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Higher anomalies, higher symmetries, and
cobordisms II: Lorentz symmetry extension and
enriched bosonic/fermionic quantum gauge theory

Zheyan Wan, Juven Wang, and Yunqin Zheng

We systematically study Lorentz symmetry extensions in quan-
tum field theories (QFTs) and their ’t Hooft anomalies via cobor-
dism. The total symmetry G′ can be expressed in terms of the
extension of Lorentz symmetry GLorentz by an internal global
symmetry G as 1 → G → G′ → GLorentz → 1. By enumer-
ating all possible GLorentz and symmetry extensions, other than
the familiar SO/Spin/O/Pin± groups, we introduce a new EPin
group (in contrast to DPin), and provide natural physical in-
terpretations to exotic groups E(d), EPin(d), (SU(2)×E(d))/Z2,
(SU(2)×EPin(d))/Z±

2 , etc. By Adams spectral sequence, we sys-
tematically classify all possible dd Symmetry Protected Topolog-
ical states (SPTs as invertible TQFTs) and (d − 1)d ’t Hooft
anomalies of QFTs by co/bordism groups and invariants in d ≤ 5.
We further gauge the internal G, and study Lorentz symmetry-
enriched Yang-Mills theory with discrete theta terms given by
gauged SPTs. We not only enlist familiar bosonic Yang-Mills but
also discover new fermionic Yang-Mills theories (when GLorentz

contains a graded fermion parity Z
F
2 ), applicable to bosonic (e.g.,

Quantum Spin Liquids) or fermionic (e.g., electrons) condensed
matter systems. For a pure gauge theory, there is a one form sym-
metry I[1] associated with the center of the gauge group G. We fur-
ther study the anomalies of the emergent symmetry I[1] ×GLorentz

by higher cobordism invariants as well as QFT analysis. We fo-
cus on the simply connected G = SU(2) and briefly comment on
non-simply connected G = SO(3), U(1), other simple Lie groups,
and Standard Model gauge groups (SU(3) × SU(2) × U(1))/Zq.
We comment on SPTs protected by Lorentz symmetry, and the
symmetry-extended trivialization for their boundary states.
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1. Introduction and summary

Global symmetries and ’t Hooft anomalies are key ingredients characterizing
topological phases of quantum matters. For a generic quantum field theory
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(QFT) denoted Qd in d spacetime dimensions with global symmetry G, if
one modifies Qd to Q′

d by G-invariant deformations, it is commonly believed
[1] that the ’t Hooft anomaly of Qd and Q′

d are the same. In particular, the
’t Hooft anomaly is invariant under renormalization group flow. Recently
it has been conjectured [2] that given two quantum field theories Qd and
Q′

d in the same spacetime dimension, with the same global symmetries and
’t Hooft anomalies, one can always add degrees of freedom at short dis-
tances to interpolate between Qd and Q′

d. Hence the global symmetries and
the ’t Hooft anomalies classifies the deformation classes of quantum field
theories.

It is widely believed that the ’t Hooft anomaly of Qd can be cancelled
by the anomaly inflow from an invertible topological quantum field theory
(invertible TQFT or iTQFT) in (d+ 1) dimensions.1 Physically, the invert-
ible TQFT is characterized by a G-Symmetry Protected Topological state
(G-SPTs) [3]. Mathematically, the invertible TQFT is characterized by a
cobordism invariant [4, 5, 6, 7, 8, 9, 10, 11]. Following a previous work [10],
the purpose of this work is to derive the cobordism invariants for various G
relevant for QFTs in various dimensions, hence potentially classifying the
deformation classes of QFTs for given symmetries.

The examples we study in this work are the pure gauge theories whose
gauge groups are small rank Lie groups G. In particular, we focus on G =
SU(2). Following [8, 12], there are different d-dimensional gauge theories
for the same gauge group G, which are obtained by gauging different d-
dimensional G-SPTs. Thus in this work, we systematically construct the
pure gauge theories in two steps:

1. We first classify the d-dimensional G-SPTs, by computing the cobor-
dism invariants in the same dimension. Here G is a unitary global
symmetry, in particular we focus on G = SU(2). One can perform the
similar exercise for other symmetry groups in the same spirit.

1We clarify several related notions. A QFT in d dimensions with global symmetry
G can be anomalous. The anomaly can be captured by (d+1) dimensional invertible
TQFT. To emphasize that the (d + 1) dimensional invertible TQFT captures the
anomaly of d dimensional QFT, we also denote the (d + 1) dimensional invertible
TQFT as the (d+1) dimensional anomaly inflow action or partition function. The
(d+1) dimensional anomaly inflow action should be distinguished from the (d+2)
dimensional anomaly polynomial (when G is continuous): The (d + 2) anomaly
polynomial is conventionally for the perturbative local anomaly classified by Z

classes (known as free classes in mathematics). However, we may abused the notion
“anomaly polynomial” as the (d+1)d cobordism invariant for the non-perturbative
global anomaly by Zn classes (known as torsion classes in mathematics).
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2. We further gauge the global symmetry G to obtain a pure gauge the-
ory with dynamical gauge group G. After gauging, there are emergent
global symmetries. Because the gauge group that we consider is simply
connected, there is no magnetic emergent symmetry. However, since
this paper focuses only on the pure gauge theories obtained by gaug-
ing SPTs, there is a one-form symmetry I[1] associated with the center
of the dynamical gauge group G. We further compute the ’t Hooft
anomalies involving the emergent symmetry I[1], and match them with
the cobordism invariant of the emergent symmetries in (d+1) dimen-
sions. We find that if the nontrivial SPT involves G gauge fields, the
pure gauge theory obtained via gauging G typically has a nontrivial
anomaly involving the emergent one form symmetry.

In the rest of this introduction section, we explain the above two steps in
detail.

1.1. Lorentz symmetry enriched to G′-symmetry, and their
extensions

We first consider symmetry protected topological phases with the inter-
nal unitary global symmetry G. In this work, we focus on G = SU(2)
which is a continuous small rank 0-form symmetry. By internal, we de-
mand that G does not act on the coordinates. One can similarly consider
G = SU(3), SO(3),U(1) etc. These symmetries are related to the Standard
Models of particle physics [13, 14, 15, 16, 17, 18, 19, 20, 21]. Beyond the
internal symmetries, we assume the SPTs preserve the Lorentz symmetry
GLorentz. The Lorentz symmetry can be classified by the Stiefel-Whitney
classes of the tangent bundle of the spacetime manifold M , which is denote
as wi(TM) ≡ wi. Throughout this paper, we drop the TM dependence and
simply write it as wi. Here we focus on the first and the second Stiefel-
Whitney classes. By enumerating whether w1, w1 ∪w1 and w2 are trivial or
unconstrained, we find seven possibilities,2 listed in Table 1. The Lorentz
symmetries SO(d), Spin(d),O(d), and Pin±(d) are extensively discussed in
the literature [8, 22], but the two cases E(d) and EPin(d) are less well-known.

2Here the w1 ∪ w1 has the cup product ∪. In general, all the product notations
between cohomology classes are cup product, such as w2w3 := w2(TM)w3(TM) =
w2(TM)∪w3(TM). All the product notations between a cohomology class wj and
fermionic invariants such as Arf (or ABK, η̃ etc), namely wjArf, means the value
of Arf (or ABK, η̃ etc.) on the submanifold of M which represents the Poincaré
dual of wj . In other words, the wjArf := wj ∪Arf = Arf(PD(wj)).
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Table 1: The bundle constraints for Stiefel-Whitney classes of the Lorentz
symmetries. The wi ≡ wi(TM) are Stiefel-Whitney (SW) classes of the
tangent bundle TM of the spacetime manifold M . The SW classes are mod
2 cohomology classes, thus all enlisted constraints are also mod 2. In d = 2,
the w2+w1∪w1 = 0 mod 2 is always true, therefore all 2d smooth manifolds
have Pin− structures. Notice that for both Pin+(2) and EPin(2), the bundle
constraints are w2 = w2

1 = 0. But this does not imply Pin+(2) and EPin(2)
are the same. See discussions around (1.8) for more details

Group w1 w1 ∪ w1 w2

SO(d) 0 0 unrestricted
Spin(d) 0 0 0
O(d) unrestricted unrestricted unrestricted
E(d) unrestricted 0 unrestricted

Pin+(d) unrestricted unrestricted 0
Pin−(d) unrestricted w1 ∪ w1 = w2

EPin(d) unrestricted 0 0

See [4, 23, 12] for an exploration of the E(d) group and its application to
physics and Yang-Mills gauge theory. As far as we know, the EPin(d) group
is new in literature, though [24] has an exploration of the analogous DPin(d)
group and its string theory application.3

Whether wi is trivial or unconstrained has significant physical conse-
quences. If w2 is unconstrained, the manifold does not admit a spin/Pin±

structure, and a quantum field theory that can be defined on such a man-
ifold can not contain a fermion in the operator spectrum. We denote such
a theory to be bosonic. On the other hand, if w2 = 0, the theory allows a
fermion in the operator spectrum and we denote it as fermionic. When there
are additional internal global symmetries apart from the Lorentz symmetry,
a modification will occur, which will be discussed in section 3.

If w1 = 0, the spacetime manifold is oriented. A quantum field theory
that can only be defined on such an oriented manifold does not have time
reversal symmetry. On the other hand, if wi = 0, the spacetime manifold
is unorientable. A quantum field theory that can be defined on such an

3The DPin(d) studied in [24] is slightly different from the EPin(d) studied in this
paper. In [24], the DPin(d) is defined by the extension 1 → Z

+
2 ×Z

−
2 → DPin(d) →

O(d) → 1 which is very similar to (1.2), except that the extension is not central.
The orientation reversal in O(d) acts on Z

+
2 ×Z

−
2 by exchanging the two Z2 factors.

In this paper, however, the orientation reversal in O(d) does not act on Z
+
2 ×Z

−
2 in

the extension (1.2), i.e., the extension is central. In fact, all the extensions we will
discuss in this paper are central.
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unorientable manifold is time reversal symmetric. Depending on whether

w1 ∪ w1 is restricted or not, the Kramers parity of certain local operator in

the operator spectrum can vary. We enumerate all different possibilities of

GLorentz as follows:

GLorentz =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

SO(d), bosonic,

Spin(d), fermionic, Z
F
2 .

O(d), bosonic, T 2 = 1, Z
T
2 .

E(d), bosonic, T 2 = −1, Z
TB
4 .

Pin+(d), fermionic, T 2 = (−1)F , Z
TF
4 .

Pin−(d), fermionic, T 2 = 1, Z
T
2 × Z

F
2 .

EPin(d), fermionic, T 2(ψ+, ψ−) = (ψ+,−ψ−), Z
TF
4 and Z

T
2 × Z

F
2 .

(1.1)

In the last column of (1.1). we also summarize the discrete part of the

extended Lorentz groups in terms of the notations friendly to condensed

matter people.

• The ZF
2 has a fermion parity generator (−1)F whose square is +1.4

• The ZT
2 has a time reversal symmetry generator T whose square is

T 2 = +1.

• The ZTF
4 has a T generator whose square is T 2 = (−1)F of the fermion

number F .

• The ZTB
4 has a T generator whose square is T 2 = (−1)B of the boson

number B.

The normal subgroup of ZTF
4 is ZF

2 , so a short exact sequence says 1 →
ZF
2 → ZTF

4 → ZT
2 → 1. The normal subgroup of ZTB

4 is ZB
2 , so 1 → ZB

2 →
ZTB
4 → ZT

2 → 1. In the last case, the EPin(d) symmetry can be regarded

as being both the Pin+(d) and Pin−(d) symmetry simultaneously, because

w2
1 = w2 = 0 implies w2

1 + w2 = 0 (Pin− condition) and w2 = 0 (Pin+

condition). Because each fermion can only transform with a definite Kramers

parity (either Kramers singlet or Kramers doublet), being simultaneously

Pin+(d) and Pin−(d) means there are two species of fermions presented in

the EPin structure, ψ+ and ψ−, being Kramers singlet T 2 = +1 and doublet

T 2 = −1 respectively. The discrete parts of the EPin symmetry correspond

4One way to see whether we have bosonic or fermions theory in (1.1) is based on
whether the GLorentz contains a graded fermion parity Z

F
2 symmetry as a normal

subgroup. The Spin(d) and Pin±(d) contain a normal ZF
2 , while EPin(d) contains

two fermion parity symmetries Z
F+

2 × Z
F−
2 .
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to ZT
2 × ZF

2 for ψ+ and ZTF
4 for ψ−.5 Mathematically, the EPin(d) group

appears in the extension of O(d) by Z
+
2 × Z

−
2 .

1 → Z
+
2 × Z

−
2 → EPin(d) → O(d) → 1.(1.2)

Hence Z+
2 ×Z

−
2 belongs to the center of EPin(d). Taking the quotient of Z+

2

or Z−
2 yields Pin±(d) respectively,

Pin+(d) =
EPin(d)

Z
+
2

, Pin−(d) =
EPin(d)

Z
−
2

.(1.3)

We have seen that EPin(d) can be viewed as being Pin+(d) and Pin−(d)
simultaneously. Denote the generator of Z+

2 as a+, and that of Z−
2 as a−,

then we have

δa+ = w2 + w2
1, δa− = w2(1.4)

Here a+ parameterize the Pin− structure, and a− parameterize the Pin+

structure. (1.4) means the Pin± structures trivialize the w2 and w2 + w2
1

respectively. Since a+ and a− are both Z2 generators, one can take their
linear combinations, and regard the generators either as (a+, a−), or (a+ +
a−, a+) or (a+ + a−, a−). We enumerate the three cases as follows.

• When the generators are (a+, a−), the bundle constraints are

δa+ = w2 + w2
1, δa− = w2(1.5)

This means that EPin(d) can be viewed as being simultaneously
Pin+(d) and Pin−(d), as discussed in the last paragraph. Physically,
this means there are two types of fermions, the Kramers singlet ψ+

and the Kramers doublet ψ−. The discrete subgroup of EPin(d) in
this description is ZTF

4 × Z
+
2 = (Z−

2 � ZT
2 ) × Z

+
2 . This case has been

discussed in the last paragraph, but we include here for comparison
with the two cases below.

• When the generators are (a+ + a−, a+), the bundle constraints then
become

δ(a+ + a−) = w2
1, δa+ = w2 + w2

1(1.6)

5We thank R. Thorngren for clarifying the physical interpretation of the EPin
structure.
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This means that EPin(d) can be viewed as being simultaneously E(d)

and Pin−(d), where a+ + a− parameterize the E structure and a+
parameterize the Pin− structure. Physically, this means that there is

Kramers doublet boson B ≡ ψ+ψ−, and a Kramers singlet fermion ψ+.

The discrete subgroup of EPin(d) in this description is ZTB
4 × Z

+
2 ≡

(ZB
2 �ZT

2 )×Z
+
2 , where Z

B
2 (generated by a++a−) is a normal subgroup

of ZTB
4 .

• When the generators are (a+ + a−, a−), the bundle constraints then

become

δ(a+ + a−) = w2
1, δa− = w2(1.7)

This means that EPin(d) can be viewed as being simultaneously E(d)

and Pin+(d), where a+ + a− parameterize the E structure and a−
parameterize the Pin+ structure. Physically, this means that there is

Kramers doublet boson B ≡ ψ+ψ−, and a Kramers doublet fermion

ψ−. The discrete subgroup of EPin(d) in this description is (ZB
2 ×

Z
−
2 )� ZT

2 .

To summarize this short discussion, a theory with EPin(d) Lorentz symme-

try has three equivalent descriptions: 1) two fermions (ψ+, ψ−) which are

Kramers singlet and doublet; 2) a Kramers doublet boson and a Kramers

singlet fermion (B,ψ+); and 3) a Kramers doublet boson and a Kramers

doublet fermion (B,ψ−).

When d = 2, there is a relation w2 = w2
1 for every 2d manifold. This

implies that every 2d manifold is a Pin− manifold, and furthermore when

w2 is trivial, the manifold is a Pin+ manifold. Hence for 2d Pin+ manifold,

both w2
1 and w2 are trivial. This relation is the same as that of the 2d

EPin manifold. However, this does not imply Pin+(2) and EPin(2) are the

same. As we argue below, w2
1 and w2 are trivialized in two different ways for

Pin+ and EPin manifolds respectively. For 2d Pin+ manifold, we have the

extension

1 → Z2 → Pin+(2) → O(2) → 1(1.8)

Suppose the 1-cochain in Z2 (i.e. the generator of Z2) is a−, then the w2 = w2
1

in O(2) in trivialized in Pin+(2) via

Pin+(2) : w2 = w2
1 = δa−(1.9)
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where a− parameterizes the Pin+ structure. Moreover, for 2d EPin manifold,
we have the extension (1.2). Suppose the 1-cochains in Z2 × Z2 are a+ and
a−, then the w2, w

2
1 in O(2) are trivialized in EPin(2) via

EPin(2) : w2 = δa−, w2
1 + w2 = δa+(1.10)

where the pair (a+, a−) is the EPin structure as in (1.4). In components,
a− is the Pin+ structure, and a+ is the Pin− structure. Thus we have seen
explicitly that w2

1 and w2 are trivialized in different ways in Pin+(2) and
EPin(2).

Given the internal global symmetry group G, and the Lorentz symmetry
group GLorentz, the total group is given by the extension

1 → G → G′ → GLorentz → 1.(1.11)

In particular, the total group G′ does not have to be the simple direct
product of the internal and Lorentz groups G×GLorentz. For example, let us
consider a bosonic theory without time reversal, henceGLorentz = SO(d), and
let us take the internal symmetry to be SU(2). There are two choices of the
total group, G′ = SU(2)×SO(d), and G′ = (SU(2)×Spin(d))/Z2. Physically,
the latter means that the field carrying charge 1 under Z2 ⊂ SU(2) also
transforms under the fermion parity ZF

2 ⊂ Spin(d).6 Such a relation is named
the Spinh relation or Spin-SU(2) relation [25, 16, 26]. Notice that although
there is a Spin(d) in the total group, it does not mean that the theory is
fermionic. If the internal symmetry SU(2) is entirely broken, the total group
is still Spin(d)/Z2 = SO(d) hence it is still bosonic.

Follow the terminology of Lorentz symmetry fractionalization [27] and
Lorentz symmetry enrichment [23, 12] to G′ from the GLorentz by an internal
symmetry G, we will call these QFTs with the internal-spacetime symmetry
structure G′ in (1.11) as the Lorentz symmetry enriched QFTs.

1.2. Bordism group, cobordism group, and SPTs

Given the total group G′, the SPTs protected by the total symmetry G′ is
classified by the cobordism group [4]

TPd(G
′)(1.12)

6Another way to rephrase is that the spacetime spinor (as fermions) must be
in the even integer representation of SU(2) (say 2, 4, 6, etc., namely isospin 1/2,
3/2, 5/2, etc.) instead of the odd integer representation of SU(2) (say 1, 3, 5, etc.,
which is also an integer spin representation of SO(3) (isospin 1, 2, 3, etc.).
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and their invariants are given by the cobordism group generators: cobordism

invariants. Here TP is a shorthand for topological phase. Practically, it is

useful to first compute the bordism group ΩG′

d . TPd(G
′) is related to the

bordism group ΩG′

d by the short exact sequence

0 → Ext1(ΩG′

d ,Z) → TPd(G
′) → Hom(ΩG′

d+1,Z) → 0.(1.13)

See [4, 8, 10] for the notations:

• the Ext1(ΩG′

d ,Z) includes the finite abelian group classification Zn

part (the torsion part), classifying nonperturbative global anomalies

(not captured by Feynman diagram). Examples include Witten SU(2)

anomaly [28] and the new SU(2) anomaly [26].

