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Perturbation analysis of rational Riccati equations

Peter Chang-Yi Weng

In this paper, we consider the perturbation analyses of the con-
tinuous-time rational Riccati equations using the normwise, mixed
and componentwise analyses, which arises from the stochastic H∞
problems and the indefinite stochastic linear quadratic control
problems. We derive sufficient conditions for the existence of stabi-
lizing solutions of the perturbed rational Riccati equations. More-
over, we obtain the perturbation bounds for the relative errors with
respect to the stabilizing solutions of the rational Riccati equa-
tions under three kinds of perturbation analyses. Numerical results
are presented to illustrate sharper perturbation bounds under the
normwise, mixed and componentwise perturbation analyses.
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1. Introduction

Consider the continuous-time rational Riccati equation (CRRE):

R(X) ≡ A∗X +XA+Q+Π1(X)− [L+XB +Π12(X)] [R+Π2(X)]†

· [L+XB +Π12(X)]∗ = 0,(1)

with

(2) Π1(X) ≡
N∑
i=1

Ai∗
0 XAi

0, Π2(X) ≡
N∑
i=1

Bi∗
0 XBi

0, Π12(X) ≡
N∑
i=1

Ai∗
0 XBi

0,

where A,Q,Ai
0 ∈Kn×n, B,L,Bi

0 ∈Kn×m and R ∈ Km×m, for i = 1, 2, . . . , N .
It arises in the linear time-invariant (LTI) systems such as stochastic H∞
problem [21] and indefinite stochastic linear quadratic control problem [30].
The linear operator

Π(X) ≡
[

Π1(X) Π12(X)
Π12(X)∗ Π2(X)

]
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is said to be positive if Π(X) ≥ 0, for X ≥ 0 and Π1(X), Π2(X) ≥ 0. The
solution to the CRRE (1) X ∈ Kn×n, which is required to be maximal and
stable, is difficult to solve. Only a few methods work, including Newton’s
method (NM) [10, 11], modified Newton’s method (MNM) [19, 23] and ho-
motopy method (HM) [33]. In this paper, we choose to apply an efficient
method called the generalized Smith method (GSM) [14]. Let

LA(X) ≡ A∗X +XA, FX(X) ≡ F (X)†E(X)∗(3)

E(X) ≡ L+XB +Π12(X), F (X) ≡ R+Π2(X),

we apply NM to the CRRE (1) and get

(4) LA−BFXk
(Xk)(Xk+1) + ΠXk

(Xk+1) + TXk
= 0,

which is linear in Xk+1, with

ΠY (Z) ≡
[

I
−FY (Y )

]∗
Π(Z)

[
I

−FY (Y )

]
,(5)

TY ≡
[

I
−FY (Y )

]∗
T

[
I

−FY (Y )

]
,

T ≡
[

Q L
L∗ R

]
≥ 0.(6)

For the generalized inverse in (1) and (3), we need the null space re-
quirement:

ker[F (X)] ⊆ ker[E(X)], F (X) ≥ 0.

This came from the elimination of Lagrange multipliers from the optimal
conditions, guaranteeing the solvability of the associated linear equation
despite of the singularity of the corresponding matrix operator F (X).

The stabilizing solution plays an important role in some applications of
control theory and we introduce the stability definitions. We first represent
σ(T ) ⊂ C for the spectrum of a linear operator T and ρ(T ) = max{|λ||λ ∈
σ(T )} for the spectral radius. An n × n matrix M is said to be c-stable if
all of its eigenvalues lie in the open left-half complex plane s.t. σ(M) ⊂ C−,
and M is said to be d-stable if its spectral radius satisfies ρ(M) < 1.

CRREs (1) can be degenerated into continuous-time algebraic Riccati
equations called CAREs

A�X +XA−XGX +H = 0,
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with G = BR−1B� and H = CT−1C�, where A,X ∈ Rn×n, B ∈ Rn×m,
C ∈ Rn×p, R ∈ Rm×m and T ∈ Rp×p, which arise in linear-quadratic optimal
control problems [26, 29]. In the past 40 years, many efficient methods such
as disk function method [1], matrix sign function method [4], structure-
preserving doubling algorithm (SDA) [8, 9], NM [20], Schur method [27],
and many others were developed.

The condition number, which is a measure of the sensitivity, is impor-
tant in the numerical computation. Moreover, perturbation analysis is to
study the sensitivity of solutions to the small perturbation in the input
data, and the perturbation bounds are usually discussed. There were a num-
ber of references about perturbation analyses and perturbation bounds in
[3, 5, 13, 16, 24, 25, 31, 32, 34], but only relatively few references discussed
those of the CAREs with stochastic disturbances. Chiang et al. [6, 7] dis-
cussed the residual bound of the continuous-time stochastic algebraic Riccati
equation (SARE) with one-dimensional Wiener process of white noise in the
stochastic disturbance, including the normwise local and non-local resid-
ual bounds, derived from the appropriate solution of the SARE by NM.
Furthermore, they derived the relative error and the condition number of
SARE and provided a tight perturbation bound of the stabilizing solution to
SARE. This paper, as an important extension of the previous research [7],
derives new perturbation bounds for the relative errors with respect to the
stabilizing solutions of CRREs with multi-dimensional disturbances, respec-
tively. The CRREs are more complex than SARE, but the derivations of new
perturbation bounds under normwise, mixed and componentwise perturba-
tion analyses are simple. Moreover, we apply an efficient method called GSM
to solve the perturbed CRREs and get the unique and stabilizing solutions.

The rest of this paper is organized as follows. We discuss the solvable
results of CRREs (1) in Section 2. In Section 3, the perturbation equation
of CRREs (1) is derived. We provide some sufficient conditions to present
the existence of the solution of the perturbed equation (10) in the Supple-
mentary Material S1, then recall some lemmas of stability analysis of the
linear operator to discuss the uniqueness of the stabilizing solution shown
in the Supplementary Material S2. Then, we compute the relative errors
with respect to the unique and stabilizing solution of CRREs (1). By drop-
ping the second and high-order terms in the perturbed CRREs (10), we
derive new perturbation bounds under normwise, mixed and component-
wise perturbation analyses, originated from Gohberg and Koltracht (1993).
The algorithm about perturbation analyses of CRREs is provided and we
select one representative numerical example to illustrate the sharpness of
new perturbation bounds, corresponding to the relative errors of the sta-
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bilizing solutions of CRREs (1) in Section 4. Section 5 concludes the pa-
per. Finally, we provide some proofs of several theorems in the Supplemen-
tary Material (http://intlpress.com/site/pub/files/ supp/amsa/2020/0005/
0002/AMSA-2020-0005-0002-s001.pdf).

