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and their boundary fermionic/bosonic anomalies
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Zheyan Wan and Juven Wang

By developing a generalized cobordism theory, we explore the
higher global symmetries and higher anomalies of quantum field
theories and interacting fermionic/bosonic systems in condensed
matter. Our essential math input is a generalization of Thom-
Madsen-Tillmann spectra, Adams spectral sequence, and Freed-
Hopkins theorem, to incorporate higher-groups and higher classi-
fying spaces. We provide many examples of bordism groups with
a generic H-structure manifold with a (d + 1)-th higher-group G,
and their (d+1)d bordism invariants, which systematically classify
anomalies of dd spacetime dimensions — perturbative (e.g. chiral
fermions [originated from Adler-Bell-Jackiw] or bosons with U(1)
symmetry in any even d) and non-perturbative global anomalies
(e.g. Witten anomaly and the new SU(2) anomaly in 4d and 5d).
SuitableH such as SO/Spin/O/Pin± enables the study of quantum
vacua of general bosonic or fermionic systems with time-reversal or
reflection symmetry on (un)orientable spacetime. Higher ’t Hooft
anomalies of dd live on the boundary of (d+1)d higher-Symmetry-
Protected Topological states (SPTs) or symmetric invertible topo-
logical orders (i.e., invertible topological quantum field theories at
low energy); thus our cobordism theory also classifies and charac-
terizes higher-SPTs, which include higher symmetric generalization
of time-reversal invariant topological insulators/superconductors.
Examples of higher-SPT’s anomalous boundary theories include
strongly coupled non-Abelian Yang-Mills (YM) gauge theories and
sigma models, complementary to physics obtained in [arXiv:1810.
00844, 1812.11955, 1812.11968, 1904.00994].

This article is a companion with further detailed calculations
supporting other shorter articles.
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formula 140

2.2 Spectra 144

2.3 Spectral sequences 145

2.3.1 Adams spectral sequence 145

2.3.2 Serre spectral sequence 151

2.3.3 Atiyah-Hirzebruch spectral sequence 152

2.4 Characteristic classes 152

2.4.1 Introduction to characteristic classes 152

2.4.2 Wu formulas 154

2.5 Bockstein homomorphisms 155



Higher anomalies, higher symmetries, and cobordisms I 109

2.6 Useful fomulas 157

3 Warm-up examples 158

3.1 Perturbative chiral anomalies in even dd and asso-
ciated Chern-Simons (d + 1)-form theories — SO-
and spin- cobordism groups of BU(1) 158

3.1.1 Perturbative bosonic/fermionic anomaly in
an even dd and U(1) SPTs in an odd (d+ 1)d 158

3.1.2 2d anomaly and 3d bosonic-U(1) SPTs: in-
teger Z class ∈ TP3(SO×U(1)) = Z2 164

3.1.3 2d anomaly and 3d fermionic-U(1) SPTs: in-

teger Z class ∈ TP3(
Spin×U(1)

Z2
) = Z2 165

3.1.4 ΩSO
d (BU(1)) 166

3.1.5 ΩSpin
d (BU(1)) 168

3.1.6 Ω
( Spin×U(1)

Z2
)

d = ΩSpinc

d 171

3.2 Non-perturbative global anomalies: Witten’s SU(2)
anomaly and a new SU(2) anomaly in 4d and 5d 173

3.2.1 Ω

Spin×SU(2)

ZF
2

d = Ω

Spin×Spin(3)

ZF
2

d 174

4 Higher group cobordisms and non-trivial fibrations 175

4.1 (BGa,B
2Gb) : (BO,B2Z2) 177

5 O/SO/Spin/Pin± bordism groups of classifying spaces 183

5.1 Introduction 183

5.2 Point 186

5.2.1 ΩO
d 186

5.2.2 ΩSO
d 187

5.2.3 ΩSpin
d 189

5.2.4 ΩPin+

d 190

5.2.5 ΩPin−

d 192



110 Zheyan Wan and Juven Wang

5.3 Atiyah-Hirzebruch spectral sequence 194

5.4 B2Gb : B
2Z2,B

2Z3 195

5.4.1 ΩO
d (B

2Z2) 195

5.4.2 ΩSO
d (B2Z2) 197

5.4.3 ΩSpin
d (B2Z2) 200

5.4.4 ΩPin+

d (B2Z2) 204

5.4.5 ΩPin−

d (B2Z2) 207

5.4.6 ΩO
d (B

2Z3) 209

5.4.7 ΩSO
d (B2Z3) 210

5.4.8 ΩSpin
d (B2Z3) 212

5.4.9 ΩPin+

d (B2Z3) 214

5.4.10 ΩPin−

d (B2Z3) 215

5.5 BGa : BPSU(2),BPSU(3) 215

5.5.1 ΩO
d (BPSU(2)) 215

5.5.2 ΩSO
d (BPSU(2)) 216

5.5.3 ΩSpin
d (BPSU(2)) 218

5.5.4 ΩPin+

d (BPSU(2)) 220

5.5.5 ΩPin−

d (BPSU(2)) 223

5.5.6 ΩO
d (BPSU(3)) 224

5.5.7 ΩSO
d (BPSU(3)) 226

5.5.8 ΩSpin
d (BPSU(3)) 228

5.5.9 ΩPin+

d (BPSU(3)) 230

5.5.10 ΩPin−

d (BPSU(3)) 232

5.6 (BGa,B
2Gb) : (BZ2,B

2Z2), (BZ3,B
2Z3) 235

5.6.1 ΩO
d (BZ2 × B2Z2) 235

5.6.2 ΩSO
d (BZ2 × B2Z2) 236



Higher anomalies, higher symmetries, and cobordisms I 111

5.6.3 ΩSpin
d (BZ2 × B2Z2) 238

5.6.4 ΩPin+

d (BZ2 × B2Z2) 240

5.6.5 ΩPin−

d (BZ2 × B2Z2) 243

5.6.6 ΩO
d (BZ3 × B2Z3) 244

5.6.7 ΩSO
d (BZ3 × B2Z3) 247

5.6.8 ΩSpin
d (BZ3 × B2Z3) 249

5.6.9 ΩPin+

d (BZ3 × B2Z3) 250

5.6.10 ΩPin−

d (BZ3 × B2Z3) 251

5.7 (BGa,B
2Gb) : (BPSU(2),B2Z2), (BPSU(3),B2Z3) 252

5.7.1 ΩO
d (BPSU(2)× B2Z2) 252

5.7.2 ΩSO
d (BPSU(2)× B2Z2) 253

5.7.3 ΩSpin
d (BPSU(2)× B2Z2) 254

5.7.4 ΩPin+

d (BPSU(2)× B2Z2) 257

5.7.5 ΩPin−

d (BPSU(2)× B2Z2) 259

5.7.6 ΩO
d (BPSU(3)× B2Z3) 261

5.7.7 ΩSO
d (BPSU(3)× B2Z3) 262

5.7.8 ΩSpin
d (BPSU(3)× B2Z3) 264

5.7.9 ΩPin+

d (BPSU(3)× B2Z3) 265

5.7.10 ΩPin−

d (BPSU(3)× B2Z3) 266

6 More computation of O/SO bordism groups 267

6.1 Summary 267

6.2 B2Z4 270

6.2.1 ΩO
d (B

2Z4) 270

6.2.2 ΩSO
d (B2Z4) 272

6.3 BO(3) 274

6.3.1 ΩO
d (BO(3)) 274



112 Zheyan Wan and Juven Wang

6.3.2 ΩSO
d (BO(3)) 274

6.4 BO(4) 276

6.4.1 ΩO
d (BO(4)) 276

6.4.2 ΩSO
d (BO(4)) 277

6.5 BO(5) 278

6.5.1 ΩO
d (BO(5)) 278

6.5.2 ΩSO
d (BO(5)) 279

6.6 BZ2n × B2Zn 280

6.6.1 ΩO
d (BZ4 × B2Z2) 280

6.6.2 ΩSO
d (BZ4 × B2Z2) 281

6.6.3 ΩO
d (BZ6 × B2Z3) 282

6.6.4 ΩSO
d (BZ6 × B2Z3) 283

6.7 BZ2n2 × B2Zn 284

6.7.1 ΩO
d (BZ8 × B2Z2) 284

6.7.2 ΩSO
d (BZ8 × B2Z2) 286

6.7.3 ΩO
d (BZ18 × B2Z3) 287

6.7.4 ΩSO
d (BZ18 × B2Z3) 288

6.8 B(Z2 � PSU(N)) 290

6.8.1 ΩO
3 (B(Z2 � PSU(3))) 290

6.8.2 ΩSO
3 (B(Z2 � PSU(3))) 291

6.8.3 ΩO
3 (B(Z2 � PSU(4))) 292

6.8.4 ΩSO
3 (B(Z2 � PSU(4))) 295

7 Final comments and remarks 296

7.1 Relations to non-Abelian gauge theories and sigma
models 296

7.2 Relations to bosonic/fermionic higher-symmetry-
protected topological states: beyond generalized super-
group cohomology theories 299



Higher anomalies, higher symmetries, and cobordisms I 113

Acknowledgements 303

References 304

1. Introduction and summary

1.1. Preliminaries

Thom, as the pioneer of bordism theory, studied the criteria when the dis-
joint union of two closed n-manifolds is the boundary of a compact (n+1)-
manifold [65]. Thom found that this relation is an equivalence relation on
the set of closed n-manifolds. Moreover, the disjoint union operation defines
an abelian group structure on the set of equivalence classes. This group
is called the unoriented bordism group, it is denoted by ΩO

n . Furthermore,
Thom found that the Cartesian product defines a graded ring structure on
ΩO
∗ :=

⊕
n≥0Ω

O
n , which is called the unoriented bordism ring. Thom also

found that the bordism invariants of ΩO
n are the Stiefel-Whitney numbers.

Namely, two manifolds are unorientedly bordant if and only if they have
identical sets of Stiefel-Whitney characteristic numbers. This yields many
interesting consequences. For example, the real projective space RP2 is not a
boundary while RP3 is; also the complex projective space CP2 and RP

2×RP
2

are unorientedly bordant.

Many generalizations are made to bordism theories so far. For exam-
ple, we can consider manifolds which are equipped with an H-structure, we
follow the definition of H-structure given in [24]. Our work is inspired by a
cobordism theory from the Madsen-Tillmann spectrum [31] and from Freed-
Hopkins [25]. Freed and Hopkins propose a cobordism theory [25] to classify
the Symmetry-Protected Topological states (SPTs) [14] in condensed matter
physics [84] with ordinary internal global symmetries of group G and their
classifying space BG. Examples of SPTs include the famous topological in-
sulators and topological superconductors [36, 55].

The major motivation of our work is to generalize the calculations and
the cobordism theory of Freed-Hopkins [25] — such that, instead of the
ordinary group G or ordinary classifying space BG, we consider a gener-
alized cobordism theory studying manifolds (i.e., spacetime manifolds) en-
dorsed with H structure, with additional higher group G (i.e., generalized
as principal-G bundles) and higher classifying spaces BG. We consider this
particular generalized cobordism theory in order to study, characterize and
classify:
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1. Generalized higher global symmetries of G [30] in physics1 and their
higher classifying spaces BG.

2. Higher-Symmetry-Protected Topological states (higher-SPTs), which
are nontrivial quantum vacua protected by higher global symmetries of
G. Higher SPTs are characterized by (co)bordism invariants obtained
from (co)bordism groups of higher classifying spaces BG. For example,
in (d+1)-dimensional spacetime, denoted (d+1)d, consider the quan-
tum vacua of internal global symmetry G on a (d+1)d spacetime man-
ifold with H-structure, we will propose a bordism group ΩH

(d+1)(BG)

and a related cobordism group TP(d+1)(H×G) to classify higher-SPTs
in (d+ 1)d. See the earlier pioneer work on higher-SPTs in [41, 66].