• the Hom(ΩG′

d+1,Z) includes the infinite abelian group classification Z

part (the free part), classifying perturbative local anomalies (captured

by Feynman diagram). Examples include Adler-Bell-Jackiw anomalies

[29, 30] captured by one-loop Feynman diagrams.

The majority part of this work is to use the Adams spectral sequence to

compute ΩG′

d from which TPd(G
′) can be inferred. Physically, the G′-SPT

given by TPd(G
′) is the precursor of the gauge theory with dynamical gauge

group G. We can also view such G-SPT as the anomaly inflow action for

(d−1) dimensional quantum field theory with the 0-form global symmetryG.

The following fact is useful to infer TPd(G
′) from ΩG′

d . For all the ex-

amples in this work, ΩG′

d is a tensor product of finite order cyclic groups Zp

and infinite order cyclic group Z. If Zp is a subgroup of ΩG′

d , then Zp is also

a subgroup of TPd(G
′). If Z is a subgroup of ΩG′

d , then this Z becomes a

subgroup of TPd−1(G
′) instead. In summary,

Zp ⊂ ΩG′

d ⇒ Zp ⊂ TPd(G
′),

Z ⊂ ΩG′

d ⇒ Z ⊂ TPd−1(G
′).

(1.14)

1.3. A mathematical primer for ΩG′

d

We give a mathematical primer for computing the bordism group ΩG′

d , see

[4, 10, 18] for details. We will use the generalized Pontryagin-Thom isomor-

phism,

ΩG′

d = πd(MTG′)(1.15)
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to identify the cobordism group ΩG′

d as the homotopy group of the Madsen-
Tillmann spectrum MTG′. Hence computing ΩG′

d is equivalent to computing
πd(MTG′).

To compute πd(MTG′), we use the Adams spectral sequence

Es,t
2 ≡ Exts,tAp

(H∗(Y,Zp),Zp) ⇒ πt−s(Y )∧p .(1.16)

We explain the notations below. Here Ap is the mod p Steenrod algebra.
When p = 2, A2 is generated by Steenrod squares Sqi. Y is any spectrum,
which will be identified with the Madsen-Tillmann spectrum Y = MTG′.
For any finitely generated abelian group G, we define G∧

p = limn→∞G/pnG

to be the p-completion of G. Exts,tAp
(H∗(Y,Zp),Zp) is the second page, i.e.,

the E2 page, of the Adam spectral sequence. Using the differential ds,tr :
Es,t

r → Es+r,t+r−1
r , one can determine the r + 1-th page Er+1 from the

data in the r-th page Er, via Es,t
r+1 = ker ds,t

r

imds−r,t−r+1
r

. Thus from the E2 page,
one can determine the E3 page, E4 page, etc subsequently. The sequence
{Er, r = 2, 3, 4...} will stabilize until certain r, and one denotes the stabilized
page as Es,t

∞ . The double arrow in (1.16) means that the sequence will finally
converge to the stabilized page Es,t

∞ , and one can use the data in Es,t
∞ to

extract πt−s(Y )∧p .
In all the examples considered in this paper, the p = 2 suffices for com-

puting the while cobordism group, i.e., πt−s(Y )∧2 = πt−s(Y ). Hence we claim
that for p = 2, the Adams spectral sequence (1.16) with Y = MTG′, i.e.,
Exts,tA2

(H∗(MTG′,Z2),Z2) ⇒ πt−s(MTG′)∧2 . completely determines ΩG′

d .7

Let us focus on an example. If MTG′ = MSpin ∧ X where X is an
arbitrary topological space, by Corollary 5.1.2 of [32], we have

Exts,tA2
(H∗(MSpin ∧X,Z2),Z2) = Exts,tA2(1)

(H∗(X,Z2),Z2)(1.17)

for t− s < 8. Here A2(1) is the subalgebra of A2 generated by Sq1 and Sq2.
Hence for the dimension d = t− s < 8, the Adams spectral sequence (1.16)
reduces to

Exts,tA2(1)
(H∗(X,Z2),Z2) ⇒ (ΩG′

t−s)
∧
2 .(1.18)

The H∗(X,Z2) is an A2(1)-module whose internal degree t is given by the ∗.
Our computation of E2 pages of A2(1)-modules is based on Lemma 11

7See some counter examples in [10, 31] that p = 2 is not enough to deter-
mines ΩG′

d .
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of [10]. More precisely, we find a short exact sequence of A2(1)-modules
0 → L1 → L2 → L3 → 0, then apply Lemma 11 of [10] to compute
Exts,tA2(1)

(L2,Z2) by the data of Exts,tA2(1)
(L1,Z2) and Exts,tA2(1)

(L3,Z2). Our

strategy is choosing L1 to be the direct sum of suspensions of Z2 on which
Sq1 and Sq2 act trivially, then we take L3 to be the quotient of L2 by
L1. If Ext

s,t
A2(1)

(L3,Z2) is undetermined, then we take L3 to be the new L2

and repeat this procedure. We can use this procedure again and again until
Exts,tA2(1)

(L2,Z2) is determined.

1.4. Gauging G, emergent symmetries, and anomalies

We further gauge the global symmetry G in the G-SPT computed
from (1.12). Suppose the G-background field is A, where A is a connection of
the G-bundle. Denote the partition function of the SPT ZSPT[A]. Because G-
SPT is also an iTQFT, the ZSPT[A] is a complex U(1) phase, whose inverse
ZSPT[A]−1 represents the inverted iTQFT that cancels the original ZSPT[A]
iTQFT. Gauging G amounts to summing over A in the path integral. The
partition function after gauging G is [33, 13, 34, 22, 8, 19, 24, 35]

Z =

∫
[DA] ZSPT[A] Zdyn[A],(1.19)

where Zdyn[A] is the partition function of a non-topological theory, which has
nontrivial coupling constants and can flow under the renormalization group.
Since in this work we focus on pure gauge theories, we will exclusively take
Zdyn[A] to be the Yang-Mills action ZYM[A], where

ZYM[A] = exp

(
− i

4g2

∫
Tr (F ∧ �F )

)
.(1.20)

After gauging the 0-form symmetry G, the dynamical gauge theory ex-
hibits emergent global symmetries. If G has nontrivial center, there is an
emergent 1-form global symmetry Ge,[1]. For instance, when G = SU(2),
Ge,[1] = Z2,[1]; when G = SO(3), Ge,[1] = 0. Notice that this is no longer true
if one includes matter in the fundamental representation of G.

Although this paper mainly focus on G = SU(2), it is beneficial to com-
ment on a few more examples of emergent symmetries which is not featured
in the SU(2) example. (See Table 2 and 3 for instances.) In particular, if
either u2(VG) ∈ H2(BG,U(1)) or u2(VG) ∈ H2(BG,Zn) for some integer
n is nontrivial, then there is an emergent (d − 3)-form global symmetry,
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i.e. Gm,[d−3] [36, 37, 38]. This is to be contrasted with the case when G
is discrete. If G is a discrete 0-form symmetry, gauging G in d dimensions
will induce a (d − 2) form global symmetry. In our case, G is a continuous
0-form symmetry, and gauging it will induce a (d − 3)-form global symme-
try. For example, when G = U(1), Gm,[d−3] = U(1)[d−3]; when G = SO(3),
Gm,[d−3] = Z2,[d−3].

In all the examples considered in this paper, after gauging G, different
choices of extensions (1.11) give the same trivial product algebra between
Ge,[1] and GLorentz, i.e., the emergent total symmetry is Ge,[1] × GLorentz.

8

However, the distinct extensions (1.11) yield distinct anomalies of Ge,[1] ×
GLorentz, which can be systematically enumerated from the cobordism group

TPd(Ge,[1] ×GLorentz).(1.21)

This should be distinguished from (1.12) because in (1.21) the G′ = Ge,[1]×
GLorentz is a higher group. We emphasize that different choices of ZSPT[A]
in the path integral (1.19) can dramatically affect the dynamics of gauge
theories after gauging G, in particular, the ’t Hooft anomalies are in general
different for different ZSPT[A]. For example, for d = 4, we consider G =
SU(2) and GLorentz = O(4). The G-SPT includes a 4d theta term with θ = 0
and π. It has been extensively discussed [39] and [12, 40] that after SU(2) is
gauged, there is a mixed anomaly between the emergent 1-form symmetry
Z2,[1] and O(4) for θ = π while no anomaly for θ = 0. Hence as a consequence,
the dynamics for θ = 0 and π are dramatically different. See [39, 12, 18, 40,
41, 25, 42, 43, 44, 45, 46, 47] for constraints of gauge theory dynamics from
symmetries and anomalies, and applications to quantum chromodynamics
(QCD) phases of matter.

1.5. Summary in tables: higher symmetries in gauge theory and
(co)bordism groups

For the convenience of readers, for various gauge group G, we summarize
various results on one-form symmetries in Tables 2 and 3, bordism groups
in Table 4, and cobordism groups in Table 5.

In Table 2, for various gauge group G we summarize the associated one-
form electric symmetry G[1],e (relevant for the center of the gauge group
Z(G), in Table 2’s second column) and one-form magnetic symmetry G[1],m

(relevant for the first homotopy group π1(G), in Table 2’s third column) for

8If Gm,[d−3] is also nontrivial, the total gauge group can be nontrivial extension
of GLorentz by Gm,[d−3].
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pure gauge theories without matter fields in spacetime dimensions d = 4.
We also list down one-form symmetry G[1] when gauged matter fields in
representation (Rep R) present, in Table 2’s last column. See also a related
discussion on one-form symmetries in a recent work [48].

In Table 3, as an example, for gauge theories with a Standard Model
gauge group

GSMq
≡ SU(3)× SU(2)×U(1))

Zq
,(1.22)

where q = 1, 2, 3, 6 (in the first column), we show the one-form electric and
magnetic symmetries for pure gauge theories (in the second and the third
columns). We also show the one-form symmetries for SM with matter fields
in the SM Rep (in the last column). See related recent work [14, 15, 16, 17,
18, 20, 21] for an overview:

(SU(3) representation, SU(2) representation, hypercharge Y ) ⇒

(1.23)

(
(3,2, 1/6)L, (3,1, 2/3)R, (3,1,−1/3)R, (1,2,−1/2)L, (1,1,−1)R

)
× 3 generations.

The subscript L and R here are left-handed and right-handed Lorentz space-
time spinors. In fact, each of the triplet given above (1.23) are in the small-

est SU(3)×SU(2)×U(1))
Z6

representations, although there are still four choices of
gauge groups GSMq

(1.22) with q = 1, 2, 3, 6.
Let us make a few more remarks in particular focusing on 4d gauge

theories:

(1). Electric 1-form symmetry G[1],e: For pure gauge theory, the electric 1-
form symmetry G[1],e is identified with the center of the gauge group G,
called Z(G). After coupled to matter fields in Rep R (the electric Rep
for the gauge group G), the electric 1-form symmetry may be reduced.
Here are some ways to determine G[1],e:
• The G[1],e is the maximal subgroup sub(Z(G)) (or more generally, the
stabilizer) of the center Z(G) which does not transform Rep R.
• TheG[1],e is themaximal subgroup sub(Z(G)) such that the associated
Wilson line (or Polyakov line if the line is along the time direction)
cannot be opened up by matter fields in Rep R on two ends of the line
operator.
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Table 2: The one-form symmetry G[1] for various pure gauge theories, or
gauge theories with the matter charged in a certain representation (Rep,
denoted R) of the gauge group G. Here “fundamental” is shorthand as
“fund.” The first column lists the gauge group G. The second column lists
the electric 1-form symmetry G[1],e for a pure G gauge theory. The third
column lists the magnetic 1-form symmetry G[1],m for a pure G gauge theory.
The fourth column lists the G[1],e and G[1],m for a G gauge theory coupled
to matter in various Rep R. Here we consider the standard choices of Lie
groups G2,F4,E6,E7,E8 for the exceptional Lie algebras g2, f4,e6, e7, e8; of
course, there may be other possible Lie groups for give Lie algebras. The
E6 and E7 have the adjoint type or simply connected type of Lie groups
[49], denoted as Gadjoint and Gsimp.cn, their centers and homotopy groups
are related by Z(Gadjoint) = π1(G

simp.cn). (The simplest familiar example
is the Lie algebra su2 = so3 whose Lie groups are Gsimp.cn = SU(2) and
Gsimp.cn = SO(3))

One-form symmetries of G-gauge theories at d = 4, with or without matter fields

gauge group G 1-form e sym G[1],e 1-form m sym G[1],m

G[1] with matter

in Rep R : G[1]

SU(2) Z2[1],e no
fund 2: no.

adjoint 3: Z2[1],e.

SO(3) no Z2[1],m vector 3: Z2[1],m.

SU(N), N ≥ 2 ZN [1],e no
fund N : no.

adjoint N2 − 1 : ZN [1],e.

PSU(N), N ≥ 2 no ZN [1],m adjoint N2 − 1: ZN [1],m.

U(1) U(1)[1],e U(1)[1],m charge q: Zq [1],e, U(1)[1],m.

U(N), N > 1 U(1)[1],e U(1)[1],m

Given a U(1) charge q

q = 1, fund N: U(1)[1],m.

q = 0, adjoint N2 − 1:

U(1)[1],e,U(1)[1],m.

SO(N), N > 2
Z2[1],e, N = 0 mod 2

no, N = 1 mod 2
Z2[1],m vector N: Z2[1],m.

Spin(N), N > 2

Z4[1],e, N = 2 mod 4

(Z2[1],e)
2, N = 0 mod 4

Z2[1],e, N = 1 mod 2

no spinor irrep 2[N−1
2

] : no.

Sp(N), N ≥ 1 Z2[1],e no fund: no.

G2 0 0

F4 0 0

E6
Z3[1],e, for Esimp.cn

6

no, for Eadjoint
6

no, for Esimp.cn
6

Z3[1],m, for Eadjoint
6

E7
Z2[1],e, for Esimp.cn

7

no, for Eadjoint
7

no, for Esimp.cn
7

Z2[1],m, for Eadjoint
7

E8 0 0
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Table 3: One-form symmetries for 4d (SU(3)×SU(2)×U(1))/Zq pure gauge
theory (the second and third columns) or (SU(3)× SU(2)×U(1))/Zq gauge
theory with Standard Model (SM) matter field representation R as (1.23)
(the last column). Here the (Z′

2)[1],e (similarly (Z′
3)[1],e) means that the un-

broken one-form symmetries from the diagonal combination of the original
(Z2 ×U(1))[1],e (same for (Z3 ×U(1))[1],e)

One-form symmetries of 4d
SU(3)×SU(2)×U(1))

Zq
-gauge theories at d = 4, with or without matter fields

q 1-form e sym G[1],e 1-form m sym G[1],m G[1] with Standard Model matter in Rep R: G[1]

1 (Z3 × Z2 × U(1))[1],e U(1)[1],m G[1],e : (Z′
3 × Z

′
2)[1],e. G[1],m : U(1)[1],m.

2 (Z3 × U(1))[1],e U(1)[1],m G[1],e : (Z′
3)[1],e. G[1],m : U(1)[1],m.

3 (Z2 × U(1))[1],e U(1)[1],m G[1],e : (Z′
2)[1],e. G[1],m : U(1)[1],m.

6 U(1)[1],e U(1)[1],m G[1],e: no. G[1],m : U(1)[1],m.

(2). Magnetic 1-form symmetry G[1],m: The G[1],m exists if there is a degree-

2 characteristic class of the gauge bundle serving as the conserved cur-

rent. Here are some ways to determine G[1],m:

• The G[1],m can be determined by the first homotopy group π1(G) of

the gauge group G.

• The G[1],m can be associated with the π2(G
′/Gsub) if we embed the

G-gauge theory into a higher energy Yang-Mills-Higgs theory with an

ultraviolet (UV) gauge group G′, broken down to Gsub by Higgsing,

where there can be ’t Hooft-Polyakov monopole as dynamical objects.

We provide one example from the ’t Hooft-Polyakov monopole view-

point:

(a) In Standard Model (SM) physics, given GSMq
(1.22) and matter

Rep (1.23), we can determine the G[1],e and G[1],m (the last col-

umn of Table 3). In particular, the G[1],m = U(1)[1],m because the

(electrically) gauged charged matter does not break U(1)[1],m from

the Z class of ’t Hooft lines

π1(GSMq
) = π1(

SU(3)× SU(2)×U(1)

Zq
) = Z.(1.24)

We can also embed the SM to Georgi-Glashow SU(5) grand unifi-

cation or grand unified theory (GUT) [50], such that G′ = SU(5)

and Gsub = GSM6
broken down by GUT Higgs field, we can de-

termine the ’t Hooft-Polyakov monopole from this SU(5) GUT
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via9

π2(G
′/Gsub)=π2(

SU(5)

GSM6

)=π2(
SU(5)

(SU(3)× SU(2)×U(1))/Z6
) = Z.

(1.27)

Thus the classification of ’t Hooft-Polyakov monopole from SU(5)
GUT agrees with ’t Hooft lines of the low energy SM.

• When G is connected (namely, π0(G) = 0), the G[1],m can also be

determined by the second cohomology group H2(BG,R) for R = U(1)
or Zn with some n. To see this, we first use the Hurewicz theorem [51].
The theorem shows that if G is connected, i.e., π1(BG) = π0(G) = 0,
then H1(BG,Z) = 0 and π1(G) = π2(BG) = H2(BG,Z). Then we use
the universal coefficient theorem, which shows that the exact sequence
0 → Ext(H1(BG,Z), R) → H2(BG,R) → Hom(H2(BG,Z), R) → 0
holds. Since the Hurewicz theorem guarantees that H1(BG,Z) = 0, the
universal coefficient theorem tells us that

H2(BG,R) = Hom(H2(BG,Z), R) = Hom(π1(G), R).(1.28)

This relates π1(G), which classifies the magnetic 1-form symmetry and
H2(BG,R), for connected G. We need to find the coefficient R’s such
that H2(BG,R) = Hom(π1(G), R) is nontrivial. We provide two exam-
ples.

(a) For G = U(1), π1(G) = Z, then

H2(BU(1), R) = Hom(π1(U(1)), R) = Hom(Z, R) = R.(1.29)

9Here we use the long exact sequence of a fibration F → E → B = E/F where
F is the fiber or normal subgroup and E is the total space or the total group, then
we have the long exact sequence

· · · → πnF → πnE → πnE/F → πn−1F → πn−1E → . . . .(1.25)

So for E = SU(5) and F = GSM6 = SU(3)×SU(2)×U(1)
Z6

, we have

. . .→π2(GSM6)→π2(SU(5)) → π2(SU(5)/GSM6) → π1(GSM6) → π1(SU(5)) → . . . ,
(1.26)

where π2(SU(5)) = 0 and π1(SU(5)) = 0 for the simply connected simple Lie group
SU(5), and π1(GSM6

) = Z. So 0 → π2(SU(5)/GSM6
) → π1(GSM6

) → 0 implies
π2(SU(5)/GSM6) = π1(GSM6).
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Thus one can choose R = U(1) which gives H2(BU(1),U(1)) =
U(1), whose generator is simply the first Chern class c1(VU(1)).
The first Chern class serves as a conserved current of the magnetic
1-form symmetry, which couples to the background field Bm,[2] via

exp
(
i
∫
M4

c1(VU(1))
2π B2,[m]

)
added in the partition function. One can

also choose R = Zn for arbitrary n, but this does not give addi-
tional characteristic classes and the magnetic 1-form symmetry.