2. Solvable conditions

Before we discuss the perturbation analysis of CRREs, we introduce the con-
cept of c-stability and some solvability results for stochastic control systems
in continuous-time. This leads to the unique and stable solution of CRREs.

First we quote the theorem on c-stability.

Theorem 2.1. Let A∈Rn×n, and consider linear operators LA,Π : Rn×n →
Rn×n, where LA is defined by LA(X) = A∗X + XA and Π is nonnegative
defined in (5). The following are equivalent:

(a) For all Y > 0, ∃X > 0 such that LA(X) + Π = −Y ;
(b) ∃Y,X > 0 such that LA(X) + Π = −Y ;
(c) ∃Y ≥ 0 with (A, Y ) observable, ∃X > 0 such that LA +Π = −Y ;
(d) σ(LA +Π) ⊂ C−;
(e) σ(LA) ⊂ C− and ρ(L−1

A Π) < 1.

If any of these conditions is fulfilled then A is called c-stable relative
to Π.

Then we present some definitions associated with c-stability.

Definition 2.2 (c-Stabilizability). A matrix pair (A,B) (A ∈ Rn×n and
B ∈ Rn×m) is said to be c-stabilizable relative to Π if there is a matrix
F̂ ∈ Rm×n such that A−BF̂ is c-stable relative to

(7) Π̂ ≡
[

I

−F̂

]∗
Π

[
I

−F̂

]
.

Definition 2.3 (Stabilizing Solution). If X is a solution of R(X) = 0 and
if F̂ = F̂ (X) denotes the corresponding feedback matrix then X is called
stabilizing, if A−BF̂ is c-stable relative to Π̂ as defined in (7).

Definition 2.4 (c-Detectability). A pair (C,A) of matrices A ∈ Rn×n and
C ∈ Rl×n is said to be c-detectable relative to Π if there is a matrix K ∈ Rn×l

such that A−KC is c-stable relative to Π.

Next we quote some solvability results for CRREs in our notations. The
importance of these results is to establish conditions under which a semi-
definite or stabilizing solution is the unique maximal stabilizing solution we

http://intlpress.com/site/pub/files/_supp/amsa/2020/0005/0002/AMSA-2020-0005-0002-s001.pdf
http://intlpress.com/site/pub/files/_supp/amsa/2020/0005/0002/AMSA-2020-0005-0002-s001.pdf
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seek. This also makes the selection of the initial X0 easier for the NM, as
any stabilizing solution X0 will do.

Theorem 2.5 ([15, Theorem 5.2]). Assume that (A,B) is c-stabilizable rel-
ative to Π and that there exists a matrix X̂ ∈ D(R), the domain of R (in
which the null space requirement is satisfied), with ker[R+Π2(X̂)] ⊆ ker(B)
for which R(X̂) ≥ 0. Then there exists a solution X+ ∈ D(R) of R(X) = 0
such that X+ ≥ X for every solution of R(X) ≥ 0 with ker[R + Π2(X)] ⊆
ker(B). Moreover, all the eigenvalues of

(8) A+ ≡ A−B[R+Π2(X+)]
†[L+X+B +Π12(X+)]

∗

lie in the closed left half-plane.

Corollary 2.6 ([15, Corollary 5.3]). Assume that ker(R) ⊆ ker(B), (A,B)
is c-stabilizable relative to Π and T ≥ 0 (c.f. (6)). Then R(X) = 0 has a
solution X+ ≥ 0, and all the eigenvalues of the matrix A+ in (8) lie in the
closed left half-plane.

Corollary 2.7 ([15, Corollary 5.4]). Assume that (A,B) is c-stabilizable
relative to Π and that there exists a matrix X̂ ∈ D(R) with ker[R+Π2(X̂)] ⊆
ker(B) for which R(X̂) > 0. Then there exists a solution X+ ∈ D(R) of
R(X) = 0 such that X+ > X for every solution R(X) > 0 with ker[R +
Π2(X)] ⊆ ker(B). Moreover, all the eigenvalues of A+ in (8) lie in the open
left half-plane.

Lemma 2.8 ([15, Lemma 5.5]). If R(X) = 0 has a stabilizing solution Xs,
then Xs ≥ X for every solution X of R(X) ≥ 0. In particular, Xs is the
(unique) maximal solution of R(X) = 0.

Lemma 2.9 ([15, Lemma 5.6]). Assume that R > 0, T ≥ 0 and that (Q−
LR†L∗, A−BR†L∗) is c-detectable relative to

(9) Π̌ ≡
[

I
−R†L∗

]∗
Π

[
I

−R†L∗

]
.

Then every positive semidefinite solution of R(X) = 0 is stabilizing.

Corollary 2.10 ([15, Lemma 5.8]). Assume that R ≥ 0, ker(R) ⊆ ker(L),
Q > LR†L∗. If X ≥ 0 is a solution of R(X) = 0, then X is stabilizing and
positive definite.

Theorem 2.11 ([15, Theorem 5.9]). Assume that R > 0, T ≥ 0, (A,B) is c-
stabilizable relative to Π and (Q−LR†L∗, A−BR†L∗) is c-detectable relative
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to Π̌ (defined in (9)). Then R(X) = 0 has a unique positive semidefinite
solution X+. Moreover, X+ is stabilizing and maximal among all solutions
of R(X) = 0.

3. Perturbation analysis of CRREs

From (1), we represent the perturbed CRRE as

(10) R̃(X̃) ≡ Ã∗X̃ + X̃Ã+ Q̃+ Π̃1(X̃)− Ẽ(X̃)F̃ (X̃)†Ẽ∗(X̃) = 0,

with

Ẽ(X̃) = L̃+ X̃B̃ + Π̃12(X̃) and F̃ (X̃) = R̃+ Π̃2(X̃),

and express the perturbed disturbances Π̃1(X̃), Π̃2(X̃), Π̃12(X̃) as

Π̃1(X̃) ≡
N∑
i=1

Ãi∗
0 X̃Ãi

0, Π̃2(X̃) ≡
N∑
i=1

B̃i∗
0 X̃B̃i

0, Π̃12(X̃) ≡
N∑
i=1

Ãi∗
0 X̃B̃i

0,

where

Ã = A+ΔA, Q̃ = Q+ΔQ, L̃ = L+ΔL, B̃ = B +ΔB,

R̃ = R+ΔR, Ãi
0 = Ai

0 +ΔAi
0, B̃

i
0 = Bi

0 +ΔBi
0, X̃ = X +ΔX,

for i = 1, 2, . . . , N and ΔA, ΔQ, ΔL, ΔB, ΔR, ΔAi
0, ΔBi

0 are small pertur-
bation matrices. In order to compute the first-order perturbation matrices,
we seperate Ẽ(X̃) and F̃ (X̃) into

