
Annals of Mathematical Sciences and Applications

Volume 5, Number 1, 41–61, 2020

A pseudo-transient Newton-Krylov-Schwarz method
for incompressible Navier-Stokes equations with slip

conditions for bifurcation analysis
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We develop a parallel pseudo-transient Newton-Krylov-Schwarz
(Ψ-NKS) algorithm based on the Galerkin/least-squares finite ele-
ment method for incompressible Navier-Stokes equations with slip
boundary conditions. Many research works suggest that the slip
condition can produce a more accurate numerical solution of fluid
flow motion near the boundary for the case with a rough surface,
porous media flows, and non-Newtonian flows. This study aims to
investigate numerically how the slip condition affects the physical
behavior of the fluid flows by using the Ψ-NKS algorithm, including
the flow structure of the lid-driven cavity and the critical Reynolds
number for the pitchfork bifurcation of sudden expansion flows.
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1. Introduction

Navier-Stokes equations with the no-slip boundary condition (i.e., the flow
velocity at the boundary is equal to the velocity of the solid boundary) are
commonly used for the numerical simulation of fluid flows passing through
a solid object or confined by walls. For most fluid flows, the no-slip bound-
ary conditions can accurately describe their motions near boundaries, but
sometimes the slip phenomena of fluid flows are observed in gas flows, non-
Newtonian fluids, and contact motion. In the context of Newtonian liquids
instead of the no-slip boundary condition imposed, the slip condition can
be used to remove the unphysical singularities, where a moving and sta-
tionary wall meet. An alternative approach to resolving the problem is to
use the method of molecular dynamics simulation [4]. The slip boundary
condition effects were investigated in many pioneer works. For example, in
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Figure 1: Interpretation of the slip length λ.

1823, Navier, in his treatise, proposed the concept of slip boundary condition
[14]. In 1860, Helmholtz and Piotrowski introduced the term, “coefficient of
slip” (Gleitungskoeffizient). In 1875, Kundt and Warburg found that the
coefficient of slip was inversely proportional to the pressure by some exper-
iments [12]. Later in 1879, Maxwell derived an expression for the slip [13].
Consider a simple shear flow passing a flat plane. As shown in Figure 1, the
slip length, λ, can be interpreted as the distance in the below boundary,
where the no-slip boundary condition would be satisfied.

The slip length has been confirmed to be the dependence on some phys-
ical properties, such as surface roughness, dissolved gas and bubbles, shear
rates, electrical properties, and pressure. The applicability of slip bound-
ary conditions is usually for small-scale systems, including porous media,
microfluidics, and biological fluids. In this work, we consider a type of slip
boundary condition proposed by John [9, 10], which is given by

u · n+ αnTσn = 0(1)

u · τ + β−1nTστ = 0(2)

where n is the normal vector to the surface, τ denotes the tangent vector
to the surface, α is the penetration parameter, and β > 0 is the friction
parameter. Besides, σ is the Cauchy stress tensor that is defined as

σ = −pI + 2μD(u),

where p is the pressure and the unit tensor is denoted by I, and the velocity
deformation tensor is denoted by

D(u) =
∇u+∇uT

2
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For simplicity, we do not consider the penetration case, i.e., α = 0, hence
(1) is reduced to u · n = 0.

In the next section, we state the Navier-Stokes (NS) equations and the
associated boundary conditions, including the slip-type boundary condition.
We also derive the variational formulation of Navier-Stokes equations, which
serves as a basis for finite element methods and then discretize the fluid flow
equations by using the Galerkin/least-squares (GLS) finite element method.
In Section 3, we describe the pseudo-transient Newton-Krylov-Schwarz (Ψ-
NKS) algorithm based on the GLS finite element formulation of the NS
equations. Pseudo-transient algorithms belong to a class of the continuation
methods that are used to find a steady-state solution as well as for the
symmetry-breaking analysis [7]. In Section 4, we first validate our fluid flow
code and then employ our code to two benchmark problems – the lid-driven
cavity problem and the sudden expansion flow problem. We will report on a
numerical investigation to show how the slip condition affects the physical
behavior of the fluid flows, including the flow structure of the lid-driven
cavity and the critical Reynolds number for the pitchfork bifurcation of
sudden expansion flows.