(b) For G = SO(3), thus π1(G) = Z2, then

H2(BSO(3), R) = Hom(π1(SO(3)), R) = Hom(Z2, R)(1.30)

=

{
Z2, R = U(1) or Z2n.

0, R = Z2n+1.

Thus the minimal coefficient is R = Z2. Other non-minimal coeffi-
cients R = Z2n(n > 1) or U(1) do not give additional characteristic
classes and the magnetic 1-form symmetry. For R = Z2, the gener-
ator is w2(VSO(3)) ∈ H2(BSO(3),Z2), which serves as a conserved
current of the magnetic 1-form symmetry, which couples to the
background field B2,[m] via exp(iπ

∫
M4

w2(VSO(3))Bm,[2]) added in
the partition function.

To summarize, we find that the magnetic 1-form symmetry, which is
defined to be classified by π1(G), can also be captured by H2(BG,R)
with suitable choices of the coefficient ring R = U(1) or Zn.
• After the theory is coupled to matter fields in Rep R, the magnetic
1-form symmetry remains the same.
Let us illuminate Table 3 in the gauge bundle viewpoint. We specify
the conserved current for the U(1) magnetic 1-form symmetries in the
four cases of the pure gauge theories with the standard model gauge
group (SU(3) × SU(2) × U(1))/Zq. Denote the U(1) gauge field in the
numerator of the gauge group as a. For q = 1, the current is da. For
q = 2, the current is 2da. It correlates with the PSU(2) = SO(3)
bundle via 2da

2π = w2(VPSU(2)) mod 2. For q = 3, the current is 3da. It

correlates with the PSU(3) bundle via 3da
2π = w2(VPSU(3)) mod 3. For

q = 6, the current is 6da. It correlates with the PSU(2) and PSU(3)
bundles via 6da

2π = 3w2(VPSU(2)) + 2w2(VPSU(3)) mod 6.

In Table 4, for various dimensions d, we summarize partial results of
bordism groups Ωd discussed in later sections.

In Table 5, for various dimensions d, we summarize partial results of
cobordism groups TPd discussed in later sections.
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Table 4: We summarize partial results of bordism groups ΩG
d obtained in later sections. Spinh = Spin×Z2

SU(2)
and Spinc = Spin×Z2

U(1)

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ΩSO
d Z 0 0 0 Z Z2 0 0 Z

2

ΩSpin
d Z Z2 Z2 0 Z 0 0 0 Z

2
Z
2
2 Z

3
2

ΩO
d Z2 0 Z2 0 Z

2
2 Z2 Z

3
2 Z2 Z

5
2 Z

3
2 Z

8
2 Z

5
2 Z

11
2 Z

9
2 Z

17
2

ΩE
d Z2 0 Z2 0 Z

2
2 Z2

ΩPin+

d Z2 0 Z2 Z2 Z16 0 0 0 Z2 × Z32 0 Z
3
2

ΩPin−
d Z2 Z2 Z8 0 0 0 Z16 0 Z

2
2 Z

2
2 Z2 × Z8 × Z128

ΩDPin
d Z2 Z2 Z

2
2 Z8 Z

2
2 0 Z

2
2

ΩEPin
d Z2 Z2 Z2 × Z4 Z2 Z

2
2 0

ΩSpinc

d Z 0 Z 0 Z
2 0 Z

2 0 Z
4 0 Z

4 × Z2

ΩSpinh

d Z 0 0 0 Z
2

Z
2
2 Z

2
2 0 Z

4 0 Z2

ΩString
d Z Z2 Z2 Z24 0 0 Z

2 0 Z2 × Z Z
2
2 Z6

Ω
SO×SU(2)
d Z 0 0 0 Z

2
Z2

Ω
Spin×

Z2
SU(2)

d Z 0 0 0 Z
2

Z
2
2

Ω
Spin×SU(2)
d Z Z2 Z2 0 Z

2
Z2

Ω
O×SU(2)
d Z2 0 Z2 0 Z

3
2 Z2

Ω
E×

Z2
SU(2)

d Z2 0 Z2 0 Z
3
2 Z2

Ω
E×SU(2)
d Z2 0 Z2 0 Z

3
2 Z2

Ω
Pin+×

Z2
SU(2)

d Z2 0 Z2 0 Z2 × Z4 Z2

Ω
Pin−×

Z2
SU(2)

d Z2 0 Z2 0 Z
3
2 Z

2
2

Ω
SO×Z2,[1]
d Z 0 Z2 0 Z × Z4 Z

2
2

Ω
Spin×Z2,[1]
d Z Z2 Z

2
2 0 Z × Z2 0

Ω
O×Z2,[1]
d Z2 0 Z

2
2 Z2 Z

4
2 Z

4
2

Ω
E×Z2,[1]
d Z2 0 Z

2
2 Z2 Z

4
2 Z

4
2

Ω
Pin+×Z2,[1]
d Z2 0 Z

2
2 Z

2
2 Z2 × Z16 Z

2
2

Ω
Pin−×Z2,[1]
d Z2 Z2 Z2 × Z8 Z2 Z2 Z2

Ω
DPin×Z2,[1]
d Z2 Z2 Z

3
2 Z

2
2 × Z8 Z

5
2 Z

4
2

Ω
EPin×Z2,[1]
d Z2 Z2 Z

2
2 × Z4 Z

2
2 Z

4
2 Z

2
2
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Table 5: We summarize partial results of cobordism groups TPG
d obtained in later sections. See also the caption

in Table 4

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

TPSO
d 0 0 0 Z 0 Z2 0 Z

2 0

TPSpin
d 0 Z2 Z2 Z 0 0 0 Z

2 0 Z
2
2 Z

3
2

TPO
d Z2 0 Z2 0 Z

2
2 Z2 Z

3
2 Z2 Z

5
2 Z

3
2 Z

8
2 Z

5
2 Z

11
2 Z

9
2 Z

17
2

TPE
d Z2 0 Z2 0 Z

2
2 Z2

TPPin+

d Z2 0 Z2 Z2 Z16 0 0 0 Z2 × Z32 0 Z
3
2

TPPin−
d Z2 Z2 Z8 0 0 0 Z16 0 Z

2
2 Z

2
2 Z2 × Z8 × Z128

TPDPin
d Z2 Z2 Z

2
2 Z8 Z

2
2 0 Z

2
2

TPEPin
d Z2 Z2 Z2 × Z4 Z2 Z

2
2 0

TPSpinc

d 0 Z 0 Z
2 0 Z

2 0 Z
4 0 Z

4
Z2

TPSpinh

d 0 0 0 Z
2 0 Z

2
2 Z

2
2 Z

4 0 0 Z2

TPString
d 0 Z2 Z2 Z24 0 Z

2 0 Z Z2 Z
2
2 Z6

TP
SO×SU(2)
d 0 0 0 Z

2 0 Z2

TP
Spin×

Z2
SU(2)

d 0 0 0 Z
2 0 Z

2
2

TP
Spin×SU(2)
d 0 Z2 Z2 Z

2 0 Z2

TP
O×SU(2)
d Z2 0 Z2 0 Z

3
2 Z2

TP
E×

Z2
SU(2)

d Z2 0 Z2 0 Z
3
2 Z2

TP
E×SU(2)
d Z2 0 Z2 0 Z

3
2 Z2

TP
Pin+×

Z2
SU(2)

d Z2 0 Z2 0 Z2 × Z4 Z2

TP
Pin−×

Z2
SU(2)

d Z2 0 Z2 0 Z
3
2 Z

2
2

TP
SO×Z2,[1]
d 0 0 Z2 Z Z4 Z

2
2

TP
Spin×Z2,[1]
d 0 Z2 Z

2
2 Z Z2 0

TP
O×Z2,[1]
d Z2 0 Z

2
2 Z2 Z

4
2 Z

4
2

TP
E×Z2,[1]
d Z2 0 Z

2
2 Z2 Z

4
2 Z

4
2

TP
Pin+×Z2,[1]
d Z2 0 Z

2
2 Z

2
2 Z2 × Z16 Z

2
2

TP
Pin−×Z2,[1]
d Z2 Z2 Z2 × Z8 Z2 Z2 Z2

TP
DPin×Z2,[1]
d Z2 Z2 Z

3
2 Z

2
2 × Z8 Z

5
2 Z

4
2

TP
EPin×Z2,[1]
d Z2 Z2 Z

2
2 × Z4 Z

2
2 Z

4
2 Z

2
2
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1.6. Outline

The rest of this work computes the bordism groups, cobordism group and
cobordism invariants for the internal symmetries G = SU(2) and various
Lorentz symmetries GLorentz, as well as their extensions. We further gauge
G to obtain G dynamical gauge theories and compute the cobordism invari-
ants for the emergent symmetry Ge,[1]×GLorentz. In section 2, we review the
cobordism invariants for the Lorentz symmetry, without the internal sym-
metry. In section 3, study the extension of various choices of GLorentz by the
global symmetry SU(2), compute the cobordism invariants and discuss their
physical interpretations. In section 4, we promote SU(2) global symmetry to
be a dynamical gauge group, and study the emergent symmetry, and bun-
dle constraints and the anomalies for the resulting SU(2) gauge theories. In
the appendix A and B, we compute the bordism and cobordism groups and
invariants for symmetries involving GLorentz = E(d) and GLorentz = EPin(d)
respectively.

2. Anomalies from Lorentz symmetry GLorentz

In this section, we demand the global symmetry G to be trivial, and the
total symmetry is just GLorentz. We will systematically discuss the anomalies
for each choice of GLorentz in (1.1). The cobordism invariants have been
discussed in [10]. These cobordism invariants will appear repeatedly when
the internal unitary symmetry G is non-trivial. Hence for simplicity, we
once for all discuss bordism group ΩGLorentz

d and the associated cobordism
invariants here, and will not repeat the discussion in the following sections.

The group GLorentz = E(d) and EPin(d) are relatively unfamilar, we
leave the (co)bordism groups and the cobordism invariants of these groups
in a separate work.

2.1. GLorentz = SO(d)

When the spacetime symmetry is GLorentz = SO(d), one can formulate the
quantum field theory on arbitrary non-spin oriented manifold. In particular,
the quantum field theory does not have time reversal symmetry, and does
not depend on the spin structure. In the condensed matter language, such
a quantum field theory can be understood as emerging from a UV lattice
model with only bosonic local degrees of freedom, i.e., the theory is bosonic.

We enumerate the bordism and cobordism groups and list the cobor-
dism invariants, in Table 6. Below, we comment on the nontrivial cobordism
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Table 6: The bordism and cobordism groups of the symmetry SO(d). The
cobordism invariants, representing the d dimensional anomaly inflow actions
of the d−1 dimensional quantum field theories, are also enumerated. CSg is
the gravitational Chern Simons term. It can be defined by lifting to the 4d
integral as CSg[X] = π

∫
Y Â = 2πσ[Y ] where ∂Y = X. wi is the i-th Stiefel-

Whitney (SW) class of the tangent bundle of the spacetime manifold. In
this paper, we will denote the wi as the i-th SW class for the spacetime
manifold M , short for wi(TM). When referring to the SW class for the
vector bundle VG associated with certain group G (where G can be gauge
group or global symmetry group), we will denote it as wi(VG). The 16CSg
is also the invertible TQFT at the low energy of 2+1d E8 quantum Hall
state whose boundary edge modes have 1+1d CFT of chiral central charge
c− = 8

Bordism and Cobordism group

d ΩSO
d TPSO

d Cobordism Invariant
1 0 0
2 0 0
3 0 Z 16CSg
4 Z 0
5 Z2 Z2 w2w3

invariants, and interpret them as the anomaly inflow actions of QFTs living
in one dimension lower.

1. When d = 3, the anomaly 16CSg can be saturated by the 1+1d chiral
boson CFT with the K-matrix being the rank-8 Cartan matrix of E8.

10

Such a theory has chiral central charge c− = 8, thus has gravitational
anomaly 16CSg [52]. Due to the nontrivial chiral central charge, such
a theory must be gapless.

2. When d = 5, the anomaly w2w3 can be saturated by either gapless
or gapped theories in 3 + 1d. The gapless theory is the all fermion
electrodynamics, where both the U(1) charge and U(1) monopole are
fermions [53, 26]. The gapped theory is the Z2 gauge theory with Z2

fermionic charge and Z2 fermionic strings [54, 55].

2.2. GLorentz = Spin(d)

When the spacetime symmetry is GLorentz = Spin(d), we need to consider
the manifold that allows a spin structure, i.e., the spacetime manifold is a

10This 1+1d CFT is also known as the boundary CFT of 2+1d E8 quantum Hall
state.
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Table 7: The bordism and cobordism groups of the symmetry Spin(d). The
cobordism invariants, representing the d dimensional anomaly inflow actions
of the d − 1 dimensional quantum field theories, are also enumerated. η̃ is
the mod 2 reduction of the index of the 1d Dirac operator. Arf is the Arf
invariant. CSg is the gravitational Chern Simons term defined in Table 6,
The CSg is also the invertible TQFT at the low energy of 2+1d chiral p-wave
(px + ipy) superconductor whose boundary edge modes have 1+1d CFT of
chiral central charge c− = 1/2

Bordism and Cobordism group

d ΩSpin
d TPSpin

d Cobordism Invariant
1 Z2 Z2 η̃
2 Z2 Z2 Arf
3 0 Z CSg
4 Z 0
5 0 0

spin manifold. In particular w2 = 0. In the condensed matter language, a
quantum field theory that can only be defined on a spin manifold should be
understood as flowing from a UV lattice system with local fermionic degrees
of freedom (i.e., the theory is fermionic, in terms of a condensed matter
language).

We enumerate the bordism and cobordism groups and list the cobor-
dism invariants, in Table 7. Below, we comment on the nontrivial cobordism
invariants, and interpret them as the anomaly inflow actions of QFTs living
in one dimension lower.

1. When d = 1, η̃ is the mod 2 reduction of the index of the 1d Dirac
operator, i.e., it counts the number of zero modes modulo 2. Notice
that the most general 1d connected spacetime manifold is a circle. The
index on the circle depends on the spin structure ρ, i.e., whether the
boundary condition of the fermion is Ramond (R) or Neveu-Schwarz
(NS).11

η̃(ρ) =

{
1, ρ = R.

0, ρ = NS.
(2.1)

2. When d = 2, the Arf invariant can be constructed as follows. A 2d
oriented manifold without boundary, equipped with a metric, can be

11In the literature, Ramond and Neveu-Schwarz boundary conditions are also
termed Periodic (P) and Anti-Periodic (AP) boundary conditions.
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described as the Riemann surface. The Riemann surface can be clas-

sified by its genus g. Since any 2d Riemann surface is a spin manifold,

it can be equipped with a spin structure ρ, encoded by the boundary

condition of the spinors along each non-contractible cycle. For exam-

ple, when the Riemann surface is a torus g = 1, there are two non-

contracible cycles. A spinor can have Ramond (R) or Neveu-Schwarz

(NS) boundary condition along each cycle. Arf is the Arf invariant of

the spin structure ρ,

Arf(ρ) =

{
1, ρ = (R,R).

0, ρ = (R,NS), (NS,R), (NS,NS).
(2.2)

As we can see, Arf is a natural 2d generalization of the 1d mod 2 Dirac

index η̃. We denote the spin structure (R,R) as odd, and other three

spin structures as even. For the Riemann surface with other genus g,

there are 2g−1(2g−1) odd spin structures, and 2g−1(2g+1) even ones.

Physically partition function involving the Arf invariant, eiπArf, can

be understood as the partition function of the 1+1d Kitaev chain [56].

Hence the boundary anomalous quantum field theory saturating the

Arf anomaly is a single 0+1d Majorana fermion. Indeed, as discussed in

[57], a Majorana fermion with odd spin structure (Romand boundary

condition) is anomalous under fermi parity. A physical imprint of the

fermi parity anomaly is the existence of fermion zero mode, hence the

fermion expectation value is nontrivial 〈χ〉 = 0.

3. When d = 3, the gravitational Chern Simons term CSg has been de-

fined in Table 6. Notice that in the case GLorentz = SO(3), only 16CSg
is well defined. This is because to define Chern Simons term on 3d

manifold, one needs to define it as an integral on a 4d manifold with

a boundary, CSg = π
∫
Y Â and demand that the 4d integral does not

depend on the choice of the 4d manifold, but only depends on the

boundary ∂Y . For GLorentz = SO(3), the manifold is nonspin, and only

16CSg = 16π
∫
Y Â does not depend on the choice of the bulk manifold.

However, for GLorentz = Spin(d), the manifold is a spin manifold, and

CSg = π
∫
Y Â already does not depend on the choice of the bulk man-

ifold. The anomaly CSg implies that the theory living on the 1 + 1d

boundary should have chiral central charge c− = 1/2. One example of

such a theory is a left moving Majorana fermion. It is a fermionic CFT

with the left and right central charge cL = 1/2 and cR = 0. Hence the

chiral central charge is c− = cL − cR = 1/2.
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Table 8: The bordism and cobordism groups of the symmetry O(d). The
cobordism invariants, representing the d dimensional anomaly inflow actions
of the d− 1 dimensional quantum field theories, are also enumerated. wi is
the i-th Stiefel-Whitney (SW) class of the tangent bundle of the spacetime
manifold, as defined in Table 6

Bordism and Cobordism group

d ΩO
d TPO

d Cobordism Invariant
1 0 0
2 Z2 Z2 w2

1

3 0 0
4 Z2 × Z2 Z2 × Z2 w4

1, w
2
2

5 Z2 Z2 w2w3

2.3. GLorentz = O(d)

When the spacetime symmetry is GLorentz = O(d), the spacetime manifold
should be unorientable. A quantum field theory that can be formulated on
an unorientable manifold should have time reversal symmetry. Moreover,
since a generic unorientable manifold may not have a Pin± structure, the
theory should be regarded as a bosonic, in particular T 2 = 1 on physical
local operators. (As we will see, in certain situations where there are onsite
unitary global symmetry, one can formulate a fermionic theory on a manifold
with GLorentz = O(d).)

We enumerate the bordism and cobordism groups and list the cobor-
dism invariants, in Table 8. Below, we comment on the nontrivial cobordism
invariants, and interpret them as the anomaly inflow actions of QFTs living
in one dimension lower.

1. When d = 2, the w2
1 is a cobordism invariant describing the invertible

TQFT in 1 + 1d. In condensed matter language, such an invertible
TQFT describes a bosonic symmetry protected topological phase with
time reversal symmetry, i.e., the Haldane chain. The boundary of it
supports nontrivial bosonic degrees of freedom that transforms under
time reversal as a Kramers doublet.

2. When d = 4, there are two generators of cobordism invariants. The
first invariant w4

1 describes the invertible TQFT in 3 + 1d, which also
describes time reversal anomaly for a 2 + 1d quantum field theory.
A well known example that saturates such an anomaly is a Z2 gauge
theory where both the Z2 charge and Z2 flux are Kramers doublets [55].

