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High accuracy compact difference schemes for
differential equations in mathematical sciences

Murli M. Gupta
∗,†

Our work on high order compact difference schemes was initiated
about 35 years ago when we first presented new 4th and 6th order
discretizations for convection-diffusion equations in 2-dimensions.
This work is now routinely applied to complex fluid flow problems,
and has also been developed for 3-dimensional differential equa-
tions. In our quest to apply these ideas to the biharmonic equation,
we discovered that it is beneficial to carry the unknowns and their
derivatives as computational parameters. This allowed us to pro-
pose the streamfunction-velocity formulation for the Navier–Stokes
equations.

In this paper, I describe the historical developments of the high
order compact difference schemes and their evolution into the pow-
erful computational techniques that are now available to solve
fluid flow problems of important physical interest. Some theoreti-
cal analysis on stability and convergence of these schemes will also
be presented.

This paper is based, in part, on the presentation I gave in March
2019 at the Taiwan-India Joint Conference – Recent Progress on
Flow Simulation and Stability Analysis: 2019 Spring Progress in
Mathematical and Computational Studies on Science and Engi-
neering Problems at National Taiwan University, Taipei, Taiwan.
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1. Introduction

High order compact schemes are ubiquitous now. We started working on the
development of such schemes in the early 1980s with the initial goal of solving
the convection-diffusion equations with high degree of accuracy. At that
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time, we had a choice of two methods: the central difference scheme (CDS)

and the upwind difference scheme (UDS). The central difference scheme has

a truncation error of second order but it only worked when the convection

terms were of moderate size. In the case of high convection, CDS often

failed to converge and, in any case, gave incorrect, oscillatory solutions. The

upwind difference scheme (with truncation error of first order) was able to

converge in most cases but the solutions were not as accurate and the issues

of artificial diffusion arose in many situations.

We started working on the convection-diffusion equations with the even-

tual goal of working on the Navier–Stokes equations which have many practi-

cal applications. We proposed fourth order compact schemes for the convec-

tion-diffusion equations and showed that these new schemes were successful

in converging in all cases, and provided high accuracy solutions of all test

problems. Subsequently, we were able to provide rigorous proofs of the sta-

bility and convergence of many of these schemes. Once this was done, we

decided to work on the biharmonic equations which represent Stokes flow

and are linearized form of the Navier–Stokes equations. Discretization of the

biharmonic equation traditionally required a 13-point stencil which needed

modifications near the boundaries of the physical domain. We proposed a

compact finite difference approximation for the two-dimensional biharmonic

equation that required only 9 grid points in a compact square grid cell; this

approximation carried the unknown solution and its first order derivatives

as parameters for the computational procedure. We were able to show that

our new formulation for the 2D biharmonic equation has a truncation er-

ror of second order on the 9 point stencil. We then obtained fourth order

finite difference approximations for the two dimensional biharmonic equa-

tion still on a 9 point stencil; subsequently we also obtained compact high

order approximations for the three dimensional biharmonic equation on a

unit cube. Second order approximations were obtained on a 19 point stencil

for 3D biharmonic equations while 27 point stencils were used to obtain 4th

order accurate approximations. In each of these cases, we used the unknown

solution and its first derivatives as the variables to carry as computational

parameters in the computational process. This gave rise to a new paradigm

of streamfunction-velocity formulations for the Navier–Stokes equations.

Once we were successful with the biharmonic equation, we worked on

the steady state Navier–Stokes equations in two-dimensions and proposed a

streamfunction-velocity formulation. This formulation obviated the need for

dealing with the pressure equation (in the case of primitive variable formula-

tion) and the vorticity equation with unknown boundary values (in the case
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of streamfunction-vorticity formulation). Even though fourth order approx-
imations are available for Navier–Stokes equations, we have decided to only
use the second order approximations due to the complexity of the differen-
tial equations. Once the steady state problems were tackled satisfactorily,
we turned our attention to the time-dependent Navier–Stokes equations and
discovered that our formulations provided high accuracy solutions in the case
of fluid flow problems of high complexity.

This paper is arranged as follows:

1. Introduction
2. Early years of High Order Compact (HOC) schemes

• 2.1 Poisson equation

• 2.2 Convection-Diffusion equation

• 2.3 Poisson and Convection-Diffusion equation: Further Progress

• 2.4 Convergence results

• 2.5 Scheme derivations using software

3. Biharmonic equation: Use of unknown and its first derivatives

• 2-Dimensions
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4. Navier–Stokes equations: Steady state

• Conventional formulations

• New paradigm: Streamfunction-velocity formulations

5. Navier–Stokes equations: Time dependent case
6. Other applications
7. Conclusions
8. Acknowledgements
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2. Early years of HOC scheme

2.1. Poisson equation

We consider 2- and 3-dimensional Poisson equations:

�u = uxx + uyy = f (2D)

�u = uxx + uyy + uzz = f (3D)
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Figure 1: The standard five point stencil for the 2D Poisson equation.

Standard 5 point approximation at a grid point (xi, yj) in 2D is given
by

−4ui,j + ui−1,j + ui,j−1 + ui+1,j + ui,j+1 = h2fi,j

Here the subscripts i, j indicate values of the function u at a particu-
lar grid point (xi, yj). This formula utilizes the function values of the four
nearest neighbors of the i, j point and has a truncation error of order h2

(Figure 1).
The standard 9 point formula in 2D (with truncation error of order h4)

is given by

− 60ui,j + 16(ui−1,j + ui,j−1 + ui+1,j + ui,j+1)

− (ui−2,j + ui+2,j + ui,j+2 + ui,j−2) = 12h2fi,j

This formula uses points that are two grid units away from the central
point (xi, yj) which causes large bandwidth and difficulties near the bound-
aries (Figure 2).

A Compact Fourth Order Formula for 2D Poisson Equation is given by

4(ui−1,j + ui,j−1 + ui+1,j + ui,j+1)

+ (ui−1,j+1 + ui−1,j−1 + ui+1,j+1 + ui+1,j−1)− 20ui,j

= 0.5h2(8fi,j + fi,j−1 + fi−1,j + fi+1,j + fi,j+1)

The above method has a truncation error of order O(h4); it uses only
8 nearest neighbours of the central point (xi, yj) (Figure 3) and was called
Mehrstellenverfahren (also called Hermitian or many point method) by
L. Collatz (1951) [12].
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Figure 2: The standard nine point stencil for the 2D Poisson equation.

In a ground breaking work [22], we compared the accuracy and com-
putational efficiency of the above difference approximations for some test
problems. We found that while Mehrstellen formula indeed provided fourth-
order-accurate values of the unknowns, the values of first derivatives were
still only of second order accuracy because only the second order accurate
approximations (central difference schemes) were available to compute the
first derivatives of the unknowns at that time. We introduced, in 1984, new
finite difference approximations for computing the numerical values of the
first derivatives of u(x, y) (i.e., ∂u

∂x and ∂u
∂y ) in [22] and found that these ap-

proximations yielded O(h4) accuracy for the first derivatives when used in
conjunction with the nine-point Mehrstellen formula. These approximations
were obtained in the process of obtaining the high order compact schemes
for the convection-diffusion equations (see next section).