Ẽ(X̃) = Ẽ(X) + E(ΔX), Ẽ(X) = E(X) + δE,

F̃ (X̃) = F̃ (X) + F (ΔX), F̃ (X) = F (X) + δF,

with

E(ΔX) = E1(ΔX) + E2(ΔX), δE = δE1 + δE2,

F (ΔX) = F1(ΔX) + F2(ΔX), δF = δF1 + δF2,

where

E1(ΔX) = ΔXB +

N∑
i=1

Ai∗
0 ΔXBi

0, F1(ΔX) =

N∑
i=1

Bi∗
0 ΔXBi

0,
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E2(ΔX) = ΔXΔB +

N∑
i=1

(Ai∗
0 ΔXΔBi

0 +ΔAi∗
0 ΔXBi

0 +ΔAi∗
0 ΔXΔBi

0),

F2(ΔX) =

N∑
i=1

(Bi∗
0 ΔXΔBi

0 +ΔBi∗
0 ΔXBi

0 +ΔBi∗
0 ΔXΔBi

0),

δE1 = ΔL+XΔB +

N∑
i=1

(Ai∗
0 XΔBi

0 +ΔAi∗
0 XBi

0),

δE2 =

N∑
i=1

ΔAi∗
0 XΔBi

0,

δF1 = ΔR+

N∑
i=1

(Bi∗
0 XΔBi

0 +ΔBi∗
0 XBi

0), δF2 =

N∑
i=1

ΔBi∗
0 XΔBi

0.

E(ΔX) and F (ΔX) are linear functions of ΔX, δE1 and δF1 are first-

order perturbation matrices, δE2 and δF2 are second-order perturbation

matrices. Set ΦC = A − BF (X)†E(X)∗ and Ψi
C = Ai

0 − Bi
0F (X)†E(X)∗,

for i = 1, 2, . . . , N , then we can obtain Φ̃C = Ã− B̃F̃ (X)†Ẽ(X)∗ and Ψ̃i
C =

Ãi
0 − B̃i

0F̃ (X)†Ẽ(X)∗, we obtain the following equation from (1) and (10)

(11)

R̃(X̃)−R(X) = Φ̃∗
CΔX+ΔXΦ̃C+

N∑
i=1

Ψ̃i∗
CΔXΨ̃i

C−E1−E2−h2(ΔX) = 0,

using the generalization of the Sherman-Morrison-Woodbury formula

(GSMWF) [12]

(A+ UV ∗)† = A† −A†U(I + V ∗A†U)−1V ∗A†,

on

F̃ (X̃)† = (F̃ (X) + F (ΔX))† = F̃ (X)† − F̃ (X)†F (ΔX)F1F̃ (X)†,

F̃ (X)† = (F (X) + δF )† = F (X)† − F (X)†δFF2F (X)†,

F1 = (Im + F̃ (X)†F (ΔX))−1

= Im − F̃ (X)†(Im + F (ΔX)F̃ (X)†)−1F (ΔX),

F2 = (Im + F (X)†δF )−1 = Im − F (X)†(Im + δFF (X)†)−1δF,
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with

E1 = −ΔA∗X −XΔA−ΔQ−
N∑
i=1

(Ai∗
0 XΔAi

0 +ΔAi∗
0 XAi

0)

− E(X)F (X)†δF1F (X)†E(X)∗

+ E(X)F (X)†δE∗
1 + δE1F (X)†E∗(X),

E2 = −
N∑
i=1

(ΔAi∗
0 XΔAi

0)− E(X)F (X)†δF2F (X)†E(X)∗

+ E(X)F (X)†δFF (X)†F ∗
2 δFF (X)†E(X)∗ + E(X)F (X)†δE∗

2

− E(X)F (X)†δFF2F (X)†δE∗ + δE2F (X)†E(X)∗

− δEF (X)†δFF2F (X)†Ẽ(X)∗ + δEF (X)†δE∗,

h2(ΔX) = Ẽ(X)F̃ (X)†F (ΔX)F̃ (X)†F ∗
1F (ΔX)F̃ (X)†Ẽ(X)∗

− Ẽ(X)F̃ (X)†F (ΔX)F1F̃ (X)†E(ΔX)∗

− E(ΔX)F̃ (X)†F (ΔX)F1F̃ (X)†Ẽ(X)∗

+ E(ΔX)F̃ (X̃)†E(ΔX)∗.

We rewrite (11) into

(12) Φ̃∗
CΔX +ΔXΦ̃C +

N∑
i=1

Ψ̃i∗
CΔXΨ̃i

C = E1 + E2 + h2(ΔX).

From the definitions of Φ̃C and Ψ̃i
C , we obtain

Φ̃C = (A+ΔA)− (B +ΔB)(F (X)†

− F (X)†δFF2F (X)†)(E(X) + δE)∗

= ΦC +ΔΦC ,

Ψ̃i
C = (Ai

0 +ΔAi
0)− (Bi

0 +ΔBi
0)(F (X)†

− F (X)†δFF2F (X)†)(E(X) + δE)∗

= Ψi
C +ΔΨi

C ,

with

ΔΦC = ΔA−BF (X)†δE∗ +BF (X)†δFF2F (X)†E(X)∗

+ BF (X)†δFF2F (X)†δE∗ −ΔBF (X)†E(X)∗ −ΔBF (X)†δE∗

+ ΔBF (X)†δFF2F (X)†E(X)∗ +ΔBF (X)†δFF2F (X)†δE∗,
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ΔΨi
C = ΔAi

0 −Bi
0F (X)†δE∗ +Bi

0F (X)†δFF2F (X)†E(X)∗

+ Bi
0F (X)†δFF2F (X)†δE∗ −ΔBi

0F (X)†E(X)∗ −ΔBi
0F (X)†δE∗

+ ΔBi
0F (X)†δFF2F (X)†E(X)∗ +ΔBi

0F (X)†δFF2F (X)†δE∗.