3. When d = 4, the second cobordism invariant w2
2 describes the in-

vertible TQFT in 3 + 1d, which also describes the anomaly of SO(3)
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Table 9: The bordism and cobordism groups of the symmetry Pin+(d). The
cobordism invariants, representing the d dimensional anomaly inflow actions
of the d− 1 dimensional quantum field theories, are also enumerated

Bordism and Cobordism group

d ΩPin+

d TPPin+

d Cobordism Invariant
1 0 0
2 Z2 Z2 w1 ∪ η̃
3 Z2 Z2 w1 ∪Arf
4 Z16 Z16 η
5 0 0

Lorentz symmetry for a 2 + 1d quantum field theory. A well known
example that saturates such an anomaly is a Z2 gauge theory where
both the Z2 charge and Z2 flux are fermions [55].

4. When d = 5, the anomaly w2w3 has already been discussed in the case
GLorentz = SO(d), which will not be repeated here.

2.4. GLorentz = Pin+(d)

When the spacetime symmetry is GLorentz = Pin+(d), the spacetime mani-
fold should be unorientable, and allows a Pin+ structure. In particular the
manifold has nontrivial w1, but a trivial w2. A quantum field theory that
can be formulated on a Pin+ manifold should have time reversal symmetry,
and there exists a fermion in the operator spectrum. Time reversal acts on
the fermion as T 2 = (−1)F where F measures the fermion number, F = 0
for boson and F = 1 for fermion.

We enumerate the bordism and cobordism groups and list the cobor-
dism invariants, in Table 9. Below, we comment on the nontrivial cobordism
invariants, and interpret them as the anomaly inflow actions of QFTs living
in one dimension lower.

1. When d = 2, w1∪ η̃ is a cobordism invariant describing a fermionic in-
vertible TQFT with time reversal symmetry on an unorientable man-
ifold. In fact, this invertible TQFT is the effective field theory of a
Kitaev Chain (with two Majorana fermions per unit cell) protected by
time reversal symmetry with T 2 = (−1)F , already existing in the free
fermion classification in the ten-fold way. One quantum field theory
description of the Kitaev chain is a 2-component Dirac fermion with
large and negative mass term. To relate this QFT description to the
cobordism invariant w1 ∪ η̃, it is convenient to consider the 0 + 1d
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boundary theory and discuss its anomaly. The 0+1d theory is a mass-
less 2-component Majorana fermion χ with the Lagrangian − iχT d

dtχ.
Under time reversal, T : χ(t) → γ0χ(−t) where γ0 = iσ2, and it is ob-
vious that the classical Lagrangian is T invariant. Denoting the path
integral of this Majorana fermion by Z[ρ], where ρ = R,NS is the spin
structure on the circle. Then under time reversal, the path integral
transforms as

T : Z[ρ] →
{
Z[ρ], ρ = NS

−Z[ρ], ρ = R
(2.3)

which can be compactly organized as T : Z[ρ] → Z[ρ] exp(iπη̃). This
indicates precisely the anomaly w1 ∪ η̃.12

Let us also explain why 2w1∪ η̃ is trivial to get the Z2 class. Note that
2w1 ∪ η̃ = w2

1, moreover w2
1 = w2 is true for all 2d smooth manifolds

(always Pin− in 2d), and w2 = 0 for Pin+ thus w2
1 = w2 = 0 mod 2.

2. When d = 3, w1 ∪Arf is a cobordism invariant describing a fermionic
invertible TQFT with time reversal symmetry on an unorientable man-
ifold. In fact, such an invertible TQFT is described by the time reversal
invariant topological superconductor, and appears in the free fermion
classification in the ten-fold way. Similar to d = 2 case, one can still
view w1∪Arf as the mixed anomaly between time reversal and fermion
parity of a 1 + 1d Majorana fermion. This anomaly has been system-
atically discussed in [58],

T : Z[ρ] →
{
Z[ρ], ρ = (R,NS), (NS,R), (NS,NS),

−Z[ρ], ρ = (R,R),
(2.4)

which can be compactly organized as T : Z[ρ] → Z[ρ] exp(iπArf).
This indicates precisely the anomaly w1∪Arf. This anomaly is mod 2
anomaly because both w1 and Arf are mod 2 quantities, hence 2w1∪Arf
is trivial.

3. When d = 4, η is a cobordism invariant describing a fermionic invert-
ible TQFT with time reversal symmetry. Physically, the η invariant
describes the ν = 1 (the fundamental) time reversal invariant topo-
logical superconductor (TSC) with T 2 = (−1)F . The quantum field
theory for this TSc is a 4d complex Dirac fermion with time reversal

12This anomaly can not be changed by modifying the partition function with a
counter term (−1)η̃. Same comment also applies to the anomaly w1 ∪Arf in d = 3.
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Table 10: The bordism and cobordism groups of the symmetry Pin−(d). The
cobordism invariants, representing the d dimensional anomaly inflow actions
of the d− 1 dimensional quantum field theories, are also enumerated

Bordism and Cobordism group

d ΩPin−

d TPPin−

d Cobordism Invariant
1 Z2 Z2 η̃
2 Z8 Z8 ABK
3 0 0
4 0 0
5 0 0

acting on the fermion as T : ψ(t, �x) → γ0ψ∗(−t, �x), and turn on a large
negative mass.13 At the free fermion level, such a SPT is Z classified,
which is labeled by the integer ν by taking ν copies of ν = 1 TSc’s
together. However, in the presence of interaction, ν = 16 TSc can be
driven to a trivial TSc by T preserving interactions without closing the
gap [7, 59, 60, 8, 61, 62]. Hence interaction reduces the classification
to Z16.

2.5. GLorentz = Pin−(d)

When the spacetime symmetry is GLorentz = Pin−(d), the spacetime man-
ifold should be unorientable, and allows a Pin− structure. In particular
w2+w2

1 is trivial. A quantum field theory that can be formulated on a Pin−

manifold should have time reversal symmetry, and there exists a fermion in
the operator spectrum. Time reversal acts on the fermion as T 2 = 1.

We enumerate the bordism and cobordism groups and list the cobordism
invariants, in Table 10. Below, we comment on the nontrivial cobordism
invariants, and interpret them as the anomaly inflow actions of QFTs living
in one dimension lower.

1. When d = 1, the only topology of a connected manifold is a circle,
hence w1 = 0. Thus the Pin− condition w2

1+w2 = 0 is trivially satisfied.
Thus the cobordism invariant for the Pin− manifold reduces to the
cobordism invariant for the Spin manifold, and is given by η̃, as we
have discussed in section 2.2.

2. When d = 2, ABK is a cobordism invariant describing a fermionic in-
vertible TQFT with time reversal symmetry satisfying T 2 = 1. ABK

13This was usually denoted as CT in the condensed matter literature. However,
for the consistency of notations presented in this paper, we will call this T .
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depends on the choice of the Z4 valued Pin− structure, which is ab-

stract to describe (as opposed to the Spin structure where one can

specify by the boundary condition of fermions across each cycle on

T 2). See [7] for the partition function of ABK invariant. However, the
physical meaning of this invariant is clear. A quantum field theory

realizing this invertible TQFT is a Dirac fermion ψ in 1 + 1d with

large negative mass. The fermion ψ transforms under time reversal

as T : ψ(t, x) → γ0ψ∗(−t, x), which is usually denoted as CT in the

literature. Without interaction, it corresponds to the symmetry class

BDI, and the SPT classification is Z. In the presence of interaction, the
classification collapses to Z8, which is precisely described by the ABK

invariant. Another way to understand the ABK invertible TQFT is

via the Smith isomorphism, ΩSpin
3 (BZ2) � ΩPin−

2 [7, 63, 64]. This iso-

morphism relates a 3d invertible spin TQFT with a Z2 unitary global

symmetry to a 2d invertible Pin− TQFT without any symmetry. In-

deed, the former also has Z8 classification, given by SO(n)1 Chern

Simons [22, 65, 66, 7, 67, 68]. The physical meaning of this isomor-
phism is that the domain wall of spontaneously broken Z2 symmetry

supports a 2d ABK TQFT.

3. Global symmetry: G = SU(2)

In this section, we demand the internal global symmetry G to be SU(2),
and allow different choices of the Lorentz symmetry GLorentz. For a given

G and GLorentz, there can be multiple choices of G′ determined by the ex-

act sequence (1.11). Throughout this section, we will assume G = SU(2) to

be the global symmetry. In section 4, we will promote the global symme-

try G to be dynamical, and the physical interpretation for the same exact

sequence (1.11) will be different.

3.1. GLorentz = SO(d)

We first specify GLorentz = SO(d). It means that the spacetime manifold is

oriented, and generically does not allow a spin structure. We will consider a

continuous quantum field theory that can be defined on the such a non-spin

oriented manifold. As it will be discussed below, such a quantum field theory
can allow a fermion in the operator spectrum, as long as the fermion carries

j = Z + 1/2 SU(2) isospin. This should be contrasted to the case where

SU(2) is absent in section 2.1.
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3.1.1. Two classes of Lorentz symmetry extensions. Demanding
GLorentz = SO(d) in the exact sequence (1.11), we obtain

1 → SU(2) → G′ → SO(d) → 1.(3.1)

Because SO(d) tangent bundle has an unconstrained w2, there are two
choices of extensions G′, by either identifying the second Stiefel-Whitney
class of the SU(2)/Z2 = SO(3) bundle w2(VSO(3)) to be either zero or w2,

G′ =

{
SU(2)× SO(d), w2(VSO(3)) = 0,

(SU(2)× Spin(d))/Z2, w2(VSO(3)) = w2.
(3.2)

The two choices of symmetry extensions have different physical interpreta-
tions.

For G′ = SU(2) × SO(d), any local operator O transforming in the j
isospin representation of SU(2), for any j, is a boson. There is no fermionic
operator in the operator spectrum. In the condensed matter language, a
continuous quantum field theory with Lorentz symmetry SU(2) × SO(d)
can be understood as emerging from a lattice model whose fundamental
degrees of freedom are bosonic. As an example, a quantum field theory with
SU(2)× SO(d) global symmetry is the 2 complex scalars with a degenerate
mass.

For G′ = (SU(2)×Spin(d))/Z2, the operator spectrum is allowed to con-
tain fermionic operators. However, the quotient Z2 implies that the statistics
of the operator is correlated with its SU(2) isospin. Specifically, a fermionic
operator should transform under j ∈ Z + 1

2 representation of SU(2), while
a bosonic operator should transform under j ∈ Z representation of SU(2).
This Spin-SU(2) relation is analogous to the Spin-Charge relation when the
global symmetry is U(1) [65]. In the condensed matter language, a theory
with the global symmetry G′ = (SU(2)×Spin(d))/Z2 emerges from a lattice
model whose fundamental degrees of freedom are fermionic and transforms in
j = Z+ 1

2 representation of SU(2), and is regarded as a fermionic theory. For-
mally, the correlation between the SU(2) and Lorentz quantum numbers also
implies nontrivial constraints between the SU(2)/Z2 = SO(3) bundle and the
Spin(d)/Z2 = SO(d) tangent bundle of the spacetime, w2(VSO(3)) = w2 as
in (3.2). We emphasize that although the theory is fermionic, one can still
place the theory on a nonspin manifold, by demanding the SU(2) background
field to be a Spin-SU(2) connection. As an example, a fermionic quantum
field theory with (SU(2)×Spin(d))/Z2 global symmetry is the two free Dirac
fermions with a degenerate mass.
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3.1.2. (Co)bordism groups and invariants of SO(d) × SU(2). As

introduced in the introduction, to compute Ω
SO×SU(2)
d , we need to compute

the Adams spectral sequence (1.16) with MTG′ = MT (SO × SU(2)) =
MSO ∧ (BSU(2))+. Here X+ is the disjoint union of the topological space
X and a point.

By Künneth formula,

H∗(MSO ∧ (BSU(2))+,Z2) = H∗(MSO,Z2)⊗H∗(BSU(2),Z2).(3.3)

We have used the reduced version, note that the reduced cohomology of X+

is exactly the ordinary cohomology of X. Since there is no odd torsion, the
Adams spectral sequence is

Exts,tA2
(H∗(MSO,Z2)⊗H∗(BSU(2),Z2),Z2) ⇒ Ω

SO×SU(2)
t−s .(3.4)

We need to evaluate H∗(MSO,Z2) and H∗(BSU(2),Z2) respectively.

1. To evaluate H∗(MSO,Z2), we use the fact that the localization of
MSO at the prime 2 is MSO(2) = HZ(2) ∨ Σ4HZ(2) ∨ Σ5HZ2 ∨ · · · .
Here HG is the Eilenberg-MacLane spectrum of the group G, Σ is
the suspension, and ∨ is the wedge sum. So the mod 2 cohomology of
MSO is

H∗(MSO,Z2) = A2/A2Sq
1 ⊕ Σ4A2/A2Sq

1 ⊕ Σ5A2 ⊕ · · · .(3.5)

In the above, the projective A2-resolution of A2/A2Sq
1 (denoted by

P•) is

· · · → Σ3A2 → Σ2A2 → ΣA2 → A2 → A2/A2Sq
1(3.6)

where the differentials d1 are induced from Sq1.
2. To evaluate H∗(BSU(2),Z2), we find

H∗(BSU(2),Z2) = Z2[c2].(3.7)

Here c2 is the second Chern class of the SU(2) bundle.

Next, we combine the results. Since P• is actually a free A2-resolution of
A2/A2Sq

1, P• ⊗H∗(BSU(2),Z2) is also a free A2-resolution of A2/A2Sq
1 ⊗

H∗(BSU(2),Z2). The E2 page of the Adams spectral sequence is shown in
Figure 1, from which we can read off the bordism groups and invariants, as
shown in Table 11.
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Figure 1: E2 page of the Adams spectral sequence with symmetry SO(d)×
SU(2). The Bordism group Ω

SO×SU(2)
∗ and the invariants can be read off

from the this chart.

Figure 2: The A2(1)-module structure of H∗+3(MSO(3),Z2) below degree 5.

3.1.3. (Co)bordism groups and invariants of (Spin(d)×SU(2))/Z2.

Let G′ = (Spin(d) × SU(2))/Z2, then by [4], we have MTG′ = MSpin ∧
Σ−3MSO(3). For t − s < 8, since there is no odd torsion, we have the
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Figure 3: E2 page of the Adams spectral sequence with symmetry (Spin(d)×
SU(2))/Z2. The Bordism group Ω

(Spin×SU(2))/Z2

∗ and the invariants can be
read off from the this chart.

Adams spectral sequence

Exts,tA2(1)
(H∗+3(MSO(3),Z2),Z2) ⇒ Ω

Spin×SU(2)

ZF
2

t−s(3.8)

which can be used to determine the bordism group and invariants. Here,
the A2(1)-module structure of H∗+3(MSO(3),Z2) below degree 5 is shown
in Figure 2. From Figure 2, one can obtain the E2 page shown in Figure 3.
From the E2 page, one can read off the (co)bordism group and invariants.

3.1.4. Physical interpretations of the cobordism invariants and
classification of anomalies. The bordism and cobordism groups and
the cobordism invariants are shown in Table 11 and 12. Below, we comment
on the nontrivial cobordism invariants, and interpret them as the anomaly
inflow actions of QFTs living in one dimension lower.

Nontrivial anomalies from TP
SO×SU(2)
d . We first discuss the anoma-

lies associated with the global symmetry SO(d) × SU(2) in Table 11. The
anomaly 16CSg and w2w3 persists even when the SU(2) symmetry is explic-
itly broken, and appeared already in TPSO

d . Hence we will not discuss these
cobordism invariants here.
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Table 11: The bordism and cobordism groups of the symmetry SU(2) ×
SO(d)

Bordism and Cobordism group

d Ω
SO×SU(2)
d TP

SO×SU(2)
d Cobordism Invariant

1 0 0
2 0 0

3 0 Z
2 CS

SU(2)
3 , 16CSg

4 Z
2 0

5 Z2 Z2 w2w3

Table 12: The bordism and cobordism groups of the symmetry (Spin(d) ×
SU(2))/Z2

Bordism and Cobordism group

d Ω
(Spin×SU(2))/Z2

d TP
(Spin×SU(2))/Z2

d Cobordism Invariant
1 0 0
2 0 0

3 0 Z
2 ĈS

SU(2)

3 , 16CSg
4 Z

2 0

5 Z2 × Z2 Z2 × Z2 w2w3, Î1/2

The remaining nontrivial cobordism invariant is CS
SU(2)
3 . The anomaly

CS
SU(2)
3 can be saturated by bosonic gapless Wess-Zumino-Witten (WZW)

CFT with the target space SU(2) in 2d. There is a WZW term, kWZWSU(2)

that can be defined only by introducing an auxiliary 3d manifold that is

bounded by the 2d spacetime. Demanding that the WZW term kWZWSU(2)

to be independent of the choice of 3d manifold enforces k ∈ Z. When coupled

to the SU(2) background field, the WZW term depends on the choice of

3d manifold, hence it contributes a nontrivial anomaly kCS
SU(2)
3 . Different

choice of k corresponds to different anomaly, hence k parameterizes the

integer classification Z.

We remark that one can not write down a 5d SU(2) Chern Si-

mons term simply because the rank of the symmetry group is too

low. Explicitly, one can check for instance Tr(AdAdA + · · · ) ∼∑3
a,b,c=1

∑4
μ,ν,ρ,σ,λ=0 εabcε

μνρσλAa
μ∂νA

b
ρ∂σA

c
λ + · · · which vanishes because

the epsilon tensors enforce a minus sign if we exchange b ↔ c, ν ↔ σ, ρ ↔ λ.

This explains that there is no perturbative anomaly for SU(2)3 triangle dia-

gram. However, for SU(N) with N ≥ 3, a nontrivial 5d Chern Simons term

CS
SU(N)
5 = 1

24π2

∫
Tr

(
AdAdA− 3 i

2 A
3dA− 3

5A
5
)
exists.
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Nontrivial anomalies from TP
(Spin×SU(2))/Z2

d . We further discuss the
anomalies associated with the global symmetry (Spin × SU(2))/Z2 in Ta-
ble 12. Similar to the case SO(d) × SU(2), the anomaly 16CSg and w2w3

persist even when the SU(2) symmetry is explicitly broken, and appear al-
ready in ΩSO

d and TPSO
d . Hence we will not discuss these cobordism invariants

here.

The remaining nontrivial cobordism invariants are ĈS
SU(2)

3 and I1/2,
which we discuss below. The cobordism invariant ĈS

SU(2)

3 is obtained from

CS
SU(2)
3 via replacing the SU(2) gauge field by the Spin-SU(2) connection,

with suitable gravitational Chern Simons term 4CSg. We will derive such

gravitational term in section 4.1.3. This is reminiscent to the ĈS
U(1)

3 Chern
Simons theory where the gauge field is Spinc connection. Such a theory is
well-defined on a non-spin manifold only when 2CSg is appended.

The remaining nontrivial cobordism invariant is Î1/2, which is the mod
2 reduction of the Dirac operator of a fermion in the j = 1/2 SU(2) isospin
representation, coupled to Spin-SU(2) connection and formulated on a non-
spin manifold in 5d [26]. If formulating Î1/2 on the spin manifold and couple

to an ordinary SU(2) gauge field, the anomaly Î1/2 reduces to the standard

Witten SU(2) anomaly I1/2 [26]. In [12], it has been suggested that Î1/2 can
be expressed in terms of a twisted version of Stiefel-Whitney class w′

3 and
the Arf invariant. A more precise relation will be discussed in [69].