2.2. Convection-diffusion equation

�u+ pux + quy = f

Our initial work was done with Professors Ram P. Manohar and John W.
Stephenson at the University of Saskatchewan, Saskatoon, Canada, in the
early 1980s [36]. The seminal paper on this topic dealt with the convection-
diffusion equation with constant coefficients (p and q are constant) and
utilized the compact stencil (Figure 3).

This work was motivated by a desire to obtain high accuracy solutions
of these problems in cases when convection was dominant (i.e., the convec-
tion coefficients p and q are large). Prior to our work, there were two typical
methods to discretize these differential equations: upwind difference scheme
(UDS) and central difference scheme (CDS). Upwind difference schemes
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Figure 3: The 9 point compact stencil for the 2D convection diffusion equa-
tion.

(UDS) were of first order of accuracy (truncation error of O(h)) and pro-
vided a convergent solution process. However, the solutions were not very
accurate and artificial diffusion was often prevalent when convection was
dominant. The Central difference schemes (CDS) were the work horse of the
time and provided O(h2) accuracy. However, this became problematic when
the convection terms were dominant. In this case, the iterative methods of-
ten failed to converge; even when the solutions were obtained (e.g., using
direct solvers), the numerical solutions exhibited nonphysical oscillations.

Use of high order approximations at that time required solution values
at points that were two grid points away from the central point (Figure 2).
This required the development of modified finite difference approximations
for grid points close to boundaries.

The work on high order compact (HOC) schemes was initiated in col-
laboration with Professors Manohar and Stephenson of the University of
Saskatchewan, Saskatoon, Canada. We initially carried out these derivations
using reams of pen and paper work; in later years we were able to reproduce,
and extend, many of these derivations using symbolic algebra packages such
as Mathematica.

The first announcement of our results was made by the author at the
Second National Symposium on The Numerical Methods in Heat Transfer
held at University of Maryland, College Park in September 1981 [36]. These
works were then presented by me and the two coauthors (Manohar and
Stephenson) at the conference of American Society of Mechanical Engineers
in Cincinnati, Ohio (1981), 10th IMACS World Congress on System Simula-
tion and Scientific Computation in Montreal, Canada (1982), International
Symposium on Refined Modelling of Flows in Paris, France (1982), Fourth
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International Symposium on Finite Element Methods in Flow Problems in
Tokyo, Japan (1982), and Canadian Congress of Applied Mechanics (CAN-
CAM) in Saskatoon, Canada (1983). Some of the presented results were pub-
lished in the proceedings of these conferences. I note that the results obtained
at that time were computed on computer hardware that could only deal with
grid sizes as fine as the 40×40 grid with 1681 unknowns. Later on, with much
improvements in computer hardware and software, we were able to carry out
such computations on much finer grids as well as in three dimensions.

Initially, our work on convection-diffusion equations centered on the con-
stant coefficient problems. Once this was successful, we focused on variable
coefficient problems and presented the new formulation in Scientific Com-
puting (1983) [20] and IJNMF (1984) [37]. A further generalization for two
dimensional elliptic equations with variable coefficients was published in the
inaugural volume of NMPDE (1985) [38].

The fourth order compact approximation for the convection-diffusion
equation with variable coefficients ([37], IJNMF, 1984) is given below. The
constant coefficient approximations obtained by us initially can be obtained
by simply turning the variables p(x, y) and q(x, y) into constants.

Lu ≡ uxx + uyy + p(x, y)ux + q(x, y)uy = f(x, y)

The magnitudes of p(x, y) and q(x, y) determine the ratio of the convec-
tion to diffusion; the finite difference approximation is given by [37]:

8∑
j=0

αjuj =
h2

2
[fN + fS + fE + fW + 8f0] +

h3

4
[p0(fE − fW ) + q0(fN − fS)]

where

α1 = αE = 4 +
h

4
[4p0 + 3pE − pW + pN + pS ]

+
h2

8
[4p20 + p0(pE − pW ) + q0(pN − pS)]

α2 = αN = 4 +
h

4
[4q0 + 3qN − qS + qE + qW ]

+
h2

8
[4q20 + p0(qE − qW ) + q0(qN − qS)]

α3 = αW = 4− h

4
[4p0 − pE + 3pW + pN + pS ]

+
h2

8
[4p20 − p0(pE − pW )− q0(pN − pS)]
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α4 = αS = 4− h

4
[4q0 − qN + 3qS + qE + qW ]

+
h2

8
[4q20 − p0(qE − qW )− q0(qN − qS)]

α5 = αNE = 1 +
h

2
[p0 + q0] +R7

α6 = αNW = 1− h

2
[p0 − q0]−R7

α7 = αSW = 1− h

2
[p0 + q0] +R7

α8 = αSE = 1 +
h

2
[p0 − q0]−R7

R7 =
h

8
[qE − qW + pN − pS ] +

h2

4
p0q0

α0 = −[20 + h2(p20 + q20) + h(pE − pW ) + h(qN − qS)]

2.3. Poisson and convection-diffusion equation: further progress

In the 1990’s, with the help of my graduate students, Jun Zhang and Jules
Kouatchou, we initiated further work on the convection-diffusion equations.
We applied multigrid techniques to the two dimensional problems and ob-
tained high levels of accuracy and grid-independent convergence rates.

In [28], we developed an efficient solution procedure for high accuracy
solution of the convection-diffusion equation �u + pux + quy = f in con-
junction with multigrid method. Our algorithm displayed grid independent
convergence rates and provided solutions with high accuracy. Note that we
were able to use much finer grids at that time due to the dramatic improve-
ments in computer hardware and software.

Around this time Spotz and Carey published their work on higher order
compact schemes which were similar to our schemes from a decade earlier,
though their derivations were different [61, 60, 59]. Lele [48] also contributed
to these derivations.

We carried out detailed comparisons of second and fourth order dis-
cretizations of Poisson equation using multigrid techniques [29] and showed
that our method achieved dramatic improvements in computer efficiency
and accuracy on both serial (SUN SPARCStation) and vector (Cray C90)
computers. Note that at this point, we were able to work with grids as small
as 256× 256 with 66049 unknowns.

We also worked on the convection-diffusion equation in 3 dimensions

�u+ λux + μuy + ωuz = f
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Figure 4: The 19 point stencil for the 3D convection diffusion equation.

In [39], we presented an explicit fourth-order compact finite difference scheme

for approximating the three-dimensional (3D) convection-diffusion equation
with variable coefficients. This 19-point formula, given below, is defined on

a uniform cubic grid (Figure 4).

