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Hölder regularity for degenerate parabolic
obstacle problems

Verena Bögelein, Teemu Lukkari and Christoph Scheven

Abstract. We prove that weak solutions to the obstacle problem for the porous medium
equation are locally Hölder continuous, provided that the obstacle is Hölder continuous.

1. Introduction

The porous medium equation

∂tu−Δum =0,

PME for short, is an important prototype of a nonlinear parabolic equation. The
name stems from modeling the flow of a gas in a porous medium. We restrict
our attention to the slow diffusion case when m>1. In this case the equation is
degenerate with respect to u, which means that the modulus of ellipticity vanishes
when the solution is zero. This leads to interesting phenomena, for instance the
existence of moving boundaries. The PME and its various generalizations have
been extensively studied, and we refer to the monographs [7], [9], [17] and [18] for
the basic theory and further references.

In the current paper we are interested in the obstacle problem for the PME.
This problem can be fomulated as a variational inequality: formally, a function u

solves the obstacle problem with obstacle ψ if u≥ψ and

(1.1)
∫

ΩT

∂tu(vm−um)+∇um ·∇(vm−um) dx dt≥ 0

for all comparison maps v such that v≥ψ. A rigorous interpretation of the time term
in this inequality requires some care as a solution might not have a time derivative
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in a suitable sense, see [1] and [5] and Definition 2.1 below. The classical references
for parabolic obstacle problems are [1], [15] and [16], and some of the more recent
ones are [4], [5], [6], [12], [13] and [14]. However, most of them are dealing with
the obstacle problem for the parabolic p-Laplacian equation. An alternative to the
variational inequality is to define the solution to the obstacle problem to be the
smallest supersolution lying above the obstacle, see [2] and [14] and Remark 2.3
below. We will not pursue the latter approach here.

The existence of appropriately defined weak solutions to the obstacle problem
for the PME was shown in our previous paper [5]. These solutions belong to the
class

Kψ(ΩT ) :=
{
v ∈C0([0, T ];Lm+1(Ω)

)
: vm ∈L2(0, T ;H1(Ω)

)
, v≥ψ a.e. on ΩT

}
,

where ψ is a nonnegative obstacle function defined on a space-time cylinder ΩT =
Ω×(0, T ), Ω is a bounded domain in R

n, and T>0. Here our aim is to complement
the results of [5] by establishing regularity for the solutions. The general guideline
is that a solution to the obstacle problem should be as regular as a weak solution,
as long as the regularity of the obstacle allows it. Hence a solution to the obstacle
problem should be Hölder continuous if the obstacle is, since a weak solution to the
PME is in general no better than Hölder continuous. This can be seen from explicit
examples, such as the Barenblatt solution. In this respect, the following regularity
result, which is the main result of this paper, is optimal.

Theorem 1.1. Suppose that the obstacle ψ is Hölder continuous in ΩT , and

let u∈Kψ(ΩT ) be a local weak solution to the obstacle problem for the PME in the

sense of Definition 2.1. Then u is locally Hölder continuous in ΩT .

Remark 1.2. It is clear from the comparison with the obstacle-free case that
the Hölder continuity of the solution can not be expected for arbitrary Hölder
exponents α∈(0, 1). In fact, our methods only yield Hölder continuity for some
Hölder exponent that depends on n,m, and the Hölder exponent of the obstacle
function, and is always smaller than the latter one. This is contrary to the results
from [13] for obstacle problems related to parabolic p-Laplacian type equations,
where the Hölder exponent of the solution turns out to be the same as the one
of the obstacle function. However, the result in [13] relies on gradient bounds for
solutions to p-Laplacian type equations, for which the analoga are not available in
the case of the porous medium equation. In any case, the question for the optimal
Hölder exponent in Theorem 1.1 remains an open problem.

The Hölder continuity of solutions to the porous medium equation in the
obstacle-free case has first been established by DiBenedetto and Friedman [10]. The
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proof of the Hölder continuity is based on two main elements: energy estimates for
truncations, and a De Giorgi type iteration argument to extract pointwise informa-
tion from the energy estimates. The derivation of the energy estimates is intricate
due to the necessarily complicated definition of weak solutions to the obstacle prob-
lem. For instance, the solution itself is not usually admissible as a comparison map
in the variational inequality. In the iteration arguments, we need to construct cylin-
ders with a proper scaling to balance the different powers in the energy estimates.
The scaling is intrinsic, as it depends on the solution itself. This method has been
introduced in [10] for the analysis of degenerate parabolic equations, cf. also [3], [8]
and [9]. More precisely, in order to compensate for the inhomogeneous scaling of
the underlying equation, we work with cylinders of the type

Q�,θ�2(xo, to)=B�(xo)×(to−θ�2, to),

where the parameter θ is comparable to u1−m. Additional care is needed in dealing
with the degeneration of the porous medium equation, which occurs if the solution
takes values close to zero in the sense that its infimum is considerably smaller than
its supremum. This case, which we call the degenerate regime, requires a different
treatment than the nondegenerate regime, in which the equation heuristically be-
haves like a linear equation with irregular coefficients. The proof is structured in
such a way that both regimes are treated in a unified way whenever it is possible
in order to work out the similarities and the differences of the two regimes.

The regularity of the obstacle enters the argument via a restriction on the
truncation levels, which is needed to ensure that the test functions do not violate
the obstacle condition.

The paper is organized as follows. In Section 2, we give the exact definition
of a weak solution to the obstacle problem. In Section 3 we recall several technical
results needed for the proofs. We prove the energy estimates for truncations in
Section 4. These estimates are then used in Section 5 to prove local boundedness
of solutions, and finally in Section 6 to prove the Hölder continuity.

2. The obstacle problem

In this section, we give the rigorous definition of a solution to the obstacle
problem. For a bounded domain Ω⊂R

n in dimension n∈N≥2 and a time T>0, we
write ΩT :=Ω×(0, T ) for the space-time cylinder. We consider continuous obstacle
functions ψ∈C0(ΩT ,R≥0). For fixed m>1, we recall that the solution space is
defined by

Kψ(ΩT ) :=
{
v ∈C0([0, T ];Lm+1(Ω)

)
: vm ∈L2(0, T ;H1(Ω)

)
, v≥ψ a.e. on ΩT

}
.
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Furthermore, the class of admissible comparison functions is

K ′
ψ(ΩT ) :=

{
v ∈Kψ(ΩT ) : ∂t(vm)∈L

m+1
m (ΩT )

}
.

Since the time derivative of a solution u∈Kψ(ΩT ) to the obstacle problem might not
exist in a sufficiently strong sense, we have to introduce a weak formulation of the
time term in the variational inequality (1.1). To this end, we follow the approach
by Alt & Luckhaus [1] and define for every u∈Kψ(ΩT ) and every comparison map
v∈K ′

ψ(ΩT )

(2.1) 〈〈∂tu, αη(vm−um)〉〉 :=
∫

ΩT

η
[
α′[ 1

m+1u
m+1−uvm

]
−αu∂tv

m
]
dz,

where α∈W 1,∞
0 ([0, T ],R≥0) and η∈C1

0 (Ω,R≥0) denote cut-off functions in time,
respectively in space.

We are now in a position to define the notion of a local weak solution to the
obstacle problem.

Definition 2.1. A nonnegative function u∈Kψ(ΩT ) is a local weak solution to
the obstacle problem for the porous medium equation if and only if

(2.2) 〈〈∂tu, αη(vm−um)〉〉+
∫

ΩT

α∇um ·∇
(
η(vm−um)

)
dz≥ 0

holds true for all comparison maps v∈K ′
ψ(ΩT ), every cut-off function in time α∈

W 1,∞
0 ([0, T ],R≥0) and every cut-off function in space η∈C1

0 (Ω,R≥0).

Remark 2.2. Since u∈C0([0, T ];Lm+1(Ω)), this definition is consistent with
the notion of weak solution used in [5, Def. 2.1]. This means that for more general
cut-off functions in time with α(0) �=0, the above notion of solution implies

〈〈∂tu, αη(vm−um)〉〉uo +
∫

ΩT

α∇um ·∇
(
η(vm−um)

)
dz≥ 0

for uo :=u(·, 0) if we define

〈〈∂tu, αη(vm−um)〉〉uo :=
∫

ΩT

η
[
α′[ 1

m+1u
m+1−uvm

]
−αu∂tv

m
]
dz

+α(0)
∫

Ω
η
[ 1
m+1u

m+1
o −uov

m(·, 0)
]
dx.

For obstacles ψ with

ψm ∈L2(0, T ;H1(Ω)
)
, ∂t(ψm)∈L

m+1
m (ΩT ) and ψm(·, 0)∈H1(Ω),

an existence result for local weak solutions is contained in our earlier work [5].
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Moreover, from [5, Lemma 3.2] we know that a local weak solution with ∂tu∈
L2(0, T ;H−1(Ω)) is also a local strong solution in the sense that for all comparison
maps v∈Kψ(ΩT ), every cut-off function in time α∈W 1,∞([0, T ],R≥0) with α(T )=0
and every cut-off function in space η∈C1

0 (Ω,R≥0) we have∫ T

0
〈∂tu, αη(vm−um)〉 dt+

∫
ΩT

α∇um ·∇
(
η(vm−um)

)
dz≥ 0,

where here, 〈·, ·〉 denotes the dual pairing between H−1(Ω) and H1
0 (Ω). �

Remark 2.3. An alternative to the variational inequality described above is to
define the solution to the obstacle problem to be the smallest weak supersolution
lying above the obstacle ψ. This approach is used in [14] in a nonlinear parabolic
setting, and in [2] for the PME. It is analogous to the balayage concept of classical
potential theory.

Existence and uniqueness of the smallest supersolution follow quite easily from
the definitions. However, the connection between the smallest supersolution and
the variational solutions studied here is less clear. In this direction, we have an
approximation property for the smallest supersolution: for continuous compactly
supported obstacles, the smallest supersolution is a pointwise limit of variational
solutions. See [2] for the proof. The approximation property together with a sta-
bility result from [5] implies that the smallest supersolution is also a variational
solution for sufficiently smooth obstacles. Further, since our Hölder estimate de-
pends on the obstacle only via its Hölder norm, Theorem 1.1 holds also for the
smallest supersolution.

The question whether all variational solutions are also smallest supersolutions
remains a very interesting open problem.

3. Preliminaries

3.1. Notation

We use the notation Q�,θ(zo):=B�(xo)×(to−θ, to)⊂R
n+1 for backward para-

bolic cylinders, where the point zo=(xo, to)∈Rn+1 is the vertex of the cylinder, and
�, θ>0.