We express the left-hand side of (12) using ΔΦC and ΔΨi
C as follows

Φ̃∗
CΔX +ΔXΦ̃C +

N∑
i=1

Ψ̃i∗
CΔXΨ̃i

C = Φ∗
CΔX +ΔXΦC

+

N∑
i=1

Ψi∗
CΔXΨi

C − h1(ΔX),(13)

with

h1(ΔX) = −(ΔΦ∗
CΔX +ΔXΔΦC +

N∑
i=1

(Ψi∗
CΔXΔΨi

C

+ ΔΨi∗
CΔXΨi

C +ΔΨi∗
CΔXΔΨi

C)).

From (12) and (13), we get

Φ∗
CΔX +ΔXΦC +

N∑
i=1

Ψi∗
CΔXΨi

C = E1 + E2 + h1(ΔX) + h2(ΔX).

Lemma 3.1. Let X be the stabilizing solution of the CRRE (1) and X̃ be
a symmetric solution of the perturbed CRRE (10), then ΔX satisfies the
equation

(14) Φ∗
CΔX +ΔXΦC +

N∑
i=1

Ψi∗
CΔXΨi

C = E1 + E2 + h1(ΔX) + h2(ΔX),

where

E1 = −ΔA∗X −XΔA−ΔQ−
N∑
i=1

(Ai∗
0 XΔAi

0 +ΔAi∗
0 XAi

0)

− E(X)F (X)†δF1F (X)†E(X)∗ + E(X)F (X)†δE∗
1

+ δE1F (X)†E∗(X);

E2 = −
N∑
i=1

(ΔAi∗
0 XΔAi

0)− E(X)F (X)†δF2F (X)†E(X)∗
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+ E(X)F (X)†δFF (X)†F ∗
2 δFF (X)†E(X)∗ + E(X)F (X)†δE∗

2

− E(X)F (X)†δFF2F (X)†δE∗ + δE2F (X)†E(X)∗

− δEF (X)†δFF2F (X)†Ẽ(X)∗ + δEF (X)†δE∗;

h1(ΔX) = −(ΔΦ∗
CΔX +ΔXΔΦC +

N∑
i=1

(Ψi∗
CΔXΔΨi

C

+ ΔΨi∗
CΔXΨi

C +ΔΨi∗
CΔXΔΨi

C));

h2(ΔX) = Ẽ(X)F̃ (X)†F (ΔX)F̃ (X)†F ∗
1F (ΔX)F̃ (X)†Ẽ(X)∗

− Ẽ(X)F̃ (X)†F (ΔX)F1F̃ (X)†E(ΔX)∗

− E(ΔX)F̃ (X)†F (ΔX)F1F̃ (X)†Ẽ(X)∗

+ E(ΔX)F̃ (X̃)†E(ΔX)∗.

E1 and E2 are first-order and high-order perturbation matrices respec-
tively, and they do not depend on ΔX. h1(ΔX) and h2(ΔX) are the linear
and high-order degree functions of ΔX, respectively.

3.1. Perturbation equation

We focus on the condition of the existence of a fixed point, that is, the
perturbed CRRE (10) has some solution. From the definition of the linear
operator Lc, we represent (14) as

Lc(ΔX) = E1 + E2 + h1(ΔX) + h2(ΔX).

We provide a lemma to show the property of invertibility of the linear op-
erator Lc.

Lemma 3.2 (Damm and Hinrichsen [11]). Let L : Hn → Hn be resolvent
positive and Π : Hn → Hn be positive. Then the following are equivalent:

(a) L+Π is stable, i.e. σ(L+Π) ⊂ C−.
(b) −(L+Π) is inverse positive.
(c) ∃X > 0: (L+Π)(X) < 0.
(d) σ(L) ⊂ C− and ρ(L−1Π) < 1.
(e) σ(L) ⊂ C− and det(L+ τΠ) 	= 0 for τ ∈ [0, 1].

According to the definition of ΠX(X) in (6), we can obtain that ΠX =∑N
i=1Ψ

i∗
CXΨi

C is positive. Let X be the stabilizing solution to the CRREs
(1), LΦC

is resolvent positive since ΦC is c-stable and LA is a Lyapunov
operator. By applying the Lemma 3.2, Lc = LΦC

+ΠX is c-stable i.e. σ(Lc) ⊂
C−. In addition, Lc is invertible s.t. L−1

c exists. Then, we define a function
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f(ΔX) by

(15) f(ΔX) = L−1
c E1 + L−1

c E2 + L−1
c h1(ΔX) + L−1

c h2(ΔX).

f(ΔX) can be regarded as a continuous mapping f : Sn×n → Sn×n, and
any fixed point of the mapping f is a solution to the perturbed equation
(14). We provide the existence and uniqueness of the fixed point in (15),
that is, a unique and stabilizing solution to the perturbed CRREs (14). In
conclusion, there exists a unique and stabilizing solution of (10) since X and
ΔX are the unique stabilizing solutions of (1) and (14), respectively. Here,
we sketch the outlines of proofs about the existence and uniqueness of the
stabilizing solution to the perturbed CRREs (14):

[1] We apply the Brouwer fixed point theorem to show that it exists some
fixed point to the mapping f in (15), that is, the existence of some
solution to the perturbed equation (14) is existed.

[2] We apply the singular property of the linear operator to get the pertur-
bation bound of perturbation matrices, and furthermore to show some
conditions to get the stable perturbed linear operator. Therefore, we
can get the uniqueness of the stabilizing solution to the perturbed
equation (14).

For the details of proofs, please see the Supplementary Material S1 and S2.

3.2. Normwise condition number

We first discuss the perturbation analysis of the CRRE (1) and derive its
normwise condition numbers. From (14), we drop the second and high-order
terms and it yields

Φ∗
CΔX +ΔXΦC +

N∑
i=1

Ψi∗
CΔXΨi

C

= −ΔA∗X −XΔA−ΔQ−
N∑
i=1

(Ai∗
0 XΔAi

0

+ΔAi∗
0 XAi

0)− E(X)F (X)†ΔRF (X)†E(X)∗

− E(X)F (X)†
N∑
i=1

(Bi∗
0 XΔBi

0

+ΔBi∗
0 XBi

0)F (X)†E(X)∗

+ E(X)F (X)†ΔL∗ + E(X)F (X)†ΔB∗X
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+ E(X)F (X)†
N∑
i=1

(ΔBi∗
0 XAi

0 +Bi∗
0 XΔAi

0)

+ ΔLF (X)†E(X)∗ +XΔBF (X)†E(X)∗

+

N∑
i=1

(Ai∗
0 XΔBi

0 +ΔAi∗
0 XBi

0)

