1+t)≤ e−at/2et

t
,

and so for a≥2 we have ha(t)≤1/t. Thus, by Lemma 2.1, H(ha) has norm less
or equal to π for a≥2, and hence the same is true for M(ga). Thus, for a≥2 the
operator M(ga) has no eigenvalues in (π,∞).

5) Let us check that for any a>0, the operator H(ha) has at most one eigenvalue
in (π,∞). Let

ha(t)= e−at/2+wa(t), wa(t)= e−at/2
∞∑

n=2
n−t−1, t > 0.

By (2.1), we have wa(t)≤1/t, and therefore, by Lemma 2.1, H(wa) has no eigenval-
ues in (π,∞). On the other hand, the Hankel operator corresponding to the kernel
function e−at/2 is the rank one operator with the integral kernel e−a(t+s)/2, which
we naturally denote by (·, e−at/2)e−at/2. It has the single non-zero eigenvalue 1/a.
Note that

H(ha)= (·, e−at/2)e−at/2+H(wa).

From here our claim follows by a standard argument in perturbation theory. Indeed,
for E≥π, let us write the min-max principle in the form

(5.2) N((E,∞);H(ha))= sup{dimL : (H(ha)f, f)>E‖f‖2 ∀f ∈L\{0}},

where the supremum is taken over all subspaces L with the indicated property. We
claim that

(5.3) N((π,∞);H(ha))≤ 1.

Assume that this is false and take a subspace L as in (5.2) with dimL≥2. Then
there is a non-zero element f∈L∩{e−at/2}⊥ which satisfies

(H(ha)f, f)= (H(wa)f, f)≤π‖f‖2,

in contradiction with the inequality in (5.2).
6) Next, let us check for 0<a<1/π that the operator H(ha) has at least one

eigenvalue in (π,∞). We claim that

(5.4) N((π,∞);H(ha))≥ 1, a< 1/π.
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To prove (5.4), let f=e−at/2. Observe that H(wa)≥0; this follows by the same
argument as in the proof of Theorem 2.2. Thus,

(H(ha)f, f)≥ (f, e−at/2)(e−at/2, f)= 1/a‖f‖2 >π‖f‖2,

and so (5.4) holds by choosing L=span{e−at/2} in the min-max principle.
7) Let us put together the above steps. By (5.3) and (5.4), N((π,∞);M(ga))=1

for 0<a<1/π, and, by step 4), N((π,∞);M(ga))=0 for a≥2. By the monotonicity
in step 2), there must exist a critical a∗>0 such that

N((π,∞);M(ga))=
{

0 a>a∗,

1 a<a∗.

The norm continuity of M(ga) ensures that N((π,∞);M(ga)) is lower semi-continu-
ous in a, and so N((π,∞);M(ga∗))=0.

Thus, we have exactly one eigenvalue λ(a) for 0<a<a∗ and no eigenvalues
for a≥a∗. The norm continuity and monotonicity of M(ga) ensures that λ(a) is a
continuous monotone function of a with λ(a)→π as a→a−∗ . �

The above argument also gives the upper and lower bounds 1/π≤a∗≤2 for the
critical value of a. It also shows that the eigenvalue λ(a) satisfies 1/a<λ(a)≤π+1/a.
Indeed, the argument in step 6) gives that

N((1/a,∞);H(ha))≥ 1,

i.e. λ(a)>1/a. On the other hand, the norm of H(ha) satisfies

‖H(ha)‖≤‖H(Lνa)‖+‖(·, e−at/2)e−at/2‖=π+1/a,

yielding the upper bound for λ(a).
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