3. Higher quantum anomalies, e.g. higher ’t Hooft anomalies: The ordi-
nary ’t Hooft anomalies [62] of global symmetry G is the anomaly for
QFT of the ordinary global symmetry G. In comparison, given the in-
ternal higher global symmetry G and the dd spacetime manifold with
H-structure, we can ask what are the possible higher quantum anoma-
lies in the dd physical theories? The associated higher anomalies, given
by the data G and H, in the dd spacetime, via a generalization of the
anomaly-inflow picture [13], turns out to relate to the anomalies of
the dd boundary theory (called the boundary anomalies) of (d + 1)d
higher-SPTs (given by the same data G and H). So the characteriza-
tion and classification of (d+1)d higher-SPTs in the previous remark
turns out to help on the characterization and classification of dd higher
’t Hooft anomalies.
Modern examples of higher ’t Hooft anomalies are found in quan-
tum field theories (QFTs) including Yang-Mills gauge theories [91] and
sigma models. The first example of higher ’t Hooft anomalies is discov-
ered by a remarkable work Ref. [29] for a pure 4d SU(N) Yang-MiIls
gauge theory of even integer N with a second Chern-class topological
term (called the θ-term or θTr[F∧F ]-term in particle physics.) Further
new higher ’t Hooft anomalies are found in [18, 67–69].

In summary, as we have said, we aim to study higher global symmetries,
characterize and classify higher-SPTs and higher quantum anomalies.

• By characterization, we mean that given certain physics phenomena
or theories (here, higher-SPTs and higher quantum anomalies), we like

1Generalized higher global symmetries may or may not be higher-differential
form global symmetries. For example, there exist certain fermionic SPTs whose
higher global symmetries whose charged objects are not in terms of higher-
differential forms, see Ref. [34] and References therein.
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to write down their mathematical invariants (here, we mean the bor-
dism invariant) to fully describe or capture their essences/properties.
Hopefully, we can further compute their physical observables.

• By classification, we mean that given the spacetime dimensions (here
d + 1d for higher-SPTs or dd for higher quantum anomalies), their
H-structure and the internal higher global symmetry G, we aim to
know how many classes (a number to count them) there are? Also,
we aim to determine the mathematical structures of classes (i.e. here
group structure as for (co)bordism groups: would the classes be a finite
group Zn or an infinite group Z or their mixing, etc.).

Another purpose of this article is a companion article with further de-
tailed mathematical calculations in order to support other shorter articles
[67–69].

In this Introduction, we will provide some basic physics preliminaries in
Sec. 1.2 and mathematical preliminaries in Sec. 1.3. Since the concepts of
higher symmetries and higher anomalies are crucial, we will also clarify what
precisely we mean by higher symmetries/anomalies in condensed matter, in
QFTs and in mathematics, in Sec. 1.4.

After some additional introduction to mathematical background in
Sec. 2, we will provide explicit interpretations of familiar examples (to QFT-
ist and physicists) of perturbative anomalies in Sec. 3.1:

(1): Perturbative fermionic anomalies from chiral fermions with U(1) sym-
metry, originated from Adler-Bell-Jackiw (ABJ) anomalies [2, 7].

(2): Perturbative bosonic anomalies from bosonic systems with U(1) sym-
metry.

We will also provide more exotic non-perturbative global anomalies in
Sec. 3.2:

(3): The SU(2) anomaly of Witten [87].
(4): A new SU(2) anomaly [76],

matching the physics results of dd anomalies to mathematical cobordism
group calculations in (d + 1)d. In fact, the new SU(2) anomaly [76] has
an essential application to the anomaly-matching condition of the Standard
Models and Grand Unified Theories in the 4-dimensional spacetime, such as
SO(10) or SU(5) Grand Unifications, see a pertinent recent work [75].

We briefly comment the difference between a previous cobordism theory
[25, 35] and this work: In all Adams charts of the computation in [25, 35],
there are no nonzero differentials, while in this paper we encounter nonzero
differentials dn due to the (p, pn)-Bockstein homomorphisms in the compu-
tation involving B2Zpn and BZpn .
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1.2. Physics preliminaries

Freed-Hopkins’s work [25] is motivated by the development of cobordism
theory classification [39, 45] of so-called the Symmetry Protected Topologi-
cal (SPT) state in condensed matter physics [84]. In a very short summary,
Freed-Hopkins’s work [25] applies the theory of Thom-Madsen-Tillmann
spectra [31, 65], to prove a theorem relating the “Topological Phases” (which
later will be abbreviated as TP) or certain deformation classes of reflec-
tion positive invertible n-dimensional extended topological field theories
(iTQFT) with symmetry group (or in short, symmetric iTQFT), to Madsen-
Tillmann spectrum [31] of the symmetry group.

Here an n-dimensional extended topological field theory is a symmet-
ric monoidal functor F from the (∞, n)-category of extended cobordisms
Bordn(Hn) to a symmetric monoidal (∞, n)-category C where Bordn(Hn) is
defined as follows (all manifolds are equipped with H-structures, see defini-
tion 1):

• objects are 0-manifolds;
• 1-morphisms are 1-cobordisms between objects;
• 2-morphisms are 2-cobordisms between 1-morphisms;
• . . .
• n-morphisms are n-cobordisms between (n− 1)-morphisms;
• (n+ 1)-morphisms are diffeomorphisms between n-morphisms;
• (n+2)-morphisms are smooth homotopies between (n+1)-morphisms;
• . . .

An n-dimensional extended topological field theory is called invertible if F
factor through the Picard groupoid C×. By a theorem of Galatius-Madsen-
Tillmann-Weiss [31], the classifying space of Bordn(Hn) is exactly the 0-th
space of the Madsen-Tillmann spectrum ΣnMTHn.

In this work, we will consider the generalization of [25] to include higher
symmetries [30], for example, including both 0-form symmetry of group G(0)

and 1-form symmetry of group G(1), or in certain cases, as higher symmetry
group of higher n-group.2 Other physics motivations to study higher group
can be found in [8, 19, 22, 93] and references therein.

2 For the physics application of our result, please see [67–69]. Some of these
4d non-Abelian SU(N) Yang-Mills [91]-like gauge theories can be obtained from
gauging the time-reversal symmetric SU(N)-SPT generalization of topological in-
sulator/superconductor (TI/SC) [35]. We can understand their anomalies of 0-form
symmetry of group G(0) and 1-form symmetry of group G(1), as the obstruction
to regularize the global symmetries locally in its own dimensions (4d for YM the-
ory). Instead, in order to regularize the global symmetries locally and onsite, the



Higher anomalies, higher symmetries, and cobordisms I 117

We generalize the work of Freed-Hopkins [25]: there is a 1:1 correspon-
dence ⎧⎨

⎩
deformation classes of reflection positive

invertible n-dimensional extended topological
field theories with a symmetry group Hn ×G

⎫⎬
⎭

∼= [MT (H ×G),Σn+1IZ]tors,(1.1)

where H is the space time symmetry, G is the internal symmetry which is
possibly a higher group, MT (H×G) is the Madsen-Tillmann spectrum [31]
of the group H×G, Σ is the suspension, IZ is the Anderson dual spectrum,
and tors means the torsion part.

Since there is an exact sequence

0 → Ext1(πnB,Z) → [B,Σn+1IZ] → Hom(πn+1B,Z) → 0(1.2)

for any spectrum B, especially for MT (H×G). The torsion part [MT (H×G),
Σn+1IZ]tors is Ext

1((πnMT (H×G))tors,Z) = Hom((πnMT (H×G))tors,U(1)).

By the generalized Pontryagin-Thom isomorphism (1.10), πnMT (H ×
G) = ΩH×G

n = ΩH
n (BG) which is the bordism group defined in definition 2.

Namely, we can classify the deformation classes of symmetric iTQFTs
and also symmetric invertible topological orders (iTOs), via the particular
group

TPn(H ×G) ≡ [MT (H ×G),Σn+1IZ].(1.3)

Here TP means the abbreviation of “Topological Phases” classifying the
above symmetric iTQFT, the torsion part of TPn(H ×G) and ΩH

n (BG) are
the same.

In this work, we compute the (co)bordism groups ΩH
d (BG) (TPd(H×G))

for H = O/SO/Spin/Pin± and several G, we also consider ΩG

d where BG
is the total space of the nontrivial fibration with base space BO and fiber
B2Z2 in section 4.1.

If there is a nontrivial group action between H and G (let us denote
the action as the semi-direct product �), or if there is a shared common

4d gauge theories need to be placed on the boundary of 5d higher SPTs. The 5d
higher SPTs corresponds to the nontrivial generators of cobordism groups of higher
classifying spaces. We write G(0) or Ga to indicate some 0-form symmetry probed
by 1-form a field. We write G(1) or Gb to indicate some 1-form symmetry probed
by 2-form b field.
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normal subgroup Nshared or sub-higher-group between H and G, then we
can generalize our above proposal eqn. (1.1) and eqn. (1.3) to

⎧⎨
⎩

deformation classes of reflection positive
invertible n-dimensional extended topological

field theories with a symmetry group ( Hn�G

Nshared
)

⎫⎬
⎭

∼= [MT (
H �G

Nshared
),Σn+1IZ]tors,(1.4)

and

TPn(
H �G

Nshared
) ≡ [MT (

H �G

Nshared
),Σn+1IZ].(1.5)

For readers who wishes to explore other physics stories and some intro-
duction materials, we suggest to look at the introduction of [35] and other
shorter articles [64, 67–69, 86]. In particular, Ref. [86] provides a condensed
matter interpretation of higher symmetries. We also encourage readers to
read the Section I to III of [67].

We will explore the generic manifold with H-structure, including the
orientable H = SO, Spin, etc., or unorientable H = O, Pin±. In physics,
the quantum system that can be put on an unorientable H manifold implies
that there is a time-reversal symmetry or a reflection symmetry (commonly
termed the parity symmetry in an odd dimensional space). Physicists can
find the introduction materials on the reflection symmetry and unorientable
manifolds in Ref. [5, 89].

For readers who wishes to explore other mathematical introductory ma-
terials, we suggest to look at the [6, 11, 12, 25] and Appendices of [35].

Readers may be also interested in other recent work along the cobordism
theory applications to physics [44], [73], [92], [32].

1.3. Mathematical preliminaries

In this subsection, we review the basics of bordism theory and possible
generalizations.

Definition 1. If H is a group with a group homomorphism ρ : H → O,
V is a vector bundle over M with a metric, then an H-structure on V is
a principal H-bundle P over M , together with an isomorphism of bundles
P ×H O

∼−→ BO(V ) where P ×H O is the quotient (P ×O)/H where H acts
freely on right of P ×O by



Higher anomalies, higher symmetries, and cobordisms I 119

(p, g) · h = (p · h, ρ(h)−1g), p ∈ P, g ∈ O, h ∈ H

and BO(V ) is the orthonormal frame bundle of V .

In particular, if V = TM , then an H-structure on TM is also called
a tangential H-structure (or an H-structure) on M . Here we assume the
H-structures are defined on the tangent bundles instead of normal bundles.

Below we consider manifolds with a metric.

Any manifold admits an O-structure, a manifold M admits an SO-
structure if and only if w1(TM) = 0, a manifold admits a Spin structure if
and only if w1(TM) = w2(TM) = 0, a manifold admits a Pin+ structure if
and only if w2(TM) = 0, a manifold admits a Pin− structure if and only if
w2(TM) + w1(TM)2 = 0. Here wi(TM) is the i-th Stiefel-Whitney class of
the tangent bundle of M .

Moreover, we can consider manifolds equipped with a map to a fixed
topological space X, we are interested in the case when X is an Eilenberg-
MacLane space since

[M,K(G,n)] = Hn(M,G)

where the left hand side is the group of homotopy classes of maps from M
to K(G,n), the right hand side is the n-th cohomology group of M with
coefficients in G.

Definition 2. Let H be a group, X be a fixed topological space, we can
define an abelian group

ΩH
n (X) := {(M, f)|M is a closed

n-manifold with H-structure, f : M → X is a map}/bordism,(1.6)

where bordism is an equivalence relation, namely, (M, f) and (M ′, f ′) are
bordant if there exists a compact n + 1-manifold N with H-structure and
a map h : N → X such that the boundary of N is the disjoint union of M
and M ′, the H-structures on M and M ′ are induced from the H-structure
on N and h|M = f , h|M ′ = f ′.

In particular, when X = B2Zn, f : M → B2Zn is a cohomology class in
H2(M,Zn). When X = BG, with G is a Lie group or a finite group (viewed
as a Lie group with discrete topology), then f : M → BG is a principal
G-bundle over M .

To explain our notation, here BG is a classifying space of G, and B2Zn

is a higher classifying space (Eilenberg-MacLane space K(Zn, 2)) of Zn.
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In the particular case that H = O and X is a point, this definition 2

coincides with Thom’s original definition.

In this article, we study the cases in which H = O/SO/Spin/Pin±, and
X is a higher classifying space, or more complicated cases.