· F (X)†E(X)∗.(16)

We recall some notations about vectorization. For a matrix A = [aij ] ∈
Rn×n, we define vec(A) = [a�1 , a

�
2 , . . . , a

�
n ]

� ∈Rn2

, where A = [a1, a2, . . . , an]
with ai ∈ Rn, i = 1, 2, . . . , n. Some useful properties of Kronecker products
found in [18] are listed below:

‖vec(A)‖2 = ‖A‖F ,
‖vec(A)‖∞ = ‖A‖max,

vec(AXB) = (B� ⊗A)vec(X),(17)

where ‖A‖max = maxi,j |aij |, for i, j = 1, 2, . . . , n and B, X ∈ Rn×n. By
applying the operator “vec” to both sides of the equation (16), we reset
the index i into j such as Aj

0 and Bj
0 in order to differentiate Π12(X) and

Π2(X) inside of E(X) and F (X) and set E(X)F (X)† ≡ ef , A
j∗
0 X ≡ ajx and

E(X)F (X)†Bj∗
0 X ≡ ejb, then obtain

(18) Zvec(ΔX) = Ps,

with

Z = In ⊗ Φ∗
C +Φ∗

C ⊗ In +

N∑
i=1

Ψi∗
C ⊗Ψi∗

C ,

P = [P1, P2], P2 = [P 1
2 , P

2
2 , . . . , P

j
2 ],

s = [s1, s2]
�, s2 = [s12, s

2
2, . . . , s

j
2],

where

P1 = [−(X ⊗ In),−(In ⊗X),−(In ⊗ In),−(ef ⊗ ef ), (In ⊗ ef ),

(X ⊗ ef ), (ef ⊗ In), (ef ⊗X)],

P j
2 = [−(In ⊗ ajx),−(ajx ⊗ In),−(ef ⊗ ejb),−(ejb ⊗ ef ), (a

j
x ⊗ ef ),

(In ⊗ ejb), (ef ⊗ ajx), (e
j
b ⊗ In)],
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s1 = [vec(ΔA∗)�, vec(ΔA)�, vec(ΔQ)�, vec(ΔR)�, vec(ΔL∗)�,

vec(ΔB∗)�, vec(ΔL)�, vec(ΔB)�],

sj2 = [vec(ΔAj
0)

�, vec(ΔAj∗
0 )�, vec(ΔBj

0)
�, vec(ΔBj∗

0 )�, vec(ΔBj∗
0 )�,

vec(ΔAj
0)

�, vec(ΔBj
0)

�, vec(ΔAj∗
0 )�],

for j = 1, 2, . . . , N . Before we solve the equation (18) and derive the explicit
expression and its upper bound of the normwise condition number of CRRE
(1), we state a lemma about the nonsingular property of Z.

Lemma 3.3 (Horn and Johnson [22]). Given A, B ∈ Rn×n and let α1, α2,
. . ., αn and β1, β2, . . ., βn be eigenvalues of A and B, respectively. Then the
eigenvalues of In⊗A�+A�⊗In+B�⊗B� and A�⊗A�+B�⊗B�−In⊗In
can be represented as 2αi + β2

i and α2
i + β2

i − 1, respectively.

Let X be the maximal and stabilizing solution of (1), then σ(Lc) ⊂ C−.
Furthermore,

Lc(In) = Φ∗
C +ΦC +

N∑
i=1

Ψi∗
CΨC and σ(Lc(In)) ⊂ C−.

From the Lemma 3.3,

σ(Z) ⊂ C− and det(Z) 	= 0.

Then, we can solve this equation (18)

(19) vec(ΔX) = Z−1Ps.

Define a mapping

ϕ : (A,B,Q,L,R,Aj
0, B

j
0) �→ vec(X),

where X is the maximal and stabilizing solution of CRRE (1). The normwise
condition number of CRRE (1) is defined as follows:

(20) n(ϕ, u) = lim
ε→0

sup
E

‖vec(ΔX)‖
δ(u+Δu, u)‖X‖F

,

where

δ(u+Δu, u) = max
i=1,2,...,p

ui �=,0

{
|Δui|
|ui|

}
,
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E = {ΔE|‖ΔE‖F ≤ ε‖E‖F , E : A,B,Q,L,R,Aj
0, B

j
0, ε > 0},

u ≡ [ui] ≡ (u1, u2)
�, u2 = [u12, u

2
2, . . . , u

j
2], for j = 1, 2, . . . , N,

with

u1 = (vec(A∗)�, vec(A)�, vec(Q)�, vec(R)�, vec(L∗)�, vec(B∗)�,

vec(L)�, vec(B)�);

uj2 = (vec(Aj
0)

�, vec(Aj∗
0 )�, vec(Bj

0)
�, vec(Bj∗

0 )�, vec(Bj∗
0 )�, vec(Aj

0)
�,

vec(Bj
0)

�, vec(Aj∗
0 )�).

Theorem 3.4. The explicit expression and its upper bound of the normwise

condition number n(ϕ, u) are

n(ϕ, u) = ‖t‖/‖X‖F ,
nu(ϕ) = ‖Z−1‖w1/‖X‖F ,(21)

where

t = |Z−1(X ⊗ In)|vec(|A∗|) + |Z−1(In ⊗X)|vec(|A|)
+ |Z−1(In ⊗ In)|vec(|Q|) + |Z−1(ef ⊗ ef )|vec(|R|)
+ |Z−1(In ⊗ ef )|vec(|L∗|) + |Z−1(X ⊗ ef )|vec(|B∗|)
+ |Z−1(ef ⊗ In)|vec(|L|) + |Z−1(ef ⊗X)|vec(|B|)

+

N∑
j=1

(|Z−1(In ⊗ ajx)|vec(|A
j
0|) + |Z−1(ajx ⊗ In)|vec(|Aj∗

0 |)

+ |Z−1(ef ⊗ ejb)|vec(|B
j
0|) + |Z−1(ejb ⊗ ef )|vec(|Bj∗

0 |)
+ |Z−1(ajx ⊗ ef )|vec(|Bj∗

0 |) + |Z−1(In ⊗ ejb)|vec(|A
j
0|)

+ |Z−1(ef ⊗ ajx)|vec(|B
j
0|) + |Z−1(ejb ⊗ In)|vec(|Aj∗

0 |));
w1 = 2‖A‖F ‖X‖F + ‖Q‖F + ‖efa‖2F ‖R‖F + 2‖efa‖F ‖L‖F

+ 2‖efa‖F ‖B‖F ‖X‖F +

N∑
j=1

(2‖ajxa‖F ‖A
j
0‖F + 2‖efa‖F ‖Bj

0‖F ‖e
j
ba‖F

+ 2‖efa‖F ‖Bj
0‖F ‖ajxa‖F + 2‖ejba‖F ‖A

j
0‖F ).