The fourth order approximation of above equation is given by

18∑
l=0

clul = F0

where the coefficients cl are given by

c0 = −[24 + h2(λ2
0 + μ2

0 + ω2
0) + h(λ1 − λ3 + μ2 − μ4 + ω5 − ω6)]

c1 = 2− h

4
(2λ0 − 3λ1 − λ2 − λ3 − λ4 − λ5 − λ6)

+
h2

8
[4λ2

0 + λ0(λ1 − λ3) + μ0(λ2 − λ4) + ω0(λ5 − λ6)]

c2 = 2− h

4
(2μ0 − μ1 − 3μ2 − μ3 + μ4 − μ5 − μ6)

+
h2

8
[4μ2

0 + λ0(μ1 − μ3) + μ0(μ2 − μ4) + ω0(μ5 − μ6)]

c3 = 2 +
h

4
(2λ0 + λ1 − λ2 − 3λ3 − λ4 − λ5 − λ6)

+
h2

8
[4λ2

0 − λ0(λ1 − λ3)− μ0(λ2 − λ4)− ω0(λ5 − λ6)]

c4 = 2 +
h

4
(2μ0 − μ1 + μ2 − μ3 − 3μ4 − μ5 − μ6)
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+
h2

8
[4μ2

0 − λ0(μ1 − μ3)− μ0(μ2 − μ4)− ω0(μ5 − μ6)]

c5 = 2− h

4
(2ω0 − ω1 − ω2 − ω3 − ω4 − 3ω5 + ω6)

+
h2

8
[4ω2

0 + λ0(ω1 − ω3) + μ0(ω2 − ω4) + ω0(ω5 − ω6)]

c6 = 2 +
h

4
(2ω0 − ω1 − ω2 − ω3 − ω4 + ω5 − 3ω6)

+
h2

8
[4ω2

0 − λ0(ω1 − ω3)− μ0(ω2 − ω4)− ω0(ω5 − ω6)]

c7 = 1 +
h

2
(λ0 + μ0) +

h

8
[λ2 − λ4 + μ1 − μ3] +

h2

4
λ0μ0

c8 = 1− h

2
(λ0 − μ0)−

h

8
[λ2 − λ4 + μ1 − μ3]−

h2

4
λ0μ0

c9 = 1− h

2
(λ0 + μ0) +

h

8
[λ2 − λ4 + μ1 − μ3] +

h2

4
λ0μ0

c10 = 1 +
h

2
(λ0 − μ0)−

h

8
[λ2 − λ4 + μ1 − μ3]−

h2

4
λ0μ0

c11 = 1 +
h

2
(λ0 + ω0) +

h

8
[λ5 − λ6 + ω1 − ω3] +

h2

4
λ0ω0

c12 = 1 +
h

2
(μ0 + ω0) +

h

8
[μ5 − μ6 + ω2 − ω4] +

h2

4
μ0ω0

c13 = 1− h

2
(λ0 − ω0)−

h

8
[λ5 − λ6 + ω1 − ω3]−

h2

4
λ0ω0

c14 = 1− h

2
(μ0 − ω0)−

h

8
[μ5 − μ6 + ω2 − ω4]−

h2

4
μ0ω0

c15 = 1 +
h

2
(λ0 − ω0)−

h

8
[λ5 − λ6 + ω1 − ω3]−

h2

4
λ0ω0

c16 = 1 +
h

2
(μ0 − ω0)−

h

8
[μ5 − μ6 + ω2 − ω4]−

h2

4
μ0ω0

c17 = 1− h

2
(λ0 + ω0) +

h

8
[λ5 − λ6 + ω1 − ω3] +

h2

4
λ0ω0

c18 = 1− h

2
(μ0 + ω0) +

h

8
[μ5 − μ6 + ω2 − ω4] +

h2

4
μ0ω0

F0 =
h2

4
(6f0 + f1 + f2 + f3 + f4 + f5 + f6)

+
h3

4
[λ0(f1 − f3) + μ0(f2 − f4) + ω0(f5 − f6)].
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When λ = μ = ω ≡ 0, the differential equation reduces to the 3D

Poisson equation and this finite difference scheme reduces to the 19-point

formula for that equation, see [27].

2.4. Convergence results

Proof of convergence of this 19-point finite difference approximation for 3D

convection-diffusion equation with constant coefficients was obtained by us

in collaboration with researchers from the Republic of Georgia (Professors

Givi Berikelashvili and Manana Mirianashvili). This work was published

in SIAM Journal on Numerical Analysis in 2007 [10] and contained the

following main result:

Theorem 2.1. Let the exact solution of the boundary value problem belong

to W s
2 (Ω), s > 1.5. Then the discretization error of the finite difference

scheme in the discrete Wm
2 (ω)-norm is O(hs−m) where the parameter s sat-

isfies the condition max(1.5,m) < s ≤ m+ 4, m = 0, 1, 2.

This result shows that the convergence rate can be as high as O(h4) de-

pending upon the smoothness of the exact solution of the underlying prob-

lem.

Further work (with Berikelashvili and Bidzina Midodashvili) on the 3D

convection-diffusion equation with variable coefficients was presented at IC-

NAAM 2014 conference in Rhodes, Greece (September 2014) and appeared

in AIP Conference Proceedings (2015) [9]. This work proved that our method

for variable coefficient problems converges in the discrete L2-norm with the

rate hm when the solution of the original problem belongs to the Sobolev

space Wm
2 , 2 < m ≤ 4.

A more recent result (with Berikelashvili and Midodashvili) concerns 3D

Poisson equation with nonlocal boundary conditions and was published in

Mathematical Sciences Letters (2018) [8]. The main theorem again provides

convergence results of order up to h4:

Theorem 2.2. Let the solution of the Poisson equation belong to the space

W s
2 (Ω), s ≥ 2. Then the convergence rate of the corrected difference scheme

in the discrete L2-norm is defined by the estimate

||U − u||L2(ω;r) ≤ chs||u||W s
2 (Ω), 2 ≤ s ≤ 4.
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2.5. Scheme derivations using software

In [27], we published a variety of Mathematica codes for 3D Poisson equa-
tion. An example of such a code using 19 grid points in a unit box is presented
below.