2. Incompressible NS equations with slip boundary
condition and their variational formulation

Let Ω in R
2 be a bounded computational domain with boundary Γ =

ΓD ∪ ΓN ∪ Γsf. Here, we consider three types of boundary conditions, in-
cluding the Dirichlet-type boundary condition on ΓD, the Neumann-type
boundary condition on ΓN, and the slip-with-friction (sf)-type boundary
condition on Γsf [9, 10]. Each pair of any two boundary segments is assumed
to be mutually disjoint. The 2D unsteady incompressible Navier-Stokes (NS)
equations are given as follows.

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(∂tu+ u · ∇u)−∇ · σ = f in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ]

u = g on ΓD × (0, T ]

n · σ = h on ΓN × (0, T ]

u · n = 0 on Γsf × (0, T ]

u · τ + β−1n · στ = 0 on Γsf × (0, T ]

u|t=0 = u0 in Ω

where u = (u1, u2)
T is the velocity, ρ is the fluid density, g is the bound-

ary function, n and τ is the outward normal and tangential vectors to the
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boundary Γ, respectively, and u0 is a given initial condition. For the sim-
plicity of the presentation, h is set to be zero. To derive the variational
formulation of the NS equations, we first introduce some notations. Let

Vg := {v ∈ (H1(Ω))2 : v|ΓD
= g},

V0 := {v ∈ (H1(Ω))2 : v|ΓD
= 0},

Q := L2(Ω)

where

L2(Ω) = {u|u is defined on Ω and

∫
Ω
u2 dx < ∞}

H1(Ω) = {u|u and
∂u

∂xi
, i = 1, 2 belong to L2(Ω)}

Multiplying first equation of (3) both sides by a pair of the test functions
(v, q) ∈ V0 ×Q and integrating over the domain Ω to obtain

(ρ∂tu,v)− (2μ∇ · D(u),v) + (ρ(u · ∇)u,v) + (∇p,v) = (f ,v)(4)

(∇ · v, q) = 0(5)

where the inner product (·, ·) is defined in
(
L2(Ω)

)2
. Next, we apply the

integration-by-parts to the diffusion and the pressure terms, respectively.

1. Diffusion term:

(−2μ∇ · D(u),v) = −2μ(∇ · D(u),v)

= −2μ

[∫
Γ
D(u)n · v ds− (D(u),∇v)

]

= −2μ

[∫
Γ
D(u)n · v ds− (D(u),D(v))

]

Here, the last equality is held due to

(D(u),∇v) =

(
D(u),

∇v

2

)
+

(
D(u)T ,

∇vT

2

)

=

(
D(u),

∇v

2

)
+

(
D(u),

∇vT

2

)
= (D(u),D(v))

2. Pressure term:

(∇p,v) =

∫
Γ
p(n · v) ds− (p,∇ · v)



Ψ-NKS algorithm for incompressible NS equations 45

Then the left hand side of Eq. (4) is written as

− 2μ

[∫
Γ
D(u)n · v ds− (D(u),D(v))

]
+ ρ((u · ∇)u,v)

+

∫
Γ
p(n · v) ds− (p,∇ · v)

⇒2μ(D(u),D(v)) + ρ((u · ∇)u,v)− (p,∇ · v)− 2μ

∫
Γ
D(u)n · v ds

+

∫
Γ
p(n · v) ds

⇒2μ(D(u),D(v)) + ρ((u · ∇)u,v)− (p,∇ · v)−
∫
Γ
(2μD(u)− pI)n · v ds

and we can decompose the boundary into the three types

∫
Γ
(2μD(u)− pI)n · v ds

=

∫
ΓD

(2μD(u)− pI)n · v ds+

∫
ΓN

(2μD(u)− pI)n · v ds

+

∫
Γsf

(2μD(u)− pI)n · v ds

Here, the first two terms are vanished, since v = 0 on ΓD and σ·n = 0 on ΓN .