Proof. From the formula of the normwise condition number of CRRE (1),

we compute Δu and vec(ΔX) via (19). Adding some small perturbations
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to the vector u and we get the equality s = Δu. From the property of the

absolute value, we have

|ef | ≤ |E(X)||F (X)†| ≡ efa,

|ajx| ≤ |Aj∗
0 ||X| ≡ ajxa,

|ejb| ≤ |E(X)||F (X)†||Bj∗
0 ||X| ≡ ejba.

Hence, we derive the explicit expression and its perturbation bound of

n(ϕ, u) using the formula (20)

n(ϕ, u) =
‖|Z−1P ||u|‖

‖X‖F
;

= ‖|Z−1(X ⊗ In)|vec(|A∗|) + |Z−1(In ⊗X)|vec(|A|)
+ |Z−1(In ⊗ In)|vec(|Q|) + |Z−1(ef ⊗ ef )|vec(|R|)
+ |Z−1(In ⊗ ef )|vec(|L∗|) + |Z−1(X ⊗ ef )|vec(|B∗|)
+ |Z−1(ef ⊗ In)|vec(|L|) + |Z−1(ef ⊗X)|vec(|B|)

+

N∑
j=1

(|Z−1(In ⊗ ajx)|vec(|A
j
0|) + |Z−1(ajx ⊗ In)|vec(|Aj∗

0 |)

+ |Z−1(ef ⊗ ejb)|vec(|B
j
0|) + |Z−1(ejb ⊗ ef )|vec(|Bj∗

0 |)
+ |Z−1(ajx ⊗ ef )|vec(|Bj∗

0 |) + |Z−1(In ⊗ ejb)|vec(|A
j
0|)

+ |Z−1(ef ⊗ ajx)|vec(|B
j
0|) + |Z−1(ejb ⊗ In)|vec(|Aj∗

0 |))‖/‖X‖F ;
≡ ‖t‖/‖X‖F ;
≤ ‖Z−1‖‖|A∗||X|+ |X||A|+ |Q|+ |ef ||R||e∗f |+ |ef ||L∗|

+ |ef ||B∗||X|+ |L||e∗f |+ |X||B||e∗f |+
N∑
j=1

(|ajx||A
j
0|+ |Aj∗

0 ||aj∗x |

+ |ejb||B
j
0||e∗f |+ |ef ||Bj∗

0 ||ej∗b |+ |ef ||Bj∗
0 ||aj∗x |+ |ejb||A

j
0|

+ |ajx||B
j
0||e∗f |+ |Aj∗

0 ||ej∗b |)‖F /‖X‖F ;
≤ ‖Z−1‖‖|A∗||X|+ |X||A|+ |Q|+ efa|R|e∗fa + efa|L∗|

+ efa|B∗||X|+ |L|e∗fa + |X||B|e∗fa +
N∑
j=1

(ajxa|A
j
0|+ |Aj∗

0 |aj∗xa

+ ejba|B
j
0|e∗fa + efa|Bj∗

0 |ej∗ba + efa|Bj∗
0 |aj∗xa + ejba|A

j
0|+ ajxa|B

j
0|e∗fa

+ |Aj∗
0 |ej∗ba)‖F /‖X‖F ;
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≤ ‖Z−1‖(2‖A‖F ‖X‖F + ‖Q‖F + ‖efa‖2F ‖R‖F + 2‖efa‖F ‖L‖F

+ 2‖efa‖F ‖B‖F ‖X‖F +

N∑
j=1

(2‖ajxa‖F ‖A
j
0‖F

+ 2‖efa‖F ‖Bj
0‖F ‖e

j
ba‖F + 2‖efa‖F ‖Bj

0‖F ‖ajxa‖F
+ 2‖ejba‖F ‖A

j
0‖F ))/‖X‖F ;

≡ ‖Z−1‖w1/‖X‖F .

3.3. Mixed and componentwise condition numbers

By considering the matrix structure, we introduce a lemma about mixed

and componentwise perturbation anlayses to compute condition numbers of

CRREs (1) efficiently.

Lemma 3.5 (Gohberg and Koltracht [17]). Let F : Rp → Rq be a con-

tinuous map defined on an open set Dom(F ) ⊂ Rp. For a given a 	= 0 ∈
Dom(F ), such that F (a) 	= 0, where Dom(F ) denotes the domain of the

function F . Let B0(a, ε) = {x : |xi − ai| ≤ ε|ai|, i = 1, 2, . . . , p}, where

a = (a1, a2, . . . , ap)
�, x = (x1, x2, . . . , xp)

� ∈ Rp and ε > 0.

(a) The mixed condition number of the map F at the point a is defined

m(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x �=a

‖F (x)− F (a)‖∞
‖F (a)‖∞

1

δ(x, a)
,

where δ(x, a) = max i=1,2,...,p

ai �=0

{
|xi−ai|
|ai|

}
.

(b) Suppose F (a) = (f1(a), f2(a), . . . , fq(a)) such that fj(a) 	= 0, for

j = 1, 2, . . . , q. The componentwise condition number of F at the point

a is

c(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x �=a

δ(F (x), F (a))

δ(x, a)
,

where δ(F (x), F (a)) = maxj=1,2,...,q

{
|fj(x)−fj(a)|

|fj(a)|

}
.
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Theorem 3.6. Based on Lemma 3.5 and the definitions of ϕ and u, we
express the mixed and componentwise condition numbers of CRRE (1) as

m(ϕ, u) = ‖t‖∞/‖X‖max,

c(ϕ, u) = ‖t/vec(X)‖∞.

The upper bounds of m(ϕ, u) and c(ϕ, u) are respectively

mu(ϕ) = ‖Z−1‖∞w2/‖X‖max,(22)

cu(ϕ) = ‖Diag−1(vec(|X|))Z−1‖∞w2,(23)

where

w2 = 2‖A‖max‖X‖max + ‖Q‖max + ‖efa‖2max‖R‖max + 2‖efa‖max‖L‖max

+ 2‖efa‖max‖B‖max‖X‖max +

N∑
j=1

(2‖ajxa‖max‖Aj
0‖max

+ 2‖efa‖max‖Bj
0‖max‖ejba‖max + 2‖efa‖max‖Bj

0‖max‖ajxa‖max

+ 2‖ejba‖max‖Aj
0‖max).