3.2. Auxiliary material

For later reference, we recall the parabolic version of the Gagliardo-Nirenberg
inequality.
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Lemma 3.1. Let Q�,θ(zo)⊂R
n+1 be a parabolic cylinder and 1<p, r<∞. For

every

u∈L∞(to−θ, to;Lr(B�(xo)))∩Lp(to−θ, to;W 1,p(B�(xo)))

we have u∈Lq(Q�,θ(zo)) for q=p(1+ r
n ) with the estimate

∫
Q�,θ(zo)

|u|q dz≤ c

(
sup

t∈(to−θ,to)

∫
B�(xo)×{t}

|u|r dx
)p

n
∫
Q�,θ(zo)

(
|∇u|p+

∣∣∣u
�

∣∣∣p) dz,

where c=c(n, p, r).

The proof of the following well-known lemma can be found e.g. in [11, Lem-
ma 7.1].

Lemma 3.2. Let (Xi)i∈N0 be a sequence of positive real numbers with

Xi+1 ≤CBiX1+α
i for all i∈N0,

for constants C,α>0 and B>1. Then

X0 ≤C− 1
αB− 1

α2

implies Xi→0 as i→∞.

We will also use DeGiorgi’s isoperimetric inequality. See e.g. [9, §2, Lemma 2.2]
for the proof.

Lemma 3.3. Let v∈W 1,1(B�(xo)), and let k<� be real numbers. There exists

a constant c=c(n), such that

(�−k)|B�(xo)∩{v > �}|≤ c �n+1

|B�(xo)∩{v <k}|

∫
B�(xo)∩{k<v<�}

|∇v| dx.

3.3. Mollification in time

In order to deal with the possible lack of differentiability in time of weak so-
lutions, the following time mollification of functions v : ΩT→R has proved to be
useful.

(3.1) [[v]]h(x, t) := 1
h

∫ t

0
e

s−t
h v(x, s) ds.

In the following lemma, we list some elementary properties of this mollification that
will be needed in the proof later (cf. [16]).
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Lemma 3.4. Let p≥1.
(i) If v∈Lp(ΩT ) then [[v]]h→v in Lp(ΩT ) as h↓0 and

∂t[[v]]h = 1
h (v−[[v]]h)∈Lp(ΩT ) for every h> 0.

(ii) If ∇v∈Lp(ΩT ,R
n) then ∇[[v]]h=[[∇v]]h and ∇[[v]]h→∇v in Lp(ΩT ,R

n) as

h↓0.
(iii) If v∈C0(ΩT ), then [[v]]h→v uniformly in ΩT as h↓0.

4. Energy estimates

4.1. Caccioppoli type estimates

Here, we derive energy estimates for the truncated functions

[um−km]+ :=max{um−km, 0} and [um−km]− :=max{km−um, 0},

where k>0 denotes a constant.

Lemma 4.1. Let Q1 :=Q�1,θ1(zo)�ΩT and Q2 :=Q�2,θ2(zo)⊂Q1 be two cylin-

ders with �2<�1, θ2<θ1, and assume that ψ∈C0(ΩT ,R≥0). Then, for every local

weak solution u∈Kψ(ΩT ) to the obstacle problem for the porous medium equation

in the sense of Definition 2.1, we have the following estimates.

(i) For every k≥supQ1
ψ we have

sup
t∈(to−θ2,to)

∫
B�2 (xo)×{t}

u1−m[um−km]2+ dx+
∫
Q2

∣∣∇[um−km]+
∣∣2 dz

≤ c(m)
(

1
(�1−�2)2

+ k1−m

θ1−θ2

)∫
Q1

[um−km]2+ dz.

(ii) For every k>0, we have

sup
t∈(to−θ2,to)

k1−m

∫
B�2 (xo)×{t}

[um−km]2− dx+
∫
Q2

∣∣∇[um−km]−
∣∣2 dz

≤ c(m)
(�1−�2)2

∫
Q1

[um−km]2− dz+ c(m)
θ1−θ2

∫
Q1

∫ [um−km]−

0
(km−τ)

1−m
m τ dτ dz.

Proof of (i). By restricting ourselves to a compact subdomain of ΩT if nec-
essary, we may assume ψ∈C0(ΩT ), so that Lemma 3.4 (iii) is applicable to v=ψ.
Moreover, we assume zo=0 for notational convenience. We choose a cut-off function
α∈W 1,∞

0 ([−θ1, 0],R≥0) and η∈C1
0 (B�1 ,R≥0). In the variational inequality (2.2), we

choose
vmh := [[um]]h−([[um]]h−km)++‖ψm−[[ψm]]h‖L∞(ΩT )
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as comparison map for u, for some h>0, with the mollification [[·]]h as defined
in (3.1). This map satisfies

∂tv
m
h = ∂t min{[[um]]h, km}∈L

m+1
m (ΩT ).

The comparison map vh is admissible because we have

vmh =min{[[um]]h, km}+‖ψm−[[ψm]]h‖L∞(ΩT ) ≥ψm on Q1,

since u≥ψ a.e. on ΩT and k≥supQ1
ψ by assumption. We note that it is sufficient

to check the obstacle condition for vh on supp(αη)⊂Q1. We therefore know

(4.1) Ih+IIh := 〈〈∂tu, αη2(vmh −um)〉〉+
∫
Q1

α∇um ·∇
(
η2(vmh −um)

)
dz≥ 0.

For the estimate of Ih, we use Lemma 3.4 (i) to calculate
∫
Q1

η2αu∂tv
m
h dz

=
∫
Q1

η2α[[um]]
1
m

h ∂tv
m
h dz+

∫
Q1∩{[[um]]h≤km}

η2α
(
u−[[um]]

1
m

h

) 1
h (um−[[um]]h

)
dz

≥
∫
Q1

η2α[[um]]
1
m

h ∂t
(
[[um]]h−([[um]]h−km)+

)
dz

=
∫
Q1

η2(α m
m+1∂t[[u

m]]
m+1
m

h +α′[[um]]
1
m

h ([[um]]h−km)+
)
dz

+
∫
Q1

η2α∂t[[um]]
1
m

h ([[um]]h−km)+ dz.

The last integrand can be re-written using the identity

(4.2) ∂t[[um]]
1
m

h ([[um]]h−km)+ = 1
m

∂

∂t

∫ ([[um]]h−km)+

0
(km+τ)

1−m
m τ dτ.

Plugging this into the preceding inequality and integrating by parts, we deduce
∫
Q1

η2αu∂tv
m
h dz≥

∫
Q1

η2α′(− m
m+1 [[um]]

m+1
m

h +[[um]]
1
m

h ([[um]]h−km)+
)
dz

− 1
m

∫
Q1

η2α′
∫ ([[um]]h−km)+

0
(km+τ)

1−m
m τ dτ dz.
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Recalling definition (2.1) we deduce

Ih =
∫
Q1

η2
[
α′[ 1

m+1u
m+1−uvmh

]
−αu∂tv

m
h

]
dz

≤
∫
Q1

η2α′( 1
m+1u

m+1−u
(
[[um]]h−([[um]]h−km)++‖ψm−[[ψm]]h‖L∞

)
dz

+
∫
Q1

η2α′ m
m+1 [[um]]

m+1
m

h −[[um]]
1
m

h ([[um]]h−km)+
)
dz

+ 1
m

∫
Q1

η2α′
∫ ([[um]]h−km)+

0
(km+τ)

1−m
m τ dτ dz.

Lemma 3.4 implies [[um]]h→um in L
m+1
m (Q1) as well as ‖ψm−[[ψm]]h‖L∞→0 as h↓0.

As a consequence, the sum of the first two integrals on the right-hand side vanishes
in the limit h↓0 and we infer

(4.3) lim sup
h↓0

Ih ≤ 1
m

∫
Q1

η2α′
∫ [um−km]+

0
(km+τ)

1−m
m τ dτ dz.

Next, we note that ∇(η2(vmh −um))→−∇(η2[um−km]+) in L2(Q1) as h↓0 by Lem-
ma 3.4. Using moreover the identity

(4.4) ∇um =∇[um−km]+ a.e. on ΩT ∩{u≥ k},

we calculate

lim
h↓0

IIh =−
∫
Q1

α∇um ·∇
(
η2[um−km]+

)
dz

=−
∫
Q1

αη2∣∣∇[um−km]+
∣∣2 dz

−2
∫
Q1

αη∇[um−km]+ ·∇η[um−km]+ dz

≤−1
2

∫
Q1

αη2∣∣∇[um−km]+
∣∣2 dz+2

∫
Q1

α|∇η|2[um−km]2+ dz.(4.5)

Combining (4.3) and (4.5) with (4.1), we arrive at

1
2

∫
Q1

αη2∣∣∇[um−km]+
∣∣2 dz

≤ 1
m

∫
Q1

η2α′
∫ [um−km]+

0
(km+τ)

1−m
m τ dτ dz+2

∫
Q1

α|∇η|2[um−km]2+ dz.
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Now, we choose η∈C1
0 (B�1 ,R≥0) with η≡1 on B�2 and |∇η|≤ 2

�1−�2
. Moreover,

for any time t∈(−θ2, 0) and ε>0, we choose α∈W 1,∞
0 (−θ1, 0) with α(s)= θ1+s

θ1−θ2
for s∈(−θ1,−θ2), α≡1 on (−θ2, t−ε), α(s)= t−s

ε for s∈(t−ε, t) and α≡0 on (t, 0).
Using the preceding estimate with this choice of cut-off functions and letting ε↓0,
we infer

1
m

∫
B�2×{t}

∫ [um−km]+

0
(km+τ)

1−m
m τ dτ dx+ 1

2

∫
Q2

∣∣∇[um−km]+
∣∣2 dz

≤ 8
(�1−�2)2

∫
Q1

[um−km]2+ dz

+ 1
m(θ1−θ2)

∫
Q1

∫ [um−km]+

0
(km+τ)

1−m
m τ dτ dz.(4.6)

This implies the claimed energy estimate by bounding the left-hand side from below
via the inequality

1
m

∫ [um−km]+

0
(km+τ)

1−m
m τ dτ ≥ 1

mu1−m

∫ [um−km]+

0
τ dτ = 1

2mu1−m[um−km]2+

and the right-hand side via

1
m

∫ [um−km]+

0
(km+τ)

1−m
m τ dτ ≤ k1−m

m

∫ [um−km]+

0
τ dτ = k1−m

2m [um−km]2+. �

Proof of (ii). Here, we consider an arbitrary k>0. Since most of the proof
of (ii) is analogous to that of (i), we only indicate the necessary changes. As
comparison maps, we now choose

vmh := [[um]]h+([[um]]h−km)−+‖ψm−[[ψm]]h‖L∞(ΩT ),

which satisfy
∂tv

m
h = ∂t max{[[um]]h, km}∈L

m+1
m (ΩT ).