If ΩH
n (X) = G1 ×G2 × · · · ×Gr where Gi are cyclic groups, then group

homomorphisms φi : Ω
H
n (X) → Gi form a complete set of bordism invariants

if φ = (φ1, φ2, . . . , φr) : Ω
H
n (X) → G1×G2×· · ·×Gr is a group isomorphism.

Elements of ΩH
n (X) are manifold generators if their images in G1×G2×

· · · ×Gr under φ generate G1 ×G2 × · · · ×Gr.

We first introduce several concepts which are important for bordism

theory:

Thom space: Let V → Y be a real vector bundle, and fix a Euclidean

metric. The Thom space Thom(Y ;V ) is the quotient D(V )/S(V ) where

D(V ) is the unit disk bundle and S(V ) is the unit sphere bundle. Thom

spaces satisfy

Thom(X × Y ;V ×W ) = Thom(X;V ) ∧ Thom(Y ;W ),

Thom(X,V ⊕ R
n) = ΣnThom(X;V ),

Thom(X,Rn) = ΣnX+(1.7)

where V → X and W → Y are real vector bundles, Rn is the trivial real

vector bundle of dimension n, Σ is the suspension, X+ is the disjoint union

of X and a point.

We follow the definition of Thom spectrum and Madsen-Tillmann spec-

trum given in [24].

Thom spectrum [65]:MH is the Thom spectrum of the groupH, it is the

spectrification (see 2.2) of the prespectrum whose n-th space is MH(n) =

Thom(BH(n);Vn), and Vn is the induced vector bundle (of dimension n) by

the map BH(n) → BO(n).

In other words, MH = Thom(BH;V ), where V is the induced virtual

bundle (of dimension 0) by the map BH → BO.

Madsen-Tillmann spectrum [31]: MTH is the Madsen-Tillmann spec-

trum of the group H, it is the colimit of ΣnMTH(n), where MTH(n) =

Thom(BH(n);−Vn), and Vn is the induced vector bundle (of dimension n)

by the map BH(n) → BO(n). The virtual Thom spectrum MTH(n) is

the spectrification (see 2.2) of the prespectrum whose (n + q)-th space is
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Thom(BH(n, n+ q), Qq) where BH(n, n+ q) is the pullback

BH(n, n+ q) BH(n)

Grn(R
n+q) BO(n)

(1.8)

and there is a direct sum Rn+q = Vn⊕Qq of vector bundles over Grn(R
n+q)

and, by pullback, over BH(n, n + q) where Rn+q is the trivial real vector
bundle of dimension n+ q.

In other words,MTH = Thom(BH;−V ), where V is the induced virtual
bundle (of dimension 0) by the map BH → BO.

Here Ω is the loop space, Σ is the suspension.
Note: “T” inMTH denotes that theH-structures are on tangent bundles

instead of normal bundles.
(Co)bordism theory is a generalized (co)homology theory which is rep-

resented by a spectrum by the Brown representability theorem.
In fact, it is represented by Thom spectrum due to the Pontryagin-Thom

isomorphism:

πn(MTH)(1.9)

= ΩH
n the cobordism group of n-manifolds with tangential H-structure,

πn(MH)

= ΩνH
n the cobordism group of n-manifolds with normal H-structure.

In the case when tangential H-structure is the same as normal H ′-
structure, the relevant Thom spectra are weakly equivalent. In particular,
MTO 	 MO, MTSO 	 MSO, MTSpin 	 MSpin, MTPin+ 	 MPin−,
MTPin− 	 MPin+.

Pin± cobordism groups are not rings, though they are modules over the
Spin cobordism ring.

By the generalized Pontryagin-Thom construction, for X a topological
space, then the group of H-bordism classes of H-manifolds in X is isomor-
phic to the generalized homology of X with coefficients in MTH:

ΩH
d (X) = πd(MTH ∧X+) = MTHd(X)(1.10)

where πd(MTH ∧X+) is the d-th stable homotopy group of the spectrum
MTH ∧X+. The d-th stable homotopy group of a spectrum M is

πd(M) = colimk→∞πd+kMk.(1.11)
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So the computation of the bordism group ΩH
d (X) is the same as the

computation of the stable homotopy group of the spectrum MTH ∧ X+

which can be computed by Adams spectral sequence method.
Next, we introduce the Thom isomorphism [65]: Let p : E → B be a

real vector bundle of rank n. Then there is an isomorphism, called Thom
isomorphism

Φ : Hk(B,Z2) → H̃
k+n

(T (E),Z2)(1.12)

where H̃ is the reduced cohomology, T (E) = Thom(E;B) is the Thom space
and

Φ(b) = p∗(b) ∪ U(1.13)

where U is the Thom class. We can define the i-th Stiefel-Whitney class of
the vector bundle p : E → B by

wi(p) = Φ−1(SqiU)(1.14)

where Sq is the Steenrod square.

1.4. Basics of higher symmetries and higher anomalies of
quantum field theory for physicists and mathematicians

In order to obtain a complete classification of ’t Hooft anomalies of quan-
tum field theories (QFTs), we aim to first identify the relevant (if not all
of) global symmetry G (here we will abuse the notation to have G including
the higher symmetry G) of QFTs. Then we couple the QFTs to classical
background-symmetric gauge field of G. Then we try to detect the possible
obstructions of such coupling [62]. Such obstructions, known as the obstruc-
tion of gauging the global symmetry, are termed “’t Hooft anomalies” in
QFT. In the literature, when people refer to “anomalies,” however, they can
means several related but different issues. To fix our terminology, we refer
“anomalies” to be one of the followings:

1. Classical global symmetry is violated at the quantum theory, such
that the classical global symmetry fails to survive as a quantum global
symmetry, e.g. the original Adler-Bell-Jackiw (ABJ) anomaly [2, 7].

2. Quantum global symmetry is well-defined and preserved (for the
Hamiltonian or path integral Lagrangian formulation of quantum the-
ory). Namely, global symmetry is sensible, not only at a classical theory
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(if there is any classical description), but also for a quantum theory.
However, there is an obstruction to gauge the global symmetry. Specifi-
cally, we can detect a certain obstruction to even weakly gauge the sym-
metry or couple the symmetry to a non-dynamical background probed
gauge field. (We may abbreviate this background field as “bgd.field.”)
This is known as “’t Hooft anomaly,” or sometimes regarded as a
“weakly gauged anomaly” in condensed matter. Namely, the partition
function Z does not sum over background gauge connections, but only
fix a background gauge connection and only depend on the background
gauge connection as a classical field (as a classical coupling constant).
Say if the background gauge connection is A, the partition function is
Z[A] depending on A. Normally, the Z[A] on a closed manifold in its
own dimension is an invertible topological QFT (iTQFT), such that
Z[A] = exp(iθ(A)) is a complex phase (thus physically meaningfully
invertible) while its absolute value |Z[A]| = 1 for any choice of back-
ground A.

3. Quantum global symmetry is well-defined and preserved (for the
Hamiltonian or path integral Lagrangian formulation of quantum the-
ory). However, once we promote the global symmetry to a gauge sym-
metry of the dynamical gauge theory, then the gauge theory becomes
inconsistent. Some people call this as a “dynamical gauge anomaly”
which makes a quantum theory inconsistent. Namely, the partition
function Z after summing over dynamical gauge connections becomes
inconsistent or ill-defined.

From now on, when we simply refer to “anomalies,” we mean mostly “’t
Hooft anomalies,” which still have several intertwined interpretations:

Interpretation (1): In condensed matter physics, “’t Hooft anomalies” are
known as the obstruction to lattice-regularize the global symmetry’s quan-
tum operator in a strictly local manner. By claiming local on a lattice or on
a simplicial complex, we mean:
• on-site (e.g. on 0-simplex) for which 0-form symmetry operator acts on.
• on-link (e.g. on 1-simplex) for which 1-form symmetry operator acts on.
• on-plaquette (e.g. on 2-simplex) for which 2-form symmetry operator acts
on.
. . .
• on n-simplex for which n-form symmetry operator acts on.
This obstruction is due to the symmetry-twists (See [Ref. [77, 79, 82]] for
QFT-oriented discussion and references therein). This obstruction can be de-
tected at high energy lattice scale (known as the ultraviolet [UV] in QFT).
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This “non-onsite symmetry” viewpoint is generically applicable to both, per-
turbative anomalies, and non-perturbative global anomalies:
• Perturbative anomalies — Characterized and captured by perturbative
Feynman diagram calculations. Classified by an infinite integer Z class,
known as the free (sub)group.
• Non-perturbative or global anomalies — Examples of global anomalies in-
clude the old and the new SU(2) anomalies [76, 87] (here we mean their ’t
Hooft anomaly analogs if we view the SU(2) gauge field as a non-dynamical
classical background field) and the global gravitational anomalies [88]. These
are classified by a finite group Zn class, known as the torsion (sub)group.

These anomalies are sensitive to the underlying UV-completion not only
of fermionic systems, but also of bosonic systems [43, 74, 78, 79]. We term
the anomalies of QFT whose UV-completion requires only the bosonic de-
grees of freedom as bosonic anomalies [74]. While we term those must require
fermionic degrees of freedom as fermionic anomalies.

Interpretation (2): In QFTs, the obstruction is on the impossibility of adding
any counter term in its own dimension (d-d) in order to absorb a one-higher-
dimensional counter term (e.g. (d+1)d topological term) due to background
G-field [40]. This is named the “anomaly-inflow [13].” The (d+1)d topolog-
ical term is known as the (d+1)d SPTs in condensed matter physics [14, 59].

Interpretation (3): In math, the dd anomalies can be systematically cap-
tured by (d + 1)d topological invariants [87] known as bordism invariants
[20, 25, 39, 45].

• Bosonic anomalies or bosonic SPTs are normally characterized by topo-
logical terms detected via manifolds with H = SO (orientable) or O (unori-
entable) structures.
• Fermionic anomalies or fermionic SPTs are normally characterized by
topological terms detected via manifolds with H = Spin (orientable) or
Pin± (unorientable) structures.

Below we summarize the higher symmetry G systematically introduced
in [30].
(i) Higher symmetries and higher anomalies: The ordinary 0-form global
symmetry has a charged object of 0d measured by the charge operator of
(d−1)d. The generalized q-form global symmetry is introduced by Ref. [30].
A charged object of qd is measured by the charge operator of (d−q−1)d (i.e.
codimension-(q + 1)). This concept turns out to be powerful to detect new
anomalies, e.g. the pure SU(N)-YM at θ = π has a mixed anomaly between
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0-form time-reversal symmetry ZT
2 and 1-form center symmetry ZN,[1] at an

even integer N, firstly discovered in a remarkable work [Ref. [29]].
(ii) Relate (higher)-SPTs to (higher)-topological invariants: In the con-
densed matter literature, based on the earlier discussion on the symmetry
twist, it has been recognized that the classical background-field partition
function under the symmetry twist, called Zsym.twist in (d + 1)d can be re-
garded as the partition function of (d+1)d SPTs ZSPTs. These descriptions
are applicable to both low-energy infrared (IR) field theory, but also to the
UV-regulated SPTs on a lattice, see [Ref. [39, 79, 82]] and References therein.
Schematically, we follow the framework of [79],

(1.15) Z
(d+ 1)d
sym.twist = Z

(d+ 1)d
SPTs = Z

(d+ 1)d
topo.inv = Z

(d+ 1)d
Cobordism.inv

←→ dd-(higher) ’t Hooft anomaly.

In general, the partition function Zsym.twist = ZSPTs[A1, B2, wi, . . . ] is a func-
tional containing background gauge fields of 1-form A1, 2-form B2 or higher
forms; and can contain characteristic classes [52] such as the i-th Stiefel-
Whitney class (wi) and other geometric probes such as gravitational back-
ground fields, e.g. a gravitational Chern-Simons 3-form CS3(Γ) involving
the Levi-Civita connection or the spin connection Γ. For our convention, we
use the capital letters (A,B,...) to denote non-dynamical background gauge
fields (which, however, later they may or may not be dynamically gauged),
while the little letters (a, b,...) to denote dynamical gauge fields.
More generally,
• For the ordinary 0-form symmetry, we may couple the charged 0d point
operator to 1-form background gauge field (so the symmetry-twist occurs in
the Poincaré dual codimension-1 sub-spacetime [dd] of SPTs).
• For the 1-form symmetry, we may couple the charged 1d line operator to 2-
form background gauge field (so the symmetry-twist occurs in the Poincaré
dual codimension-2 sub-spacetime [(d− 1)d] of SPTs).
• For the q-form symmetry, we may couple the charged qd extended operator
to (q + 1)-form background gauge field. The charged qd extended operator
can be measured by another charge operator of codimension-(q + 1) [i.e.
(d− q)d].
In summary, for the q-dimensional symmetry, we use the following terminol-
ogy:

(♦ 1): Charged object: The charged q-dimensional extended operator as
the q-dimensional-symmetry generator which is being measured by a
symmetry generator.
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(♦ 2): Charge operator: The corresponding charge operator of codimension-

(q + 1) [i.e. (d − q)-dimension] which measures the q-dimensional-

symmetry charged object.