For the last term involving the slip boundary condition, we can decompose

the test function v on Γsf into two orthonormal components, that is

v = (v · n)n+ (v · τ )τ

Then the line integral on Γsf becomes

∫
Γsf

(2μD(u)− pI)n · v ds

=

∫
Γsf

nT (2μD(u)− pI)nv · n ds+

∫
Γsf

nT (2μD(u)− pI)τv · τ ds

=−
∫
Γsf

β(u · τ )(v · τ ) ds

since the slip boundary condition v · n = 0 and n · στ = −β(u · τ ). In
summary, the variational formulation of NS equations with the slip boundary
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condition can be stated as. Find (u, p) ∈ (Vg, Q) such that

(6) B(u, p;v, q) = (f ,v) ∀(v, q) ∈ (V0, Q)

with

B(u, p;v, q) = (ρ∂tu,v) + 2ν(D(u),D(v)) + ((u · ∇)u,v)− (∇ · v, p)

− (∇ · u, q) +
∫
Γsf

β(u · τ )(v · τ ) ds

3. Solution algorithm

To discretize the NS equations (6), we use different methods for time and
space domains. In the time domain, we use implicit backward Euler’s finite
difference method and in the space domain, we use P1-P1 (continuous lin-
ear element for both velocity and pressure) stabilized Galerkin/least-square
(GLS) finite element method on a given triangular mesh, T h = {K}.

3.1. Galerkin/least-square finite element formulation

Let n be the time step number such that tn = (δtn)n. For the stabilized GLS
finite element method, the variational formulation of the time-dependent NS

equations take the form as Find u
(n+1)
h ∈ V h

g and p
(n+1)
h ∈ P h such that

B(u
(n+1)
h , p

(n+1)
h ;v, q) = (f ,v) ∀(v, q) ∈ V h

0 × P h

with

B(u(n+1), p(n+1);v, q)

=

(
ρ

(
u− u(n)

δtn

)
,v

)
+ ((ρ∇u) · u,v) + (μ∇u,∇v)− (∇ · v, p)

− (∇ · u, q) +
∫
Γsf

β(u · τ )(v · τ ) ds

+
∑

K∈T h

(
ρ

(
u− u(n)

δtn

)
+ (∇u) · u+∇p− f , τ

(
(∇v) · v +∇q

))
K

+ (∇ · u, δ∇ · v)K

where u(n) is the velocity at the current time step, and u and p are unknown
velocity and pressure, respectively, at the next time step. In the variational
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formulation of GLS method, the stabilization parameters τ and δ we used
are suggested by Franca and Frey [5].

τ(x, ReK(x)) =
hK

2‖u(x)‖2
ξ(ReK(x))

δ(x, ReK(x)) = ‖u(x)‖2hKξ(ReK(x))

Here, ReK is an element Reynolds number defined as follows:

ReK(x) =
ρ|u(x)|2hK

12μ

and the function ξ is defined as

ξ(ReK(x)) =

{
ReK(x), 0 ≤ ReK(x) ≤ 1

1, ReK(x) ≥ 1

which distinguishes the locally convection-dominated flow as ReK(x) ≥ 1
and the locally diffusion-dominated flow as 0 ≤ ReK(x) ≤ 1.

3.2. Pseudo-transient Newton-Krylov-Schwarz algorithm

The ΨNKS algorithm [7] can be described as follows. Suppose sn is an
approximate solution at the current time step tn. At each time step, we
solve the following large, sparse, nonlinear algebraic system of equations by
using the Newton-Krylov-Schwarz algorithm for finding new approximation,
sn+1 at tn+1.