These maps are admissible since vmh ≥[[um]]h+‖ψm−[[ψm]]h‖L∞(ΩT )≥ψm holds on
ΩT . Now we can repeat the calculations leading to (4.6), but now replacing ([[um]]h−
km)+ by −([[um]]h−km)− . Instead of the identity (4.2), we now use

∂t[[um]]
1
m

h (−([[um]]h−km)−)= 1
m

∂

∂t

∫ ([[um]]h−km)−

0
(km−τ)

1−m
m τ dτ.
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Moreover, we replace (4.4) by ∇um=−∇[um−km]− on ΩT ∩{u≤k}. The remainder
of the proof works as in the case of (i), and analogously to (4.6), we derive the
estimate

1
m

∫
B�2×{t}

∫ [um−km]−

0
(km−τ)

1−m
m τ dτ dx+ 1

2

∫
Q2

∣∣∇[um−km]−
∣∣2 dz

≤ 8
(�1−�2)2

∫
Q1

[um−km]2− dz

+ 1
m(θ1−θ2)

∫
Q1

∫ [um−km]−

0
(km−τ)

1−m
m τ dτ dz

for every t∈(−θ2, 0). This implies the claim by estimating the left-hand side from
below by

1
m

∫ [um−km]−

0
(km−τ)

1−m
m τ dτ ≥ k1−m

m

∫ [um−km]−

0
τ dτ = 1

2mk1−m[um−km]2− . �

4.2. The logarithmic estimate

In this section we derive an estimate that will be useful later to compare the
measures of certain super-level sets on different time slices. To this end, for param-
eters 0<γ<Γ, we consider the function

(4.7) φ(v) :=φΓ,γ(v) :=
[

log
( Γ

Γ+γ−v

)]
+

for v <Γ+γ.

We note that φ(v)=0 for v≤γ, and for v≤Γ we have the estimates

(4.8) 0≤φ(v)≤ log
(Γ
γ

)
and 0≤φ′(v)≤ 1

γ for v �= γ.

Moreover, the function satisfies the differential equation φ′′=(φ′)2 for v �=γ. We
point out that contrary to φ, the squared function φ2 is differentiable on [0,Γ] with

(4.9) (φ2)′ =2φφ′ on [0,Γ] and (φ2)′′ =2(1+φ)(φ′)2 on [0,Γ]\{γ}.

In particular (φ2)′ is Lipschitz, which will be crucial in the proof below.

Lemma 4.2. We consider two concentric balls B�2(xo)�B�1(xo)�Ω and times

0<t1<t2<T and abbreviate Q1 :=B�1(xo)×(t1, t2). Let u∈Kψ(ΩT ) be a locally

bounded local weak solution to the obstacle problem for the porous medium equa-

tion in the sense of Definition 2.1, for an obstacle ψ∈C0(ΩT ,R≥0). For some k>0
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with k≥supQ1
ψ we define Γ:=supQ1

[um−km]+ and denote by φ=φΓ,γ the function

introduced in (4.7) for some parameter γ∈(0,Γ). Then we have

sup
t∈(t1,t2)

∫
B�2 (xo)×{t}

u1−mφ2([um−km]+
)
dx

≤ k1−m

∫
B�1 (xo)×{t1}

φ2([um−km]+
)
dx

+ 8m
(�1−�2)2

∫
B�1 (xo)×(t1,t2)

φ
(
[um−km]+

)
dz.

Proof. Since the asserted estimate is of local nature, we may assume ψ∈
C0(ΩT ). Because both sides of the asserted estimate are continuous in k, it suffices
to prove the claim for every k>supQ1

ψ. For the sake of convenience, we more-
over assume xo=0. In the variational inequality (2.2) we consider cut-off functions
α∈W 1,∞

0 ((t1, t2),R≥0) and η∈C1
0 (B�1 ,R≥0). For a suitable λ>0, we wish to choose

vmh := [[um]]h−λ(φ2)′
(
([[um]]h−km)+

)
+‖ψm−[[ψm]]h‖L∞

as comparison map in (2.2). Since (φ2)′ is a Lipschitz map, the chain rule implies
∂tv

m
h ∈Lm+1

m (ΩT ) and ∇vmh ∈L2(ΩT ). Moreover, vh satisfies the obstacle constraint
for a sufficiently small choice of λ>0 since for [[um]]h≤km we have

vmh = [[um]]h+‖ψm−[[ψm]]h‖L∞ ≥ψm

by the obstacle condition for um, while for [[um]]h>km we have

vmh >km−λ(φ2)′
(
([[um]]h−km)+

)
≥ sup

Q1

ψm,

if we choose λ≤ (km−supQ1 ψm)
sup[0,Γ](φ2)′ . This means that vmh ≥ψm holds on Q1⊃supp(αη),

which makes vh admissible in (2.2). We thereby get

(4.10) Ih+IIh := 〈〈∂tu, αη2(vmh −um)〉〉+
∫

ΩT

α∇um ·∇
(
η2(vmh −um)

)
dz≥ 0.

For the analysis of Ih, we first use Lemma 3.4 (i) to compute

∂tv
m
h = ∂t[[um]]h−λ(φ2)′′

(
([[um]]h−km)+

)
∂t[[um]]h

= 1
h

(
um−[[um]]h

)(
1−λ(φ2)′′

(
([[um]]h−km)+

))
.

We note that the terms involving (φ2)′′ are a.e. well-defined since ∂t[[um]]h vanishes
a.e. on the set {[[um]]h=km+γ}. By diminishing the value of λ>0 once more we
can achieve λ≤[sup[0,Γ](φ2)′′]−1 and estimate

(
u−[[um]]

1
m

h

)
∂tv

m
h ≥

(
u−[[um]]

1
m

h

) 1
h

(
um−[[um]]h

)(
1−λ sup(φ2)′′

)
≥ 0.
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This implies∫
ΩT

αη2u∂tv
m
h dz≥

∫
ΩT

αη2[[um]]
1
m

h ∂tv
m
h dz

=
∫

ΩT

αη2[[um]]
1
m

h ∂t

(
[[um]]h−λ(φ2)′

(
([[um]]h−km)+

))
dz

=
∫

ΩT

η2
(
α m

m+1∂t[[u
m]]

m+1
m

h +λα′[[um]]
1
m

h (φ2)′
(
([[um]]h−km)+

))
dz

+λ

∫
ΩT

αη2∂t[[um]]
1
m

h (φ2)′
(
([[um]]h−km)+

)
dz.

We re-write the last integrand using the equation

∂t[[um]]
1
m

h (φ2)′
(
([[um]]h−km)+

)
= 1

m

∂

∂t

∫ ([[um]]h−km)+

0
(km+τ)

1−m
m (φ2)′(τ) dτ.

Combining the two preceding formulae and integrating by parts we deduce∫
ΩT

αη2u∂tv
m
h dz≥

∫
ΩT

η2α′
(
− m

m+1 [[um]]
m+1
m

h +λ[[um]]
1
m

h (φ2)′
(
([[um]]h−km)+

))
dz

− λ
m

∫
ΩT

α′η2
∫ ([[um]]h−km)+

0
(km+τ)

1−m
m (φ2)′(τ) dτ dz.

Now we recall the definition (2.1) to conclude

Ih =
∫

ΩT

η2
[
α′[ 1

m+1u
m+1−uvmh

]
−αu∂tv

m
h

]
dz

≤
∫

ΩT

η2α′[ 1
m+1u

m+1−u
(
[[um]]h−λ(φ2)′

(
([[um]]h−km)+

)
+‖ψm−[[ψm]]h‖L∞

)]
dz

−
∫

ΩT

η2α′
(
− m

m+1 [[um]]
m+1
m

h +λ[[um]]
1
m

h (φ2)′
(
([[um]]h−km)+

))
dz

+ λ
m

∫
ΩT

α′η2
∫ ([[um]]h−km)+

0
(km+τ)

1−m
m (φ2)′(τ) dτ dz.

Because [[um]]h→um in L
m+1
m (Q1) and ‖ψm−[[ψm]]h‖L∞→0 as h↓0 by Lemma 3.4,

the first two integrals on the right-hand side cancel each other in the limit h↓0.
Letting h↓0 therefore yields

(4.11) lim sup
h↓0

Ih ≤ λ
m

∫
ΩT

α′η2
∫ [um−km]+

0
(km+τ)

1−m
m (φ2)′(τ) dτ dz.

Now, we turn our attention to the term IIh. We claim that

η2(vmh −um)⇁−λη2(φ2)′([um−km]+) weakly in L2(t1, t2;H1(B�1)),
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as h↓0. First we note that this convergence holds strongly in L2(Q1) by Lem-
ma 3.4 (i) and (iii). Furthermore, the sequence on the left-hand side is bounded in
L2(t1, t2;H1(B�1)) by Lemma 3.4 (ii) and because (φ2)′ is Lipschitz. This implies
the claimed weak convergence, which in turn implies

lim
h↓0

IIh =−λ

∫
ΩT

α∇um ·∇
[
η2(φ2)′([um−km]+)

]
dz

=−λ

∫
ΩT

αη2|∇um|2(φ2)′′([um−km]+) dz

+2λ
∫

ΩT

αη∇um ·∇η(φ2)′([um−km]+) dz.

The last integral is well-defined since ∇um=0 a.e. on the set {um=km+γ}. Next,
we apply Young’s inequality in the last integral and infer

lim
h↓0

IIh ≤λ

∫
ΩT

αη2|∇um|2
[
2φ(φ′)2−(φ2)′′

]
([um−km]+) dz

+2λ
∫

ΩT

α|∇η|2φ([um−km]+) dz

≤ 2λ
∫

ΩT

α|∇η|2φ([um−km]+) dz.(4.12)

The last estimate is a consequence of (4.9), which implies 2φ(φ′)2−(φ2)′′=
−2(φ′)2≤0. Next, we plug (4.11) and (4.12) into (4.10) and divide by λ. This
provides us with the estimate

1
m

∫
ΩT

α′η2
∫ [um−km]+

0
(km+τ)

1−m
m (φ2)′(τ) dτ dz

+2
∫

ΩT

α|∇η|2φ([um−km]+) dz≥ 0.

Now we choose η∈C1
0 (B�1 ,R≥0) as a standard cut-off function with η≡1 on B�2 and

|∇η|≤ 2
�1−�2

on B�1 . For the choice of α, we fix t∈(t1, t2) and some 0<ε< 1
2 (t−t1).