Clear[p,q,i,j,l,k,xx,yy,zz,u,eq,equ,a,b];

(* Form the polynomial p of degree n *)

n=6;

p=0;

Clear[i,j,l,a];

Do[If[i+j+l<=n,p=p+a[i,j,l] x^i y^j z^l,Continue[]],{i,0,n},{j,0,n},{l,0,n}];

(* Define the coordinates of the 19 point cell *)

xx[0] = 0; yy[0] = 0; zz[0] = 0;

xx[1] = 1; yy[1] = 0; zz[1] = 0;

xx[2] = 0; yy[2] = 1; zz[2] = 0;

xx[3] =-1; yy[3] = 0; zz[3] = 0;

xx[4] = 0; yy[4] =-1; zz[4] = 0;

xx[5] = 1; yy[5] = 0; zz[5] = 1;

xx[6] = 0; yy[6] = 1; zz[6] = 1;

xx[7] =-1; yy[7] = 0; zz[7] = 1;

xx[8] = 0; yy[8] =-1; zz[8] = 1;

xx[9] = 1; yy[9] = 0; zz[9] =-1;

xx[10]= 0; yy[10]= 1; zz[10]=-1;

xx[11]=-1; yy[11]= 0; zz[11]=-1;

xx[12]= 0; yy[12]=-1; zz[12]=-1;

xx[13]= 0; yy[13]= 0; zz[13]= 1;

xx[14]= 0; yy[14]= 0; zz[14]=-1;

xx[15]= 1; yy[15]= 1; zz[15]= 0;

xx[16]=-1; yy[16]= 1; zz[16]= 0;

xx[17]=-1; yy[17]=-1; zz[17]= 0;

xx[18]= 1; yy[18]=-1; zz[18]= 0;

(* Form 19 equations to define the values of u at 19 points *)

Clear[i,j,l];

Clear[eq];

Do[eq[i]=u[i]==p/.{x->xx[i],y->yy[i],z->zz[i]},{i,0,18}]

Clear[var];

var={};

Do[If[i+j+l<=n,var=Append[var,a[i,j,l]],Continue[]],{i,0,n},{j,0,n},{l,0,n}];

(* Define the differential equation *)
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q=D[p,{x,2}]+D[p,{y,2}]+D[p,{z,2}];

(* Form 7 more equations by using f and its derivatives *)

eq[19]=b[0,0,0]==(q/.{x->0,y->0,z->0});

eq[20]=b[1,0,0]==(D[q,x]/.{x->0,y->0,z->0});

eq[21]=b[0,1,0]==(D[q,y]/.{x->0,y->0,z->0});

eq[22]=b[0,0,1]==(D[q,z]/.{x->0,y->0,z->0});

eq[23]=b[2,0,0]==(D[q,{x,2}]/.{x->0,y->0,z->0});

eq[24]=b[0,2,0]==(D[q,{y,2}]/.{x->0,y->0,z->0});

eq[25]=b[0,0,2]==(D[q,{z,2}]/.{x->0,y->0,z->0});

(* Solve the chosen system for a[0,0,0], a[1,0,0], a[0,1,0], a[0,0,1] *)

Eliminate[{eq[1],eq[2],eq[3],eq[4],eq[5],eq[6],eq[7],eq[8],eq[9],

eq[10],eq[11],eq[12],eq[13],eq[14],eq[15],eq[16],eq[17],eq[18],

eq[19],eq[20],eq[21],eq[22],eq[23],eq[24],eq[25]},

{a[2,0,0],a[0,2,0],a[0,0,2],a[1,1,0],a[1,0,1],a[0,1,1],

a[3,0,0],a[0,3,0],a[0,0,3],a[2,1,0],a[1,2,0],a[1,0,2],a[2,0,1],

a[0,1,2],a[0,2,1],a[1,1,1],a[4,0,0],a[0,4,0],a[0,0,4],

a[2,2,0],a[2,0,2],a[0,2,2],a[3,1,0],a[1,3,0],a[0,3,1],a[0,1,3],

a[1,0,3],a[3,0,1],a[1,1,2],a[2,1,1],a[1,2,1]}]

b[0, 0, 0] == -4*a[0, 0, 0] - 2*a[0, 0, 6] - (2*a[0, 2, 4])/3 -

(2*a[0, 4, 2])/3 - 2*a[0, 6, 0] - (2*a[2, 0, 4])/3 - (2*a[2, 4, 0])/3 -

(2*a[4, 0, 2])/3 - (2*a[4, 2, 0])/3 - 2*a[6, 0, 0] - b[0, 0, 2]/12 -

b[0, 2, 0]/12 - b[2, 0, 0]/12 + u[1]/3 + u[2]/3 + u[3]/3 + u[4]/3 +

u[5]/6 + u[6]/6 + u[7]/6 + u[8]/6 + u[9]/6 + u[10]/6 + u[11]/6 +

u[12]/6 + u[13]/3 + u[14]/3 + u[15]/6 + u[16]/6 + u[17]/6 + u[18]/6 &&

b[0, 0, 1] == -6*a[0, 0, 1] - 6*a[0, 0, 5] - 2*a[0, 2, 3] -

2*a[0, 4, 1] - 2*a[2, 0, 3] - 2*a[4, 0, 1] + u[5]/2 + u[6]/2 + u[7]/2 +

u[8]/2 - u[9]/2 - u[10]/2 - u[11]/2 - u[12]/2 + u[13] - u[14] &&

b[0, 1, 0] == -6*a[0, 1, 0] - 2*a[0, 1, 4] - 2*a[0, 3, 2] -

6*a[0, 5, 0] - 2*a[2, 3, 0] - 2*a[4, 1, 0] + u[2] - u[4] + u[6]/2 -

u[8]/2 + u[10]/2 - u[12]/2 + u[15]/2 + u[16]/2 - u[17]/2 - u[18]/2 &&

b[1, 0, 0] == -6*a[1, 0, 0] - 2*a[1, 0, 4] - 2*a[1, 4, 0] - 2*a[3, 0, 2] -

2*a[3, 2, 0] - 6*a[5, 0, 0] + u[1] - u[3] + u[5]/2 - u[7]/2 + u[9]/2 -

u[11]/2 + u[15]/2 - u[16]/2 - u[17]/2 + u[18]/2

Solve[%,{a[0,0,0],a[1,0,0],a[0,1,0],a[0,0,1]}]

a[0, 0, 0] -> (-24*a[0, 0, 6] - 8*a[0, 2, 4] - 8*a[0, 4, 2] -

24*a[0, 6, 0] - 8*a[2, 0, 4] - 8*a[2, 4, 0] - 8*a[4, 0, 2] - 8*a[4, 2, 0] -

24*a[6, 0, 0] - 12*b[0, 0, 0] - b[0, 0, 2] - b[0, 2, 0] - b[2, 0, 0] +

4*u[1] + 4*u[2] + 4*u[3] + 4*u[4] + 2*u[5] + 2*u[6] + 2*u[7] + 2*u[8] +

2*u[9] + 2*u[10] + 2*u[11] + 2*u[12] + 4*u[13] + 4*u[14] + 2*u[15] +
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2*u[16] + 2*u[17] + 2*u[18])/48