Gn+1(s) ≡ B(x)
s− sn
δtn

+D(s,Re)x− F (s) = 0,

where

B =

[
M +Mw

ε 0
M q

ε 0

]
, s =

[
v
p

]
,

D(s, Re) =

[
K +Kw

ε + C(v, Re) + Cw
ε (v, Re) G+Gw

ε

GT +Kq
ε + Cq

ε (v, Re) Gq
ε

]
.

v ∈ R
n and p ∈ R

m are the vectors of unknown nodal values of the velocity
vh ∈ V h

g and pressure ph ∈ P h, respectively. The matrices M , K, C, and
G are derived from the time-dependent, diffusive, convective, and pressure
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terms, respectively. The vector F corresponds to the slip boundary condi-
tion. The terms with the subscript ε represent the stabilization terms. The

Reynolds number is defined as Re =
ρUL

μ
, where ρ is the density of the

fluid, U is the characteristic velocity, L is the characteristic length, and μ
is the dynamic viscosity of the fluid. Then new approximation sn+1 at next
time step tn+1 can be obtained via the following procedure:

• Step 0: Set k = 0 and x(0) = sn and evaluate g0 = ‖Gn+1(x
(0))‖2

• Step 1: Evaluate the Jacobian matrix, G′
n+1(x

(k)).

• Step 2: Find a Newton direction Δy(k) by solving approximately the
preconditioned Jacobian system,

G′
n+1(x

(k))Δx(k) = −Gn+1(x
(k))

for Δx(k) by a Krylov subspace method, such as Generalized minimal
residual method (GMRES) [15] with an additive Schwarz precondi-
tioner M−1

k [7].

• Step 3: Obtain the new approximation x(k+1) = x(k) + λ(k)Δx(k),
where λ(k) ∈ (0, 1] is a damping parameter.

• Step 4: Check if ‖G(x(k+1))‖2 < rtol · g0 or ‖G(x(k+1)‖2 < atol then
set sn+1 = x(k+1) and update δtn+1 else k = k + 1 go to Step 1.

Note that δtn is conveniently chosen as a fixed constant value, which is
known as the Rosenbrock method. However, it is more efficient to employ
the strategy for timestep selection based on the norm of the step ‖sn+1−sn‖2,
which is given by δtn+1 = φ(δtn‖sn+1−sn‖−1). Here, φ satisfies the condition

φ(ξ) =

{
ξ, ξ ≤ δtmax

δtmax, ξ ≥ δtmax

where δtmax is an upper bound for the timesteps {δtn}.

4. Numerical results and discussions

Our parallel fluid solver was implemented on the top of the Portable, Ex-
tensible Toolkit for Scientific computation (PETSc) package [3]. In addi-
tion, the parallel fluid solver is integrated with other pre-processing and
post-processing software packages, including: (1) the geometry and mesh
generation toolkit, CUBIT [2]; (2) the mesh partitioner, ParMetis, for the
purpose of parallel processing [11]; (3) the multi-platform data analysis and
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Figure 2: A sample mesh (left) and a sample partition (right) with np = 32.

visualization application, ParaView, which is used to plot the pressure con-
tours, streamlines, and velocity profiles for data analysis [1]. All numerical
simulations were performed on a PC of clusters.

4.1. Code validation

The test example for our parallel code validation is taken from [6] with some
modification so that it can be used for checking the steady-state flow case.
The forcing term,

f =

⎛
⎜⎜⎝

2ν

l2s
sin

x

ls
cos

y

ls

−2ν

l2s
cos

x

ls
sin

y

ls

⎞
⎟⎟⎠

is determined when the exact solution of u and p takes the form of

u =

⎛
⎜⎝ sin

x

ls
cos

y

ls

− cos
x

ls
sin

y

ls

⎞
⎟⎠ , p =

1

4

(
cos

2x

ls
+ cos

2y

ls

)

defined on the domain Ω = [0, π]2 ∈ R
2. Figure 2 displays a sample mesh and

a sample partition with the number of subdomains, np = 32, for defining
the Schwarz-type preconditioner.

At the beginning, we assume f = 0 at t = 0. We set Reynolds number

Re =
π

ν
= 5 (or ν =

π

5
) and the slip length ls = 0.5(=

1

β
). Table 1 lists
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the mesh information for a sequence of uniformly refined triangular meshes
used for the numerical experiment. The initial time step size is set to be 10.