Then we define α∈W 1,∞
0 ((t1, t2),R≥0) by α(s)= s−t1

ε for s∈(t1, t1+ε), α≡1 on
(t1+ε, t−ε), α(s)= t−s

ε for s∈(t−ε, t) and α≡0 elsewhere. Exploiting the preceding
inequality with this choice of cut-off functions and letting ε↓0, we deduce

1
m

∫
B�2×{t}

∫ [um−km]+

0
(km+τ)

1−m
m (φ2)′(τ) dτ dx

≤ 1
m

∫
B�1×{t1}

∫ [um−km]+

0
(km+τ)

1−m
m (φ2)′(τ) dτ dx

+ 8
(�1−�2)2

∫
Q1

φ([um−km]+) dz.
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For the estimate of the first two integrals, we use the inequalities

u1−m ≤ (km+τ)
1−m
m ≤ k1−m if 0<τ < [um−km]+

and arrive at the claimed estimate. �

5. Local boundedness of solutions

Theorem 5.1. We consider an obstacle ψ∈C0(ΩT ,R≥0). Then every local

weak solution u∈Kψ(ΩT ) of the obstacle problem to the porous medium equation in

the sense of Definition 2.1 satisfies u∈L∞
loc(ΩT ) and we have the local estimate

sup
Q�,θ(zo)

u≤ c max
{(

1
�n+2

∫
Q2�,2θ(zo)

u2m dz

) 1
m+1

, sup
Q2�,2θ(zo)

ψ,
(�2

θ

) 1
m−1

}
,

for every parabolic cylinder Q2�,2θ(zo)�ΩT , with a constant c=c(n,m).

Proof. For any i∈N0, we define

�i := �+ 1
2i � and θi := θ+ 1

2i θ

and abbreviate Qi :=Q�i,θi(zo). For notational convenience we assume zo=0
throughout the proof. We define k>0 by

(5.1) km :=max
{(

co
�n+2

∫
Q0

u2m dz

) m
m+1

, 4 sup
Q0

ψm,
(�2

θ

) m
m−1

}
,

for a constant co>0 to be chosen large on later in dependence on n and m only. For
this choice of k, we introduce an increasing sequence of levels ki and intermediate
levels k̃i by

kmi := km− 1
2i k

m and k̃mi := 1
2 (kmi +kmi+1)= km− 3

2i+2 k
m

for i∈N0. For any i∈N0, we apply Lemma 4.1 (i) on the cylinders Qi+1⊂Qi⊂ΩT

and the level k̃mi ≥ 1
4k

m≥supQi
ψm, which provides us with the estimate

sup
t∈(−θi+1,0)

∫
B�i+1×{t}

u1−m[um−k̃mi ]2+ dx+
∫
Qi+1

∣∣∇[um−k̃mi ]+
∣∣2 dz

≤ c

(
1

(�i−�i+1)2
+ k1−m

θi−θi+1

)∫
Qi

[um−k̃mi ]2+ dz.
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Here and in the remainder of the proof, we write c for universal constants that
depend at most on n and m. Using moreover the facts k1−m≤ θ

�2 and ki<k̃i<ki+1,
we deduce

sup
t∈(−θi+1,0)

∫
B�i+1×{t}

u1−m[um−k̃mi ]2+ dx+
∫
Qi+1

∣∣∇[um−kmi+1]+
∣∣2 dz

≤ c 22i

�2

∫
Qi

[um−kmi ]2+ dz.(5.2)

In order to bound the first integral on the left-hand side from below, we obtain from
a straightforward calculation

um ≤
kmi+1

kmi+1−k̃mi
(um−k̃mi )= (2i+2−2)[um−k̃mi ]+ , provided u≥ ki+1,

and consequently,

[um−kmi+1]
1+ 1

m
+ ≤ 2i+2u1−m[um−k̃mi ]2+ a.e. on ΩT .

Using this estimate in (5.2), we deduce

sup
t∈(−θi+1,0)

∫
B�i+1×{t}

[um−kmi+1]
1+ 1

m
+ dx+

∫
Qi+1

∣∣∇[um−kmi+1]+
∣∣2 dz

≤ c 23i

�2

∫
Qi

[um−kmi ]2+ dz(5.3)

for all i∈N0. Next, we apply the Gagliardo-Nirenberg inequality from Lemma 3.1
with the choices p=2, r=1+ 1

m and q= 2
mn (mn+m+1)>2 to the function [um−

kmi+1]+ on Qi+1, with the result

∫
Qi+1

[um−kmi+1]
q
+ dz≤ c

(
sup

t∈(−θi+1,0)

∫
B�i+1×{t}

[um−kmi+1]
1+ 1

m
+ dx

)2
n

×
∫
Qi+1

(∣∣∇[um−kmi+1]+
∣∣2+

∣∣∣∣ [um−kmi+1]+
�

∣∣∣∣
2)

dz.

We estimate the right-hand side by means of (5.3) and arrive at

(5.4)
∫
Qi+1

[um−kmi+1]
q
+ dz≤ c

(
23i

�2

∫
Qi

[um−kmi ]2+ dz

)1+ 2
n

.
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Now we first use Hölder’s inequality and then (5.4), with the result∫
Qi+1

[um−kmi+1]2+ dz

≤
∣∣Qi+1∩{u≥ ki+1}

∣∣1− 2
q

(∫
Qi+1

[um−kmi+1]
q
+ dz

)2
q

≤
(

1
(kmi+1−kmi )2

∫
Qi+1

[um−kmi ]2+ dz

)1− 2
q
(∫

Qi+1

[um−kmi+1]
q
+ dz

)2
q

≤ c 2(2+ 2
q + 12

qn )i

k2m(1− 2
q )�(1+ 2

n ) 4
q

(∫
Qi

[um−kmi ]2+ dz

)1+ 4
qn

.

For the sequence of integrals Yi :=
∫
Qi

[um−kmi ]2+ dz for i∈N0, we therefore have
established the estimate

(5.5) Yi+1 ≤CBiY
1+ 4

qn

i for all i∈N0,

with

C =
( c

km+1�n+2

) 4
qn and B =64.

From the choice of k in (5.1) we infer

km+1 ≥ co
�n+2

∫
Q0

u2m dz = co
�n+2Y0.

For the parameter α:= 4
qn , this implies

C− 1
αB− 1

α2 = c−1km+1�n+2B− q2n2
16 ≥ c−1coB

− q2n2
16 Y0.

At this stage, we choose co :=cB
q2n2
16 . This choice fixes the constant in dependence

of m and n and yields the bound

(5.6) Y0 ≤C− 1
αB− 1

α2 .

Because of (5.5) and (5.6), the assumptions of Lemma 3.2 are satisfied for α= 4q
n .

Hence, we infer

0 = lim
i→∞

Yi =
∫
Q�,θ

[um−km]2+ dz,

which is equivalent to um≤km a.e. on Q�,θ. In view of the choice of k in (5.1), this
completes the proof of the theorem. �
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6. Hölder continuity

In this section we will prove the assertion of Theorem 1.1 that solutions to
the obstacle problem for the porous medium equation are Hölder continuous, pro-
vided that the obstacle function is Hölder continuous. Therefore, we may assume
throughout this section that there exists β∈(0, 1) such that

(6.1) ψm ∈C0;β,β/2(ΩT ).

By C0;β,β/2 we mean the space of functions which are Hölder continuous with Hölder
exponent β in space and β/2 in time. More precisely, for a function f : ΩT→R we
define

[f ]0;β,β/2 := sup
(x,t),(y,s)∈ΩT

|f(x, t)−f(y, s)|
max{|x−y|β , |t−s|β/2} .

Then, f∈C0;β,β/2(ΩT ) if and only if [f ]0;β,β/2<∞.
Hölder continuity at a point follows by constructing a sequence of cylinders

shrinking to the point. Each of the cylinders should be roughly half the size of
the previous one, and the oscillation of the function should be reduced by a fixed
multiplicative factor when passing to the next cylinder. We also need to ensure that
the cylinders have a proper scaling to balance the different powers in the energy
estimates.

6.1. Two alternatives

The oscillation can be reduced by either increasing the infimum or decreasing
the supremum of a function. Thus Hölder continuity will follow from Lemmas 6.1
and 6.2 below. We call Lemma 6.1 the first alternative, and Lemma 6.2 the second
alternative, since for a given cylinder, either (6.2) holds, or (6.4) holds with ν=ν0.

To introduce the proper scaling, throughout this section we fix parameters
0≤μ−≤μ+ and θ≥0 and define

ωm :=μm
+ −μm

− .

It will be necessary to distinguish between cylinders where the oscillation is
large compared to the infimum of u, (note that (D) below implies that μ−≤ω) and
cylinders where the oscillation is small compared to the infimum of u. Thus we
assume throughout this subsection that either

(D) μ− ≤ 1
2μ+ and θ=ω1−m

(which we call the degenerate regime) or

(N) μ− > 1
2μ+ and (2μ+)1−m ≤ θ≤ (1

2μ+)1−m

(which we call the nondegenerate regime) holds true.
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Lemma 6.1. Suppose that Q2�,θ(2�)2(zo)⊂ΩT is a parabolic cylinder satisfying

inf
Q2�,θ(2�)2 (zo)

u≥μ−, and sup
Q2�,θ(2�)2 (zo)

u≤μ+.

Then there exists a number νo=νo(n,m)∈(0, 1), such that if

(6.2)
∣∣Q�,θ�2(zo)∩

{
um ≤μm

− + 1
2ω

m
}∣∣≤ νo|Q�,θ�2 |,

then

um ≥μm
− + 1

4ω
m a.e. in Q�/2,θ(�/2)2(zo).

Lemma 6.2. Suppose that Q2�,θ(2�)2(zo)⊂ΩT is a parabolic cylinder satisfying

(6.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inf
Q2�,θ(2�)2 (zo)

u≥μ−, sup
Q2�,θ(2�)2 (zo)

u≤μ+, and

sup
Q2�,θ(2�)2 (zo)

ψm ≤ 1
2
(
μm

+ +μm
−
)
.

Then, for any ν∈(0, 1) there exists a constant a=a(n,m, ν)∈(0, 1
4 ] such that if

(6.4)
∣∣Q�,θ�2(zo)∩

{
um ≤μm

− + 1
2ω

m
}∣∣>ν|Q�,θ�2 |,

then

um ≤μm
+ −aωm a.e. in Q�/2, 12νθ(�/2)2(zo).

6.1.1. The first alternative

Proof of Lemma 6.1. For i∈N0 we define

(ξi)m := 1
4 + 1

2i+2 , kmi :=μm
− +(ξiω)m, and �i :=

�

2 + �

2i+1 .