a[1, 0, 0] -> (-4*a[1, 0, 4] - 4*a[1, 4, 0] - 4*a[3, 0, 2] - 4*a[3, 2, 0] -

12*a[5, 0, 0] - 2*b[1, 0, 0] + 2*u[1] - 2*u[3] + u[5] - u[7] + u[9] -

u[11] + u[15] - u[16] - u[17] + u[18])/12

a[0, 1, 0] -> (-4*a[0, 1, 4] - 4*a[0, 3, 2] - 12*a[0, 5, 0] - 4*a[2, 3, 0] -

4*a[4, 1, 0] - 2*b[0, 1, 0] + 2*u[2] - 2*u[4] + u[6] - u[8] + u[10] -

u[12] + u[15] + u[16] - u[17] - u[18])/12

a[0, 0, 1] -> (-12*a[0, 0, 5] - 4*a[0, 2, 3] - 4*a[0, 4, 1] - 4*a[2, 0, 3] -

4*a[4, 0, 1] - 2*b[0, 0, 1] + u[5] + u[6] + u[7] + u[8] - u[9] - u[10] -

u[11] - u[12] + 2*u[13] - 2*u[14])/12

The output equation for a[0, 0, 0] contains sixth degree terms such as
a[6, 0, 0] representing h6uxxxxxx. The output equations for a[1, 0, 0] (repre-
senting hux) contain fifth degree terms such as a[5, 0, 0] representing
h5uxxxxx. All these equations represent finite difference approximations of
order h4.

The four output equations provide the main finite difference scheme and
the approximations of fourth order for the first derivatives of the unknown:

2♦u0 +�u0 − 24u0 = 6b0,0,0h
2 + (b2,0,0 + b0,2,0 + b0,0,2)h

4

∂u

∂x
=

1

12h
(2u1 − 2u3 + u5 − u7 + u9 − u11 + u15 − u16

− u17 + u18 − 2h3
∂f

∂x
)

∂u

∂y
=

1

12h
(2u2 − 2u4 + u6 − u8 + u10 − u12 + u15 + u16

− u17 − u18 − 2h3
∂f

∂y
)

∂u

∂z
=

1

12h
(2u13 − 2u14 + u5 + u6 + u7 + u8 − u9 − u10

− u11 − u12 − 2h3
∂f

∂z
)

This 19-point formula is related to the Mehrstellen scheme for 2D Poisson
equation [12] and had also been obtained by other authors. We showed that
this scheme is stable and achieves fourth-order accuracy. The finite difference
approximation for the gradients of the solution u were presented in this
work by us for the first time in the literature. Similar derivative gradient
approximations were obtained by us [22] for the 2D Poisson equation and
their utilization with 2D Navier–Stokes equations was carried out in [23].We
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showed in [29] that these approximations indeed provided solutions of fourth-
order accuracy.

3. Biharmonic equation: use of unknown and its first
derivatives

Biharmonic equation has been of particular interest because it represents
the Stokes’ flow and also represents the linearized form of the Navier–Stokes
equations. We worked on both two- and three-dimensional problems:

�2u = uxxxx + 2uxxyy + uyyyy = f (2D)

�2u = uxxxx + uyyyy + uzzzz + 2uxxyy + 2uyyzz + 2uzzxx = f (3D)

These are fourth order differential equations and the conventional fi-
nite difference approximations for solving the biharmonic equation can be
summarized as follows:

1. 13 point approximations in 2-dimensions: truncation error of order h2

2. 25 point approximations in 2-dimensions: truncation error of order h4

3. 25 point approximations in 3-dimensions: truncation error of order h2

The coupled equation approach has been very popular over the past
five decades. It involves splitting the biharmonic equation into two Poisson
equations which can then be solved using any of the available Poisson solvers:

�2u = uxxxx + 2uxxyy + uyyyy = f

which is split into two Poisson Equations

�u(x, y) = uxx + uyy = v(x, y)

�v(x, y) = vxx + vyy = f(x, y)

There have been difficulties with both of the conventional approaches:

1. The 13 point formula for 2D case requires special treatment near the
boundaries because u(xi, yj) is connected to neighbouring values two
grid points away in each direction. This requires special finite differ-
ence approximations for grid points close to the boundaries. The situ-
ation is similar in 3D case, and is worse with the O(h4) conventional
approximations [33].

2. Large computational resources are required because direct solvers can
only be used for moderate values of grid width h and the conventional
iterative methods either converge very slowly or diverge [23, 32].
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3. The coupled equation approach requires the boundary values of v(x, y)
that are usually unknown and need to be approximated from v(x, y) =
uxx + uyy [13, 17].

We proposed a compact solution approach where we discretized the bi-
harmonic equation using the values of the unknown solution u, and the
values of gradients ux, uy (& uz for 3D) at selected grid points. The reasons
for using the grid values of these gradients are:

1. When the grid values of the gradients ux, uy & uz are needed, they do
not need to be approximated using further approximations.

2. Given boundary conditions of the first kind (u, un) are exactly satisfied
and no special approximations are needed near the boundaries.

3. Proposed finite difference approximations are derived on a compact cell
and no special modifications of the finite difference approximations are
needed close to the boundaries.

Compact finite difference approximation of the two-dimensional bihar-
monic equation using 9 grid points is given below. This approximation has
a truncation error of O(h2) [1].

28ui,j − 8(ui−1,j + ui,j−1 + ui+1,j + ui,j+1)

+ (ui−1,j+1 + ui−1,j−1 + ui+1,j+1 + ui+1,j−1)

+ 3h(uxi+1,j
− uxi−1,j

+ uyi,j+1
− uyi,j−1

) =
h4

2
fi,j

Compatible fourth order approximations for the first derivatives are de-
fined by

huxi,j
= (3/4)(ui+1,j − ui−1,j)− (h/4)(uxi+1,j

+ uxi−1,j
)

huyi,j
= (3/4)(ui,j+1 − ui,j−1)− (h/4)(uyi,j+1

+ uyi,j−1
)

Compact finite difference approximation of the two-dimensional bihar-
monic equation with truncation error of order O(h4) is given below. This
approximation also uses 9 grid points [2].

ui,j −
3

11
(ui−1,j + ui,j−1 + ui+1,j + ui,j+1)

+
1

44
(ui−1,j+1 + ui−1,j−1 + ui+1,j+1 + ui+1,j−1)

+
7h

66
(uxi+1,j

− uxi−1,j
+ uyi,j+1

− uyi,j−1
)
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+
h

264
(uxi+1,j+1

− uxi−1,j+1
− uxi−1,j−1

+ uxi+1,j−1
+ uyi+1,j+1

+ uyi−1,j+1
− uyi−1,j−1

− uyi+1,j−1
)

=
h4

396
[7fi,j + 2(fi+1,j + fi,j+1 + fi−1,j + fi,j−1)]

Compact finite difference approximation for three-dimensional bihar-
monic equation using 19 grid points in a unit cube is given below. This
approximation has a truncation error of O(h2) [2].