Table 1: A sequence of uniformly refined triangular meshes

Meshes hK # of elements # of nodes # of unknowns
Mesh A 0.127549 1,400 751 2,253
Mesh B 0.0637745 5,600 2,901 8,703
Mesh C 0.03188725 22,400 11,401 34,203
Mesh D 0.015943625 89,600 45,201 135,603
Mesh E 0.007971813 358,400 180,001 540,003

To validate the ΨNKS algorithm, we summarize its convergence history
by using different mesh sizes at each time step in Table 2. The result shows

Table 2: The history of the nonlinear residual norm for ΨNKS method

Meshes Mesh A Mesh B Mesh C Mesh D Mesh E
Time step # Nonlinear Residual norm, ‖G(x)‖2.

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1 6.92E-04 1.83E-04 3.75E-05 7.00E-06 1.27E-06
2 6.29E-06 8.30E-07 1.23E-07 1.69E-08 2.22E-09
3 8.14E-10 8.30E-07 1.23E-07 1.69E-08 2.22E-09
4 8.14E-10 8.30E-07 1.23E-07 1.69E-08 2.22E-09

that the ΨNKS algorithm is quite efficient for finding the steady-state solu-
tion, requiring only a few iterations. We then perform the grid convergence
test by plotting the horizontal velocity profiles along x = π/4 and the verti-
cal velocity profile along y = π/4, respectively. As shown in Figure 3, all the
curves obtained using different mesh sizes nearly coincide, but if we zoom
in on the middle part of the plots (See Figure 4), we can still tell the differ-
ences between the five curves. Finer meshes, such as Mesh D or Mesh E, are
needed to obtain the grid-independent results. Next, the comparison plots,
including the pressure contours, the streamlines, the u1- and u2-components
of the velocity field for the computed solution and the exact solutions are
shown in Figure 5. They are almost indistinguishable.

4.2. Applications

In this section, we present the numerical results for simulating two bench-
mark problems – the lid-driven cavity problem and the sudden expansion
problem, but now some slip boundary conditions are imposed on the walls,
which are not commonly considered in the literature.
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Figure 3: The u1- (left) and u2- (right) components of the velocity profiles
along the line x = π

4 and y = π
4 , respectively.

Figure 4: The u1- (left) and u2- (right) components of the zoom-in velocity
profiles along the line x = π

4 and y = π
4 , respectively.

4.2.1. Lid-driven cavity flows. The classical cavity we consider has

three stationary sides and one moving side with tangential velocity to the

side, and the flow is driven by the tangential motion of a single side [8].

In this case, we set the computational domain in a unit square domain,

[0, 1] × [0, 1] ⊂ R
2. Since the boundaries are orthogonal to the coordinates

system, we impose different types of boundary conditions on the boundaries.

Figure 6 shows the geometry configuration of the lid-driven cavity prob-

lem. The Dirichlet-type boundary condition is imposed on the top wall, i.e.,

u1 = 1 and u2 = 0. The slip-type boundary condition is set on the three other

walls. The Reynolds number, Re, is based on the velocity of the moving wall

as the characteristic velocity and the length of the boundary as the char-

acteristic length. The typical steady-flow patterns in the two-dimensional
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Figure 5: A comparison of the exact solution (top row) and the computed
solution (bottom row). From left to right: (a) pressure contours, (b) stream-
lines, (c) the u1-component and (d) the u2-component of the velocity field.

Figure 6: The geometry configuration of the lid-driven cavity problem.

square cavity are as follows: one primary eddy and three secondary eddies

near the corners. The results presented in this section are obtained by us-

ing Mesh E. We consider the steady-state cavity flows at Re = 1000. The

streamline plots obtained by the ΦNKS algorithm are presented in Figure 7

for the different values of the slip parameter, β = 0.0, 0.01, 0.05, 0.1, 0.5 and

1.0. As shown in this figure, the flow patterns for each case are quite similar.

The major difference is that compared to the case of the no-slip condition,

i.e., β = 0.0, one additional eddy is formed near the left bottom of the cavity
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Figure 7: Steady-state case. The streamline profiles with different slip pa-
rameters, β = 0.0, 0.01, and 0.05 (top row) and β = 0.1, 0.5, and 1.0 (bottom
row) for Re = 1000.

for β = 0.5 and 1.0 cases. Hence, we may conclude that the slip boundary
condition has some impact on the behavior of flows near the boundary. We
summarize the position of the center of the primary eddy with different slip
parameters, β, in Table 3 for Re = 200. Since the diameter of the mesh is
hK ≈ 0.002, the difference for the center position of the primary eddy could
be ignored. Hence, we can infer that the slip boundary condition does not
significantly change the global flow pattern but only does so locally.