If x = (x1, x2, . . . , xp)
� ∈ Rp, then Diag(x) denotes the p×p diagonal matrix

with x1, x2, . . . , xp on its diagonal.

Proof. Let x ≡ u+Δu, a ≡ u and F ≡ ϕ. Based on (a) of Lemma 3.5, the
definition of the mapping ϕ and the properties of Kronecker products (17),
we can get

‖F (x)− F (a)‖∞
‖F (a)‖∞

=
‖ϕ(u+Δu)− ϕ(u)‖∞

‖ϕ(u)‖∞

=
‖vec(X +ΔX)− vec(X)‖∞

‖vec(X)‖∞

=
‖vec(ΔX)‖∞
‖vec(X)‖∞

=
‖vec(ΔX)‖∞

‖X‖max
.

The formula of mixed condition number of CRRE (1) can be rewritten

(24) m(ϕ, u) = lim
ε→0

sup
F

‖vec(ΔX)‖∞
δ(u+Δu, u)‖X‖max

,

where F = {ΔF ||ΔF | ≤ ε|F |, F : A,B,Q,L,R,Aj
0, B

j
0, ε > 0}. Similarly,

we can also rewrite the formula of componentwise condition number of
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CRRE (1)

(25) c(ϕ, u) = lim
ε→0

sup
F

1

δ(u+Δu, u)

∥∥∥∥vec(ΔX)

vec(X)

∥∥∥∥
∞
.

From (19) and (24), we can get the explicit expression and its perturbation
bound of the mixed condition number of CRRE (1)

m(ϕ, u) =
‖|Z−1P ||u|‖∞

‖X‖max

= ‖t‖∞/‖X‖max

≤ ‖Z−1‖∞w2/‖X‖max.

Analogously, the explicit expression and its upper bound of the componen-
twise condition number are derived using (25)

c(ϕ, u) =

∥∥∥∥ |Z−1P ||u|
vec(X)

∥∥∥∥
∞

= ‖t/vec(X)‖∞
≤ ‖Diag−1(vec(|X|))Z−1‖∞w2.

4. Numerical experiments

In this section, we have shown relative errors with respect to the solutions of
CRREs (1) under normwise, mixed and componentwise perturbation analy-

ses such as ‖ΔX‖F

‖X‖F
, ‖ΔX‖max

‖X‖max
and

∥∥∥ΔX
X

∥∥∥
max

and their sharper upper bounds

in (21), (22), (23). The numerical algorithm is described in Algorithm 1
for condition numbers of rational Riccati equations. We have chosen one
representative example:

(1) The CRREs in Example 4.1 are quoted from [2].

All the numerical experiments were conducted using MATLAB [28] Version
R2018a on a MacBook Pro with a 2.30 GHz Intel Core 8 Duo processor and
64 GB RAM, with machine accuracy eps = 2.22× 10−16.

For the numerical results, we express rCRRE
n , rCRRE

m , rCRRE
c for relative

errors; nCRRE
u , mCRRE

u , cCRRE
u for their upper bounds in the normwise,

mixed and componentwise perturbation analyses.
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Algorithm 1 (Condition numbers of rational Riccati equations)

Input: A,Q,Ai
0 ∈ K

n×n, B,L,Bi
0 ∈ K

n×m, and R ∈ K
m×m, for i = 1, 2, . . . , N ;

Output: Normwise, mixed and componentwise condition numbers rCRRE
n , rCRRE

m

and rCRRE
c , upper bounds nCRRE

u , mCRRE
u and cCRRE

u ;
Let ΔA, ΔQ, ΔAi

0 ∈ K
n×n, ΔB, ΔL, ΔBi

0 ∈ K
n×m, and ΔR ∈ K

m×m

be selected from normal distribution and the weighted coefficients be

10−k such as ΔE = 10−k × randn(n,m), for E ∈ K
n×m;

Set Ã = A+ΔA, Q̃ = Q+ΔQ, B̃ = B +ΔB, L̃ = L+ΔL,

R̃ = R+ΔR, Ãi
0 = Ai

0 +ΔAi
0 and B̃i

0 = Bi
0 +ΔBi

0;
Solve the CRREs (1) and its perturbation equation (10)

by the GSM and get the solutions X and X̃, respectively;
Compute the relative errors with respect to the solution X under the
normwise, mixed and componentwise perturbation analyses,

rCRRE
n = ‖X̃−X‖F

‖X‖F
, rCRRE

m = ‖X̃−X‖max

‖X‖max
, and rCRRE

c =
∥
∥
∥

vec(X̃−X)
vec(X)

∥
∥
∥
∞
,

where A
B

=
(aij)

(bij)
, with A = (aij) and B = (bij);

Estimate the upper bounds nCRRE
u , mCRRE

u and cCRRE
u in (21), (22)

and (23);
End Do

Example 1 (CRREs [2])

This example 1 is an application of a mathematical model about an L-1011
aircraft, quoted from [2, Example 3] with the addition of stochastic distur-
bances in Π. Consider the CRREs (1) with n = 4, m = 2 and N = 1,

A =

⎡
⎢⎢⎣

0 1 0 0
0 −1.89 0.39 −5.53
0 −0.034 −2.98 2.43

0.034 −0.0011 −0.99 −0.21

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0 0
0.36 −1.6

−0.95 −0.032
0.03 0

⎤
⎥⎥⎦,

Q =

⎡
⎢⎢⎣

2.313 2.727 0.688 0.023
2.727 4.271 1.148 0.323
0.688 1.148 0.313 0.102
0.023 0.323 0.102 0.083

⎤
⎥⎥⎦, L =

⎡
⎢⎢⎣

0 0
0 0
0 0
0 0

⎤
⎥⎥⎦, R =

[
1 0
0 1

]
,

A0 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦, B0 =

⎡
⎢⎢⎣

1 0
0 0
0 0
0 0

⎤
⎥⎥⎦,

X0 =

⎡
⎢⎢⎣

1.3239 0.9015 0.5466 −1.7672
0.9015 0.9607 0.4334 −1.1989
0.5466 0.4334 0.4605 −1.3633