3.2. GLorentz = Spin(d)

When GLorentz = Spin(d), the spacetime manifold is an oriented manifold
that allows a spin structure. Thus the quantum field theory on such a man-
ifold contains a fermion in the local operator spectrum.

3.2.1. Total symmetry and classification of anomalies. Demanding
GLorentz = Spin(d) in the exact sequence (1.11), we obtain

1 → SU(2) → G′ → Spin(d) → 1.(3.9)

Since both w1 and w2 vanish for the Spin(d) bundle, w2(VSO(3)) can not be
correlated with anything. So w2(VSO(3)) = 0, which implies that the SO(3)
bundle is lifted to the SU(2) bundle. There is only one choice of extension

G′ = SU(2)× Spin(d), w2(VSO(3)) = 0.(3.10)
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Figure 4: The A2(1)-module structure of H∗(BSU(2),Z2) below degree 5.

Figure 5: E2 page of the Adams spectral sequence with symmetry Spin(d)×
SU(2). The Bordism group Ω

Spin×SU(2)
∗ and the invariants can be read off

from the this chart.

The total symmetry (3.10) implies that the fermion carries SU(2) isospin j
with either j being integer or half-integer. This should be contrasted with
the total symmetry G′ = (SU(2) × Spin(d))/Z2 where fermion can only
transform under j = Z+1/2 SU(2) isospin. The product structure of the to-
tal symmetry implies that there is no nontrivial bundle constraints between
SU(2) and the tangent bundle of the spacetime manifold.

3.2.2. (Co)bordism groups and invariants of Spin(d) × SU(2).
We need to compute the Adams spectral sequence (1.16) with MTG′ =
MT (Spin × SU(2)) = MSpin ∧ (BSU(2))+. For t − s < 8, since there is no
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Table 13: The bordism and cobordism groups of the symmetry Spin(d) ×
SU(2)

Bordism and Cobordism group

d Ω
Spin×SU(2)
d TP

Spin×SU(2)
d Cobordism Invariant

1 Z2 Z2 η̃
2 Z2 Z2 Arf

3 0 Z× Z CS
SU(2)
3 ,CSg

4 Z× Z 0
5 Z2 Z2 I1/2

odd torsion, the Adams spectral sequence is

Exts,tA2(1)
(H∗(BSU(2),Z2),Z2) ⇒ ΩSpin

t−s (BSU(2)).(3.11)

The A2(1)-module structure of H∗(BSU(2),Z2) below degree 5 is shown in
Figure 4, from which one can find the E2 page as shown in Figure 5. One
can read off the (co)bordism invariants from the E2 page as in Table 13.

3.2.3. Physical interpretations of the cobordism invariants and
classification of anomalies. The bordism and cobordism groups and the
cobordism invariants are enumerated in Table 13. The anomaly η̃,Arf,CSg
already appear in TPSpin

d , which have been discussed already in section 2.2.

CS
SU(2)
3 is the 3d SU(2) Chern Simons term at level 1, discussed already in

section 3.1.4. I1/2 is the mod 2 reduction of the Dirac operator of fermion
in the j = 1/2 SU(2) isospin representation,coupled to SU(2) background
field and formulated on the spin manifold. This is obtained from Î1/2 in
section 3.1.4 by taking w2 = 0.

Another way of representing the cobordism invariant I1/2 is η̃c
SU(2)
2

mod 2, where η̃ is defined in (2.1) and c
SU(2)
2 is the second Chern class of the

SU(2) vector bundle. The physical meaning of the SU(2) Witten anomaly
in this representation is more transparent: If we couple the system to the

SU(2) background field A with nontrivial instanton number
∫
M c

SU(2)
2 , the

anomaly η̃c
SU(2)
2 mod 2 means under fermi-parity transformation, the par-

tition function acquires a minus sign,

Z[A] → (−1)
∫
M

c
SU(2)
2 Z[A](3.12)

which further means that the core of the SU(2) instanton traps a nontriv-
ial fermion zero mode. This is precisely the signature of the SU(2) Witten
anomaly.
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3.3. GLorentz = O(d)

When GLorentz = O(d), the spacetime manifold is an unorientable manifold,
in particular w1 and w2 are both un-constrained. A quantum field theory
that can be formulated on the most generic unorientable manifold must be
time reversal symmetric. However, T 2 does not have to be identity. The
eigenvalue of T 2 on a local operator depends on the choice of symmetry
extension, as we will discuss below.

3.3.1. Four Lorentz symmetry extensions. Demanding GLorentz =
O(d) in the exact sequence (1.11), we obtain

1 → SU(2) → G′ → O(d) → 1.(3.13)

For O(d), w1, w2
1 and w2 are all unconstrained. Hence one can identify

w2(VSO(3)) of the SO(3) vector bundle with K1w
2
1+K2w2 for all four choices

of (K1,K2) ∈ Z2×Z2. This means that there are four choices of extensions,

G′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
SU(2)×O(d), w2(VSO(3)) = 0,

(SU(2)× E(d))/Z2, w2(VSO(3)) = w2
1,

(SU(2)× Pin+(d))/Z2, w2(VSO(3)) = w2,

(SU(2)× Pin−(d))/Z2, w2(VSO(3)) = w2
1 + w2.

(3.14)

The four choices of symmetry extensions have different physical interpreta-
tions.

For G′ = SU(2)×O(d), which corresponds to trivial extension, any local
operator in the operator spectrum should be bosonic, and allows to have
arbitrary SU(2) isospin j. Time reversal transformation satisfies T 2 = 1.
Formally, there are no gauge bundle constraints between the SU(2) bundle
and the tangent bundle of the spacetime manifold.

For G′ = (SU(2)× E(d))/Z2, any local operator in the operator spec-
trum should still be bosonic. However, the SU(2) isospin j should be cor-
related with its Kramers parity: any operator with j = Z transforms as
a Kramers singlet, while any operator with j = Z + 1/2 transforms as a
Kramers doublet. In summary, T 2 = (−1)2j . Formally, the SU(2)/Z2 =
SO(3) bundle and the tangent bundle of the spacetime manifold are corre-
lated: w2(VSO(3)) = w2

1.

For G′ = (SU(2)× Pin+(d))/Z2, the statistics and Kramers parity of a
local operator are correlated with the SU(2) isospin j. If the operator is a
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fermion, it transforms as a Kramers doublet under time reversal, and car-
ries j = Z+1/2 SU(2) isospin. If the operator is a boson, it transforms as a
Kramers singlet under time reversal, and carries j = Z SU(2) isospin. In sum-
mary, T 2 = (−1)(2j+1)F . Formally, the SU(2)/Z2 = SO(3) bundle and the
tangent bundle of the spacetime manifold are correlated: w2(VSO(3)) = w2.

For G′ = (SU(2)× Pin−(d))/Z2, the statistics of a local operator are
correlated with the SU(2) isospin j, while the Kramers parity does not.
If the operator is a fermion, it carries j = Z + 1/2 SU(2) isospin. If the
operator is a boson, it carries j = Z SU(2) isospin. In both cases, the operator
should transform as a Kramers singlet. In summary, T 2 = 1. Formally, the
SU(2)/Z2 = SO(3) bundle and the tangent bundle of the spacetime manifold
are correlated: w2(VSO(3)) = w2

1 + w2.

3.3.2. (Co)bordism groups and invariants of O(d) × SU(2). We
need to compute the Adams spectral sequence (1.16) withMTG′ = MT (O×
SU(2)) = MO ∧ (BSU(2))+. By Künneth formula,

H∗(MO ∧ (BSU(2))+,Z2) = H∗(MO,Z2)⊗H∗(BSU(2),Z2).(3.15)

Since there is no odd torsion, the Adams spectral sequence (1.16) can be
written as

Exts,tA2
(H∗(MO,Z2)⊗H∗(BSU(2),Z2),Z2) ⇒ Ω

O×SU(2)
t−s .(3.16)

We need to compute H∗(MO,Z2) and H∗(BSU(2),Z2) separately.

1. H∗(MO,Z2) can be computed as follows. The Thom spectrum MO
is the wedge sum of suspensions of the mod 2 Eilenberg-MacLane
spectrum HZ2, hence H∗(MO,Z2) is the direct sum of suspensions of
the mod 2 Steenrod algebra A2, actually Thom proved that

π∗(MO) = ΩO
∗ = Z2[x2, x4, x5, x6, x8, . . . ](3.17)

where the generators are in each degree other than 2n − 1. So MO =
HZ2 ∨ Σ2HZ2 ∨ 2Σ4HZ2 ∨ Σ5HZ2 ∨ · · · and

H∗(MO,Z2) = A2 ⊕ Σ2A2 ⊕ 2Σ4A2 ⊕ Σ5A2 ⊕ · · ·(3.18)

2. H∗(BSU(2),Z2) is already computed in (3.7)

H∗(BSU(2),Z2) = Z2[c2].(3.19)
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Table 14: The bordism and cobordism groups of the symmetry O(d)×SU(2)

Bordism and Cobordism group

d Ω
O×SU(2)
d TP

O×SU(2)
d Cobordism Invariant

1 0 0
2 Z2 Z2 w2

1

3 0 0

4 Z2 × Z2 × Z2 Z2 × Z2 × Z2 w4
1, w

2
2, c

SU(2)
2 mod 2

5 Z2 Z2 w2w3

Combining the above results, we find

H∗(MO,Z2)⊗H∗(BSU(2),Z2)(3.20)

= (A2 ⊕ Σ2A2 ⊕ 2Σ4A2 ⊕ Σ5A2 ⊕ · · · )⊗ Z2[c2]

= A2 ⊕ Σ2A2 ⊕ 3Σ4A2 ⊕ Σ5A2 ⊕ · · · .

Using

Exts,tA2
(ΣrA2,Z2) =

{
Homt

A2
(ΣrA2,Z2) = Z2 if t = r, s = 0

0 else
,(3.21)

and apply it to every component in (3.20), we obtain the bordism group and
invariants as shown in Table 14. The physical interpretation of cobordism
invariants will be discussed in section 3.3.6.

3.3.3. (Co)bordism groups and invariants of (E(d) × SU(2))/Z2.
We first derive a useful equivalent expression for MTG′ = MT ((E(d) ×
SU(2))/Z2).

First, notice that E is defined to be the subgroup of O × Z4 con-
sisting of the pairs (A, j) such that detA = j2, there is a fibration

BE → BO
w2

1−→ B2Z2. We can also think of the space BE as the fiber of
w1 + x : BO × BZ4 → BZ2, where x is the generator of H1(BZ4,Z2). Note
that SU(2)×Z2

Z4 = Pin+(3), we can think of the space B(E×Z2
SU(2)) as

the fiber of w1 + w′
1 : BO × BPin+(3) → BZ2, where w′

1 is the generator
of H1(BPin+(3),Z2). Take W to be the rank 3 vector bundle on BPin+(3)
determined by BPin+(3) → BO(3). Define a map f : BO × BPin+(3) →
BO×BPin+(3) by (V, V ′) → (V +W − 3, V ′), with inverse (V, V ′) → (V −
W+3, V ′). Observe f∗(w1) = w1+w′

1, so that BE is homotopy equivalent to
BSO×BPin+(3). The canonical bundle BE → BO corresponds to V −W +3
on BSO×BPin+(3). So MT (E×Z2

SU(2)) = MTSO∧Thom(BPin+(3), 3−
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Table 15: The bordism and cobordism groups of the symmetry (E(d) ×
SU(2))/Z2

Bordism and Cobordism group

d Ω
(E×SU(2))/Z2

d TP
(E×SU(2))/Z2

d Cobordism Invariant
1 0 0
2 Z2 Z2 w2

1

3 0 0

4 Z2 × Z2 × Z2 Z2 × Z2 × Z2 w4
1, w

2
2, c

SU(2)
2 mod 2

5 Z2 Z2 w2w3

W ) = MSO∧Σ−3MPin+(3). MPin+(3) can be further simplified, by using

MPin+(3) = MTPin−(3) = MT (Spin(3)× Z2) = MTSpin(3) ∧MTZ2.

MT ((E× SU(2))/Z2) = MSO ∧ Σ−4MSU(2) ∧ Σ1MTO(1)(3.22)

� MO ∧ Σ−4MSU(2).

By Künneth formula,

H∗(MO ∧ Σ−4MSU(2),Z2) = H∗(MO,Z2)⊗H∗+4(MSU(2),Z2).(3.23)

Since there is no odd torsion, we have the Adams spectral sequence

Exts,tA2
(H∗(MO,Z2)⊗H∗+4(MSU(2),Z2),Z2) ⇒ Ω

E×Z2
SU(2)

t−s .(3.24)

Using

H∗+4(MSU(2),Z2) = Z2[c2]U(3.25)

where c2 is the Chern class of the SU(2) bundle and U is the Thom class,

we find

H∗(MO,Z2)⊗H∗+4(MSU(2),Z2)(3.26)

= (A2 ⊕ Σ2A2 ⊕ 2Σ4A2 ⊕ Σ5A2 ⊕ · · · )⊗ Z2[c2]U

= A2 ⊕ Σ2A2 ⊕ 3Σ4A2 ⊕ Σ5A2 ⊕ · · · .

From (3.26), one can read off the bordism group and invariant as shown

in Table 15. The physical interpretation of cobordism invariants will be

discussed in section 3.3.6.
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Figure 6: The A2(1)-module structure of H∗+3(MO(3),Z2) below degree 5.

3.3.4. (Co)bordism groups and invariants of (Pin+(d)×SU(2))/Z2.

Let G′ = (Pin+(d)× SU(2))/Z2, then by [4, 8], we have MTG′ = MSpin ∧
Σ−3MO(3). Here w2(TM) = w′

2(VSO(3)), w3(TM) + w1(TM)w2(TM) =

w′
3(VSO(3)) and w1(TM) is nontrivial, w′

1(VSO(3)) = 0. For t − s < 8, since

there is no odd torsion, the Adams spectral sequence is

Exts,tA2(1)
(H∗+3(MO(3),Z2),Z2) ⇒ Ω

(Pin+(d)×SU(2))/Z2

t−s .(3.27)

The A2(1)-module structure of H∗+3(MO(3),Z2) below degree 5 is shown

in Figure 6, from which one can derive the E2 page shown in Figure 7. Then

one can read off the (co)bordism groups and invariants from the E2 page, as

shown in Table 16. The physical interpretation of cobordism invariants will

be discussed in section 3.3.6.

3.3.5. (Co)bordism groups and invariants of (Pin−(d)×SU(2))/Z2.

Let G′ = (Pin−(d) × SU(2))/Z2, then by [4, 8], we have MTG′ =

MSpin ∧ Σ3MTO(3). Here w2(TM) + w1(TM)2 = w′
2(VSO(3)), w3(TM) +

w2(TM)w1(TM) = w′
3(VSO(3)) and w1(TM) is nontrivial, w′

1(VSO(3)) = 0.

For t − s < 8, since there is no odd torsion, we have the Adams spectral

sequence

Exts,tA2(1)
(H∗−3(MTO(3),Z2),Z2) ⇒ Ω

(Pin−(d)×SU(2))/Z2

t−s .(3.28)
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Figure 7: E2 page of the Adams spectral sequence with symmetry (Pin+(d)×
SU(2))/Z2. The Bordism group Ω

(Pin+×SU(2))/Z2

∗ and the invariants can be
read off from the this chart.

Table 16: The bordism and cobordism groups of the symmetry (Pin+(d) ×
SU(2))/Z2

Bordism and Cobordism group

d Ω
(Pin+×SU(2))/Z2

d TP
(Pin+×SU(2))/Z2

d Cobordism Invariant
1 0 0
2 Z2 Z2 w2

1

3 0 0
4 Z2 × Z4 Z2 × Z4 w2

2, ηSU(2)

5 Z2 Z2 w2w3

The A2(1)-module structure of H∗−3(MTO(3),Z2) below degree 5 and the
E2 page are shown in Figure 8, 9. One can then read off the (co)bordism in-
variants from the E2 page, as shown in Table 17. The physical interpretation
of cobordism invariants will be discussed in section 3.3.6.

3.3.6. Physical interpretations of the cobordism invariants and
classification of anomalies. The bordism and cobordism groups and
the cobordism invariants are enumerated in Table 14, 15, 16 and 17. We dis-
cuss the physical interpretations of the cobordism invariants in these tables.
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Figure 8: The A2(1)-module structure of H∗−3(MTO(3),Z2) below degree 5.

Figure 9: E2 page of the Adams spectral sequence with symmetry (Pin−(d)×
SU(2))/Z2. The Bordism group Ω

(Pin−×SU(2))/Z2

∗ and the invariants can be
read off from the this chart.
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Table 17: The bordism and cobordism groups of the symmetry (Pin−(d) ×
SU(2))/Z2

Bordism and Cobordism group

d Ω
(Pin−×SU(2))/Z2

d TP
(Pin−×SU(2))/Z2

d Cobordism Invariant
1 0 0
2 Z2 Z2 w2

1

3 0 0
4 Z2 × Z2 × Z2 Z2 × Z2 × Z2 w2

1, w
2
2, N0

5 Z2 × Z2 Z2 × Z2 w2w3, Î1/2

We will not discuss the anomalies w2
1, w

4
1, w

2
2 and w2w3 which have already

been discussed in section 2.3.

Nontrivial anomalies from TP
O×SU(2)
d . Modulo the cobordism invari-

ants from TPO
d , the only nontrivial invariant in Table 14 is c

SU(2)
2 mod 2.

The physical interpretation of this cobordism invariant as an anomaly is as

follows. Suppose A is the SU(2) background gauge field, and the partition

function of an SU(2) invariant system in 2+1d is Z[A]. Under time reversal,

the partition function transforms as Z[A] → Z[A] exp(iCS
SU(2)
3 [A]). This

means that there is a mixed anomaly between time reversal and SU(2) sym-

metry. This mixed anomaly can be canceled by attaching a 3+1d cobordism

invariant, so that the total partition function

exp
(
iw1 ∪ CS

SU(2)
3 [A]

)
= exp

(
i
δ

2
CS

SU(2)
3 [A]

)
= exp

(
iπc

SU(2)
2 [A]

)
.

(3.29)

Hence Z[A] exp(iπc
SU(2)
2 [A]) is time reversal invariant.

Nontrivial anomalies from TP
(E×SU(2))/Z2

d . The cobordism invariants
of the total symmetry (E(d) × SU(2))/Z2 in Table 15 are the same as the

cobordism invariants of the symmetry O(d) × SU(2). This should not be

a surprise, because all the invariants already appeared in TPO
d should per-

sist, and the remaining anomaly c
SU(2)
2 mod 2 is linear in the time reversal

background field hence it should not depend on the Kramers parity.

Nontrivial anomalies from TP
(Pin+×SU(2))/Z2

d . Comparing with the

cobordism invariants in TPO
d , the only additional invariant ηSU(2) in
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TP
Pin+×SU(2)
d is the eta invariant of the Dirac operator coupled to Pin+-

SU(2) background gauge field A. It can be obtained via taking the large
negative mass limit of the free SU(2) invariant Dirac fermion coupled to A.
The partition function is [8, 60]

exp
(
2π iνηSU(2)

)
.(3.30)

See [8] for a systematic discussion of ηSU(2). On an unorientable manifold,
there is a relation 4ηSU(2) = w4

1 mod 2. This means

1. ν ∼ ν + 4, hence this cobordism invariant generates a Z4 group, as
shown in Table 16. The four classes are labeled by ν = 0, 1, 2, 3 mod 4.