48ui,j,k − 10(ui+1,j,k + ui,j+1,k + ui,j,k+1 + ui−1,j,k + ui,j−1,k + ui,j,k−1)

+ (ui+1,j,k+1 + ui,j+1,k+1 + ui−1,j,k+1 + ui,j−1,k+1 + ui+1,j,k−1 + ui,j+1,k−1

+ ui−1,j,k−1 + ui,j−1,k−1 + ui+1,j+1,k + ui−1,j+1,k + ui−1,j−1,k + ui+1,j−1,k)

+ 3h(uxi+1,j,k
− uxi−1,j,k

+ uyi,j+1,k
− uyi,j−1,k

+ uzi,j,k+1
− uzi,j,k−1

)

= (h4/2)fi,j,k

Compatible fourth order approximations for the first derivatives in 3D
case are given by:

huxi,j,k
= (3/4)(ui+1,j,k − ui−1,j,k)− (h/4)(uxi+1,j,k

+ uxi−1,j,k
)

huyi,j,k
= (3/4)(ui,j+1,k − ui,j−1,k)− (h/4)(uyi,j+1,k

+ uyi,j−1,k
)

huzi,j,k = (3/4)(ui,j,k+1 − ui,j,k+1)− (h/4)(uyi,j,k+1
+ uyi,j,k−1

)

Here are the sample results of numerical experiments on the biharmonic
equation using our compact formulations. Further examples are available in
the cited references.

For a two-dimensional test problem, we considered

�2u = uxxxx + uyyyy + 2uxxyy = f

on a unit square with exact solution u(x, y) = x3log(1+ y)+ y/(1+x). The
forcing term f and the boundary values of u and its derivatives are obtained
from the exact solution [1]. An O(h4) rate of convergence was observed.

Grid Error No. of W-cycles
162 8.9× 10−8 17
322 5.8× 10−9 17
642 4.1× 10−10 17

We note that the errors exhibited in this table decrease by a factor
of 16 when the grid size is halved; this clearly represents a O(h4) rate of
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convergence. As a comparison, Linden [1985] obtained the maximum error
of 2.02× 10−7 with a 256× 256 grid while our method produced 8.9× 10−8

error with a 16× 16 grid.
For a three-dimensional test problem, we considered the biharmonic

equation on a unit cube [2]

�2u = uxxxx + uyyyy + uzzzz + 2uxxyy + 2uyyzz + 2uzzxx = f

with exact solution

u(x, y, z) = (1− cos(2πx))(1− cos(2πy))(1− cos(2πz)).

The forcing term f and boundary values of u and un were obtained from
exact solution u. The results are summarized in the following table:

Grid Error time in secs No. of W-cycles
163 3.9× 10−5 64.7 20
323 2.3× 10−6 679.5 22
643 3.0× 10−7 5747.9 22

We note that the results for 3D problem were obtained using multi-
grid technology for grid sizes as small as 64 × 64 × 64 which meant solv-
ing linear systems with 274, 625 unknowns. I first announced these results
in March 2001 at the Second International Seminar on Numerical Analy-
sis in Engineering (NAE2001) in Batam Island, Indonesia. Results for the
two-dimensional biharmonic equation were published in SIAM Journal on
Scientific Computing (1998) [1]. The results for 3D biharmonic equation
were published in Numerical Algorithms (2002) [2]. It is noted that we used
Mathematica to automate the derivation of finite difference approximations
for biharmonic equations; these Mathematica codes are available in [1].

4. Navier–Stokes equations: steady state

The Navier–Stokes (N–S) equations in primitive variable formulation may
be written as following:

∂u

∂x
+

∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re
�2u

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re
�2v
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Here u, v are the velocities along x- and y-directions respectively, p the

pressure, t the time, Re = U0L
ν is the Reynolds number with U0 and L being

some characteristic velocity and length, and ν the kinematic viscosity.

Introducing streamfunction ψ and vorticity ω as u = ∂ψ
∂y , v = −∂ψ

∂x ,

ω = ∂v
∂x − ∂u

∂y , the above N–S equations can be rewritten as:

∂2ψ

∂x2
+

∂2ψ

∂y2
= −ω

∂ω

∂t
=

1

Re

(
∂2ω

∂x2
+

∂2ω

∂y2

)
−
(
u
∂ω

∂x
+ v

∂ω

∂y

)

This is known as Streamfunction-Vorticity (ψ-ω) formulation which has been

used in many decades of computations for the resolution of fluid flows. This

formulation has been very successful and has been used by a large number

of researchers over the past many decades to test new methods for the nu-

merical solutions of a variety of fluid flow problems. Typical difficulty with

this formulation consists in the specification of vorticity values at the no-slip

boundaries. The vorticity ω is defined through the Poisson equation

∂2ψ

∂x2
+

∂2ψ

∂y2
= −ω

which needs to be solved discretely on the boundaries so that boundary

values of the vorticity can be specified for the vorticity transport equation

when this formulation is utilized. As the values of vorticity ω on the bound-

aries are generally unspecified, one has to carry out some kind of numerical

approximations in order to specify the boundary values of vorticity and thus

being able to solve the above equations.

Inspired by our work on the biharmonic equation, we extended it to

our eventual target: the Navier–Stokes equations. The derivation of second

and fourth approximations of the Navier–Stokes equations was carried out

with the help of Mathematica (Code to be presented later). While the fourth

order approximations are available, we have found that the second order for-

mulations are adequate for most practical fluid flow computations. Some of

these results were announced by the author at the International Conference

on Industrial and Applied Mathematics (ICIAM 2003) in Sydney, Australia

in 2003.

Our derivation of the streamfunction-velocity formulation of the 2D

Navier–Stokes Equations considered the fourth order differential equation
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(representing the pure streamfunction formulation of N–S equations):

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+

∂4ψ

∂y4
−Reu

[
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

]
−Rev

[
∂3ψ

∂y3
+

∂3ψ

∂x2∂y

]
= 0

which can also be written as

�4ψ = Rev�2u−Reu�2v

The second order finite difference scheme for the above differential equa-
tion is

28ψi,j − 8(ψi−1,j + ψi,j−1 + ψi+1,j + ψi,j+1)

+ (ψi−1,j+1 + ψi−1,j−1 + ψi+1,j+1 + ψi+1,j−1)

= 3h(ui,j−1 − ui,j+1 + vi+1,j − vi−1,j)

+Re
h2

4
[vi,j(ui,j−1 + ui,j+1 + ui+1,j + ui−1,j)

− ui,j(vi,j−1 + vi,j+1 + vi+1,j + vi−1,j)].

We announced the streamfunction-velocity formulation for the Navier–
Stokes equations in 2005 ([25], Journal of Computational Physics). This
method was used to solve the following problems

1. Driven cavity problem
2. Two-sided lid driven cavity Problem
3. Backward step problem

Here we give the Mathematica code for deriving the streamfunction-
velocity formulation for the fourth order differential equation representing
Navier–Stokes equations. This code has not appeared in any of our previous
publications. Similar code for the fourth order formulation is also available.