4.3. Sudden expansion flows

The sudden expansion flows come from a long channel of height 2d, which
suddenly expands symmetrically with right angles to a long channel of height
D, where D > 2d, the expansion ratio ER is defined as the ratio of the
downstream channel height D to the upstream channel height 2d, i.e., ER =
D

2d
, and the Reynolds number here is defined as Re =

Ud

ν
based on the

maximum inlet velocity U , the half-height of the upstream channel d and the
kinematic viscosity ν. The schematic diagram of the sudden expansion model
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Table 3: The time-dependent lid-driven cavity problem. The position of the
center of the primary eddy with different slip parameter β. Here, Dx is the
distance between two primary eddies for the no slip and slip cases

β x y Dx

0.0 0.604279 0.668229 –
0.01 0.604257 0.668247 0.000029
0.05 0.604167 0.668313 0.000140
0.1 0.604058 0.668395 0.000276
0.5 0.603175 0.669043 0.001372
1.0 0.602070 0.669842 0.002735

Figure 8: The schematic diagram of sudden expansion model.

is shown in Figure 8. The Dirichlet-type boundary condition is imposed
on the left inflow boundary and on the left wall. The slip-type boundary
condition is set on both of the top and bottom walls.

In our simulations, we only consider the downstream channel in the
computational domain, which we set with height D = 6 and long L = 40.
Since the computational domain is long enough, the flows can achieve fully
developed. For easily to set different expansion ratios ER, we use half of

the upstream channel height d =
D

2ER
to set up the inflow function. The

horizontal velocity of inflow we defined as a parabolic function such as

u =

{
−1

d

(y − d)(y + d)

d2
, if − d ≤ y ≤ d

0, otherwise

and the vertical velocity of inflow is defined as v = 0, for all y. The grid
information is provided in Table 4. A sample mesh and a sample partition
with np = 32 are shown in Figure 9.

The pitchfork bifurcation is a basic phenomenon, and it occurs in a sys-
tem with symmetry property. There are two types of pitchfork bifurcation:
supercritical pitchfork bifurcation and subcritical pitchfork bifurcation. In
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Table 4: The information of channel grids

Meshes hK # of elements # of nodes # of unknowns
MeshA SE 0.6 1,460 808 2,424
MeshB SE 0.3 5,840 3,075 9,225
MeshC SE 0.15 23,360 11,989 35,967
MeshD SE 0.075 93,440 47,337 142,011

Figure 9: A sample mesh (top) and a sample partition (bottom) with np =
32.

our works, we only consider the supercritical one, which often appears in
symmetric channel flows. For sudden expansion flows, the pitchfork bifurca-
tion becomes obviously after some critical Reynolds number Rec. As follows,
we investigate numerically how the effect of the slip boundary condition on
the pitchfork bifurcation happened in the sudden expansion flows. Here, we
introduce a time-dependent perturbation into the inlet velocity, which was
modified to have a time-periodic behavior for three cycles; after that, it was
held at its original value. The shift perturbation is defined for 0 < t < 45 as:

• Shift up perturbation

u =

⎧⎪⎪⎨
⎪⎪⎩

−1

d
(1 + 0.2| sin πt

15 |)
(y + d)(y − d− 0.2)

(d+ 0.1)2
, if − d ≤ y ≤ 0.1

−1

d
(1 + 0.2| sin πt

15 |)
(y + d− 0.2)(y − d)

(d− 0.1)2
, if 0.1 ≤ y ≤ d

• Shift down perturbation

u =

⎧⎪⎪⎨
⎪⎪⎩

−1

d
(1 + 0.2| sin πt

15 |)
(y + d)(y − d+ 0.2)

(d− 0.1)2
, if − d ≤ y ≤ −0.1

−1

d
(1 + 0.2| sin πt

15 |)
(y + d+ 0.2)(y − d)

(d+ 0.1)2
, if − 0.1 ≤ y ≤ d
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Figure 10: The shifted up (left) and the shifted down (right) profiles of inflow
periodic perturbations for half cycle.