2. When ν = 2 mod 4, using the above relation, the invariant is (3.30)
reduces to exp

(
4π iηSU(2)

)
= exp

(
iπw4

1

)
[8] which is the cobordism

invariant in TPO
d . Hence although w4

1 does not appear explicitly in
Table 16, it is implicitly encoded in the invariant ηSU(2). This is con-
sistent with the fact that once SU(2) is explicitly broken but time re-

versal is still preserved, the invariants in TP
Pin+×SU(2)
d should reduce

to the invariants in TPO
d .

3. The invariant that does not appear in TPO
d correspond to ν = 1, 3

mod 4. Since the ν = 1 mod 4 and ν = 3 mod 4 differ by μ = 2
mod 4 which belongs to TPO

d , it suffices to discuss ν = 1 mod 4
only. As we mentioned above, the quantum field theory realizing such
a SPT is ν free 4-component Dirac fermions coupled to Pin+-SU(2)
connection, all with a large negative mass. Thus the boundary the-
ory of this SPT phase is ν massless free 2-component Dirac fermions
coupled to Pin+-SU(2) connection. The ν = 1 anomaly even persists
when the Pin+-SU(2) connection is replaced by the SU(2) connection.

After such replacement, the original ν = 1 anomaly reduces to c
SU(2)
2

mod 2, which is the mixed anomaly between time reversal and the
SU(2) symmetry.

4. The Z4 class from the free Dirac fermion coupled to Pin+-SU(2) con-
nection (CI symmetry class) is intimately related to the Z8 class from
the free Dirac fermion coupled to Pin+-U(1) connection (AIII symme-
try class). The two cases are related by restricting the SU(2) to its U(1)
subgroup. It is also related to the Z16 class from the free Majorana
fermion in the Pin+ class (DIII symmetry class) [8].

Nontrivial anomalies from TP
(Pin−×SU(2))/Z2

d . Comparing with the

cobordism invariants in TPO
d , the only additional invariants are N0 and Î1/2.
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N0 is the eta invariant which counts the number of zero modes of the Dirac

fermion coupled to Pin−-SU(2) connection [8, 60].

Zν [A] = lim
m→−∞,M→∞

(
det( /DA +m)

det( /DA +M)

)ν

= (−1)νN0 ,(3.31)

where M mass in the denominator is the Pauli-Villas regularization. Time

reversal requires that the fermion mass m is real. When m is positive and

large, the theory is in the trivially gapped, and whenm is negative and large,

the theory is the nontrivial SPT. The number of zero modes is topological

only mod 2 [8]. When time reversal is explicitly broken so that the symmetry

class reduces to (Spin(d) × SU(2))/Z2, the fermion mass no longer has to

be real, and one can turn on complex mass m of the fermion to connect

m ∈ R+ and m ∈ R− without encountering the massless point. This is

consistent with TP
(Spin(d)×SU(2))/Z2

4 being trivial.

Î1/2 in d = 5 is the same invariant in the symmetry class (Spin(d) ×
SU(2))/Z2. In fact, the existence of Î1/2 is independent of whether time

reversal exists. One way to see this is to notice that one can not write down

a mass term of the left handed SU(2) invariant Weyl fermion in 3+1d, hence

forbidding SU(2) invariant mass term (which drives the massless fermion to

trivially gapped phase) does not require time reversal symmetry. Therefore

Î1/2 in the two symmetry classes (Spin(d) × SU(2))/Z2 and (Pin−(d) ×
SU(2))/Z2 are identical.

As remarked in section 3.2, Î1/2 can be expressed in terms of a twisted

version of Stiefel-Whitney class w′
3 and the Arf invariant. Similarly N0 can

be written in terms of a twisted version of Stiefel-Whitney class w′
3 and the

η̃ invariant. A more precise relation will be discussed in [69].

3.4. Brief comments on GLorentz = Pin±(d)

When GLorentz = Pin±(d), the spacetime manifold is an unorientable mani-

fold which is equipped with a Pin± structure. We will denote such manifold

as the Pin± manifold respectively. In particular, w1 is unconstrained while

w2 is trivial for Pin+ or w2
1 +w2 is trivial for Pin−. A quantum field theory

that can be formulated on the most generic Pin± manifold must be time

reversal symmetric and allows a fermion in the local operator spectrum.

The fermion transforms under time reversal symmetry as a Kramers dou-

blet: T 2 = (−1)F where F measures the fermion number for Pin+, or as a

Kramers singlet: T 2 = 1 for Pin−.
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3.4.1. Lorentz symmetry extensions for GLorentz = Pin+(d):
SU(2)×Pin+(d) and (SU(2)×EPin(d))/Z+

2 . Demanding GLorentz =
Pin+(d) in the exact sequence (1.11), we obtain

1 → SU(2) → G′ → Pin+(d) → 1.(3.32)

For Pin+(d), w1, w
2
1 are both unconstrained, but w2 = 0. Hence we can

identify w2(VSO(3)) of the SO(3) vector bundle with 0 or w2
1. This means

that there are two choices of extensions,

G′ =

{
SU(2)× Pin+(d), w2(VSO(3)) = 0,

(SU(2)× EPin(d))/Z+
2 , w2(VSO(3)) = w2

1.
(3.33)

Here the group EPin(d) is a double cover of the group Pin+(d). Recall that
as we discussed in section 1.1, there are two Z2 normal subgroups in EPin(d),
i.e., Z+

2 ×Z
−
2 . In the second line in (3.33) which corresponds to the nontrivial

extension, one is identifying one of the Z2 subgroup, Z+
2 , in EPin(d) with

the Z2 subgroup of SU(2).
For G′ = SU(2)×Pin+(d), which corresponds to trivial extension, in the

local operator spectrum, a fermion should transform as a Kramers doublet
under time reversal, and a boson should transform as a Kramers singlet
under time reversal. Both the fermion and a boson can carry arbitrary SU(2)
isospin j. Formally, there are no bundle constraints between the SU(2) vector
bundle and the tangent bundle of the spacetime manifold.

For G′ = (SU(2)×EPin(d))/Z+
2 , it corresponds to a nontrivial extension.

In the operator spectrum, there are two transparent fermions ψ+ and ψ−,
being Kramers singlet and doublet respectively. The fermion ψ+, being a
Kramers singlet, should also carry SU(2) isospin j = Z+ 1/2. However, the
other fermion ψ−, being a Kramers doublet, can carry any SU(2) isospin.
Formally, the SO(3) vector bundle and the tangent bundle of the spacetime
manifold are correlated: w2(VSO(3)) = w2

1 and w2 = 0.

3.4.2. Lorentz symmetry extensions for GLorentz = Pin−(d):
SU(2)×Pin−(d) and (SU(2)×EPin(d))/Z−

2 . Demanding GLorentz =
Pin−(d) in the exact sequence (1.11), we obtain

1 → SU(2) → G′ → Pin−(d) → 1.(3.34)

For Pin−(d), w1 is unconstrained, but w2
1 + w2 = 0. Hence we can identify

w2(VSO(3)) of the SO(3) vector bundle with 0 or w2
1 which is also w2. This
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means that there are two choices of extensions,

G′ =

{
SU(2)× Pin−(d), w2(VSO(3)) = 0,

(SU(2)× EPin(d))/Z−
2 , w2(VSO(3)) = w2

1 = w2.
(3.35)

Here the group EPin(d) is a double cover of the group Pin−(d), which is
the same group that appear in (3.33). However, notice that here we use a
different Z2 normal subgroup of EPin(d), i.e. Z−

2 , to identify with the Z2 in
SU(2).

For G′ = SU(2) × Pin−(d), which corresponds to trivial extension, in
the local operator spectrum, both boson and fermion should transform as
a Kramers singlet under time reversal. Both the fermion and a boson can
carry arbitrary SU(2) isospin j. Formally, there are no bundle constraints
between the SU(2) vector bundle and the tangent bundle of the spacetime
manifold.

For G′ = (SU(2)×EPin(d))/Z−
2 , it corresponds to a nontrivial extension.

In the operator spectrum, there are two transparent fermions ψ+ and ψ−,
being Kramers singlet and doublet respectively. The fermion ψ−, being a
Kramers doublet, should also carry SU(2) isospin j = Z + 1/2. However,
the other fermion ψ+, being a Kramers singlet, can carry any SU(2) isospin.
Formally, the SO(3) vector bundle and the tangent bundle of the spacetime
manifold are correlated: w2(VSO(3)) = w2

1 and w2 = w2
1.

We will leave the calculation of (co)bordism invariants and their physical
interpretations in a separate paper.

4. Promoting SU(2) to dynamical gauge theories

In this section, we try to promoting the SU(2) internal global symmetry to
the dynamical gauge group. We will only consider the SU(2) gauge theory
with the action

S = − 1

4g2

∫
M

Tr (f ∧ �f) + SSPT,(4.1)

where the topological term SSPT is the cobordism invariants computed in
section 3. The topological term can be either the discrete theta term of the
SU(2) gauge field, or the term with both the SU(2) gauge field and the
spacetime background fields, or the counter term involving on the back-
ground field of the spacetime. Moreover, because we only consider the pure
gauge theory, there is an emergent Z2,[1] 1-form center symmetry in the re-
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sulting gauge theory. Denote the 2-form background gauge field of the Z2,[1]

1-form symmetry as B. If before gauging SU(2) the bundle constraint be-

tween SU(2) and the Lorentz symmetry is w2(VSO(3)) = K1w
2
1 +K2w2, then

after coupling to the background field B, the gauge bundle constraint is

modified to14

w2(VSO(3)) = B +K1w
2
1 +K2w2.(4.2)

There are no constraints B and Lorentz background fields, hence after

dynamical gauging SU(2), the global symmetry is H = Z2,[1] × GLorentz.

As we will see, different choices of (K1,K2) can lead to different anoma-

lies.

As a preliminary, we comment on the SU(2) Yang-Mills theory without

any topological terms. Because the Yang-Mills action is a functional of the

SU(2) field strength, and the field strength has two antisymmetric indices,

the Yang-Mills theory can only be defined in 1 + 1 or higher dimensions.

Throughout this section, we will thus not discuss the 0 + 1d systems. In

1 + 1d, SU(2) Yang-Mills is exactly solvable [70], and it can be shown that

there is only one ground state on the spatial manifold R. In higher dimen-

sions, Yang-Mills theory in the infrared is strongly coupled, and it is com-

monly believed that the theory should also have a trivially gapped ground

state. Therefore, nontrivial anomalies involving one form symmetry requires

nontrivial topological terms. Hence, in the following sections, we will focus

on the cases with nontrivial cobordism groups, and see if nontrivial anomaly

for the emergent one form symmetry arises.

4.1. GLorentz = SO(d)

When the Lorentz symmetry is SO(d), there are two possibilities of the total

symmetries, given in (3.2). When promoting the SU(2) global symmetry

to dynamical and including the Z2,[1] one form symmetry background B2,

the resulting global symmetries and the gauge bundle constraints for the

14This is the sensible modification because taking wi = 0 or B = 0 separately
produces the correct gauge bundle constraint in different limits. When takingB = 0,
it reduces w2(VSO(3)) = K1w

2
1+K2w2 as expected. On the other hand, when taking

wi = 0, it reduces to w2(VSO(3)) = B, which is expected because the one form
symmetry should be irrelevant to whether the spacetime topology is nontrivial or
not.
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Table 18: The bordism and cobordism groups of the symmetry SO(d)×Z2,[1]

Bordism and Cobordism group

d Ω
SO×Z2,[1]

d TP
SO×Z2,[1]

d Cobordism Invariant
1 0 0
2 Z2 Z2 B2

3 0 Z 16CSg
4 Z× Z4 Z4 P(B2)
5 Z2 × Z2 Z2 × Z2 w2w3, B2Sq

1B2

resulting dynamical SU(2) gauge theory are

G′ =

{
SU(2)× SO(d)

(SU(2)× Spin(d))/Z2

⇒

H =

{
Z2,[1] × SO(d), w2(VSO(3)) = B2,

Z2,[1] × SO(d), w2(VSO(3)) = B2 + w2.

(4.3)

Here w2(VSO(3)) is the second Stiefel-Whitney class of the dynamical gauge

bundle, which should be distinguished from that appears in (3.2).

We comment on the physical meanings in these two cases. In both cases,

the Lorentz symmetry is SO(d), which means in both cases the theories

should be able to be defined on a most generic non-spin manifold. In partic-

ular, in the second case, after gauging, the SO(d) is no longer lifted to Spin(d)

to identify its center with that of the internal symmetry. This means that

in the operator spectrum, there is no transparent fermion. However, after

gauging, there is a gauge invariant non-transparent fermion line operator

(which does not commute with all other gauge invariant operators). This

can be seen by noticing that the Wilson line in the fundamental representa-

tion of SU(2), W1/2, bounds a disk which supports a two dimensional SPT

B + w2, and the boundary of the 2d SPT w2 is the world line of a fermion.

Furthermore, W1/2 carries charge 1 under Z2,[1].

4.1.1. (Co)bordism groups and invariants of SO(d)×Z2,[1]. We fur-

ther discuss the anomaly of the emergent symmetry H. Because the emer-

gent symmetry is H = Z2,[1] × SO(d), one can compute the bordism and

cobordism group and enumerate all possible cobordism invariants as shown

in Table 18. See [10] for the derivation of the (co)bordism calculations. We

comment on which anomaly can be saturated by gauging the SPTs in Ta-

ble 11 and 12.
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The d dimensional cobordism invariant in Table 18 can be regarded

as the ’t Hooft anomaly of (d − 1) dimensional gauge theory obtained by

gauging SU(2) in Table 11 and 12. For the nontrivial cobordism invariants

in Table 11 and 12, we will only focus on those that involve SU(2) gauge

bundle, and also only focus on those in two and three and four dimensions,

which are physically relevant.

4.1.2. Gauging SU(2) in SU(2) × SO(d). The only cobordism that

involves the SU(2) bundle in Table 11 is CS
SU(2)
3 . This means after gauging

SU(2), the theory is the Chern-Simons-Yang-Mills theory in 2+1d, with the

action

S = − 1

4g2

∫
M3

Tr(f ∧ �f) +
k

4π

∫
Tr

(
ada− 2i

3
a3
)
,(4.4)

where k ∈ Z labels which SU(2) SPT from which we gauge. There are two

related ways to see the anomaly of Z2,[1]. One way is to check the topological

spin of the Z2,[1] symmetry generator. The second way to the directly couple

the Z2,[1] background field B to the action. Both of which conclude that

the anomaly inflow action for the Z2,[1] symmetry is given by the invertible

TQFT

2π
k

4

∫
M4

P(B2), k ∈ Z4.(4.5)

Notice that the anomaly only depends on k mod 4. Thus one sees that

after gauging Z classified SU(2) SPT in 2 + 1d, we arrive at a Z4 classified

anomalous SU(2) pure gauge theory.

4.1.3. Gauging SU(2) in (SU(2) × Spin(d))/Z2. The only SPT in

d = 2, 3, 4 that involves the SU(2) bundle is the ĈS
SU(2)

3 Chern Simons

theory. This theory is almost identical to (4.4), except that the dynamical

SU(2) gauge field in (4.4) is replaced by the Spin-SU(2) connection, and

suitable gravitational Chern Simons term should also be included which will

be determined below.15 The anomaly can be obtained directly by replacing

15This is similar to the U(1) case. If A is a U(1) gauge field, the theory k
4πAdA

is well defined (for even k) on a non-spin manifold. If A is a Spinc connection, one
needs to append suitable gravitational Chern Simons term k

4πAdA+ 2kCSg.
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B2 in (4.5) with B + w2. The anomaly is

2π
k

4

∫
M4

P(B2 + w2) = 2π
k

4

∫
M4

P(B2) + πk

∫
M4

w2B2 + 2π
k

4

∫
M4

P(w2).

(4.6)

On the right hand side, the second term can also be written as πk
∫
M4

P(B2),
by using P(B2) = w2B2 on an orientable manifold. The last term can be
written as

2π
k

4

∫
M4

P(w2) = −2π
k

4

∫
M4

p1 = −2π
k

4

∫
8Â = −2π

k

4
σ.(4.7)

Because on nonspin manifold, σ ∈ Z, (4.7) only vanishes for k ∈ 4Z. This
means certain gravitational Chern Simons term 4kCSg should be added to
cancel this contribution. Combining (4.6) and (4.7), we find the anomaly

2π
3k

4

∫
M4

P(B2) = −2π
k

4

∫
M4

P(B2).(4.8)

Furthermore, since there is no nontrivial SU(2) SPT in 4d, the 5d cobordism
invariant B2Sq

1B2 can not be saturated by a theory obtained via gauging
an SU(2) SPT in 4d.

4.2. GLorentz = Spin(d)

When the Lorentz symmetry is Spin(d), there is only one possible total
symmetry, given in (3.10). When promoting the SU(2) global symmetry to
dynamical and including the Z2,[1] one form symmetry background B2, the
resulting global symmetries and the gauge bundle constraint for the resulting
dynamical SU(2) gauge theory is

G′ = SU(2)× Spin(d) ⇒ H = Z2,[1] × Spin(d), w2(VSO(3)) = B2.
(4.9)

After gauging, the resulting SU(2) gauge theory is still a fermionic theory
which depends on the choice of spin structure. This means that there is a
transparent fermion line which commutes with every other gauge invariant
operators.

We further discuss the anomaly of the emergent global symmetry H =
Z2,[1] × Spin(d). One can compute the bordism and cobordism group and
enumerate all possible cobordism invariants, as shown in Table 19. See [10]
for the derivation of the (co)bordism calculations.
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Table 19: The bordism and cobordism groups of the symmetry Spin(d) ×
Z2,[1]

Bordism and Cobordism group

d Ω
Spin×Z2,[1]

d TP
Spin×Z2,[1]

d Cobordism Invariant
1 Z2 Z2 η̃
2 Z2 × Z2 Z2 × Z2 B2,Arf
3 0 Z CSg
4 Z× Z2 Z2 P(B2)/2
5 0 0

4.2.1. Gauging SU(2) in SU(2)×Spin(d). The only SPT in d = 2, 3, 4

that involves the SU(2) bundle is the SU(2) Chern Simons theory CS
SU(2)
3 .

This theory is identical to (4.4), except that here CS
SU(2)
3 is defined on a spin

manifold. The anomaly of the Z2,[1] global symmetry is the same as (4.5).
But on a spin manifold, (4.5) can be further simplified, because when k = 2,
the anomaly is π

∫
M4

P(B2) = π
∫
M4

w2B2 = 0 due to w2 = 0 on a spin
manifold. Thus the anomaly can be rewritten as

2π
k

2

∫
M4

P(B2)

2
, k ∈ Z2.(4.10)

4.3. GLorentz = O(d)

When the Lorentz symmetry is O(d), there are four possibilities of the total
symmetries, given in (3.14). When promoting the SU(2) global symmetry
to dynamical and including the Z2,[1] one form symmetry background B2,
the resulting global symmetries and the gauge bundle constraints for the
resulting dynamical SU(2) pure gauge theories are

G′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
SU(2)×O(d)

(SU(2)× E(d))/Z2

(SU(2)× Pin+(d))/Z2

(SU(2)× Pin−(d))/Z2

⇒

H =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z2,[1] ×O(d), w2(VSO(3)) = B2,

Z2,[1] ×O(d), w2(VSO(3)) = B2 + w2
1,

Z2,[1] ×O(d), w2(VSO(3)) = B2 + w2,

Z2,[1] ×O(d), w2(VSO(3)) = B2 + w2
1 + w2.