−1.7672 −1.1989 −1.3633 4.4612

⎤
⎥⎥⎦.
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Table 1: Example 4.1 (Condition Numbers of CRREs; n = 4, m = 2,
N = 1)

k rCRRE
n εnn

CRRE
u rCRRE

m εmmCRRE
u rCRRE

c εmcCRRE
u

5 4.5270e−05 2.7967e−03 3.7340e−05 5.4646e−04 3.7340e−05 1.6244e−03

6 4.5986e−06 4.2636e−04 3.8116e−06 1.6425e−04 3.8116e−06 4.8825e−04

7 5.3009e−07 2.4990e−05 5.3509e−07 1.3955e−05 5.3509e−07 4.1483e−05

8 1.1444e−07 2.6815e−06 1.1903e−07 2.0314e−06 1.1903e−07 6.0385e−06

9 1.5689e−09 2.4698e−07 1.9287e−09 2.9215e−07 1.9287e−09 8.6845e−07

10 1.1968e−09 2.4907e−08 1.3123e−09 2.0833e−08 1.3123e−09 6.1927e−08

X0 is the initial solution of (4) to the CRREs solved by NM. Let the per-
turbed coefficient matrices ΔA, ΔB, ΔR, ΔL, ΔQ, ΔA0 and ΔB0 be gen-
erated using the MATLAB command “randn” associated with the weighted
coefficient 10−k, then we add the perturbation matrices to the original ones
and get (Ã, B̃, R̃, L̃, Q̃, Ã0, B̃0) = (A+ΔA,B +ΔB,R +ΔR,L+ΔL,Q+
ΔQ,A0 +ΔA0, B0 +ΔB0), which are coefficient matrices of the perturbed
CRREs (10). We apply the efficient method called GSM [14] associated
with NM to solve the CRREs (1) and perturbed CRREs (10) and get the
unique stabilizing and maximal solutions X and X̃ respectively, then com-
pute the relative errors under three kinds of perturbation analyses such
as rCRRE

n , rCRRE
m and rCRRE

c with different weighted coefficients 10−k, for
k = 5, . . . , 10.

From Theorems 3.4 and 3.6, we can obtain their upper bounds nCRRE
u ,

mCRRE
u and cCRRE

u . Set

εn : = max

{
‖ΔA‖F
‖A‖F

,
‖ΔB‖F
‖B‖F

,
‖ΔR‖F
‖R‖F

,
‖ΔL‖F
‖L‖F

,
‖ΔQ‖F
‖Q‖F

,
‖ΔA0‖F
‖A0‖F

,

‖ΔB0‖F
‖B0‖F

}
,

εm : = min{ε : |ΔA| ≤ ε|A|, |ΔB| ≤ ε|B|, |ΔQ| ≤ ε|Q|, |ΔL| ≤ ε|L|,
|ΔR| ≤ ε|R|, |ΔA0| ≤ ε|A0|, |ΔB0| ≤ ε|B0|, ε > 0},

it can be found from Table 1 that the perturbation bounds are close to
relative errors under three kinds of perturbation analyses such as rCRRE

n �
εnn

CRRE
u , rCRRE

m � εmmCRRE
u and rCRRE

c � εmcCRRE
u , that is, (21), (22)

and (23) give sharper upper bounds of the relative errors with respect to
the unique stabilizing solution X.
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Example 2 (CRREs [27])

The example 2 involves circulant matrices, modified from [27, Example 5]
with the addition of stochastic disturbances A0 and B0. Consider the CRREs
(1) with n = m = 100 and N = 1,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 · · · 0 1

1
. . .

. . . 0

0
. . .

. . .
. . .

...
...

. . .
...

... 0
0 1
1 0 · · · 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.595 −2 0 · · · 0 −2

−2 4.99
. . . 0

0
. . .

. . .
. . .

...
...

. . .
...

... 0
0 −2
−2 0 · · · 0 −2 4.99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

L = 0100, BR−1B� = I100, X0 = I100,

A0 = 0.1 ∗ I100, B0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0
0 0 · · · · · · 0
...

...
...

...
...

...
0 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We generate one random sample (ΔA, ΔB, ΔR, ΔL, ΔQ, ΔA0, ΔB0)
and obtain coefficient matrices of the perturbed CRREs (10), then the rel-
ative errors under the normwise, mixed and componentwise perturbation
analysis are computed according to different weighted coefficients 10−k, for
k = 9, 10, 11, 12, 13, 14, respectively. Moreover, upper bounds under three
kinds of perturbation analysis are following derived.

It can be seen from Table 2 that the values of the relative errors are
closely bounded by our perturbation bounds of (21), (22) and (23). In other
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Table 2: Example 4.2 (Condition Numbers of CRREs; n = 100, m = 100,
N = 1)

k rCRRE
n εnn

CRRE
u rCRRE

m εmmCRRE
u rCRRE

c εmcCRRE
u

9 5.6622e−09 1.8864e−05 2.0797e−09 4.7837e−09 2.0797e−09 4.7837e−09

10 5.6475e−10 1.8865e−06 1.6699e−10 2.1944e−10 1.6699e−10 2.1944e−10

11 5.5968e−11 1.9095e−07 2.5674e−11 4.8917e−11 2.5674e−11 4.8917e−11

12 5.6183e−12 1.8865e−08 2.0756e−12 4.8413e−12 2.0756e−12 4.8413e−12

13 5.7175e−13 1.8679e−09 2.4425e−13 4.8040e−13 2.4425e−13 4.8040e−13

14 5.6072e−14 1.8882e−10 2.2871e−14 4.4806e−14 2.2871e−14 4.4806e−14

words, (21), (22) and (23) does provide a sharp upper bound of the relative

errors of the stabilizing solution X. Table 2 shows that our estimates are

tight.

5. Conclusions

In this paper, we present condition numbers and upper bounds for the ratio-

nal Riccati equations (1) under small perturbation in the coefficient matri-

ces. Furthermore, some sufficient conditions are presented for the existence of

the stabilizing solution to the CRRE (1) and perturbed CRRE (10), respec-

tively. We highlight and compare the practical performance of the derived

condition numbers and perturbation bounds under the normwise, mixed and

componentwise perturbation analyses through two numerical examples. Nu-

merical results show that we provide tight and sharp perturbation bounds

of the stabilizing solution to CRRE, that is, our perturbation bound is very

sensitive to the condition numbers of the stabilizing solution in small- and

medium-sized problems about applications of a mathematical model [2] and

a circulant matrix [27], respectively. For the large-scale problem, we can also

get the condition estimates and upper bounds by modifying our algorithm

and only need to consider the numerically low-rank and sparsity structures

in solving CRREs. This will be our future work.
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