So the symmetry-twist can be interpreted as the occurrence of the codimen-

sion-(q+1) charge operator. In other words, the symmetry-twist happens at

a Poincaré dual codimension-(q + 1) sub-spacetime [(d − q)d] of SPTs. We

shall view the measurement of a charged qd extended object, happening at

any q-dimensional intersection between the (q+1)d form background gauge

field and the codimension-(q+1) symmetry-twist or charge operator of this

SPT vacua.

By higher-SPTs, we mean SPTs protected by higher symmetries (for

generic q, especially for any SPTs with at least a symmetry of q > 0). So

our principle above is applicable to higher-SPTs [22, 66]. In the following of

this article, thanks to (1.15), we can interchange the usages and interpreta-

tions of “higher SPTs ZSPTs,” “higher topological terms due to symmetry-

twist Z
(d+ 1)d
sym.twist,” “higher topological invariants Z

(d+ 1)d
topo.inv” or “bordism in-

variants Z
(d+ 1)d
Cobordism.inv” in (d + 1)d. They are all physically equivalent, and

can uniquely determine a dd higher anomaly: if we study the anomaly of

any boundary theory of the (d+ 1)d higher SPTs living on a manifold with

dd boundary. Thus, we regard all of them as physically tightly-related given

by (1.15). By turning on the classical background probed field (denoted as

“bgd.field” in (1.16)) coupled to dd QFT, under the symmetry transforma-

tion (i.e. symmetry twist), its partition function Zdd
QFT can be shifted

Zdd
QFT

∣∣∣
bgd.field=0

−→ Zdd
QFT

∣∣∣
bgd.field �=0

· Z(d+ 1)d
SPTs (bgd.field),(1.16)

to detect the underlying (d + 1)d topological terms/counter term/SPTs,

namely the (d+1)d partition function Z
(d+ 1)d
SPTs . To check whether the under-

lying (d+1)d SPTs really specifies a true dd ’t Hooft anomaly unremovable

from dd counter term, it means that Z
(d+ 1)d
SPTs (bgd.field) cannot be absorbed

by a lower-dimensional SPTs Zdd
SPTs(bgd.field), namely

(1.17) Zdd
QFT

∣∣∣
bgd.field

·Z(d+ 1)d
SPTs (bgd.field) 
= Zdd

QFT

∣∣∣
bgd.field

·Zdd
SPTs(bgd.field).

Readers can find related materials in [64, 67].
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1.5. The convention of notations

We explain the convention for our notations and terminology below. Most

of our conventions follow [25] and [35].

• We denote O the stable orthogonal group, SO the stable special or-

thogonal group, Spin the stable spin group, and Pin± the two ways of

Z2 extension (related to the time reversal symmetry) of Spin group.

• Zn is the finite cyclic group of order n, n is a positive integer.

• A map between topological spaces is always assumed to be continuous.

• For a (pointed) topological space X, Σ denotes a suspension ΣX =

S1 ∧X = (S1 ×X)/(S1 ∨X) where ∧ and ∨ are smash product and

wedge sum (one point union) of pointed topological spaces respectively.

For a graded algebra A, A =
⊕

iAi, ΣA is the graded algebra defined

by ΣA =
⊕

i(ΣA)i where (ΣA)i = Ai−1.

• For a (pointed) topological space X with the base point x0, ΩX is the

loop space of X:

ΩX = {γ : I → X continuous|γ(0) = γ(1)= x0}.(1.18)

• Let R be a ring, M a topological space, H∗(M,R) is the cohomology

ring of M with coefficients in R.

• We will abbreviate the cup product x ∪ y by xy.

• If Md (or simply M) is a d-dimensional manifold, then TMd (or simply

TM) is the tangent bundle over Md (or M).

• Rank r real (complex) vector bundle V is a bundle with fibers being

real (complex) vector spaces of real (complex) dimension r.

• wi(V ) is the i-th Stiefel-Whitney class of a real vector bundle V (which

may be also complex rank r but considered as real rank 2r).

• pi(V ) is the i-th Pontryagin class of a real vector bundle V .

• ci(V ) is the i-th Chern class of a complex vector bundle V . Pontryagin

classes are closely related to Chern classes via complexification:

pi(V ) = (−1)ic2i(V ⊗R C)(1.19)

where V ⊗RC is the complexification of the real vector bundle V . The

relation between Pontryagin classes and Stiefel-Whitney classes is

pi(V ) = w2i(V )2 mod 2.(1.20)



128 Zheyan Wan and Juven Wang

• For a top degree cohomology class we often suppress explicit integra-
tion over the manifold (i.e. pairing with the fundamental class [M ]). If
M is orientable, then [M ] has coefficients in Z. If M is non-orientable,
then [M ] has coefficients in Z2.

• If x is an element of a graded vector space, |x| denotes the degree of
x.

• For an odd prime p and a non-negatively and integrally graded vector
space V over Zp, let V even and V odd be even and odd graded parts
of V . The free algebra FZp

[V ] generated by the graded vector space
V is the tensor product of the polynomial algebra on V even and the
exterior algebra on V odd:

FZp
[V ] = Zp[V

even]⊗ ΛZp
(V odd).(1.21)

We sometimes replace the vector space with a set of bases of it.
• Ap denotes the mod p Steenrod algebra where p is a prime.
• Sqn is the n-th Steenrod square, it is an element of A2.
• A2(1) denotes the subalgebra of A2 generated by Sq1 and Sq2.
• β(n,m) : H∗(−,Zm) → H∗+1(−,Zn) is the Bockstein homomorphism

associated to the extension Zn
·m→ Znm → Zm, when n = m = p is a

prime, it is an element of Ap. If p = 2, then β(2,2) = Sq1.

• Pn
p : H∗(−,Zp) → H∗+2n(p−1)(−,Zp) is the n-th Steenrod power, it is

an element of Ap where p is an odd prime. For odd primes p, we only
consider p = 3, so we abbreviate Pn

3 by Pn.
• P2 is the Pontryagin square operation H2i(M,Z2k) → H4i(M,Z2k+1).
Explicitly, P2 is given by

P2(x) = x ∪ x+ x ∪
1

δx mod 2k+1(1.22)

and it satisfies

P2(x) = x ∪ x mod 2k.(1.23)

Here ∪
1

is the higher cup product.

• Postnikov square P3 : H
2(−,Z3k) → H5(−,Z3k+1) is given by

P3(u) = β(3k+1,3k)(u ∪ u)(1.24)

where β(3k+1,3k) is the Bockstein homomorphism associated to 0 →
Z3k+1 → Z32k+1 → Z3k → 0.
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• For a finitely generated abelian group G and a prime p,
G∧

p = limnG/pnG is the p-completion of G.
• For a topological space M , πd(M) is the d-th (ordinary) homotopy
group of M .

• For an abelian group G, the Eilenberg-MacLane space K(G,n) is a
space with homotopy groups satisfying

πiK(G,n) =

{
G, i = n.
0, i 
= n.

(1.25)

• Let X, Y be topological spaces, [X,Y ] is the set of homotopy classes
of maps from X to Y .

• Let G be a group, the classifying space of G, BG is a topological space
such that
(1.26)

[X,BG] = {isomorphism classes of principal G-bundles over X}

for any topological space X. In particular, if G is an abelian group,
then BG is a group.

• There is a vector bundle associated to a principal G-bundle PG: PG×G

V = (PG×V )/G which is the quotient of PG×V by the right G-action

(p, v)g = (pg, g−1v)(1.27)

where V is the vector space which G acts on. For characteristic classes
of a principal G-bundle, we mean the characteristic classes of the as-
sociated vector bundle.

1.6. Tables and summary of some co/bordism groups

Below we use the following notations, all cohomology class are pulled back
to the d-manifold M along the maps given in the definition of cobordism
groups:
• wi is the Stiefel-Whitney class of the tangent bundle of M ,
• a is the generator of H1(BZ2,Z2),
• a′ is the generator of H1(BZ3,Z3), b

′ = β(3,3)a
′,

• x2 is the generator of H2(B2Z2,Z2), x3 = Sq1x2, x5 = Sq2x3,
• x′2 is the generator of H2(B2Z3,Z3), x

′
3 = β(3,3)x

′
2,

• w′
i = wi(PSU(2)) ∈ Hi(BPSU(2),Z2) is the Stiefel-Whitney class of the

principal PSU(2) bundle,
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Table 1: 2d bordism groups-1

ΩH
d (−) B2Z2 B2Z3 BPSU(2) BPSU(3)

2 SO
Z2:
x2

Z3:
x′
2

Z2:
w′

2

Z3:
z2

2 Spin
Z
2
2:

x2,Arf3
Z2 × Z3:
Arf, x′

2

Z
2
2:

w′
2,Arf

Z2 × Z3:
Arf, z2

2 O
Z
2
2:

x2, w
2
1

Z2:
w2

1

Z
2
2:

w′
2, w

2
1

Z2:
w2

1

2 Pin+
Z
2
2:

x2, w1η̃

Z2:
w1η̃

Z
2
2:

w′
2, w1η̃

Z2:
w1η̃

2 Pin−
Z2 × Z8:
x2,ABK4

Z8:
ABK

Z2 × Z8:
w′

2,ABK
Z8:
ABK

• ci = ci(PSU(3)) ∈ H2i(BPSU(3),Z) is the Chern class of the principal

PSU(3) bundle,

• z2 = w2(PSU(3)) ∈ H2(BPSU(3),Z3) is the generalized Stiefel-Whitney

class of the principal PSU(3) bundle, z3 = β(3,3)z2.

• P2 is the Pontryagin square (see 1.5).

• P3 is the Postnikov square (see 1.5).

Conventions: All product between cohomology classes are cup product, prod-

uct between a cohomology class x and η̃ (or Arf, ABK, etc) means the value

of η̃ (or Arf, ABK, etc) on the submanifold of M which represents the

Poincaré dual of x.

3Arf is the Arf invariant of Spin 2-manifolds.
4ABK is the Arf-Brown-Kervaire invariant of Pin− 2-manifolds.
5η̃ is the “mod 2 index” of the 1d Dirac operator (#zero eigenvalues mod 2, no

contribution from spectral asymmetry).
6Any 2-manifold Σ always admits a Pin− structure. Pin− structures are in one-

to-one correspondence with quadratic enhancement

(1.28) q : H1(Σ,Z2) → Z4

such that

(1.29) q(x+ y)− q(x)− q(y) = 2

∫
Σ

x ∪ y mod 4.