Then, we have that (ξo)m= 1
2 , ξi is decreasing and (ξi)m↓ 1

4 as i→∞. Similarly, we
have that �o=�, �i is decreasing and �i↓ 1

2� as i→∞. Moreover, we abbreviate

Qi :=Q�i,θ�2
i
(zo),

and
Yi :=

|Qi∩{u<ki}|
|Qi|

.

We aim at deriving an estimate for Yi+1 in terms of Yi so that fast geometric
convergence from Lemma 3.2 can be applied. We use the fact that

[um−kmi ]− ≥ kmi −kmi+1 = ωm

2i+3 in the set {u<ki+1}
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to get ∫
Qi+1

[um−kmi ]
2(n+2)

n
− dz≥

∫
Qi+1∩{u<ki+1}

[um−kmi ]
2(n+2)

n
− dz

≥ ω
2m(n+2)

n

8
2(n+2)

n 2
2i(n+2)

n

|Qi+1∩{u<ki+1}|.(6.5)

Next, we apply Gagliardo-Nirenberg’s inequality from Lemma 3.1 and the energy
estimate from Lemma 4.1 (ii) to get∫
Qi+1

[um−kmi ]
2(n+2)

n
− dz

≤ c

(
sup

t∈(to−θ�2
i+1,to)

∫
B�i+1

[um−kmi ]2− dx

) 2
n

×
∫
Qi+1

(
|∇[um−km]−|2+

∣∣∣∣ [um−kmi ]−
�i+1

∣∣∣∣
2 )

dz

≤ c 2
2i(n+2)

n k
2(m−1)

n
i

�
2(n+2)

n

×
(∫

Qi

[um−kmi ]2− dz+ 1
θ

∫
Qi

∫ [um−km
i ]−

0
(kmi −τ)

1−m
m τ dτ dz

)1+ 2
n

,

where c=c(n,m). If (D) is satisfied, we estimate∫ [um−km
i ]−

0
(kmi −τ)

1−m
m τ dτ ≤ [um−kmi ]−

∫ [um−km
i ]−

0
(kmi −τ)

1−m
m dτ

=m[um−kmi ]− [u−ki]− ≤m[um−kmi ]1+
1
m

− .

Now, we use the fact that

[um−kmi ]− ≤ kmi −μm
− =(ξiω)m ≤ωm,

which holds due to the assumption μ−≤infQ0 u, and since θ=ω1−m, we obtain∫
Qi+1

[um−kmi ]
2(n+2)

n
− dz

≤ c 2
2i(n+2)

n k
2(m−1)

n
i

�
2(n+2)

n

(
ω2m+ωm+1

θ

)1+ 2
n

|Qi∩{u<ki}|1+
2
n

≤ c 2
2i(n+2)

n k
2(m−1)

n
i ω

2m(n+2)
n

�
2(n+2)

n

|Qi∩{u<ki}|1+
2
n .(6.6)
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Otherwise, if (N) is satisfied, we observe that infQ0 u≥μ−>0 and estimate

∫ [um−km
i ]−

0
(kmi −τ)

1−m
m τ dτ ≤u1−m

∫ [um−km
i ]−

0
τ dτ = 1

2u
1−m[um−kmi ]2− .

Using again the fact that [um−kmi ]−≤ωm we get

∫
Qi+1

[um−kmi ]
2(n+2)

n
− dz≤ c 2

2i(n+2)
n k

2(m−1)
n

i

�
2(n+2)

n

(
ω2m+

μ1−m
− ω2m

θ

)1+ 2
n

|Qi∩{u<ki}|1+
2
n .

Using μ1−m
− <(1

2μ+)1−m≤4m−1θ, we obtain (6.6) also in the case that (N) is satis-
fied. Combining (6.6) with (6.5), we get

|Qi+1∩{u<ki+1}|≤
c 4

2i(n+2)
n k

2(m−1)
n

i

�
2(n+2)

n

|Qi∩{u<ki}|1+
2
n .

Dividing on both sides by |Qi+1| and recalling the definition of Yi, we get

Yi+1 ≤
c bik

2(m−1)
n

i |Qi|1+
2
n

�2(1+ 2
n )|Qi+1|

Y
1+ 2

n
i ,

where we abbreviated b:=4
2(n+2)

n . If (D) is satisfied, we have that kmi ≤μm
− +ωm=

2μm
−−μm

− +ωm≤2ωm=2θ
m

1−m , while in the case (N) we have kmi ≤μm
− +ωm=μm

+ ≤
2mθ

m
1−m . Taking also into account that 1

2�≤�i≤� for all i∈N0, we find that

Yi+1 ≤ c biY
1+ 2

n
i .

Note that the constant c depends only on n,m. Lemma 3.2 now yields Yi→0 as
i→∞, provided that

Y0 ≤ c−
n
2 b−

n2
4 .

This clearly holds if we take νo :=c−
n
2 b−

n2
4 . Note that νo depends only on n and m.

Since kmi →μm
− + 1

4ω
m and �i→ 1

2� as i→∞, we have thus shown that

|Q�/2,θ(�/2)2(zo)∩{um <μm
− + 1

4ω
m}|=0,

as desired. �
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6.1.2. The second alternative

It remains to treat the second alternative considered in Lemma 6.2, when (6.2)
is violated. We begin with a lemma that is analogous to Lemma 6.1. However, the
methods from the proof of Lemma 6.1 work only for a small parameter ν1 in (6.7)
below, while the negation of (6.2) at first yields (6.7) only for 1−νo instead of ν1,
where νo is the small constant determined in Lemma 6.1. This is the reason why
compared to Lemma 6.1, in Lemma 6.3 we have to replace the cylinder Q�,θ�2(zo)
by the smaller cylinder Q�, 12νθ�

2(zo) with ν∈(0, 1), and why we have to introduce
a small parameter ξ∈(0, 1

2 ] instead of 1
2 . Later on we will show that the opposite

of (6.2) implies assumption (6.7) on a smaller cylinder, for some suitable choice of
ξ. We stress that the constant ν1 in the following lemma does not depend on ξ, so
that we still have the freedom to choose the latter parameter.

Lemma 6.3. Suppose that the assumptions from the beginning of Section 6.1

and (6.3) are in force. Moreover, let ν∈(0, 1) and ξ∈(0, 1
2 ]. Then, there exists

ν1=ν1(n,m, ν)∈(0, 1) such that if

(6.7)
∣∣Q�, 12νθ�

2(zo)∩
{
um >μm

+ −ξωm
}∣∣<ν1|Q�, 12νθ�

2 |,

then

um ≤μm
+ − 1

2ξω
m a.e. in Q�/2, 12νθ(�/2)2(zo).

Proof. For i∈N0 we define

(ξi)m := 1
2ξ+

1
2i+1 ξ, kmi :=μm

+ −(ξiω)m, and �i :=
�

2 + �

2i+1

and

Yi :=
|Qi∩{u>ki}|

|Qi|
, where Qi :=Q�i,

1
2νθ�

2
i
(zo).

Note that (ξo)m=ξ, ξi is decreasing and (ξi)m↓ 1
2ξ as i→∞. Similarly, we have that

�o=�, �i is decreasing and �i↓ 1
2� as i→∞. Note that (6.3) implies kmi ≥μm

+ − 1
2ω

m=
1
2 (μm

+ +μm
− )≥supQ0

ψm for any i∈N0. As in the proof of Lemma 6.1 we are going to
derive a suitable estimate for Yi+1 in terms of Yi, and then apply Lemma 3.2. We
apply Gagliardo-Nirenberg’s inequality from Lemma 3.1 and the energy estimate
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from Lemma 4.1 (i) to get∫
Qi+1

[um−kmi ]
2(n+2)

n
+ dz

≤ c

(
sup

t∈(to−θ�2
i+1,to)

∫
B�i+1

[um−kmi ]2+ dx

) 2
n

×
∫
Qi+1

(
|∇[um−kmi ]+|2+

∣∣∣∣ [um−kmi ]+
�i+1

∣∣∣∣
2 )

dz

≤ c μ
2(m−1)

n
+

(
22i

�2 + 22ik1−m
i

θ�2

)1+ 2
n
(∫

Qi

[um−kmi ]2+ dz

)1+ 2
n

≤ c μ
2(m−1)

n
+ (ξωm)

2(n+2)
n 2

2i(n+2)
n

�
2(n+2)

n

(
1+ k1−m

i

θ

)1+ 2
n

|Qi∩{u>ki}|1+
2
n ,

where c=c(n,m, ν). For the last two inequalities we used the facts that μ1−m
+ ≤u1−m

and
[um−kmi ]+ ≤μm

+ −kmi =(ξiω)m ≤ ξωm,

which holds due to the assumption supQ0
u≤μ+. Now, we observe that kmi ≥μm

+ −
1
2ω

m≥ 1
2μ

m
+ ≥ 1

2ω
m. Therefore, if (D) is satisfied, we have that k1−m

i ≤2m−1
m θ, while

in the case (N) we have k1−m
i ≤2m−1

m μ1−m
+ ≤2m2−1

m θ. Therefore, we arrive at

∫
Qi+1

[um−kmi ]
2(n+2)

n
+ dz≤ c μ

2(m−1)
n

+ (ξωm)
2(n+2)

n 2
2i(n+2)

n

�
2(n+2)

n

|Qi∩{u>ki}|1+
2
n .(6.8)

Next, we use the fact that

[um−kmi ]+ ≥ kmi+1−kmi = ξωm

2i+2 in the set {u>ki+1}

to get ∫
Qi+1

[um−kmi ]
2(n+2)

n
+ dz≥

∫
Qi+1∩{u>ki+1}

[um−kmi ]
2(n+2)

n
+ dz

≥ (ξωm)
2(n+2)

n

4
2(n+2)

n 2
2i(n+2)

n

|Qi+1∩{u>ki+1}|.

Combining the last estimate with (6.8), we get

|Qi+1∩{u>ki+1}|≤
c 4

2i(n+2)
n μ

2(m−1)
n

+

�
2(n+2)

n

|Qi∩{u>ki}|1+
2
n ,
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where, again, c=c(n,m, ν). Dividing both sides by |Qi+1| and recalling the defini-
tion of Yi, we get

Yi+1 ≤
c biμ

2(m−1)
n

+ |Qi|1+
2
n

�2(1+ 2
n )|Qi+1|

Y
1+ 2

n
i ,

where we abbreviated b:=4
2(n+2)

n . If (D) is satisfied, we have that μm
+ =2μm

+ −
μm

+ ≤2μm
+ −2μm

− =2ωm=2θ
m

1−m , while in the case that (N) is satisfied we have μm
+ ≤

2mθ
m

1−m . Taking also into account that 1
2�≤�i≤� for all i∈N, we obtain

Yi+1 ≤ c biY
1+ 2

n
i ,

for a constant c depending only on n,m, and ν. Lemma 3.2 now yields Yi→0 as
i→∞, provided that

Y0 ≤ c−
n
2 b−

n2
4 .