Navier Stokes Equations second order Formulation using Mathematica

Clear[p,q,r,i,j,k,xx,yy,u,ux,uy,eq,equ,a,b]; n=6;

p=0;Clear[i,j,a]

Do[If[i+j<=n,p=p+a[i,j] x^i y^j,Continue[]],{i,0,n},{j,0,n}];

dpx=D[p,x];dpy=D[p,y];

xx[0]=0;yy[0]=0;xx[1]=1;yy[1]=0;

xx[2]=0;yy[2]=1;xx[3]=-1;yy[3]=0;

xx[4]=0;yy[4]=-1;xx[5]=1;yy[5]=1;

xx[6]=-1;yy[6]=1;xx[7]=-1;yy[7]=-1;xx[8]=1;yy[8]=-1;
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Clear[i,j];Clear[eq];

Do[eq[i]=u[i]==p/.{x->xx[i],y->yy[i]},{i,0,8}]

Do[eq[i+9]=ux[i]==dpx/.{x->xx[i],y->yy[i]},{i,0,8}]

Do[eq[i+18]=uy[i]==dpy/.{x->xx[i],y->yy[i]},{i,0,8}] Clear[ c1, c2]

q=D[p,{x,4}]+2 D[p,{x,2},{y,2}]+ D[p,{y,4}]+c1 (D[p,{x,2},y]+D[p,{y,3}])

+c2 (D[p,{x,3}] + D[p,x,{y,2}])

eq[27]=b[0,0]==(q/.{x->0,y->0});

eq[28]=b[1,0]==(D[q,x]/.{x->0,y->0});

eq[29]=b[0,1]==(D[q,y]/.{x->0,y->0});

eq[30]=b[2,0]==(D[q,{x,2}]/.{x->0,y->0});

eq[31]=b[1,1]==(D[q,x,y]/.{x->0,y->0});

eq[32]=b[0,2]==(D[q,{y,2}]/.{x->0,y->0});

Eliminate[{eq[1],eq[2],eq[3],eq[4],eq[5],eq[6],eq[7],eq[8], eq[10],eq[20],

eq[12],eq[22],

(*eq[14],eq[15],eq[16],eq[17],

eq[23],eq[24],eq[25],eq[26],*) eq[27],eq[28],eq[29],eq[30](*,eq[31]*),

eq[32]},

{a[2,0],a[1,1],a[0,2],

a[3,0],a[2,1],a[1,2],a[0,3],

a[4,0],a[3,1],a[2,2],a[1,3],a[0,4](*,

a[5,0],a[4,1],a[3,2],a[2,3],a[1,4],a[0,5],

a[6,0],a[5,1],a[4,2],a[3,3],a[2,4],a[1,5],a[0,6]*)}]

Solve[%,{a[0,0],a[1,0],a[0,1]}]

Simplify[%]

The first test problem for our new formulation is the two-dimensional lid-
driven square cavity flow (see the schematic in Figure 5) which is extensively
used as a benchmark for code validation of the incompressible N–S equations.
The cavity is defined in the unit square and the fluid motion is generated by
the sliding motion of the top wall of the cavity (y = 1) in its own plane from
left to right. Boundary conditions on the top wall are given as u = 1, v = 0.
On all other walls of the cavity the velocities are zero (u = v = 0). Further,
the streamfunction values on all four walls are zero (ψ = 0).

The solutions of this problem are well documented and details can be
found in the cited references. We simply exhibit the streamline contours for
some Reynolds numbers (Figure 6) from [25]:

Next we considered the flow over the backward-facing step in a channel
which provides an excellent test case for the accuracy of numerical methods
because the reattachment length is a function of the Reynolds number. The
problem configuration is shown in Figure 7 [26]. Numerical simulations were
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Figure 5: The schematic of lid driven square cavity flow.

Figure 6: Streamlines contours (a) Re = 3200, (b) Re = 5000, (c) Re = 7500
and (d) Re = 10000.

carried out for the range of Reynolds numbers (Re) from 100 to 1000 on grid

sizes ranging from 601 × 21 to 961 × 33. At the inlet, a parabolic velocity

profile is usually prescribed and we used u = 24y(0.5 − y), v = 0. The

downstream boundary conditions were prescribed at a distance of 30 step

heights so as to allow the flow to be fully developed. Thus at the outlet,

∂u/∂x = 0 and v = 0. At the stationary walls, u = v = 0 and ψ = 0.5. At
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Figure 7: Schematic of backward facing step flow, [26].

Figure 8: For Re = 100, 200, 300, 400 from top to bottom, [26].

the inlet, the value of ψ can be found from the prescribed values of u and v

and at the outlet the Neumann boundary condition ∂ψ/∂x = 0 is used.

We exhibit (in Figure 8) a few results obtained with a fine 961× 33 grid

that was used to accurately capture the recirculation zone in the vicinity of

the step, and the upper wall eddy when the Reynolds number is large. In

these figures, one can see a steady increase in the reattachment length with

the increase in Re. The formation of a secondary vortex at the upper wall

was also seen for higher values of Reynolds number [26]. Figure 9 exhibits

the velocity profiles at the outlet.
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Figure 9: Exact (obtained from analytical expression) and numerical stream-
wise velocity profile at the outlet.

A team of researchers including Ben–Artzi and Fishelov have also been
working on the streamfunction formulation of Navier–Stokes equations and
have published several articles in this area [6, 4, 5, 14]. Another team con-
sisting of Tian and Yu have also published results in this area [62, 63, 64, 65].

5. Navier–Stokes equations: time dependent case

Once we were successful with the steady state form of the Navier–Stokes
equations, we extended the ψ − v approach to unsteady N–S equations and
proposed a second-order implicit, unconditionally stable ψ − v formulation
for the unsteady incompressible N–S equations. The method was used to
solve several 2D time dependent fluid flow problems, including the flow de-
cayed by viscosity problem (with analytical solution), the lid-driven square
cavity problem, the backward-facing step problem, and the flow past a square
prism problem. For the problems with known exact solutions, our coarse
grid transient solutions were extremely close to the analytical solutions even
for high Reynolds numbers (Re). For the driven cavity problem, our time-
marching steady-state solutions up to Re = 7500 provided excellent matches
with established numerical results, and for Re = 10000, we concluded that
the asymptotic stable solution is indeed periodic as has also been found by
other authors. For the backward-facing step problem, our numerical results
were in excellent agreement with established numerical and experimental
results. Finally, for the flow past a square prism, we have very successfully
simulated the von Karman vortex street for Re = 200.

We presented the ψ-v approach of the N–S equation to its transient coun-
terpart in 2010 ([42], International Journal for Numerical Methods in Fluids)
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Figure 10: For Re = 10000: t = (a) 5; (b) 25; (c) 50; (d) 100; (e) 900 and
(f) 1600.

where we approximated the time derivative through a Crank–Nicolson type

discretization. The following problems were considered:

1. Driven Cavity Problem: Time-marching solutions up to Re = 10,000.

Evidence that the asymptotic stable solution is periodic.