In particular:

(1.30) q(x) =

∫
Σ

x ∪ x mod 2.
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Table 2: 2d bordism groups-2

ΩH
d (−) BZ2×B2Z2 BZ3×B2Z3

BPSU(2) ×
B2

Z2

BPSU(3) ×
B2

Z3

2 SO
Z2:
x2

Z3:
x′
2

Z
2
2:

w′
2, x2

Z
2
3:

x′
2, z2

2 Spin
Z
3
2:

x2,Arf,
aη̃5

Z2 × Z3:
Arf, x′

2

Z
3
2:

w′
2, x2,

Arf

Z2 × Z
2
3:

Arf, x′
2,

z2

2 O
Z
3
2:

a2, x2,
w2

1

Z2:
w2

1

Z
3
2:

w′
2, x2,

w2
1

Z2:
w2

1

2 Pin+

Z
3
2:

w1a =
a2, x2,
w1η̃

Z2:
w1η̃

Z
3
2:

w′
2, x2,

w1η̃

Z2:
w1η̃

2 Pin−

Z2 × Z4 ×
Z8:
x2, q(a),

6

ABK

Z8:
ABK

Z2
2 × Z8:

w′
2, x2,

ABK

Z8:
ABK

7qs : H2(M,Z2) → Z4 is a Z4 valued quadratic refinement (dependent on the
choice of Pin+ structure s ∈ Pin+(M)) of the intersection form

〈, 〉 : H2(M,Z2)×H2(M,Z2) → Z2

i.e. so that qs(x + y) − qs(x) − qs(y) = 2〈x, y〉 ∈ Z4 (in particular qs(x) = 〈x, x〉
mod 2)

The space of Pin+ structures is acted upon freely and transitively by H1(M,Z2),
and the dependence of qs on the Pin+ structure should satisfy

qs+h(x)− qs(x) = 2w1(TM)hx, for any h ∈ H1(M,Z2)

(note that any two quadratic functions differ by a linear function)
If w1(TM) = 0, then qs(x) is independent on the Pin+ structure s ∈ Pin+(M),

it reduces to P2(x) where P2(x) is the Pontryagin square of x.
8Here η is the usual Atiyah-Patodi-Singer eta-invariant of the 4d Dirac operator

(=“#zero eigenvalues + spectral asymmetry”).
9One can also define this Z4 invariant as

(ηSO(3) − 3η)/4 ∈ Z4 (∗)

where η ∈ Z16 is the (properly normalized) eta-invariant of the ordinary Dirac
operator, and ηSO(3) ∈ Z16 is the eta invariant of the twisted Dirac operator acting
on the S⊗V3 where S is the spinor bundle and V3 is the bundle associated to 3-dim
representation of SO(3). Note that (∗) is well defined because ηSO(3) = 3η mod 4.



132 Zheyan Wan and Juven Wang

Table 3: 3d bordism groups-1

ΩH
d (−) B2Z2 B2Z3 BPSU(2) BPSU(3)
3 SO 0 0 0 0
3 Spin 0 0 0 0

3 O
Z2:
x3 =
w1x2

0

Z2:
w′

3 =
w1w

′
2

0

3 Pin+

Z
2
2:

w1x2 =
x3,
w1Arf

Z2:
w1Arf

Z
2
2:

w1w
′
2 =

w′
3,

w1Arf

Z2:
w1Arf

3 Pin−
Z2:
w1x2

= x3

0

Z2:
w1w

′
2

= w′
3

0

In Section 4.1, we compute the topological terms (involving the coho-

mology classes of B2Z2) of Ω
G
5 where G is a 2-group with Ga = O, Gb = Z2

We find that the term x2w3 (or x3w2) survives only for β = 0, w3
1 (the Post-

nikov class β ∈ H3(BO,Z2) = Z3
2 which is generated by w3

1, w1w2, w3). This

term also appears in eq. 2.57 of [18].

Note that on non-orientable manifold, if w2(V3) = 0, then since w1(V3) = 0, we

also have w3(V3) = 0, hence V3 is stably trivial, ηSO(3) = 3η.

Also note that on oriented manifold one can use Atiyah-Patodi-Singer index

theorem to show that (here the normalization of eta-invariants is such that η is an

integer mod 16 on a general non-oriented 4-manifold)

η = −σ(M)

2
,

ηSO(3) = −3σ(M)

2
+ 4p1(SO(3)).

So

(ηSO(3) − 3η)/4 = p1(SO(3)) mod 4 = P2(w2(SO(3))).

qs(w2(SO(3))) also reduces to P2(w2(SO(3))) in the oriented case.
10CS3(TM) ≡ CS

(TM)
3 is the Chern-Simons 3-form of the tangent bundle.

11CS3(SO(3)) ≡ CS
(SO(3))
3 is the Chern-Simons 3-form of the SO(3) gauge bun-

dle.
12CS3(PSU(3)) ≡ CS

(PSU(3))
3 is the Chern-Simons 3-form of the PSU(3) gauge

bundle.
13CS5(PSU(3)) ≡ CS

(PSU(3))
5 is the Chern-Simons 5-form of the PSU(3) gauge

bundle.
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Table 4: 3d bordism groups-2

ΩH
d (−) BZ2×B2Z2 BZ3×B2Z3

BPSU(2) ×
B2

Z2

BPSU(3) ×
B2

Z3

3 SO
Z
2
2:

ax2, a
3

Z
2
3:

a′b′, a′x′
2

0 0

3 Spin
Z2 × Z8:
ax2, aABK

Z
2
3:

a′b′, a′x′
2

0 0

3 O

Z
4
2:

x3 =
w1x2, ax2,
aw2

1, a
3

0

Z
2
2:

x3 =
w1x2, w

′
3 =

w1w
′
2

0

3 Pin+

Z
5
2:

a3, w1x2 =
x3,
ax2, w1aη̃,
w1Arf

Z2:
w1Arf

Z
3
2:

w1w
′
2 =

w′
3, w1x2 =

x3,
w1Arf

Z2:
w1Arf

3 Pin−

Z
4
2:

a3, w2
1a,

x3 =
w1x2,
ax2

0

Z
2
2:

w1w
′
2 =

w′
3,

w1x2 = x3

0

2. Background information

For more information, see [37, 83, 85, 93].

2.1. Cohomology theory

2.1.1. Cup product. Let X be a topological space, an n-simplex of X is
a map σ : Δn → X where

Δn = {(t0, t1, . . . , tn) ∈ R
n+1|t0 + t1 + · · ·+ tn = 1, ti ≥ 0},(2.1)

it is denoted by [v0, . . . , vn] where vi are vertices of Δn.

n-simplexes of X generates an abelian group Cn(X), the elements of
Cn(X) are called n-chains. Δn−1 embeds in Δn in the canonical way, define
∂ : Cn(X) → Cn−1(X) by

∂(σ) =

n∑
i=0

(−1)iσ|[v0,...,v̂i,...,vn].(2.2)

It is easy to verify that ∂2 = 0, so (C•(X), ∂) is a chain complex.
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Table 5: 4d bordism groups-1

ΩH
d (−) B2Z2 B2Z3 BPSU(2) BPSU(3)

4 SO
Z× Z4:
σ,P2(x2)

Z× Z3:
σ, x′2

2

Z2:
σ, p′1

Z
2:

σ, c2

4 Spin

Z× Z2:
σ
16 ,
P2(x2)

2

Z× Z3:
σ
16 , x

′2
2

Z
2:

σ
16 ,

p′
1

2

Z
2:

σ
16 , c2

4 O
Z
4
2:

x2
2, w

4
1,

w2
1x2, w

2
2

Z
2
2:

w4
1,

w2
2

Z
4
2:

w′2
2 , w

4
1,

w2
1w

′
2, w

2
2

Z
3
2:

w4
1, w

2
2,

c2(mod 2)

4 Pin+

Z4 ×
Z16:
qs(x2),

7

η8

Z16:
η

Z4 ×
Z16:
qs(w

′
2),

9

η

Z2 × Z16:
c2(mod 2),
η

4 Pin−
Z2:
w2

1x2
0

Z2:
w2

1w
′
2

Z2:
c2(mod 2)

Let G be an abelian group, let Cn(X,G) := Hom(Cn(X), G), the el-

ements of Cn(X,G) are called n-cochains with coefficients G. Define δ :

Cn(X,G) → Cn+1(X,G) by δ(α)(σ) = α(∂(σ)), then δ2 = 0, so

(C•(X,G), δ) is a cochain complex.

Hn(X,G) is defined to be Kerδ:Cn(X,G)→Cn+1(X,G)
Imδ:Cn−1(X,G)→Cn(X,G) . It is an abelian group,

called the n-th cohomology group of X with coefficients G, the elements of

the abelian group Zn(X,G) := Kerδ : Cn(X,G) → Cn+1(X,G) are called

n-cocycles, the elements of Bn(X,G) := Imδ : Cn−1(X,G) → Cn(X,G) are

called n-coboundaries.

By abusing the notation, we also use [v0, . . . , vn] to denote an n-chain.

If G is additionally a ring R, then we can define a cup product such that

H∗(X,R) is a graded ring. First we define the cup product of two cochains:

Cn(X,R)× Cm(X,R) → Cn+m(X,R)

(α, β) �→ α ∪ β(2.3)

α ∪ β([v0, . . . , vn+m]) := α([v0, . . . , vn]) · β([vn, . . . , vn+m])(2.4)

where · is the multiplication in R.

The cup product satisfies

δ(α ∪ β) = (δα) ∪ β + (−1)nα ∪ (δβ)(2.5)
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Table 6: 4d bordism groups-2

ΩH
d (−) BZ2 × B2Z2 BZ3 × B2Z3

BPSU(2) ×
B2

Z2

BPSU(3) ×
B2

Z3

4 SO

Z× Z2 × Z4:
σ,
ax3 = a2x2,
P2(x2)

Z× Z
2
3:

σ,
a′x′

3 = b′x′
2,

x′2
2

Z2×Z2×Z4:
σ, p′1,
w′

2x2,P2(x2)

Z
2 × Z

2
3:

σ, c2,
x′2
2 , x

′
2z2

4 Spin

Z× Z
2
2:

σ
16 ,
ax3 = a2x2,
P2(x2)

2

Z× Z
2
3:

σ
16 ,
a′x′

3 = b′x′
2,

x′2
2

Z2 × Z2
2:

σ
16 ,

p′
1

2 ,
w′

2x2,
P2(x2)

2

Z
2 × Z

2
3:

σ
16 , c2,
x′2
2 , x

′
2z2

4 O

Z
8
2:

w4
1, w

2
2,

a4, a2x2,
ax3, x

2
2,

w2
1a

2, w2
1x2

Z
2
2:

w4
1, w

2
2

Z
7
2:

w4
1, w

2
2,

x2
2, w

′2
2 ,

x2w
2
1, w

′
2w

2
1,

w′
2x2

Z
3
2:

w4
1, w

2
2,

c2(mod 2)

4 Pin+

Z2
2×Z4×Z8×

Z16:
ax3, w1ax2 =
a2x2 + ax3,
qs(x2),
w1aABK,
η

Z16:
η

Z
2
4×Z16×Z2:

qs(w
′
2),

qs(x2),
η, w′

2x2

Z2 × Z16:
c2(mod 2),
η

4 Pin−

Z
3
2:

w2
1x2, ax3,

w1ax2 =
a2x2 + ax3

0
Z
3
2:

w2
1w

′
2,

w2
1x2, w

′
2x2

Z2:
c2(mod 2)

α∪β is a cocycle if both α and β are cocycles. If both α and β are cocycles,

then α ∪ β is a coboundary if one of α and β is a coboundary. So the

cup product is also an operation on cohomology groups ∪ : Hn(X,R) ×
Hm(X,R) → Hn+m(X,R). The cup product of two cocycles satisfies

α ∪ β = (−1)nmβ ∪ α+ coboundary(2.6)

For the convenience of defining higher cup product, we use the notation

i → j for the consecutive sequence from i to j

i → j ≡ i, i+ 1, · · · , j − 1, j.(2.7)

We also denote an n-chain by (0 → n). We use 〈α, σ〉 to denote the value of

α(σ) for n-cochain α and n-chain σ.
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Table 7: 5d bordism groups-1

ΩH
d (−) B2Z2 B2Z3 BPSU(2) BPSU(3)

5 SO

Z2
2:

x5 =
x2x3,
w2w3

Z2:
w2w3

Z
2
2:

w2w3,
w′

2w
′
3

Z2:
w2w3

5 Spin 0 0 0 0

5 O

Z
4
2:

x2x3,
x5,
w2

1x3,
w2w3

Z2:
w2w3

Z
3
2:

w2w3,
w2

1w
′
3,

w′
2w

′
3

Z2:
w2w3

5 Pin+

Z
2
2:

x2x3,
w2

1x3

= x5

0

Z2:
w2

1w
′
3

= w′
2w

′
3

0

5 Pin−
Z2:
x2x3

0 0 0

Let fm be an m-cochain, hn be an n-cochain, we define higher cup prod-
uct fm ∪

k

hn which yields an (m+ n− k)-cochain:

〈fm ∪
k

hn, (0, 1, · · · ,m+ n− k)〉
(2.8)

=
∑

0≤i0<···<ik≤n+m−k

(−1)p〈fm, (0 → i0, i1 → i2, · · · )〉 × 〈hn, (i0 → i1, i2 → i3, · · · )〉,

and fm ∪
k

hn = 0 for k > m or n or k < 0. Here i → j is the sequence

i, i+ 1, · · · , j − 1, j, and p is the number of transpositions (it is not unique
but its parity is unique) in the decomposition of the permutation to bring
the sequence

0 → i0, i1 → i2, · · · ; i0 + 1 → i1 − 1, i2 + 1 → i3 − 1, · · ·(2.9)

to the sequence

0 → m+ n− k.(2.10)