This clearly holds if we take ν1 :=c−
n
2 b−

n2
4 . Note that ν1 depends only on n,m, ν.

Since kmi →μm
+ − 1

2ξω
m and �i→ 1

2� as i→∞, we have thus shown that

|Q�/2, 12νθ(�/2)2(zo)∩{u
m >μm

+ − 1
2ξω

m}|=0,

as desired. �

In the following proof of Lemma 6.2 our aim will be to apply Lemma 6.3.
Thereby, the main difficulty will be to ensure that hypothesis (6.4) of Lemma 6.2
implies assumption (6.7) of Lemma 6.3.

Proof of Lemma 6.2. In the following, we let ν∈(0, 1). We now proceed in
several steps.

Step 1. Selecting a “good” time slice. We first observe that μm
− + 1

2ω
m=μm

+ −
1
2ω

m. Therefore, (6.4) can be rewritten as
∣∣Q�,θ�2(zo)∩

{
um >μm

+ − 1
2ω

m
}∣∣≤ (1−ν)|Q�,θ�2 |.

On the other hand, we have

∣∣Q�,θ�2(zo)∩
{
um >μm

+ − 1
2ω

m
}∣∣=∫ to

to−θ�2

∣∣B�(xo)∩
{
um(·, t)>μm

+ − 1
2ω

m
}∣∣ dt

≥
∫ to− 1

2νθ�
2

to−θ�2

∣∣B�(xo)∩
{
um(·, t)>μm

+ − 1
2ω

m
}∣∣ dt.
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By the mean value theorem there exists t1∈[to−θ�2, to− 1
2νθ�

2] such that

∣∣B�(xo)∩
{
um(·, t1)>μm

+ − 1
2ω

m
}∣∣≤ 1

(1− 1
2ν)θ�2

∣∣Q�,θ�2(zo)∩
{
um >μm

+ − 1
2ω

m
}∣∣

≤ 1−ν

(1− 1
2ν)θ�2 |Q�,θ�2 |= 1−ν

1− 1
2ν

|B�|.(6.9)

Step 2. Expansion in time. Our aim here is to prove that an estimate similar
to (6.9) holds for any t∈[t1, to]. Therefore, we define

km :=μm
+ −δωm,

with δ∈(0, 1
2 ] to be chosen later in dependence on m and ν. Moreover, we let so∈N

with so>1− log δ
log 2>1 to be fixed later on, so that 21−s<δ≤ 1

2 for any s≥so. Now, let
us suppose that

(6.10) sup
B�(xo)×(t1,to)

um ≥μm
+ − δ

2ω
m.

The case where (6.10) is not satisfied is easier and will be considered at the end of
the proof. We let

Hm := sup
B�(xo)×(t1,to)

[um−km]+

and observe from the definition of k and (6.10) that δ
2ω

m≤Hm≤δωm. Since 21−s<

δ≤ 1
2 for any s≥so, this implies

1
2sω

m <Hm ≤ 1
2ω

m, for any s≥so.

We now define

φ(v) :=
[

log
( Hm

Hm+ 1
2sωm−v

)]
+

for v<Hm+ 1
2sω

m.

From (6.3), we deduce km≥μm
+ − 1

2ω
m= 1

2 (μm
+ +μm

− )≥supQ�,θ�2 (zo) ψ
m. Hence, we

infer from the logarithmic energy estimate in Lemma 4.2 that for any σ∈(0, 1) and
any t∈(t1, to) there holds

I(t) :=
∫
Bσ�(xo)×{t}

u1−mφ2([um−km]+
)
dx

≤ k1−m

∫
B�(xo)×{t1}

φ2([um−km]+
)
dx

+ 8m
(1−σ)2�2

∫
B�(xo)×(t1,to)

φ
(
[um−km]+

)
dz.
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Since

φ
(
[um−km]+

)
≤ log

(2sHm

ωm

)
≤ log 2s−1,

we can use (6.9) (recall that km≥μm
+ − 1

2ω
m) to further estimate

I(t)≤ k1−m
(
log 2s−1)2∣∣B�(xo)∩{u(·, t1)>k}

∣∣+ 8m log 2s−1

(1−σ)2�2 |B�×(t1, to)|

≤
[
k1−m

(
log 2s−1)2 1−ν

1− 1
2ν

+ 8mθ log 2s−1

(1−σ)2

]
|B�|,(6.11)

where in the last line we have also used that to−t1≤θ�2. On the other hand, on
the set Bσ�(xo)∩{um(·, t)≥μm

+ − 1
2sω

m}, with t∈(t1, to) we have

[um−km]+ ≥μm
+ − 1

2sω
m−(μm

+ −δωm)=
(
δ− 1

2s

)
ωm.

Since φ([um−km]+) is a decreasing function of H and H≤δωm, this implies

φ
(
[um−km]+

)
≥
[

log
(

δωm

δωm+ 1
2sωm−[um−km]+

)]
+

≥
[

log
(

δωm

δωm+ 1
2sωm−(δ− 1

2s )ωm

)]
+

= log
(
2s−1δ

)
.

Therefore, we get the following lower bound for I(t):

I(t)≥μ1−m
+

(
log

(
2s−1δ

))2∣∣Bσ�(xo)∩{um(·, t)≥μm
+ − 1

2sω
m}

∣∣(6.12)

for all t∈(t1, to). Joining (6.11) and (6.12) yields∣∣Bσ�(xo)∩{um(·, t)≥μm
+ − 1

2sω
m}

∣∣
≤ μm−1

+
(log(2s−1δ))2

[
k1−m

(
log 2s−1)2 1−ν

1− 1
2ν

+ 8mθ log 2s−1

(1−σ)2

]
|B�|,

for all t∈(t1, to). At this point, we use that km=(1−δ)μm
+ +δμm

−≥(1−δ)μm
+ . More-

over, if (D) is satisfied, then ωm=μm
+ −μm

−≥ 1
2μ

m
+ and hence θ≤2μ1−m

+ , while in
the case (N) we have θ≤2m−1μ1−m

+ . Taking also into account that |B�\Bσ�|=
(1−σn)|B�|≤n(1−σ)|B�|, we can further estimate∣∣B�(xo)∩{um(·, t)≥μm

+ − 1
2sω

m}
∣∣

≤
[
(1−δ)

1−m
m

(
log 2s−1

log(2s−1δ)

)2 1−ν

1− 1
2ν

+ 2m+3m log 2s−1

(1−σ)2(log(2s−1δ))2 +n(1−σ)
]
|B�|.
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We now choose
σ := 1− ν2

8n ∈ (0, 1),

and

(6.13) δ :=min
{

1
2 , 1−

( 1−ν2

1− 1
2ν

2

) m
m−1

}
≤ 1

2 ,

and note that
(1−δ)

1−m
m ≤

1− 1
2ν

2

1−ν2 .

Then, the last inequality yields that∣∣B�(xo)∩{um(·, t) ≥ μm
+ − 1

2sω
m}

∣∣
≤

[(
log 2s−1

log(2s−1δ)

)2 1− 1
2ν

2

(1− 1
2ν)(1+ν)

+ 2m+9n2m log 2s−1

ν4(log(2s−1δ))2 + ν2

8

]
|B�|,

for any t∈(t1, to). Next, we choose so in dependence on n,m and ν large enough to
ensure that (

log 2so−1

log(2so−1δ)

)2
≤ (1+ν)(1− 1

2ν)

and
2m+9n2m log 2so−1

(log(2so−1δ))2 ≤ ν6

8
holds true. Then, we have for any s≥so and any t∈(t1, to) that∣∣B�(xo)∩{um(·, t)≥μm

+ − 1
2sω

m}
∣∣≤ (

(1− 1
2ν

2)+ 1
4ν

2)|B�|=
(
1− 1

4ν
2)|B�|,

provided that (6.10) is satisfied. On the other hand, if (6.10) is not satisfied, then
we have that ∣∣B�(xo)∩

{
um(·, t)≥μm

+ − δ
2ω

m
}∣∣=0

holds true for any t∈[t1, to]. Since δ
2>

1
2s for any s≥so, this implies the second last

inequality. Therefore, in any case we have proved that there exists so=so(n,m, ν)∈
N≥2 such that ∣∣B�(xo)∩

{
um(·, t)≥μm

+ − 1
2sω

m
}∣∣≤ (

1− 1
4ν

2)|B�|,

or equivalently

(6.14)
∣∣B�(xo)∩

{
um(·, t)<μm

+ − 1
2sω

m
}∣∣≥ 1

4ν
2|B�|,

holds true for any t∈[t1, to] and any s≥so.
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Step 3. Improving the measure estimate on a smaller cylinder. Let ν1=
ν1(n,m, ν) be the corresponding parameter from Lemma 6.3. Here, we will prove
that there exists s1=s1(n,m, ν)∈N≥2 such that

(6.15)
∣∣Q�, 12νθ�

2(zo)∩
{
um >μm

+ − 1
2so+s1 ω

m
}∣∣<ν1|Q�, 12νθ�

2 |.

We abbreviate Q2 :=B�(xo)×(to− 1
2νθ�

2, to] and Q1 :=B2�(xo)×(to−νθ�2, to], so
that Q2⊂Q1⊂Q2�,θ(2�)2(zo). For j∈N we define

(kj)m :=μm
+ − 1

2j ω
m

and the associated superlevel sets

Aj :=Q2∩{u>kj}.

An application of Lemma 3.3 to um(·, t) on B�(xo) with t∈(to− 1
2νθ�

2, to) and �, k

replaced by kmj+1, k
m
j yields that

(kmj+1−kmj )|B�(xo)∩{um(·, t)>kmj+1}|

≤ c(n) �n+1

|B�(xo)∩{um(·, t)<kmj }|

∫
B�(xo)∩{kj<u(·,t)<kj+1}

|∇um| dx

≤ c(n) �
ν2

∫
B�(xo)∩{kj<u(·,t)<kj+1}

|∇um| dx,

for any j∈N with j≥so. We have also used (6.14) and the fact that (to− 1
2νθ�

2, to]⊂
[t1, to] in the last line. We integrate the last inequality with respect to t over
(to− 1

2νθ�
2, to) to get

(kmj+1−kmj )|Aj+1| ≤
c(n) �
ν2

∫
Aj\Aj+1

|∇um| dz

≤ c(n) �
ν2 |Aj\Aj+1|

1
2

(∫
Aj\Aj+1

|∇um|2 dz
)1

2

≤ c(n) �
ν2 |Aj\Aj+1|

1
2

(∫
Q2

∣∣∇[um−kmj ]+
∣∣2 dz)1

2

.