Figure 11: The streamlines at Re = 60 with shifted-up perturbation for
β = 0 (top), 0.5 (middle), and 1.0 (bottom).

The shifted perturbation profiles of periodic inflow perturbations for half
of the first cycle are shown in Figure 10. We can see that the maximum
horizontal velocity of periodic perturbations is shifted up and down with
y/d = 0.1.

Figures 11 and 12 show the simulated results for slip parameter β = 0.5
and 1.0 compared to the no-slip cases, with the shifted-up and shifted-
down perturbations. Observed from these sets of figures, we find that the
varied slip parameter makes the flow patterns significantly different from
the no-slip case. Recall that the reattachment point is defined as a posi-
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Figure 12: The streamlines at Re = 60 with the shifted-down perturbation
for β = 0 (top), 0.5 (middle), and 1.0 (bottom).

Figure 13: The data near the upper boundary of ER = 3 of Reynolds number
Re = 45 with β = 0.0 (left) and β = 0.5 (right).

tion where both of the horizontal and vertical velocities are zero near the
boundary. We notice that there is no reattachment point found within the
channel for the cases of β = 0.5 and 1.0. Instead of using the difference
between two reattachment points on the upper and lower walls, the sign
change of the wall shear stress (WSS) (as shown in Figure 13) could be a
good option for studying pitchfork bifurcations for slip boundary condition
cases.

In the following, we investigate how the expansion ratio ER affects the
bifurcation phenomenon. Figures 14–16 show the bifurcation diagrams for
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Figure 14: The bifurcation diagram of the sudden expansion flow problem
for ER = 2 with β = 0.0 (left), 0.5 (middle), and 1.0 (right).

Figure 15: The bifurcation diagram of the sudden expansion flow problem
for ER = 3 with slip parameter β = 0.5.

Figure 16: The bifurcation diagram of the sudden expansion flow problem
for ER = 5 with β = 0.0 (left) 0.5 (middle), and 1.0 (right).

the cases of ER = 2, 3, and 5, respectively. The bifurcation diagram of

ER = 5 is almost perfect, but the bifurcation diagram of ER = 2 is

still not ideal, especially for the no-slip case. There are many imperfect

points.

We summarize the critical Reynolds numbers for a different combination

of ER and the slip parameter in Table 5. This table indicates that when we

increase the slip parameter, the critical Reynolds number decreases.
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Table 5: Critical Reynolds number for different slip parameters in different
expansion ratio

ER 2 3 5
no slip 127.5 43.1 21.5
β = 0.5 120.5 41.6 21.0
β = 1.0 114.3 40.1 20.5

5. Concluding remarks

In this work, we numerically studied how the behavior of an incompressible
fluid flow confined within a cavity or through a channel depends on whether
the slip boundary conditions are imposed or not. Two benchmark problems,
the lid-driven cavity problem and the sudden expansion flow problem, were
taken as numerical examples. We employed the pseudo-transient NKS algo-
rithm based on GLS finite element formulation for finding the steady-state
lid-driven flow solution and performing the pitchfork bifurcation analysis
for the sudden expansion flow problem. For the lid-driven cavity flow, our
numerical results showed that the slip boundary condition did not change
the global flow structure. For example, the center of the primary vertex re-
mained the same as the values of the slip parameter increased. On the other
hand, the slip boundary condition had some local impact on the behavior of
flows near the boundary. One additional small eddy was generated near the
left bottom corner for a larger value of β. For the sudden expansion flow, we
found that the critical Reynolds number for symmetry-breaking bifurcation
depends on the slip parameter. The flow system became physically unstable
as the value of β increased so that the pitchfork bifurcation occurred at a
smaller value of Re.
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