For example

〈fm ∪
1

hn, (0, 1, · · · ,m+ n− 1)〉 =
m−1∑
i=0

(−1)(m−i)(n+1)×
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Table 8: 5d bordism groups-2

ΩH
d (−) BZ2×B2Z2 BZ3×B2Z3

BPSU(2) ×
B2

Z2

BPSU(3) ×
B2

Z3

5 SO

Z6
2:

ax2
2, a

5,
x5 =
x2x3, a

3x2,
w2w3, aw

2
2

Z2 × Z
2
3 ×

Z9:
w2w3,
a′b′x′

2,
a′x′2

2 ,
P3(b

′)

Z4
2:

w′
2w

′
3, x5 =

x2x3,
w′

3x2 =
w′

2x3,
w2w3

Z2 × Z3:
w2w3,
z2x

′
3 =

−z3x
′
2

5 Spin
Z2:
a3x2

Z
2
3 × Z9:

a′b′x′
2,

a′x′2
2 ,

P3(b
′)

Z2:
w′

3x2

= w′
2x3

Z3:
z2x

′
3

= −z3x
′
2

5 O

Z
12
2 :

a5, a2x3,
a3x2, a

3w2
1,

ax2
2, aw

4
1,

ax2w
2
1, aw

2
2,

x2x3, w
2
1x3,

x5, w2w3

Z2:
w2w3

Z8
2:

w′
2w

′
3, x2w

′
3,

w2
1w

′
3, w

′
2x3,

x2x3, w
2
1x3,

x5, w2w3

Z2:
w2w3

5 Pin+

Z
7
2:

w4
1a,

a5 = w2
1a

3,
w2

1x3= x5,
x2x3,
w2

1ax2 =
ax2

2 + a2x3,
w1ax3 =
a2x3,
a3x2

0

Z
5
2:

w2
1w

′
3

= w′
2w

′
3,

w2
1x3 = x5,

x2x3, w
′
3x2,

w1w
′
2x2 =

w′
2x3+w′

3x2

0

5 Pin−

Z
5
2:

w2
1a

3, x2x3,
w2

1ax2,
w1ax3 =
a2x3,
a3x2

0

Z
3
2:

x2x3, w
′
3x2,

w1w
′
2x2 =

w′
2x3+w′

3x2

0

〈fm, (0 → i, i+ n → m+ n− 1)〉〈hn, (i → i+ n)〉.(2.11)

We can see that ∪
0

= ∪. Unlike cup product at k = 0, the higher cup product

of two cocycles may not be a cocycle.

Steenrod studied the higher cup product of cochains and found a formula
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Table 9: TP2-1

TPd(H ×−) BZ2 BZ3 PSU(2) PSU(3)

2 SO
Z2:
x2

Z3:
x′
2

Z2:
w′

2

Z3:
z2

2 Spin
Z
2
2:

x2,Arf

Z2 ×Z3:
Arf, x′

2

Z
2
2:

w′
2,Arf

Z2 ×Z3:
Arf, z2

2 O
Z
2
2:

x2, w
2
1

Z2:
w2

1

Z
2
2:

w′
2, w

2
1

Z2:
w2

1

2 Pin+
Z
2
2:

x2, w1η̃

Z2:
w1η̃

Z
2
2:

w′
2, w1η̃

Z2:
w1η̃

2 Pin−
Z2 × Z8:
x2,ABK

Z8:
ABK

Z2 × Z8:
w′

2,ABK
Z8:
ABK

Table 10: TP2-2

TPd(H ×−) Z2 × BZ2 Z3 × BZ3
PSU(2) ×
BZ2

PSU(3) ×
BZ3

2 SO
Z2:
x2

Z3:
x′
2

Z2
2:

w′
2,x2

Z2
3:

x′
2, z2

2 Spin
Z
3
2:

x2,Arf,
aη̃

Z2 × Z3:
Arf, x′

2

Z3
2:

w′
2, x2,

Arf

Z2 × Z
2
3:

Arf, x′
2,

z2

2 O
Z
3
2:

a2, x2,
w2

1

Z2:
w2

1

Z
3
2:

w′
2, x2,

w2
1

Z2:
w2

1

2 Pin+

Z
3
2:

w1a =
a2, x2,
w1η̃

Z2:
w1η̃

Z
3
2:

w′
2, x2,

w1η̃

Z2:
w1η̃

2 Pin−

Z2 × Z4 ×
Z8:
x2, q(a),
ABK

Z8:
ABK

Z
2
2 × Z8:

w′
2, x2,

ABK

Z8:
ABK

[61, Theorem 5.1]:

δ(u ∪
i

v)(2.12)

= (−1)p+q−iu ∪
i−1

v + (−1)pq+p+qv ∪
i−1

u+ δu ∪
i

v + (−1)pu ∪
i

δv

where u is a p-cochain, v is a q-cochain.

Also Steenrod defined Steenrod square using higher cup product:

Sqn−k(zn) ≡ zn ∪
k

zn(2.13)
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Table 11: TP3-1

TPd(H ×−) BZ2 BZ3 PSU(2) PSU(3)

3 SO
Z:
1
3CS

(TM)
3

10
Z:
1
3CS

(TM)
3

Z
2:

1
3CS

(TM)
3 ,

CS
(SO(3))
3

11

Z
2:

1
3CS

(TM)
3 ,

CS
(PSU(3))
3

12

3 Spin
Z:
1
48CS

(TM)
3

Z:
1
48CS

(TM)
3

Z2:
1
48CS

(TM)
3 ,

1
2CS

(SO(3))
3

Z
2:
1
48CS

(TM)
3 ,

CS
(PSU(3))
3

3 O
Z2:
x3 =
w1x2

0

Z2:
w′

3 =
w1w

′
2

0

3 Pin+

Z
2
2:

w1x2 =
x3,
w1Arf

Z2:
w1Arf

Z
2
2:

w1w
′
2 =

w′
3,

w1Arf

Z2:
w1Arf

3 Pin−
Z2:
w1x2 =
x3

0

Z2:
w1w

′
2 =

w′
3

0

Table 12: TP3-2

TPd(H ×−) Z2 × BZ2 Z3 × BZ3
PSU(2) ×
BZ2

PSU(3) ×
BZ3

3 SO
Z× Z

2
2:

1
3CS

(TM)
3 ,

ax2, a
3

Z× Z
2
3:

1
3CS

(TM)
3 ,

a′b′, a′x′
2

Z
2:

1
3CS

(TM)
3 ,

CS
(SO(3))
3

Z
2:

1
3CS

(TM)
3 ,

CS
(PSU(3))
3

3 Spin
Z×Z2×Z8:
1
48CS

(TM)
3 ,

ax2, aABK

Z× Z
2
3:

1
48CS

(TM)
3 ,

a′b′, a′x′
2

Z
2:
1
48CS

(TM)
3 ,

1
2CS

(SO(3))
3

Z2:
1
48CS

(TM)
3 ,

CS
(PSU(3))
3

3 O

Z
4
2:

x3 =
w1x2, ax2,
aw2

1, a
3

0

Z
2
2:

x3 =
w1x2, w

′
3 =

w1w
′
2

0

3 Pin+

Z
5
2:

a3, w1x2 =
x3,
ax2, w1aη̃,
w1Arf

Z2:
w1Arf

Z
3
2:

w1w
′
2 =

w′
3, w1x2 =

x3,
w1Arf

Z2:
w1Arf

3 Pin−

Z
4
2:

a3, w2
1a,

x3 =
w1x2,
ax2

0

Z
2
2:

w1w
′
2 =

w′
3,

w1x2 =
x3

0
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Table 13: TP4-1

TPd(H ×−) BZ2 BZ3 PSU(2) PSU(3)

4 SO
Z4:
P2(x2)

Z3:
x′2
2

0 0

4 Spin
Z2:
P2(x2)

2

Z3:
x′2
2

0 0

4 O
Z
4
2:

x2
2, w

4
1,

w2
1x2, w

2
2

Z
2
2:

w4
1,

w2
2

Z
4
2:

w′2
2 , w

4
1,

w2
1w

′
2, w

2
2

Z
3
2:

w4
1, w

2
2,

c2(mod 2)

4 Pin+

Z4 ×
Z16:
qs(x2),
η

Z16:
η

Z4 ×
Z16:
qs(w

′
2),

η

Z2 × Z16:
c2(mod 2),
η

4 Pin−
Z2:
w2

1x2
0

Z2:
w2

1w
′
2

Z2:
c2(mod 2)

2.1.2. Universal coefficient theorem and Künneth formula. If X
is a topological space, R is a principal ideal domain (Z or a field), G is an
R-module, then the homology version of universal coefficient theorem is

Hn(X,G) = Hn(X,R)⊗R G⊕ TorR1 (Hn−1(X,R), G).(2.14)

The cohomology version of universal coefficient theorem is

Hn(X,G) = HomR(Hn(X,R), G)⊕ Ext1R(Hn−1(X,R), G).(2.15)

We will abbreviate TorZ1 by Tor, Ext1Z by Ext.
If X and X ′ are topological spaces, R is a principle ideal domain and

G,G′ are R-modules such that TorR1 (G,G′) = 0. We also require either
(1) Hn(X;Z) and Hn(X

′;Z) are finitely generated, or
(2) G′ and Hn(X

′;Z) are finitely generated.

The homology version of Künneth formula is

Hd(X ×X ′, G⊗R G′)(2.16)

	
[
⊕d

k=0 Hk(X,G)⊗R Hd−k(X
′, G′)

]
⊕
[
⊕d−1

k=0 Tor
R
1 (H

k(X,G),Hd−k−1(X
′, G′))

]
.

The cohomology version of Künneth formula is

Hd(X ×X ′, G⊗R G′)(2.17)
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Table 14: TP4-2

TPd(H ×−) Z2 × BZ2 Z3 × BZ3
PSU(2) ×
BZ2

PSU(3) ×
BZ3

4 SO

Z2 × Z4:
ax3 =
a2x2,
P2(x2)

Z
2
3:

a′x′
3 =

b′x′
2,

x′2
2

Z2 × Z4:
w′

2x2,P2(x2)
Z
2
3:

x′2
2 , x

′
2z2

4 Spin

Z2
2:

ax3 =
a2x2,
P2(x2)

2

Z
2
3:

a′x′
3 =

b′x′
2,

x′2
2

Z
2
2:

w′
2x2,

P2(x2)
2

Z
2
3:

x′2
2 , x

′
2z2

4 O

Z
8
2:

w4
1, w

2
2,

a4, a2x2,
ax3, x

2
2,

w2
1a

2, w2
1x2

Z
2
2:

w4
1, w

2
2

Z
7
2:

w4
1, w

2
2,

x2
2, w

′2
2 ,

x2w
2
1, w

′
2w

2
1,

w′
2x2

Z
3
2:

w4
1, w

2
2,

c2(mod 2)

4 Pin+

Z
2
2 × Z4 ×

Z8 × Z16:
ax3,
w1ax2 =
a2x2 + ax3,
qs(x2),
w1aABK,
η

Z16:
η

Z2
4 × Z16 ×

Z2:
qs(w

′
2),

qs(x2),
η, w′

2x2

Z2 × Z16:
c2(mod 2),
η

4 Pin−

Z
3
2:

w2
1x2, ax3,

w1ax2 =
a2x2 + ax3

0
Z3
2:

w2
1w

′
2,

w2
1x2, w

′
2x2

Z2:
c2(mod 2)

	
[
⊕d

k=0 H
k(X,G)⊗R Hd−k(X ′, G′)

]
⊕
[
⊕d+1

k=0 Tor
R
1 (H

k(X,G),Hd−k+1(X ′, G′))
]
.

Note that Z and R are principal ideal domains, while R/Z is not. Also,
R and R/Z are not finitely generate R-modules if R = Z.