(4.11)
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Table 20: The bordism and cobordism groups of the symmetry O(d)×Z2,[1]

Bordism and Cobordism group

d Ω
O×Z2,[1]

d TP
O×Z2,[1]

d Cobordism Invariant

1 0 0
2 Z2 × Z2 Z2 × Z2 B2, w

2
1

3 Z2 Z2 w1B2

4 Z2 × Z2 × Z2 × Z2 Z2 × Z2 × Z2 × Z2 w4
1, w

2
2, B2w

2
1, B2w2

5 Z2 × Z2 × Z2 × Z2 Z2 × Z2 × Z2 × Z2 w2w3, B2Sq
1B2, Sq

2Sq1B2, w
2
1Sq

1B2

In all four cases, the Lorentz symmetry is O(d), which means that the re-

sulting Yang-Mills theories do not contain a transparent fermion line and

is bosonic, despite that the Wilson line in the fundamental representation

W1/2 are nontransparent and fermionic in the last two cases. Under time

reversal, the Wilson line Wj with SU(2) isospin j transforms as

T 2 = 1, (−1)2j , (−1)2j , 1(4.12)

in the four cases respectively.

We further compute the bordism group and cobordism group of the

emergent global symmetry H, and enumerate the cobordism invariants in

Table 20. See [10] for the derivation of the (co)bordism calculations. As we

will see, only certain linear combinations of the cobordism invariants in 5d

in Table 20 can be realized as the anomalies of theories obtained by gauging

the SU(2) SPTs in 4d. In particular, B2Sq
1B2 always come together with

Sq2Sq1B2. Moreover, because among Tables 14, 15, 16 and 17, there are no

cobordism invariants involving SU(2) bundle in 3d, hence the 4d cobordism

invariants B2w
2
1 and B2w2 can not be realized via gauging SU(2) SPT. For

the same reason, w1B2 in 3d can not be realized in the same way either.

However, these anomalies can be realized in various systems, for instance

the U(1) gauge theories. For instance, B2Sq
1B2 alone can be realized in

Maxwell theory in 4d with θ = 2π theta term.

4.3.1. Gauging SU(2) in SU(2)×O(d). The only cobordism invariant

in d = 2, 3, 4 that involves the SU(2) bundle in Table 14 is the second Chern

class mod 2, i.e., c
SU(2)
2 mod 2 in 3 + 1d. Written in terms of the SU(2)

gauge field, the topological term is the theta term with θ = π. The action is

S = − 1

4g2

∫
M4

Tr(f ∧ �f) +
π

8π2

∫
M4

Tr(f ∧ f).(4.13)
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The symmetries and the ’t Hooft anomalies have been studied extensively in
[39, 12, 23, 40]. Since in this case the gauge bundle constraint is w2(VSO(3)) =
B2, the Wilson line W1/2 is a worldline of a boson, and is a Kramers singlet,
T 2 = 1. The anomaly involving the one form symmetry is

π

∫
M5

B2Sq
1B2 + Sq2Sq1B2,(4.14)

which is the combination of two among the four 5d cobordism invariants in
Table 20.

4.3.2. Gauging SU(2) in (SU(2) × E(d))/Z2. The only cobordism
invariant in d = 2, 3, 4 that involves the SU(2) bundle in Table 15 is the

second Chern class mod 2, i.e., c
SU(2)
2 mod 2 in 3 + 1d. As remarked below

Table 15, this topological term is the same as that in (4.13), except the
gauge bundle constraint is modified to w2(VSO(3)) = B2 + w2

1. The gauge
bundle constraint here means that the Wilson line W1/2 is a worldline of a
boson, and is a Kramers doublet T 2 = −1. The anomaly involving the one
form symmetry is

π

∫
M5

B2Sq
1B2 + Sq2Sq1B2 + w2

1Sq
1B2,(4.15)

which is the combination of three among the four 5d cobordism invariants
in Table 20.

4.3.3. Gauging SU(2) in (SU(2)×Pin+(d))/Z2. The only cobordism
invariant in d = 2, 3, 4 that involves the SU(2) bundle in Table 16 is the eta
invariant ηSU(2). The topological term is in (4.13) should be modified to

2π iν

∫
M4

ηSU(2), ν ∈ Z4,(4.16)

where ν labels the Z4 class of cobordism invariants. Since for ν = 2,
exp(4π iηSU(2)) = exp(iπw4

1) is a purely counter term in terms of the back-
ground field w1, we conclude that ν = 2 does not produce anomaly. The
remaining situation is ν = 1 mod 2. In this case, (4.16) can be rewritten as
the θ = π theta term with SU(2) gauge field being replaced by the twisted
SO(3) gauge field with the gauge bundle constraint w2(VSO(3)) = B2 + w2.
The anomaly has been worked out in [12], which can also be conve-
niently obtained by replacing B2 with B2 + w2. The anomaly is the same
as (4.14).
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4.3.4. Gauging SU(2) in (SU(2)×Pin−(d))/Z2. The only cobordism
invariant in d = 2, 3, 4 that involves the SU(2) bundle in Table 17 is the eta
invariant N0 counting the number of zero modes mod 2. The topological
term is in (4.13) should be modified to

π iν

∫
M4

N0, ν ∈ Z2,(4.17)

where ν labels the Z2 class of cobordism invariants. We will focus on the
nontrivial case ν = 1. In this case, (4.17) can be rewritten as the θ = π theta
term with SU(2) gauge field being replaced by the twisted SO(3) gauge field
with the gauge bundle constraint w2(VSO(3)) = B2 +w2

1 +w2. The anomaly
has been worked out in [12], which can also be conveniently obtained by
replacing B2 with B2 + w2

1 + w2. The anomaly is the same as (4.15).

5. Comments on the internal symmetry
G = SU(N), Spin(N), Sp(N), or G = SO(3) and U(1)

The majority of this section discusses pure gauge theories by gauging the
G = SU(2) symmetry, and study their emergent global symmetry. Simi-
lar analysis can be generalized to other global symmetries G. We will find
new features arise if G admits nontrivial magnetic flux characterized by
H2(BG,R) for R = U(1) or Zn for some n, such as G = U(1) (for R = U(1))
or SO(3) (for R = Z2).

For G = SU(2), the emergent symmetry is an electric 1-form center
symmetry Z2,[1] — because SU(2) has a nontrivial Z2 center. Moreover,

there is no emergent magnetic symmetry because H2(BSU(2),Z2) which
measures the SU(2) flux is always trivial. Thus we find that the discussion
in section 4 can be directly generalized to an arbitrary Lie group G which
has nontrivial center and trivial H2(BG,Zn) for all n. Such G include G =
SU(N), Spin(N), Sp(N) for every N .

If G admits nontrivial magnetic flux, then there are emergent magnetic
symmetry. As long as there are no monopole operators explicitly in the
Hamiltonian, the magnetic symmetry is not broken. In contrast to the elec-
tric center global symmetry which is always a 1-form symmetry in arbitrary
spacetime dimension, the form of the emergent magnetic global symmetry
depends on the dimension. In d spacetime dimensions, the magnetic symme-
try is d−3 form. Denote the (d−2) form background gauge field as Bm,[d−2],
then it couples to the background field as

1

2π

∫
Md

f ∧Bm,[d−2](5.1)
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for G = U(1) where f = da is the U(1) field strength (a is the U(1) gauge
field), and Bm,[d−2] is the U(1) gauge field; and

π

∫
Md

w2(VSO(3)) ∪Bm,[d−2](5.2)

for G = SO(3) where w2(VSO(3)) ∈ H2(BSO(3), R) = H2(BSO(3),Z2) is the
magnetic flux, and Bm,[d−2] is the Z2-valued (d−2)-cocycle. For G = SO(3),
there is no emergent 1-form symmetry, with and without coupling to matter
fields in the vector representation of SO(3).

We will not list the cobordism invariants for G = SO(3) and U(1) in
this paper.16 But there are a few interesting cases we would like to comment
on. Notice that SO(3) pure gauge theory can be obtained by gauging the
Z2,[1] center 1-form symmetry of the SU(2) pure gauge theory. If the the
Z2,[1] symmetry of a d-dimensional SU(2) gauge theory is anomalous, the
SO(3) gauge theory obtained after gauging Z2,[1] can be interpreted as a dd
and (d + 1)d combined system, where the (d + 1)d bulk theory is a non-
invertible TQFT. However, based on symmetry-extension construction [72]
and related arguments [73, 74, 31, 75], as explored in [76, 77, 78], in certain
cases the resulting theory after gauging Z2,[1] can be a genuine dd theory
without coupling to the (d + 1)d bulk (such as SPTs), by modifying the
global symmetry bundle to be non-abelian or a higher group. For example,

consider an SU(2) Chern Simons theory by gauging the kSSU(2)
3 SPT on

a spacetime manifold with Lorentz symmetry SO(d) = SO(3) in 3d. As
shown in (4.5), the theory has an anomaly depending on k mod 4. Let us
consider the special case k = 2 mod 4. The anomaly (4.5) can be simplified
to

π

∫
M4

B2w2.(5.3)

Next let us gauge Z2,[1]. There is an emergent 0-form Z2 global symmetry,

whose 1-form background field is denoted as B̂m,[1]. The B̂m,[1] couples to
the system via the topological term

π

∫
M3

B2B̂m,[1].(5.4)

16Although we had listed part of the cobordism groups and invariants for G =
SO(3) and U(1) in the arXiv’s first version of this paper [71], we had decided to
defer them to a more systematic exploration in a future work.
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Then there are two options to interpret the global symmetry in the resulting
SO(3) gauge theory.

1. The first option is to regard the SO(3)k/2 Chern Simons theory as
coupled to a dynamical bulk TQFT in 4d. The global symmetry is
Z2 × SO(3), where Z2 is the emergent 0-form magnetic symmetry.

2. The second option is to regard the SO(3)k/2 Chern Simons theory as a
genuine 3d theory. However, the emergent 0-form Z2 symmetry bundle
and the Lorentz symmetry bundle form nontrivial correlation

δB̂m,[1] = w2 mod 2(5.5)

(5.5) means the resulting global symmetry is not Z2×SO(3), but rather

Z2 × Spin(3)

Z2
(5.6)

where the Z2 in the denominator is the fermion parity. Physically, it
means the Z2 monopole operator is a fermion. This is consistent with
the fact that the topological spin of the monopole operator in SO(3)k/2
theory is k/4 mod 1.

6. Comments on symmetry-extension, trivialization of bulk,
and nontrivial boundary states

Lorentz symmetry extension provides a guidance for constructing the bound-
ary states that saturate the ’t Hooft anomaly for the Lorentz symmetry. In
this section, we comment on the examples where the ’t Hooft anomaly for
Lorentz symmetry found in section 2.

Let us briefly review how the group extension can be used to trivialize
the anomaly discussed in [72]. Suppose there is an extension

1 → K → H
r→ G → 1(6.1)

where G is the global symmetry for a quantum field theoryQ in d dimensions
and is also the global symmetry for an invertible TQFT(representing the
anomaly of Q) in (d + 1) dimensions. K is an emergent symmetry when
is only present in d dimensions. H is the total symmetry. We denote the
quotient map H → G = H/K by r. In the setup of the present paper,
K,H,G corresponds to G,G′, GLorentz respectively. Suppose the quantum
field theory in d dimensions is G-anomalous, and the anomaly is captured
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by the d+ 1 dimensional invertible TQFT (cobordism invariant) ωG
d+1. The

anomaly can be trivialized by pulling back from G to H if we can find a
cochain μH

d satisfying

r∗ωG
d+1 = δμH

d(6.2)

(6.2) means when we use r to pull back the anomaly ωG
d+1 from G to H,

the anomaly becomes exact, i.e., trivial. This method has been extensively
explored to construct the boundary states of SPTs [72, 73, 74, 31, 79, 75],
has been generalized to higher form symmetries [10], and construct quantum
field theory examples with exotic 2-group symmetries and non-invertible
symmetries [37, 48]. In the rest of this section, we will comment on various
group extensions involving the Lorentz groups.

6.1. Trivializing w2
1 in TPO

2

We can consider the group extension

1 → Z2 → E(2)
r→ O(2) → 1(6.3)

where E(2) is also an Lorentz symmetry group discussed in the introduction.
The only nontrivial cobordism invariant in TPO

2 is w2
1. Using the projection

map r, pulling back w2
1 from O(2) to E(2) also gives us w2

1. However, from
Table 1, we find that w2

1 is trivial for E(2). This means that after pulling
back w2

1 from O(2) to E(2), it can be written as a total derivative,

w2
1 = δμ1 mod 2(6.4)

where μ1 is a 1-cochain, representing the E-structure of the underlying space-
time manifold.

6.2. Trivializing w4
1 in TPO

4

Since w2
1 in O(2) can be trivialized by pulling back to E(2), it immediately

follows that w4
1 in O(4) can also be trivialized when pulled back to E(4),

using

w4
1 = δ(w2

1μ1) mod 2(6.5)

where μ1 is a 1-cochain representing the E-structure. Indeed, one can check,
using the chain rule, that δ(w2

1μ1) = δ(w2
1)μ1 + w2

1δμ1. The first term van-
ishes because δw1 = 0 mod 2. The second term survives, and by using (6.4),
we obtain w4

1 as desired.
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6.3. Trivializing w2w3 and w2
2 in TPO

5 and TPO
4

We consider the group extension

1 → Z2 → Pin+(5) → O(5) → 1(6.6)

The only nontrivial cobordism invariant in TPO
5 is w2w3. When we pulled

back w2w3 from O(5) to Pin+(5), we find that w2 is trivialized (see Table 1).
Hence w2 = δρ+ where ρ+ is actually the Pin+ structure. Then it follows
that

w2w3 = δ(ρ+w3) mod 2(6.7)

Using the same group extension for d = 4

1 → Z2 → Pin+(4) → O(4) → 1(6.8)

we find that w2
2 in TPO

4 can be trivialized by pulling back from O(4) to
Pin+(4) in a similar way,

w2
2 = δ(ρ+w2) mod 2(6.9)

6.4. Trivializing 8η in TPPin+

4

We consider the group extension

1 → Z2 → EPin(4) → Pin+(4) → 1(6.10)

The only cobordism invariant in TPPin+

4 is the eta invariant η. We claim
that 8 copies of η can be trivialized using (6.10). First we notice the identity
8η = w4

1 mod 2. Hence trivializing 8η really amounts to trivializing w4
1.

Since when pulling backing w2
1 from Pin+(4) to EPin(4), w2

1 is trivialized
(see Table 1), it follows that w4

1 is also trivialized. Thus we can write

w2
1 = δν1 mod 2(6.11)

where we denote ν1 as the EPin structure. This means w2
1 is trivialized by

the EPin structure. Then using the same analysis in section 6.2, we conclude
that w4

1 can be trivialized as follows

w4
1 = δ(w2

1ν1) mod 2(6.12)
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6.5. Trivializing 4ABK in TPPin−

2

Let us consider the group extension

1 → Z2 → EPin(2) → Pin−(2) → 1(6.13)

The generator of TPPin−

2 = Z8 is the ABK invariant. Notice that the 4

copies of ABK is w2
1. One can trivialize w2

1 using the EPin structure as

shown in (6.11),

4ABK = w2
1 = δν1 mod 2(6.14)

6.6. Trivializing 4a ∪ ABK in TPZ2×Spin
3

It is known that the Z2 fermionic SPT in 2+1d is classified by Z8. Concretely,

this means TPZ2×Spin
3 = Z8, and the generator is a ∪ ABK, where a is the

generator for Z2 and ABK is the ABK-invariant generating TPPin−

2 . We will

show that 4a∪ABK can be trivialized by pulling back from Z2×Spin(3) to

Z4 × Spin(3), via

1 → Z2 → Z4 × Spin(3) → Z2 × Spin(3) → 1(6.15)

To see this, we first use the identity

4a ∪ABK = a3 mod 2(6.16)

The right hand side is just the Z2 bosonic SPT in 2+1d. To trivialize a3, we

can extend Z2 to Z4, where the generator a in Z2 is extended to generator

2b+ a in Z4, with the constraint

δb = a2 mod 2(6.17)

Notice that a2 ∈ H2(BZ2,Z2) classifies the extension 1 → Z2 → Z4 → Z2 →
1, which also consequently classifies the extension (6.15). Using the bundle

constraint (6.17), it follows that

4a ∪ABK = a3 = δ(ab) mod 2(6.18)
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Table 21: Bordism classifications, the manifold generators, and the bordism
invariants for groups in the Smith homomorphisms. In odd dimensions, a
is Z2 1-cocycle, generating Z2 (for d = 4k + 3) and Z4/Z2 (for d = 4k +
1). PD is the Poincare dual of the cocycles. In d = 8, we just list the
manifold generator and bordism invariant for Z32, which is generated by the
eta invariant η8 in 8d

Bordism Group Classification Manifold Generator Invariants

ΩPin+

8 Z32 × Z2 RP
8 exp

(
2π i
32

νη8
)

ΩSpin×Z2
7 Z16 RP

7 exp
(
2π i
16

νη(PD(a3))
)

ΩPin−
6 Z16 RP

6 exp
(
2π i
16

νη(PD(w2
1))

)

Ω
Spin×Z2

Z4

5 Z16 RP
5 exp

(
2π i
16

νη(PD(a))
)

ΩPin+

4 Z16 RP
4 exp

(
2π i
16

νη
)

ΩSpin×Z2
3 Z8 RP

3 exp
(
2π i
8

νABK(PD(a))
)

ΩPin−
2 Z8 RP

2 exp
(
2π i
8

νABK
)

Ω
Spin×Z2

Z4

1 Z4 RP
1 exp

(
2π i
4

νη′)

6.7. Trivializing the cobordism invariants in the Smith
homomorphisms:

· · · → ΩSpin×Z2

d → ΩPin−

d−1 → Ω
Spin×Z2Z4

d−2 → ΩPin+

d−3 → · · ·

Smith homomorphism provides a chain of bordism invariants in any dimen-
sion (see [80] and also [7, 31, 81, 20]):

· · · → ΩSpin×Z2

d → ΩPin−

d−1 → Ω
Spin×Z2

Z4

d−2 → ΩPin+

d−3 → ΩSpin×Z2

d−4 → · · ·(6.19)

There is correspondingly a similar Smith homomorphism chain of cobordism
invariants,

· · · ← TPSpin×Z2

d ← TPPin−

d−1 ← TP
Spin×Z2

Z4

d−2 ← TPPin+

d−3 ← TPSpin×Z2

d−4 ← · · ·
(6.20)

In this subsection, we will focus on the sequence (6.19), and in particular
we will discuss d = 7. We enlist the bordism classifications, the manifold
generators, and the bordism invariants in Table 21.