2. Backward-facing step problem.

3. Flow past a square prism exhibiting von Karman vortex street at mod-

erate Reynolds numbers [42].

Here are some of these results:

Evolution of streamfunction for the lid-driven square cavity flow [42]: In

Figure 10, we display the evolution of the solutions for Re = 10000 from

t = 5 to t = 1600 starting with a zero initial profile. This set of profiles

shows that the steady state is unstable for this value of Reynolds number.

Some recent studies have concluded that a stable steady-state solution for

this problem is not possible beyond a critical Reynolds number which is close

to Re = 8000. Our computations for Re = 10000 support such a conclusion

and lean towards an almost periodic solution.

Periodic flow for the lid-driven square cavity flow for Re = 10000 is

demonstrated in Figure 11 [42]. This figure contains a sequence of six stream-

line contours during one main period from time t = T0 to t = T0+2.345 with

T0 = 1500 such that the six plots make one complete cycle. We observe that

there are persistent oscillations in all of the secondary and tertiary vortices,
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Figure 11: Evolution of the streamfunction and cyclic nature of the flow for
one main period with t = T0 + α where T0 = 1500 and (a) α = 0.0, (b)
α = 0.469, (c), α = 0.938, (d) α = 1.407, (e) α = 1.876 and (f) α = 2.345.

Figure 12: For Re = 100, 400, 500.

particularly on the top left and bottom left walls while the secondary and
tertiary vortices at the bottom right wall are almost stable.

We now consider the flow over the backward-facing step in a channel;
this example provides an excellent test case for the accuracy of our numerical
method because the reattachment length is a function of the Reynolds num-
ber. Numerical simulations were carried out for Reynolds numbers 100−800
on grid sizes ranging from 601 × 21 to 961× 33. Figures 12 and 13 present
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Figure 13: For Re = 600 and 800.

Figure 14: For Re = 600 at time stations t = 10, 17, 25 s.

the steady-state streamlines for the backward-facing step flow [42]. These
figures show the steady-state streamline patterns for 100 ≤ Re ≤ 800. One
can see a steady increase in the reattachment length with the increase in
Re. The formation of a secondary vortex at the upper wall can be seen from
Re = 500 onwards. In Figures 14 and 15, we show the time evolution of the
streamlines for Re = 600. One can see the development of the main vortices
at the step and on the top wall; a secondary vortex appears at the bottom
left corner starting at t = 10. After a while (as seen at t = 17 and t = 25),
two smaller vortices begin appearing at the top and bottom walls; these vor-
tices diffuse completely before the steady state is reached. The main vortex
at the top wall splits into two vortices (see Figure 14 at t = 25) and within
a short period of time these vortices coalesce into one vortex (see Figure
15 at t = 29). Both of the main vortices grow in size with time. Once the
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Figure 15: For Re = 600 at time stations t = 29, 45 and 100 s.

steady state is reached, only the vortices at the top wall, at the step and
the secondary vortex at the bottom left corner (not visible in the figures)
continue to exist.

As our final test problem for time-dependent N–S equations, we solved
the problem of flow past a square prism. The domain of the flow is multiply
connected and the nature of the flow itself is very complex. The unsteady
behaviour of the flow that evolves with time for Reynolds numbers beyond a
critical value makes this problem more challenging and interesting. Thus this
problem serves as a suitable test case to check the robustness and reliability
of our numerical scheme.

In Figure 16, we give the configuration of the flow past a square cylinder
problem [42]. As seen in Figure 17, a symmetric flow was observed at the
beginning, but the flow became unstable later on, and finally the flow lost
its symmetry. Eventually, the flow settled into a periodic nature (figure (f)
for t = 360). Figure 17 also exhibits the evolution of streamfunction towards
a periodic state for the flow past a square prism problem. In Figures 18 and
19, we present the temporal evolution of streamlines and vorticity over one
complete vortex shedding cycle of duration T. The evolution of an impressive
von Karman vortex street, which is a regular feature of the Reynolds number
considered here, is clearly seen in these figures.

My colleague, Professor Jiten C Kalita, with his students and co-authors
has been tirelessly working on higher order compact schemes on nonuniform
grids [40, 41, 50] and has further extended the compact formulations to non-
rectangular domains for steady and transient flow problems [40, 41, 50, 47,
53, 55, 54, 56, 52, 51].
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Figure 16: Configuration of the flow past a square cylinder problem.

Figure 17: Streamfunction evolution towards a periodic state for Re = 200:
(a) t = 76; (b) t = 262; (c) t = 287; (d) t = 307; (e) t = 330; and (f) t =
360s, [42].

6. Other applications

We recently presented an optimization strategy for implementing the
BiCGStab iterative solver on graphic processing units (GPU) for computing
incompressible viscous flows governed by the unsteady Navier–Stokes (N–S)
equations on a CUDA platform. Our ψ−v formulation was used to discretize
the N–S equations and we obtained remarkable speedup of 40 times on finer
grids for the lid-driven square cavity flow. The GPU implementation en-
abled us to compute the flow for extremely fine grids (1024× 1024) and we
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Figure 18: Streamfunction contours depicting the wake behind three suc-
cessive instants of time over one vortex shedding period: (a) t = t0; (b)
t = t0 + T/2 and (c) t = t0 + T .

Figure 19: Vorticity contours depicting the wake behind three successive
instants of time over one vortex shedding period: (a) t = t0; (b) t = t0+T/2
and (c) t = t0 + T .

were able to resolve very small scales with remarkable accuracy. While no

perceptible gain in speed could be seen on coarser grids, we observed that

the speed-up increases with the increase in the problem size. It is heartening

to note that on the finest grid, viz., 1024× 1024 grid, the speedup is around

40. Successful implementation of the optimization strategy of the BiCGStab

algorithm on GPU clearly indicates that it has more potential for efficient

computation of even more complex flows.

These results are available in the following articles [44, 45].
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7. Conclusions

As shown in this article, we have come a long way from the pencil-and-
paper environment when solving a 40×40 problem was a big thing, to being
able to solve the two- and three-dimensional problems using 1024×1024 and
64×64×64 grids. Computer algebra systems like Mathematica have also been
invaluable as is the availability of high speed computational architectures.

1. We have derived innovative, compact, formulations for partial differ-
ential equations, including convection-diffusion equations, biharmonic
equation in two and three dimensions, and Navier–Stokes equations
(steady state as well as time-dependent).

2. O(h2) and O(h4) approximations are available.
3. Finite difference approximations are derived on compact stencils using

values of the solution and its gradients as the unknowns.
4. For the equations governing incompressible viscous flows, this corre-

sponds to the streamfunction-velocity (ψ − v) formulation.
5. Our method is very efficient and allows us to obtain high accuracy

solutions for a variety of partial differential equations in a computa-
tionally efficient procedure.
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