Special cases: 1. R = G′ = Z.
In this case, the condition TorR1 (G,G′) = TorZ1 (G,Z) = 0 is always

satisfied. G can be R/Z, Z, Zn etc . So we have

Hd(X ×X ′, G)(2.18)

	
[
⊕d

k=0 H
k(X,G)⊗Z Hd−k(X ′;Z)

]
⊕
[
⊕d+1

k=0 Tor(H
k(X,G),Hd−k+1(X ′;Z))

]
.
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Table 15: TP5-1

TPd(H ×−) BZ2 BZ3 PSU(2) PSU(3)

5 SO

Z
2
2:

x5 =
x2x3,
w2w3

Z2:
w2w3

Z
2
2:

w2w3,
w′

2w
′
3

Z× Z2:
CS

(PSU(3))
5

13,
w2w3

5 Spin 0 0 0
Z:
1
2CS

(PSU(3))
5

5 O

Z4
2:

x2x3,
x5 =
(w2 + w2

1)x3

=
(w3 + w3

1)x2,
w2

1x3 =
w3

1x2,
w2w3

Z2:
w2w3

Z
3
2:

w2w3,
w2

1w
′
3 =

w3
1w

′
2,

w′
2w

′
3.

Z2:
w2w3

5 Pin+

Z2
2:

x2x3,
x5 =
w2

1x3 =
w3

1x2

0

Z2:
w2

1w
′
3 =

w′
2w

′
3

0

5 Pin−
Z2:
x2x3

0 0 0

Take X to be the space of one point in (2.18), and use

Hn(X,G)) =

{
G, if n = 0,

0, if n > 0,
(2.19)

to reduce (2.18) to

Hd(X,G) 	 Hd(X;Z)⊗Z G⊕ Tor(Hd+1(X;Z), G),(2.20)

where X ′ is renamed as X. This is also called the universal coefficient theo-

rem which can be used to calculate H∗(X,G) from H∗(X;Z) and the module

G. Here Tor = TorZ1 .

Homology version of (2.20) is just the universal coefficient theorem for

homology with R = Z.

2. R = G = G′ = F is a field, TorR1 (G,G′) = 0.

H∗(X ×X ′,F) = H∗(X,F)⊗H∗(X ′,F).(2.21)
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Table 16: TP5-2

TPd(H ×−) Z2 × BZ2 Z3 × BZ3
PSU(2) ×
BZ2

PSU(3) ×
BZ3

5 SO

Z6
2:

ax2
2, a

5,
x5 =
x2x3, a

3x2,
w2w3, aw

2
2

Z2 × Z
2
3 ×

Z9:
w2w3,
a′b′x′

2,
a′x′2

2 ,
P3(b

′)

Z4
2:

w′
2w

′
3, x5 =

x2x3,
w′

3x2 =
w′

2x3,
w2w3

Z×Z2×Z3:
CS

(PSU(3)
5 ),

w2w3,
z2x

′
3 =

−z3x
′
2

5 Spin
Z2:
a3x2

Z
2
3 × Z9:

a′b′x′
2,

a′x′2
2 ,

P3(b
′)

Z2:
w′

3x2 =
w′

2x3

Z× Z3:
1
2CS

(PSU(3))
5 ,

z2x
′
3 =

−z3x
′
2

5 O

Z
12
2 :

a5, a2x3,
a3x2, a

3w2
1,

ax2
2, aw

4
1,

ax2w
2
1, aw

2
2,

x2x3, w
2
1x3,

x5, w2w3

Z2:
w2w3

Z8
2:

w′
2w

′
3, x2w

′
3,

w2
1w

′
3, w

′
2x3,

x2x3, w
2
1x3,

x5, w2w3

Z2:
w2w3

5 Pin+

Z
7
2:

w4
1a,

a5 = w2
1a

3,
w2

1x3= x5,
x2x3,
w2

1ax2 =
ax2

2 + a2x3,
w1ax3 =
a2x3,
a3x2

0

Z
5
2:

w2
1w

′
3 =

w′
2w

′
3,

w2
1x3 =

x5,
x2x3, w

′
3x2,

w1w
′
2x2 =

w′
2x3+w′

3x2

0

5 Pin−

Z
5
2:

w2
1a

3, x2x3,
w2

1ax2,
w1ax3 =
a2x3,
a3x2

0

Z
3
2:

x2x3, w
′
3x2,

w1w
′
2x2 =

w′
2x3+w′

3x2

0

This is called the Künneth formula.

There is also a relative version of Künneth formula [37, Theorem 3.18]:

H̃
∗
(X ∧X ′,F) = H̃

∗
(X,F)⊗ H̃

∗
(X ′,F).(2.22)

Here X ∧X ′ is the smash product, H̃ is the reduced cohomology.
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2.2. Spectra

Definition 3. • A prespectrum T• is a sequence {Tq}q∈Z≥0 of pointed spaces
and maps sq : ΣTq → Tq+1.

• An Ω-prespectrum is a prespectrum T• such that the adjoints tq : Tq →
ΩTq+1 of the structure maps are weak homotopy equivalences.

• A spectrum is a prespectrum T• such that the adjoints tq : Tq → ΩTq+1

of the structure maps are homeomorphisms.

Example 4. • Let X be a pointed space, Tq = ΣqX for q ≥ 0, then T• is a
prespectrum.

• Tq = Sq, T• is a prespectrum.
• Let G be an abelian group, Tq = K(G, q) the Eilenberg-MacLane

space, T• is an Ω-prespectrum.

Spectrification: Let T• be a prespectrum, define (LT )q to be the colimit
of

Tq
tq−→ ΩTq+1

Ωtq+1−−−→ Ω2Tq+2.

Namely,

(LT )q = coliml→∞ΩlTq+l,

then (LT )• is a spectrum.

Example 5. • Tq = Sq, (LT )• is a spectrum S.
• Let G be an abelian group, Tq = K(G, q) the Eilenberg-MacLane

space, (LT )• is a spectrum HG (the Eilenberg-MacLane spectrum).

Stable homotopy groups of spectra: Let M• be a spectrum, define πdM•
to be the colimit of

πd+nMn
πd+ntn−−−−→ πd+nΩMn+1

adjunction−−−−−−→ πd+n+1Mn+1.

Namely,

πdM• = colimn→∞πd+nMn.

Maps between spectra: If M•, N• are two spectra, then for any integer
k, the abelian group of homotopy classes of maps from M• to N• of degree
−k: [M•, N•]−k is defined as follows: a map in [M•, N•]−k is a sequence of
maps Mn → Nn+k such that the following diagram commutes

ΣMn ΣNn+k

Mn+1 Nn+k+1

(2.23)
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where the columns are the structure maps of the spectra M• and N•. If
in addition the spectrum N• is a ring spectrum, then the abelian groups
[M•, N•]−k form a graded ring [M•, N•]−∗.

Example 6. πdM• = [S,M•]d.

Cohomology rings of spectra:

Definition 7. A ring spectrum is a spectrum E along with a unit map
η : S → E and a multiplication map μ : E ∧ E → E.

Example 8. Let R be a ring, then the Eilenberg-MacLane spectrum HR
is a ring spectrum.

The cohomology ring of a spectrum M• with coefficients in R is defined
to be [M•, HR]−∗.

2.3. Spectral sequences

In this paper, we use three kinds of spectral sequence: Adams spectral se-
quence, Atiyah-Hirzebruch spectral sequence, and Serre spectral sequence.

2.3.1. Adams spectral sequence. The Adams spectral sequence is a
spectral sequence introduced by Adams in [1], it is of the form

Es,t
2 = Exts,tAp

(H∗(Y,Zp),Zp) ⇒ πt−s(Y )∧p(2.24)

where Y is any spectrum. We consider Y = MTH ∧X+ and focus on p = 2
and p = 3.

We introduce the notions used in Adams spectral sequence:
p-completion: For any finitely generated abelian group G, G∧

p =
limnG/pnG is the p-completion of G. If G is finite, then G∧

p is the Sylow
p-subgroup of G. If G = Z, G∧

p is the ring of p-adic integers.
Steenrod algebra: The mod p Steenrod algebra is Ap := [HZp, HZp]−∗

where HZp is the mod p Eilenberg-MacLane spectrum. For any spectrum
Y , the cohomology ring H∗(Y,Zp) = [Y,HZp]−∗ is an Ap-module.

For p = 2, the generators of A2 are Steenrod squares Sqn.

Definition 9 (Axioms). For each i ≥ 0, there is a natural transformation

Sqi : Hn(−,Z2) → Hn+i(−,Z2)

such that
• Sq0 = Id
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• If i > |x|, then Sqix = 0
• If i = |x|, then Sqix = x2

• (Cartan formula) Sqn(xy) =
∑

i+j=n Sq
i(x)Sqj(y)

• (Adem relation) If a < 2b, then

SqaSqb =

[ a
2
]∑

c=0

(
b− c− 1

a− 2c

)
Sqa+b−cSqc

The subalgebraA2(1) ofA2 generated by Sq1 and Sq2 looks like Figure 1.

Sq0 = 1

Sq1
Sq2

Sq1Sq2 Sq2Sq1
Sq1Sq2Sq1

Sq2Sq1Sq2
Sq2Sq1Sq2Sq1 = Sq1Sq2Sq1Sq2

Figure 1: A2(1).

Each dot stands for a Z2, all relations are from Adem relations (2.67).
For odd primes p, the generators of Ap are the Bockstein homomorphism

β(p,p) and Steenrod powers Pn
p .

Ext functor: Let R = Ap or A2(1). Ext
s,t
R is the internal degree t part of

the s-th derived functor of Hom∗
R.

In general, we can find a projective R-resolution P• of L to compute
ExtiR(L,Zp), Ext

i
R(L,Zp) = Hi(HomR(P•,Zp)) (the i-th cohomology of the

chain complex HomR(P•,Zp)).
In Adams chart, the horizontal axis is degree t− s and the vertical axis

is degree s. The differential ds,tr : Es,t
r → Es+r,t+r−1

r is an arrow starting at
the bidegree (t− s, s) with direction (−1, r). Es,t

r+1 := Kerds,t
r

Imds−r,t−r+1
r

for r ≥ 2.
There exists N such that EN+k = EN for k > 0, denote E∞ := EN .

We explain how to read the result from the Adams chart: In the E∞
page, one dot indicates a Zp, an vertical line connecting n dots indicates a
Zpn , when n = ∞, the line indicates a Z.

In the H = O cases, MO is the wedge sum of suspensions of the
Eilenberg-MacLane spectrum HZ2, H

∗(MO,Z2) is the direct sum of sus-
pensions of the Steenrod algebra A2.
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H∗(MO ∧X+,Z2) = H∗(MO,Z2)⊗ H∗(X,Z2) is also the direct sum of
suspensions of the Steenrod algebra A2. We have used the Künneth formula
(2.22). Let L = H∗(MO ∧ X+,Z2), then P0 = L, Ps = 0 for s > 0 gives a
projective A2-resolution of L.

Since

Exts,tAp
(ΣrAp,Zp)

=

{
Homt

Ap
(ΣrAp,Zp) = Zp if t = r, s = 0

0 else
,(2.25)

all dots are concentrated in s = 0 in the Adams chart of Exts,tA2
(H∗(MO ∧

X+,Z2),Z2), there are no differentials, E2 = E∞, ΩO
d (X) is a Z2-vector

space.

In the H = SO cases, the localization of MSO at the prime 2 is

MSO(2) = HZ(2) ∨ Σ4HZ(2) ∨ Σ5HZ2 ∨ · · ·(2.26)

whereHZ is the Eilenberg-MacLane spectrum and H∗(HZ,Z2) =A2/A2Sq
1.

· · · −→ Σ3A2 −→ Σ2A2 −→ ΣA2 −→ A2 −→ A2/A2Sq
1(2.27)

is an A2-resolution (denoted by P•) where the differentials d1 are induced
by Sq1.

When X is a point, the Adams chart of Exts,tA2
(H∗(MSO,Z2),Z2) is

shown in Figure 2. For generalX, P•⊗H∗(X,Z2) is a projectiveA2-resolution
of H∗(HZ,Z2) ⊗ H∗(X,Z2) (since P• is actually a free A2-resolution), the
differentials d1 are induced by Sq1.

The localization of MSO at the prime 3 is the wedge sum of suspensions
of the Brown-Peterson spectrum BP (MSO(3) = BP ∨ Σ8BP ∨ · · · ) and
H∗(BP,Z3) = A3/(β(3,3)) where (β(3,3)) is the two-sided ideal generated by
β(3,3).

· · · −→ Σ2A3 ⊕ Σ6A3 ⊕ · · · −→ ΣA3 ⊕ Σ5A3 ⊕ · · · −→ A3

−→ A3/(β(3,3))(2.28)

is an A3-resolution of A3/(β(3,3)) (denoted by P ′
•) where the differentials d1

are induced by β(3,3).