The trivialization of the middle class of the bordism invariants for d =
2, 3, 4 have been studied in previous subsections. In section 6.5, we trivialized
the middle class ν = 4 ∈ Z8, i.e. 4ABK, by pulling back to EPin(2). In
section 6.6, we trivialized the middle class ν = 4 ∈ Z8, i.e. 4a ∪ ABK =
4ABK(PD(a)), by pulling back to Spin(3)×Z2. In section 6.4, we trivialized
the middle class ν = 8 ∈ Z16, i.e. 8η, by pulling back to EPin(4).
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In general, we propose that the given a Z2n class, the ν = 2n−1 ∈ Z2n

class can be trivialized by the following extensions:

d = 4k : 1 → Z2 → EPin(d) → Pin+(d) → 1.
d = 4k + 1 : 1 → Z2 → Spin(d)× Z4 → Spin(d)×Z2

Z4 → 1.
d = 4k + 2 : 1 → Z2 → EPin(d) → Pin−(d) → 1.
d = 4k + 3 : 1 → Z2 → Spin(d)× Z4 → Spin(d)× Z2 → 1.

(6.21)

The key feature is that in even dimensions, the middle class of the bordism

invariants in the Smith homomorphism chain can be trivialized by pulling

back to EPin(d), while in odd dimensions, they can be trivialized by pulling

back to Spin(d) × Z4. Repeating similar calculations, we can check the ex-

tensions for cases in d = 5, 6, 7, 8. We enumerate the trivializations below:

1. For d = 5, we have the identity 8η(PD(a)) = a5 mod 2. Hence one can

trivialize a5 in Z4 × Spin(5) via a5 = δ(a3b). where b satisfies (6.17).

2. For d = 6, we have the identity 8η(PD(w2
1)) = w6

1 mod 2. Hence one

can trivialize w6
1 in EPin(6) via w6

1 = δ(w4
1μ1) where μ1 is defined

in (6.4).

3. For d = 7, we have the identity 8η(PD(a3)) = a7 mod 2. Hence one

can trivialize a7 in Z4×Spin(5) via a7 = δ(a5b). where b satisfies (6.17).

4. For d = 8, we have the identity 16η8 = w8
1 mod 2. Hence one can

trivialize w8
1 in EPin(8) via w8

1 = δ(w6
1μ1) where μ1 is defined in (6.4).

Other ways to do symmetry extension for fermionic systems are also studied

[31, 79] and [75].
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Appendix A. Bordism and cobordism groups involving E(d)

A.1. Bordism and cobordism groups of E(d)

In this subsection, we will compute the cobordism group of E(d). Recall that

E is defined to be the subgroup of O×Z4 consisting of the pairs (A, j) such

that detA = j2, there is a fibration BE → BO
w2

1−→ B2Z2.

We can also think of the space BE as the fiber of w1 + x : BO×BZ4 →
BZ2, where x is the generator of H1(BZ4,Z2). Take W to be the line bundle

on BZ4 determined by BZ4 → BZ2 = BO(1). Define a map f : BO×BZ4 →
BO × BZ4 by (V, V ′) → (V + W − 1, V ′), with inverse (V, V ′) → (V −
W + 1, V ′). Observe f∗(w1) = w1 + x, so that BE is homotopy equivalent

to BSO × BZ4. The canonical bundle BE → BO corresponds to V − W +

1 on BSO × BZ4. So MTE = MTSO ∧ Thom(BZ4,W − 1) = MSO ∧
Σ−1MZ4.

The localization of the Thom spectrum MSO at the prime 2 is

MSO(2) = HZ(2) ∨ Σ4HZ(2) ∨ Σ5HZ2 ∨ · · · .(A.1)

The mod 2 cohomology of HZ is

H∗(HZ,Z2) = A2 ⊗A2(0) Z2(A.2)

where A2(0) is the subalgebra of A2 generated by Sq1.

By Künneth formula, we have

H∗(MSO ∧ Σ−1MZ4,Z2) = H∗(MSO,Z2)⊗H∗+1(MZ4,Z2).(A.3)

By the generalized Pontryagin-Thom isomorphism,

πd(MTE) = ΩE
d .(A.4)

Since there is no odd torsion, the Adams spectral sequence shows:

Exts,tA2
(H∗(MTE,Z2),Z2) ⇒ ΩE

t−s.(A.5)
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Figure 10: The A2(0) module structure of H∗+1(MZ4,Z2).

Figure 11: ΩE
∗ .

We have

H∗(BZ4,Z2) = Z2[y]⊗ ΛZ2
(x)(A.6)

where ΛZ2
is the exterior algebra, x is the generator of H1(BZ4,Z2), y is the

generator of H2(BZ4,Z2), with Sq1x = Sq1y = 0.
On the other hand, by Thom isomorphism,

H∗+1(MZ4,Z2) = (Z2[y]⊗ ΛZ2
(x))U(A.7)

where U is the Thom class of the line bundle W with Sq1U = xU = w1U .
The A2(0) module structure of H∗+1(MZ4,Z2) is shown in Figure 10.
The E2 page of the Adams spectral sequence is shown in Figure 11.
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Table 22: Bordism group. Here y is the generator of H2(BZ4,Z2), wi is the
Stiefel-Whitney class of the tangent bundle. Here the cohomology classes of
BZ4 are pulled back to the manifold M via the map M → BE → BZ4

Bordism and Cobordism group

d ΩE
d TPE

d Cobordism Invariant
0 Z2 Z2

1 0 0
2 Z2 Z2 y
3 0 0
4 Z

2
2 Z

2
2 y2, w2

2

5 Z2 Z2 w2w3

Figure 12: Ω
E×SU(2)
∗ .

A.2. Bordism and cobordism groups of E(d) × SU(2)

Since there is no odd torsion, the Adams spectral sequence shows:

Exts,tA2
(H∗(MT (E× SU(2)),Z2),Z2) ⇒ Ω

E×SU(2)
t−s .(A.8)

We have MT (E × SU(2)) = MTE ∧ (BSU(2))+ = MSO ∧ Σ−1MZ4 ∧
(BSU(2))+.

The E2 page of the Adams spectral sequence is shown in Figure 12.
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Table 23: Bordism group. Here y is the generator of H2(BZ4,Z2), wi is the
Stiefel-Whitney class of the tangent bundle. Here the cohomology classes of
BZ4 are pulled back to the manifold M via the map M → BE → BZ4

Bordism and Cobordism group

d Ω
E×SU(2)
d TP

E×SU(2)
d Cobordism Invariant

0 Z2 Z2

1 0 0
2 Z2 Z2 y
3 0 0
4 Z

3
2 Z

3
2 y2, w2

2, c2 mod 2
5 Z2 Z2 w2w3

A.3. Bordism and cobordism groups of E(d) × BZ2

We have MT (E× BZ2) = MTE ∧ (B2Z2)+ = MSO ∧ Σ−1MZ4 ∧ (B2Z2)+.

By Künneth formula,

H∗(MSO ∧ Σ−1MZ4 ∧ (B2
Z2)+,Z2)(A.9)

= H∗(MSO,Z2)⊗H∗+1(MZ4,Z2)⊗H∗(B2
Z2,Z2).

Since there is no odd torsion, we have the Adams spectral sequence

Exts,tA2
(H∗(MSO,Z2)⊗H∗+1(MZ4,Z2)⊗H∗(B2

Z2,Z2),Z2) ⇒ ΩE×BZ2

t−s .

(A.10)

We have

H∗(B2
Z2,Z2) = Z2[x2, x3, x5, . . . ](A.11)

where x2 is the generator of H2(B2Z2,Z2), x3 = Sq1x2, x5 = Sq2x3, . . . .

We also have

H∗+1(MZ4,Z2) = (Z2[y]⊗ ΛZ2
(x))U(A.12)

where x is the generator of H1(BZ4,Z2), y is the generator of H2(BZ4,Z2),

ΛZ2
is the exterior algebra, U is the Thom class of the line bundle determined

by BZ4 → BZ2 = BO(1).
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Figure 13: ΩE×BZ2∗ .

We list the elements of H∗+1(MZ4,Z2) ⊗ H∗(B2Z2,Z2) below degree 5

as follows:

0 U

1 xU

2 yU, x2U

3 xyU, xx2U, x3U

4 y2U, yx2U, xx3U, x
2
2U

5 xy2U, xyx2U, yx3U, xx
2
2U, x2x3U, x5U.

(A.13)

They satisfy Sq1U = xU , Sq1yU = xyU , Sq1y2U = xy2U , Sq1(x2U) =

(xx2 + x3)U , Sq1x22U = xx22U , Sq1(x5U) = (xx5 + x23)U , Sq1(x2x3U) =

(xx2x3 + x23)U , Sq1(xx2U) = Sq1(x3U) = xx3U , Sq1(yx2U) = (xyx2 +

yx3)U , and Sq1(xyx2U) = Sq1(yx3U) = xyx3U .

The differentials d1 are induced by Sq1.

The E2 page is shown in Figure 13.
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Table 24: Bordism group. Here x is the generator of H1(BZ4,Z2), y is the
generator of H2(BZ4,Z2), x2 is the generator of H2(B2Z2,Z2), x3 = Sq1x2,
x5 = Sq2x3, wi is the Stiefel-Whitney class of the tangent bundle

Bordism and Cobordism group

d Ω
E×Z2,[1]

d TP
E×Z2,[1]

d Cobordism Invariant
0 Z2 Z2

1 0 0
2 Z2

2 Z2
2 x2, y

3 Z2 Z2 xx2 = x3

4 Z
4
2 Z

4
2 w2

2, y
2, x2

2, yx2

5 Z
4
2 Z

4
2 w2w3, xyx2 = yx3, x2x3, x5

Appendix B. Bordism and cobordism groups involving
EPin(d)

B.1. Bordism and cobordism groups of EPin(d)

In this subsection, we will compute the cobordism group of EPin(d). Recall
that EPin is a group extension:

1 → Z2 × Z2 → EPin → O → 1(B.1)

such that BEPin is the fiber of w2 and w2
1 of BO. We can also think of the

space BEPin as the fiber of w2 of BE.
Also recall that we can think of the space BE as the fiber of w1 + x :

BO × BZ4 → BZ2, where x is the generator of H1(BZ4,Z2). Take W to
be the line bundle on BZ4 determined by BZ4 → BZ2 = BO(1). Define a
map f : BO×BZ4 → BO×BZ4 by (V, V ′) → (V +W − 1, V ′), with inverse
(V, V ′) → (V −W+1, V ′). Observe f∗(w1) = w1+x, so that BE is homotopy
equivalent to BSO × BZ4. The canonical bundle BE → BO corresponds to
V −W +1 on BSO×BZ4. So BEPin is homotopy equivalent to BSpin×BZ4.
The canonical bundle BEPin → BO corresponds to V −W + 1 on BSpin×
BZ4. So MTEPin = MTSpin ∧ Thom(BZ4,W − 1) = MSpin ∧ Σ−1MZ4.

Since there is no odd torsion, the Adams spectral sequence shows: for
t− s < 8,

Exts,tA2(1)
(H∗+1(MZ4,Z2),Z2) ⇒ ΩEPin

t−s .(B.2)

We have

H∗(BZ4,Z2) = Z2[y]⊗ ΛZ2
(x)(B.3)
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Figure 14: The A2(1) module structure of H∗+1(MZ4,Z2).

Figure 15: ΩEPin
∗ .

where ΛZ2
is the exterior algebra, x is the generator of H1(BZ4,Z2), y is the

generator of H2(BZ4,Z2), with Sq1x = Sq1y = 0.

On the other hand, by Thom isomorphism,

H∗+1(MZ4,Z2) = (Z2[y]⊗ ΛZ2
(x))U(B.4)

where U is the Thom class of the line bundle W with Sq1U = xU = w1U

and Sq2U = 0.

The A2(1) module structure of H∗+1(MZ4,Z2) is shown in Figure 14.

The E2 page of the Adams spectral sequence is shown in Figure 15.
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Table 25: Bordism group. Here y is the generator of H2(BZ4,Z2), wi is the
Stiefel-Whitney class of the tangent bundle. η̃ is the mod 2 index of 1d Dirac
operator, Arf is the 2d Arf invariant, ABK is the 2d Arf-Brown-Kervaire
invariant, η is the 4d eta invariant. Here the cohomology classes of BZ4 are
pulled back to the manifold M via the map M → BEPin → BE → BZ4

Bordism and Cobordism group

d ΩEPin
d TPEPin

d Cobordism Invariant
0 Z2 Z2

1 Z2 Z2 η̃
2 Z2 × Z4 Z2 × Z4 y, ABK

2
3 Z2 Z2 w1Arf
4 Z2

2 Z2
2 w1yη̃,

η
8

5 0 0

Figure 16: The A2(1) module structure of H∗+1(MZ4,Z2)⊗H∗(B2Z2,Z2).
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Figure 17: ΩEPin×BZ2∗ .

B.2. Bordism and cobordism groups of EPin(d) × BZ2

In this subsection, we will compute the cobordism group of EPin(d) ×
BZ2.

Recall that MTEPin = MSpin ∧ Σ−1MZ4. So MT (EPin × BZ2) =

MTEPin ∧ (B2Z2)+ = MSpin ∧ Σ−1MZ4 ∧ (B2Z2)+.

Since there is no odd torsion, the Adams spectral sequence shows: for

t− s < 8,

Exts,tA2(1)
(H∗+1(MZ4,Z2)⊗H∗(B2

Z2,Z2),Z2) ⇒ ΩEPin×BZ2

t−s .(B.5)

Recall that

H∗(B2
Z2,Z2) = Z2[x2, x3, x5, . . . ](B.6)

where x2 is the generator of H2(B2Z2,Z2), x3 = Sq1x2, x5 = Sq2x3, . . . .

The A2(1) module structure of H∗+1(MZ4,Z2)⊗H∗(B2Z2,Z2) is shown

in Figure 16.

The E2 page of the Adams spectral sequence is shown in Figure 17.
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Table 26: Bordism group. Here y is the generator of H2(BZ4,Z2), wi is the
Stiefel-Whitney class of the tangent bundle. η̃ is the mod 2 index of 1d Dirac
operator, Arf is the 2d Arf invariant, ABK is the 2d Arf-Brown-Kervaire
invariant, η is the 4d eta invariant. x2 is the generator of H2(B2Z2,Z2),
x3 = Sq1x2, P2(x2) is the Pontryagin square of x2. By Wu formula, P2(x2) =
x22 = Sq2(x2) = (w2+w2

1)x2 = 0 mod 2. Here the cohomology classes of BZ4

are pulled back to the manifold M via the map M → BEPin → BE → BZ4

Bordism and Cobordism group

d ΩEPin×BZ2

d TPEPin×BZ2

d Cobordism Invariant
0 Z2 Z2

1 Z2 Z2 η̃
2 Z

2
2 × Z4 Z

2
2 × Z4 x2, y,

ABK
2

3 Z
2
2 Z

2
2 w1x2, w1Arf

4 Z4
2 Z4

2 yx2,
P2(x2)

2 , w1yη̃,
η
8

5 Z
2
2 Z

2
2 x2x3, w1yx2

Appendix C. Bordism and cobordism groups involving
DPin(d)

C.1. Bordism and cobordism groups of DPin(d)

In [24], the authors consider another group extension

1 → Z
+
2 × Z

−
2 → DPin(d) → O(d) → 1(C.1)

where the orientation reversal in O(d) acts on Z
+
2 × Z

−
2 by exchanging the

two Z2 factors. The bordism groups ΩDPin
d for d ≤ 6 are also computed in

[24].
According to [24], MTDPin = MSpin∧Σ1MTO(1)∧Σ−1MO(1). In this

subsection, we will reproduce the result of bordism groups ΩDPin
d in [24].

Since there is no odd torsion, the Adams spectral sequence shows: for
t− s < 8,

Exts,tA2(1)
(H∗−1(MTO(1),Z2)⊗H∗+1(MO(1),Z2),Z2) ⇒ ΩDPin

t−s .(C.2)

By Thom’s isomorphism,

H∗−1(MTO(1),Z2) = Z2[a]U(C.3)

where U is the Thom class of the virtual bundle −E1 over BO(1), E1 is the
universal 1-bundle over BO(1) and a is the 1st Stiefel-Whitney class of E1

over BO(1).
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Figure 18: The A2(1) module structure of H∗−1(MTO(1),Z2) ⊗
H∗+1(MO(1),Z2).

Also by Thom’s isomorphism,

H∗+1(MO(1),Z2) = Z2[w]V(C.4)

where V is the Thom class of the universal 1-bundle E′
1 over BO(1) and w

is the 1st Stiefel-Whitney class of E′
1 over BO(1).

The A2(1) module structure of H∗−1(MTO(1),Z2) ⊗ H∗+1(MO(1),Z2)

is shown in Figure 18, which agrees with the Figure 6 in [24].

The E2 page is shown in Figure 19.

C.2. Bordism and cobordism groups of DPin(d) × BZ2

In this subsection, we will compute the cobordism group of DPin(d)×BZ2.

Recall that MTDPin = MSpin ∧ Σ1MTO(1) ∧ Σ−1MO(1). So

MT (DPin × BZ2) = MTDPin ∧ (B2Z2)+ = MSpin ∧ Σ1MTO(1) ∧
Σ−1MO(1) ∧ (B2Z2)+.

Since there is no odd torsion, the Adams spectral sequence shows: for

t− s < 8,

Exts,tA2(1)
(H∗−1(MTO(1),Z2)⊗H∗+1(MO(1),Z2)⊗H∗(B2

Z2,Z2),Z2)

(C.5)

⇒ ΩDPin×BZ2

t−s .
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Figure 19: ΩDPin
∗ .

Table 27: Bordism group. Here a and w are explained before. η̃ is the mod 2
index of 1d Dirac operator, ABK is the 2d Arf-Brown-Kervaire invariant

Bordism and Cobordism group

d ΩDPin
d TPDPin

d Cobordism Invariant
0 Z2 Z2

1 Z2 Z2 a
2 Z

2
2 Z

2
2 w2, aη̃

3 Z8 Z8 aABK
4 Z

2
2 Z

2
2 w4, a4

5 0 0

Recall that

H∗(B2
Z2,Z2) = Z2[x2, x3, x5, . . . ](C.6)

where x2 is the generator of H2(B2Z2,Z2), x3 = Sq1x2, x5 = Sq2x3, . . . .

The A2(1) module structure of H∗−1(MTO(1),Z2)⊗H∗+1(MO(1),Z2)⊗
H∗(B2Z2,Z2) is shown in Figure 20.

The E2 page of the Adams spectral sequence is shown in Figure 21.
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Figure 20: The A2(1) module structure of H∗−1(MTO(1),Z2) ⊗
H∗+1(MO(1),Z2)⊗H∗(B2Z2,Z2).
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Figure 21: ΩDPin×BZ2∗ .

Table 28: Bordism group. Here a and w are explained before. η̃ is the mod 2
index of 1d Dirac operator, ABK is the 2d Arf-Brown-Kervaire invariant. x2
is the generator of H2(B2Z2,Z2), x3 = Sq1x2, x5 = Sq2x3

Bordism and Cobordism group

d ΩDPin×BZ2

d TPDPin×BZ2

d Cobordism Invariant
0 Z2 Z2

1 Z2 Z2 η̃
2 Z

3
2 Z

3
2 x2, w

2, aη̃
3 Z

2
2 × Z8 Z

2
2 × Z8 ax2, x3, aABK

4 Z5
2 Z5

2 w4, a4, ax3, x
2
2, w

2x2

5 Z
4
2 Z

4
2 a3x2, x2x3, x5, w

2x3
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