Note that from (6.3) we have (kj)m≥μm
+ − 1

2ω
m= 1

2 (μm
+ +μm

− )≥supQ2�,θ(2�)2 (zo) ψ
m

for any j∈N. Therefore, the energy estimate in Lemma 4.1 (i) implies
∫
Q2

∣∣∇[um−kmj ]+
∣∣2 dz≤ c(m)

(
1
�2 +

k1−m
j

νθ�2

)∫
Q1

[um−kmj ]2+ dz.
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First, we observe that kmj =μm
+ −2−jωm≥ 1

2μ
m
+ ≥ 1

2ω
m. Therefore, if (D) is satisfied,

we have that k1−m
j ≤2m−1

m θ, while in the case (N) we have k1−m
j ≤2m−1

m μ1−m
+ ≤

2m2−1
m θ. Using also the fact that [um−kmj ]+≤μm

+ −kmj =2−jωm on Q2, we can
further estimate ∫

Q2

∣∣∇[um−kmj ]+
∣∣2 dz≤ c(m)

ν�2

(ωm

2j
)2
|Q1|.

Inserting this estimate above and taking into account that kmj+1−kmj =2−(j+1)ωm,
we obtain

|Aj+1|2 ≤
c(n,m)

ν5 |Aj\Aj+1||Q1|.

Now, we let s1∈N≥2 and add up the preceding inequality for j=so, ..., so+s1−1 to
infer that

(s1−1)|Aso+s1 |2 ≤
c(n,m)

ν5 |Q1|2 = c(n,m)
ν5 |Q2|2.

Choosing s1=s1(n,m, ν, ν1)≡s1(n,m, ν) large enough to ensure that

c(n,m)
ν5(s1−1) ≤ ν2

1 ,

we conclude the claim (6.15).
Step 4. Concluding the proof of Lemma 6.2. Due to (6.15) we are allowed to

apply Lemma 6.3 with ξ=2−(so+s1) to conclude that

um ≤μm
+ − 1

2ξω
m a.e. in Q�/2, 12νθ(�/2)2(zo).

This proves the assertion of Lemma 6.2 for the choice a= 1
2ξ. Note that ξ depends

on n,m, ν and therefore the parameter a depends on the same quantities. �

Combining the two alternatives (Lemma 6.1 and Lemma 6.2) we get the fol-
lowing proposition.

Proposition 6.4. Suppose that the assumptions from the beginning of Sec-

tion 6.1 are in force and let Q2�,θ(2�)2(zo)⊂ΩT be a parabolic cylinder satisfying

inf
Q2�,θ(2�)2 (zo)

u≥μ−, sup
Q2�,θ(2�)2 (zo)

u≤μ+, and sup
Q2�,θ(2�)2 (zo)

ψm ≤ 1
2
(
μm

+ +μm
−
)
.

Then, there exists νo=νo(n,m)∈(0, 1) and a=a(n,m)∈(0, 1
4 ] such that either

inf
Q�/2,θ(�/2)2 (zo)

um ≥μm
− + 1

4ω
m, or sup

Q
�/2, 12 νoθ(�/2)2 (zo)

um ≤μm
+ −aωm

holds true.
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Proof. We let νo=νo(n,m)∈(0, 1) be the constant from Lemma 6.1. Then we
take a=a(n,m, νo)≡a(n,m)∈(0, 1

4 ] to be the constant from Lemma 6.2 applied with
ν=νo. With these choices, one of the alternatives (6.2) and (6.4) of Lemmas 6.1
and 6.2 is satisfied for the given cylinder. Therefore, the application of Lemma 6.1,
respectively Lemma 6.2 yields the claim. �

6.2. The degenerate and the nondegenerate regime

In this section we construct smaller cylinders on which the oscillation is re-
duced. We need to treat the two different regimes introduced at the beginning of
Section 6.1 separately.

Throughout this subsection we let νo=νo(n,m)∈(0, 1) and a=a(n,m)∈(0, 1
4 ]

be the constants from Proposition 6.4 and define δ :=1−a∈[ 34 , 1).
We start by considering the degenerate regime. Here, we prove a reduction of

the oscillation of um on a smaller cylinder. Since we do not know if the smaller
cylinder again belongs to the degenerate regime, we cannot iterate the argument.

Proposition 6.5. Let μ−, μ+≥0 be two parameters with

(6.16) μ− ≤ 1
2μ+

and define

θ :=ω1−m with ωm :=μm
+ −μm

− .

Suppose that Q:=Q�,θ�2(zo)⊂ΩT is a parabolic cylinder satisfying

inf
Q

u≥μ−, sup
Q

u≤μ+, and sup
Q

ψm ≤ 1
2
(
μm

+ +μm
−
)
.

Then, with

(ω1)m :=max
{
δωm, 2 osc

Q
ψm

}
,

and

Q1 :=Q�1,θ1�2
1
(zo), where θ1 :=ω1−m

1 , �1 := η�, η :=
√

1
32νoδ

m−1
m ,

there holds

(6.17) osc
Q1

um ≤ωm
1 , and Q1 ⊂Q.
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Proof. First, we observe that η< 1
4δ

m−1
2m < 1

4 and ω1≥δ
1
mω, which implies that

(6.18) Q1 ⊂Q�/4, 12νoθ(�/4)2(zo)⊂Q�/4,θ(�/4)2(zo)⊂Q.

Moreover, we note that assumption (D) is satisfied. Therefore, we can apply Propo-
sition 6.4 to conclude that either

inf
Q�/4,θ(�/4)2 (zo)

um ≥μm
− + 1

4ω
m, or sup

Q
�/4, 12 νoθ(�/4)2 (zo)

um ≤μm
+ −aωm

holds true. By (6.18), this implies that either

inf
Q1

um ≥μm
− + 1

4ω
m, or sup

Q1

um ≤μm
+ −aωm

is satisfied. If the first alternative occurs, we conclude

osc
Q1

um =sup
Q1

um−inf
Q1

um ≤μm
+ −(μm

− + 1
4ω

m)= (1− 1
4 )ωm ≤ δωm ≤ωm

1 ,

while in the case that the second alternative occurs, we have that

osc
Q1

um =sup
Q1

um−inf
Q1

um ≤μm
+ −aωm−μm

− =(1−a)ωm = δωm ≤ωm
1 .

This proves the assertion of the proposition. �

Next, we consider the nondegenerate regime. As in the degenerate regime, we
can prove a reduction of the oscillation on a smaller cylinder. However, in contrast
to the degenerate regime, we can even prove that the smaller cylinder again belongs
to the nondegenerate regime. Therefore, we can use an induction argument to prove
a reduction of the oscillation on a sequence of concentric nested cylinders.

Proposition 6.6. Let νo=νo(n,m)∈(0, 1) and δ=δ(n,m)∈(0, 1) be the con-

stants from the beginning of Section 6.2 and let 0<μ−≤μ+ be two parameters sat-

isfying

μ− > 1
2μ+

and define θ :=μ1−m
+ . Suppose that Qo :=Q�o,θ�2

o
(zo)⊂ΩT is a parabolic cylinder

satisfying

inf
Qo

u≥μ− and sup
Qo

u≤μ+,

as well as

(6.19) sup
Qo

ψm ≤ 1
2
(
μm

+ +μm
−
)

and osc
Qo

ψm ≤ 1
2
(
μm

+ −μm
−
)
.
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With the sequence of cylinders

Qi :=Q�i,θ�2
i
(zo), where �i := ηi�o, η :=

√
1
32νo ,

we define

(ωo)m :=μm
+ −μm

− , and (ωi)m :=max
{
δωm

i−1, 2 osc
Qi−1

ψm
}

for i∈N.

Then, for any i∈N0 there holds

(6.20) osc
Qi

um ≤ωm
i .

Proof. First, we observe that

(6.21) Qi+1 ⊂Q�i/4, 12νoθ(�i/4)2(zo)⊂Q�i/4,θ(�i/4)2(zo)⊂Qi, for any i∈N0.

Next, we define μ−,o :=μ− and μ+,o :=μ+, as well as

μ−,i := inf
Qi

u, μm
+,i :=μm

−,i+ωm
i , for i∈N.

From (6.19) and the definition of ω1, we deduce ω1≤ωo. Then, we infer inductively
that

(6.22) ωi+1 ≤ωi for all i∈N0.

Next, we note that

(6.23) (2μ+,i)1−m ≤ θ≤ (1
2μ+,i)1−m

holds for any i∈N0. In fact, the first inequality is a consequence of θ=μ1−m
+,o ≥

(2μ−,o)1−m≥(2μ−,i)1−m≥(2μ+,i)1−m, while the second follows from μm
+,i=μm

−,i+
ωm
i ≤supQo

um+ωm
o ≤2μm

+,o=2θ
m

1−m . Moreover, we have for any i∈N

sup
Qi

ψm = inf
Qi

ψm+osc
Qi

ψm ≤ inf
Qi

um+ osc
Qi−1

ψm ≤μm
−,i+ 1

2ω
m
i = 1

2 (μm
+,i+μm

−,i),

while for i=0, the same holds by assumption (6.19)1.
In the following, we will prove

(6.24)
{
μ−,i>

1
2μ+,i

oscQi u
m≤ωm

i ,
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for any i∈N0 by induction. For i=0 the assertion (6.24) is a direct consequence of
the assumptions on μ− and μ+. We now assume that (6.24) is satisfied for some
i∈N0. Keeping in mind (6.22) and μ−,i≤μ−,i+1, we deduce

μm
+,i+1 =μm

−,i+1+ωm
i+1 =2mμm

−,i+1+
(
ωm
i+1−(2m−1)μm

−,i+1
)

≤ 2mμm
−,i+1+

(
ωm
i −(2m−1)μm

−,i

)
=2mμm

−,i+1+(μm
+,i−2mμm

−,i)
< 2mμm

−,i+1,

which proves the first assertion in (6.24) for i+1. Moreover, we have that μm
+,i=

μm
−,i+ωm

i ≥supQi
um and hence μ+,i≥supQi

u and assumption (N) holds for Qi by
(6.24)1 and (6.23). Therefore, we can apply Proposition 6.4 to conclude that either

inf
Q�i/4,θ(�i/4)2 (zo)

um ≥μm
−,i+ 1

4ω
m
i , or sup

Q
�i/4, 12 νoθ(�i/4)2 (zo)

um ≤μm
+,i−aωm

i

holds true. By the inclusions (6.21), this implies that either

inf
Qi+1

um ≥μm
−,i+ 1

4ω
m
i , or sup

Qi+1

um ≤μm
+,i−aωm

i

holds true. If the first alternative occurs, we conclude

osc
Qi+1

um = sup
Qi+1

um− inf
Qi+1

um ≤μm
+,i−(μm

−,i+ 1
4ω

m
i )

= (1− 1
4 )ωm

i ≤ δωm
i ≤ωm

i+1,

while in the case that the second alternative occurs, we have that

osc
Qi+1

um = sup
Qi+1

um− inf
Qi+1

um ≤μm
+,i−aωm

i −μm
−,i

=(1−a)ωm
i = δωm

i ≤ωm
i+1.

Hence, in both cases we have proved (6.24)2 and thereby (6.20) for i+1. This
finishes the proof of the proposition. �

6.3. The final iteration

In this section we finally prove the Hölder continuity of the solution to the
obstacle problem for the porous medium equation. For this aim, we let

ε := 2β(m−1)
2m+β(m−1) ∈ (0, 1) and γo := 2βm

2m+β(m−1) ∈ (0, 1),
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where β∈(0, 1) is the Hölder exponent from assumption (6.1). Then, we fix zo∈ΩT

and consider R∈(0, 1) such that Q2R,4R2−ε(zo)⊂ΩT . If

osc
Q�,�2−ε (zo)

um ≤max
{
�

εm
m−1 , 2 osc

Q�,�2−ε (zo)
ψm

}
=: Ψ(�), for any �∈(0, R],

we use the Hölder continuity assumption (6.1) on ψ and the choice of ε to see that

Ψ(�)≤ c max
{
�

εm
m−1 , �β−

εβ
2

}
= c �γo , for any �∈(0, R],

so that um is Hölder continuous at zo. Therefore, it remains to consider the remain-
ing case. In this case we either have for �o=R that

Ψ(�o)< osc
Q

�o,�
2−ε
o

(zo)
um ≤ ‖um‖L∞

Rγo
�γo
o ,

or we can find a �o∈(0, R) with

osc
Q

�o,�
2−ε
o

(zo)
um >Ψ(�o), and osc

Qr,r2−ε (zo)
um ≤ 2Ψ(r) for any r∈[�o, R].

With this choice of �o, we define

μ−,o := inf
Q

�o,�
2−ε
o

(zo)
u, μ+,o := sup

Q
�o,�

2−ε
o

(zo)
u

and
ωm
o :=μm

+,o−μm
−,o and θo :=ω1−m

o .

With these choices of parameters, we have

θo =ω1−m
o =

(
osc

Q
�o,�

2−ε
o

(zo)
um

)1−m
m

<Ψ(�o)
1−m
m ≤ �−ε

o ,

so that Qo :=Q�o,θo�2
o
(zo)⊂Q�o,�

2−ε
o

(zo). Therefore, we find that

sup
Qo

ψm ≤ sup
Q

�o,�
2−ε
o

(zo)
ψm = inf

Q
�o,�

2−ε
o

(zo)
ψm+ osc

Q
�o,�

2−ε
o

(zo)
ψm

≤ inf
Q

�o,�
2−ε
o

(zo)
um+ 1

2 osc
Q

�o,�
2−ε
o

(zo)
um =μm

−,o+ 1
2
(
μm

+,o−μm
−,o

)
= 1

2
(
μm

+,o+μm
−,o

)
.(6.25)

By νo, δ∈(0, 1) we denote the corresponding constants from the beginning of Sec-
tion 6.2, both depending only on n and m. We define sequences of nonnegative
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numbers ωi, μ+,i, μ−,i, and cylinders Qi for i∈N by the following recursive scheme.
Assuming that ωi−1 and Qi−1 have already been defined, we let

(ωi)m :=max
{
δωm

i−1, 2 osc
Qi−1

ψm
}
,

and
μ−,i := inf

Qi

u, μm
+,i :=μm

−,i+ωm
i ,

as well as

Qi :=Q�i,θi�2
i
(zo), with θi :=ω1−m

i , �i := ηi�o, η :=
√

1
32νoδ

m−1
m .

For any i∈N, we deduce

(6.26) sup
Qi

ψm = inf
Qi

ψm+osc
Qi

ψm ≤ inf
Qi

um+ 1
2ω

m
i = 1

2 (μm
+,i+μm

−,i).

We let io be the first index for which Qio is in the nondegenerate regime, i.e. we
choose io∈N0∪{∞} in such a way that μ−,io>

1
2μ+,io and μ−,i≤ 1

2μ+,i for any i<io.
If μ−,i≤ 1

2μ+,i for any i∈N0, we set io=∞. We will apply Proposition 6.5 to prove
by induction that

(6.27) Qio ⊂Qio−1 ⊂ ...⊂Qo, and osc
Qi

um ≤ωm
i ,

for any i∈{0, ..., io}, (resp. i∈N0 if io=∞). For i=0 the assertion (6.27) is a
direct consequence of the definition of ωo. If io=0, we are finished and therefore it
remains to consider the case where io>0. We now assume that (6.27) is satisfied for
some i∈{0, ..., io−1}. Then, we have μm

+,i=μm
−,i+ωm

i ≥supQi
um and hence μ+,i≥

supQi
u. Moreover, we have supQi

ψm≤ 1
2 (μm

+,i+μm
−,i) by (6.26), respectively by

(6.25). Therefore, we can apply Proposition 6.5 on the cylinders Qi to infer that
Qi+1⊂Qi and

osc
Qi+1

um ≤ωm
i+1.

This proves the claim (6.27).
If io<∞, we redefine the remaining cylinders so that Proposition 6.6 can be

applied. Let θ∗ :=μ1−m
+,io

≤θio and redefine the cylinders for i∈{io+1, ...} by

Qi :=Q�i,θ∗�2
i
(zo), with �i := η̂i−io�io , η̂ :=

√
1
32νo.

Note that Qio⊃Qio+1⊃... and that the redefinition of Qi also leads to a redefinition
of ωi, μ−,i and μ+,i.
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Our aim is to apply Proposition 6.6 on the cylinder Q∗
io

:=Q�io ,θ∗�
2
io

(zo)⊂Qio ,
with the parameters μ+,io and μ−,io . To this end, we check that

inf
Q∗

io

u≥ inf
Qio

u=μ−,io and sup
Q∗

io

u≤ sup
Qio

u≤μ+,io .

Moreover, from (6.26), respectively from (6.25), we know

sup
Q∗

io

ψm ≤ sup
Qio

ψm ≤ 1
2 (μ+,io +μ−,io),

and the definition of ωio , respectively the choice of �o, implies

μm
+,io−μm

−,io =ωm
io ≥ 2 osc

Qio

ψm ≥ 2 osc
Q∗

io

ψm.

Hence, Proposition 6.6 is applicable on Q∗
io

and provides us with the estimate

(6.28) osc
Qi

um ≤ωm
i , for any i∈{io+1, ...}.

For i∈N0 we now define

ri :=min
{
1, θ1/2

o , θ
1/2
∗

}
�i

so that
Qri(zo) :=Qri,r2

i
(zo)⊂Qi, for any i∈N0.

Therefore, for any i∈N0 we can use either (6.27), or (6.28) to conclude that

osc
Qri

um ≤ osc
Qi

um ≤ωm
i ≤ δωm

i−1+2 osc
Qi−1

ψm ≤ δiωm
o +2

i−1∑
j=0

δj osc
Qi−1−j

ψm.

In the case i−1−j≤io, we infer from assumption (6.1) that

osc
Qi−1−j

ψm ≤ c
(
�βi−1−j+(θi−1−j�

2
i−1−j)

β
2
)
= c

(
1+ω

β(1−m)
2

i−1−j

)
�βi−1−j

≤ c
(
1+(δ

i−1−j
m ωo)

β(1−m)
2

)
�βi−1−j ≤ c

(
1+ω

β(1−m)
2

o

)
δ

(i−1−j)β(1−m)
2m �βi−1−j

= c
(
1+ω

β(1−m)
2

o

)(
νo

32
)β(i−1−j)

2 �βo .

For i−1−j>io we get the same bound, since

osc
Qi−1−j

ψm ≤ c
(
�βi−1−j+(θ∗�2

i−1−j)
β
2
)
≤ c

(
1+ω

β(1−m)
2

io

)
�βi−1−j

≤ c
(
1+(δ

io
m ωo)

β(1−m)
2

)
�βi−1−j ≤ c

(
1+ω

β(1−m)
2

o

)
δ

ioβ(1−m)
2m �βi−1−j

= c
(
1+ω

β(1−m)
2

o

)(
νo

32
)β(i−1−j)

2 �βo .



Hölder regularity for degenerate parabolic obstacle problems 37

Inserting this above, we conclude for any i∈N0 that

osc
Qri

um ≤ δiωm
o +c

(
1+ω

β(1−m)
2

o

)
�βo

i−1∑
j=0

δj
(
νo

32
)β(i−1−j)

2 .

With the abbreviation
ˇ :=max

{
δ,
(
νo

32
)β
2
}

this shows that

osc
Qri

um ≤ δiωm
o +c iˇi−1(1+ω

β(1−m)
2

o

)
�βo .

Since i
√
ˇ

i≤−2/(e logˇ), this leads us to

osc
Qri

um ≤ δiωm
o +c

√
ˇ

i(1+ω
β(1−m)

2
o

)
�βo ,

for a constant c depending only on n,m, β, and [ψ]0;β,β/2. Now, we define

γ1 :=min
{ logˇ

2 log η , γo
}

and note that γ1≤ log δ
log η . Therefore, from the last inequality and the fact ηi≤ �i

�o
we

conclude that

osc
Qri

um ≤ ηγ1iωm
o +c ηγ1i

(
1+ω

β(1−m)
2

o

)
�βo(6.29)

≤ c(n,m, β, [ψ]0;β,β/2, ‖u‖L∞ , R) rγ1
i .

Now, we consider r∈(0, R]. If r∈(0, ro) we choose i∈N0 such that ri+1≤r<ri.
Then, from (6.29) we have

osc
Qr

um ≤ osc
Qri

um ≤ c rγ1
i ≤ c η−γ1rγ1 .

Otherwise, if r∈[ro, �o), we estimate

osc
Qr

um ≤ osc
Q

�o,�
2−ε
o

um ≤ 2Ψ(�o)≤ c
(

r
�o

)γ1Ψ(�o)≤ c rγ1 .

Finally, by the choice of �o we have for r∈[�o, R] that

osc
Qr

um ≤ osc
Qr,r2−ε

um ≤ 2Ψ(r)≤ c rγo ≤ c rγ1 .

Therefore, we conclude that um is Hölder continuous at zo. Since zo∈ΩT was
arbitrary, this proves that um, and hence also u, is locally Hölder continuous in ΩT .
This finishes the proof of Theorem 1.1.
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