When X is a point, the Adams chart of Exts,tA3
(H∗(MSO,Z3),Z3) is

shown in Figure 3. For generalX, P ′
•⊗H∗(X,Z3) is a projectiveA3-resolution
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0 1 2 3 4 5 t− s

0

1

2

3

4

5

s

Figure 2: Adams chart of Exts,tA2
(H∗(MSO,Z2),Z2).

0 1 2 3 4 5 t− s

0

1

2

3

4

5

s

Figure 3: Adams chart of Exts,tA3
(H∗(MSO,Z3),Z3).
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of H∗(BP,Z3) ⊗ H∗(X,Z3) (since P ′
• is actually a free A3-resolution), the

differentials d1 are induced by β(3,3).

There may be differentials dn corresponding to the Bockstein homomor-

phism β(p,pn) [51] for both p = 2 and p = 3. See 2.5 for the definition of Bock-

stein homomorphisms. Since MSO(3) = MSpin(3), Ω
SO
d (X)∧3 = ΩSpin

d (X)∧3 .

In the H = Spin/Pin± cases, since the mod 2 cohomology of the Thom

spectrum MSpin is

H∗(MSpin,Z2) = A2 ⊗A2(1) {Z2 ⊕M}(2.29)

where M is a graded A2(1)-module with the degree i homogeneous part

Mi = 0 for i < 8.

Theorem 10 (Change of rings/Frobenius reciprocity).

Exts,tA2
(A2 ⊗A2(1) L,Z2) ∼= Exts,tA2(1)

(L,Z2)

When we compute ΩH
d (X)∧2 , we are reduced to compute Exts,tA2(1)

(L,Z2)

for t − s < 8, where L is some A2(1)-module (our cases are some mod 2

cohomology H∗(−,Z2)).

Example 1: L = A2(1),

Exts,tA2(1)
(A2(1),Z2)

=

{
HomA2(1)(A2(1),Z2) = Z2 if t = s = 0
0 else

(2.30)

Example 2: L = Z2, the A2(1)-resolution of L is

· · · → Σ3A2(1)⊕ Σ7A2(1) → Σ2A2(1)⊕ Σ4A2(1)

→ ΣA2(1)⊕ Σ2A2(1) → A2(1) → Z2.(2.31)

The Adams chart looks like Figure 4.

The only possible differentials are dr(h1) = hr+1
0 where h0 ∈

Ext1,1A2(1)
(Z2Z2), h1 ∈ Ext1,2A2(1)

(Z2Z2). If there were such a differential dr

for r ≥ 2, then since h0h1 = 0, 0 = dr(h0h1) = hr+2
0 which is not true.

Hence E2 = E∞.

This is in fact real Bott periodicity (πi+8ko = πiko, H∗(ko,Z2) =

A2 ⊗A2(1) Z2).
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0 1 2 3 4 5 6 7 8 9 10t− s

0

1

2

3

4

5

6

7

8

9

10

s

Figure 4: Adams chart of Exts,tA2(1)
(Z2,Z2). The dashed arrows indicate the

possible differentials.

Our computation is based on the following fact:

Lemma 11. Given a short exact sequence of A2(1)-modules

0 → L1 → L2 → L3 → 0,(2.32)

then for any t, there is a long exact sequence

· · · → Exts,tA2(1)
(L3,Z2) → Exts,tA2(1)

(L2,Z2) → Exts,tA2(1)
(L1,Z2)(2.33)

d1→ Exts+1,t
A2(1)

(L3,Z2) → Exts+1,t
A2(1)

(L2,Z2) → · · ·

After using this fact repeatedly, we obtain the E2 page.
Example 3:

• •

•
Sq2

•

(2.34)

is a short exact sequence where the left dot is L1, the middle part is L2, the
right dot is L3.

The Adams chart looks like Figure 5.
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0 1 2 3 4 5 6 7 8 9 10t− s

0

1

2

3

4

5

6

7

8

9

10

s

Figure 5: Adams chart of Exts,tA2(1)
(L2,Z2). The arrows indicate the differ-

ential d1, the dashed line indicates the extension.

Example 4:

• •

•
Sq1

•

(2.35)

is a short exact sequence where the left dot is L′
1, the middle part is L′

2, the

right dot is L′
3.

The Adams chart looks like Figure 6.

2.3.2. Serre spectral sequence. Given a fibration F → E → B, the

Serre spectral sequence is the following:

Ep,q
2 = Hp(B,Hq(F,Z)) ⇒ Hp+q(E,Z)(2.36)

This can be used in computing the integral cohomology group of the total

space of a nontrivial fibration.

There is also a homology version:

E2
p,q = Hp(B,Hq(F,Z)) ⇒ Hp+q(E,Z)(2.37)
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0 1 2 3 4 5 t− s

0

1

2

3

4

5

s

Figure 6: Adams chart of Exts,tA2(1)
(L′

2,Z2). The arrows indicate the differ-

ential d1, the dashed line indicates the extension.

2.3.3. Atiyah-Hirzebruch spectral sequence. The Atiyah-Hirzebruch
spectral sequence can be viewed as a generalization of the Serre spectral
sequence. Given a fibration F → E → B, the Atiyah-Hirzebruch spectral
sequence is the following:

E2
p,q = Hp(B, hq(F,Z)) ⇒ hp+q(E,Z)(2.38)

where h∗ is an extraordinary homology theory. For example, h∗ can be the
bordism theory ΩH

∗ . In particular, if the fiber F is a point, then the Atiyah-
Hirzebruch spectral sequence is of the form:

Hp(X,ΩH
q ) ⇒ ΩH

p+q(X)(2.39)

2.4. Characteristic classes

2.4.1. Introduction to characteristic classes. Characteristic classes
are cohomology classes of the base space of a vector bundle. Stiefel-Whitney
classes are defined for real vector bundles, Chern classes are defined for com-
plex vector bundles, Pontryagin classes are defined for real vector bundles.
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All characteristic classes are natural with respect to bundle maps. Char-
acteristic classes of a principal bundle are defined to be the characteristic
classes of the associated vector bundle of the principal bundle.

Given a real vector bundle V → M and a complex vector bundle E → M ,
the i-th Stiefel-Whitney class of V is wi(V ) ∈ Hi(M,Z2), the i-th Chern
class of E is ci(E) ∈ H2i(M,Z), the i-th Pontryagin class of V is pi(V ) ∈
H4i(M,Z).

Pontryagin classes are closely related to Chern classes via complexifica-
tion:

pi(V ) = (−1)ic2i(V ⊗R C) ∈ H4i(M,Z)(2.40)

where V ⊗RC → M is the complexification of the real vector bundle V → M .
The relation between Pontryagin classes and Stiefel-Whitney classes is

pi(V ) = w2i(V )2 mod 2.(2.41)

For a manifold M , the integrals over M of characteristic classes of a
vector bundle over M (the pairing of the characteristic classes with the
fundamental class of M) are called characteristic numbers.

Let En be the universal n-bundle over BO(n), the colimit of En − n is
a virtual bundle E (of dimension 0) over BO, the pullback of E along the
map g : M → BO given by the O-structure on M is just TM − d where M
is a d-manifold and TM is the tangent bundle of M . By the naturality of
characteristic classes, the pullback of the characteristic classes of E is the
characteristic classes of TM .

Chern-Simons form: By Chern-Weil theory, Chern classes (and Pontrya-
gin classes) can also be defined as a closed differential form (in de Rham
cohomology). By Poincaré Lemma, they are exact locally:

cn = dCS2n−1(2.42)

where d is the exterior differential operator, CS2n−1 is called the Chern-
Simons 2n− 1-form.

Whitney sum formula: Let w(V ) = 1+w1(V )+w2(V )+ · · · ∈ H∗(M,Z2)
be the total Stiefel-Whitney class, c(E) = 1+c1(E)+c2(E)+· · · ∈ H∗(M,Z)
be the total Chern class, p(V ) = 1+ p1(V ) + p2(V ) + · · · ∈ H∗(M,Z) be the
total Pontryagin class, then

w(V ⊕ V ′) = w(V )w(V ′),(2.43)

c(E ⊕ E′) = c(E)c(E′),(2.44)



154 Zheyan Wan and Juven Wang

2p(V ⊕ V ′) = 2p(V )p(V ′).(2.45)

That is, the total Stiefel-Whitney class and the total Chern class are multi-

plicative with respect to Whitney sum of vector bundles, the total Pontrya-

gin class is multiplicative modulo 2-torsion with respect to Whitney sum of

vector bundles.

2.4.2. Wu formulas. The total Stiefel-Whitney class w = 1+w1 +w2 +

· · · is related to the total Wu class u = 1 + u1 + u2 + · · · through the total

Steenrod square:

w = Sq(u), Sq = 1 + Sq1 + Sq2 + · · · .(2.46)

Therefore, wn =
∑n

i=0 Sq
i(un−i). The Steenrod squares satisfy:

Sqi(xj) = 0, i > j, Sqj(xj) = xjxj , Sq0 = 1,(2.47)

for any xj ∈ Hj(Md;Z2). Thus

un = wn +
∑

i=1,2i≤n

Sqi(un−i).(2.48)

This allows us to compute un iteratively, using Wu formula

Sqi(wj) = 0, i > j, Sqi(wi) = wiwi,(2.49)

Sqi(wj) = wiwj +

i∑
k=1

(
j − i− 1 + k

k

)
wi−kwj+k, i < j,

and the Steenrod relation

Sqn(xy) =

n∑
i=0

Sqi(x)Sqn−i(y).(2.50)

We find

u0 = 1, u1 = w1, u2 = w2
1 + w2,

u3 = w1w2, u4 = w4
1 + w2

2 + w1w3 + w4,(2.51)

u5 = w3
1w2 + w1w

2
2 + w2

1w3 + w1w4.
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On the tangent bundle ofMd, the corresponding Wu class and the Steen-
rod square satisfy

Sqd−j(xj) = ud−jxj , for any xj ∈ Hj(Md;Z2).(2.52)

This is also called Wu formula.

2.5. Bockstein homomorphisms

In general, given a chain complex C• and a short exact sequence of abelian
groups:

0 → A′ → A → A′′ → 0,(2.53)

we have a short exact sequence of cochain complexes:

0 → Hom(C•, A
′) → Hom(C•, A) → Hom(C•, A

′′) → 0.(2.54)

Hence we obtain a long exact sequence of cohomology groups:

· · · → Hn(C•, A
′) → Hn(C•, A) → Hn(C•, A

′′)
∂→ Hn+1(C•, A

′)

→ · · · ,(2.55)

the connecting homomorphism ∂ is called Bockstein homomorphism.
For example, β(n,m) : H

∗(−,Zm) → H∗+1(−,Zn) is the Bockstein homo-

morphism associated to the extension Zn
·m→ Znm → Zm.

Let ρ(nm,m) : H
∗(−,Znm) → H∗(−,Zm) be the mod m reduction map,

then β(n,m)ρ(nm,m) = 0 by the long exact sequence. In particular,
β(2,2)ρ(4,2) = 0.

Relations between the Bockstein homomorphisms: If we have a chain
complex C• and a commutative diagram of abelian groups with exact rows:

0 C ′ C C ′′ 0

0 A′ A A′′ 0

,(2.56)

then we have a commutative diagram of cochain complexes with exact rows:

0 Hom(C•, C ′) Hom(C•, C) · · ·

0 Hom(C•, A′) Hom(C•, A) · · ·
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· · · Hom(C•, C) Hom(C•, C ′′) 0

· · · Hom(C•, A) Hom(C•, A′′) 0

.(2.57)

By the naturality of the connecting homomorphism [56, Theorem 6.13],

we have a commutative diagram of abelian groups with exact rows:

· · · Hn(C•, C ′) Hn(C•, C) Hn(C•, C ′′) ∂ · · ·

· · · Hn(C•, A′) Hn(C•, A) Hn(C•, A′′) ∂′
· · ·

· · · Hn(C•, C ′′) ∂
Hn+1(C•, C ′) · · ·

· · · Hn(C•, A′′) ∂′
Hn+1(C•, A′) · · ·

(2.58)

There are commutative diagrams:

Zn
·m

Znm
mod m

·k

Zm

·k

Zn
·km

Zknm
mod km

Zkm

(2.59)

Zkn
·m

mod n

Zknm
mod m

mod nm

Zm

Zn
·m

Znm
mod m

Zkm

(2.60)

By (2.58), we have the following commutative diagrams:

H∗(−,Zm)
β(n,m)

·k

H∗+1(−,Zn)

H∗(−,Zkm)
β(n,km)

H∗+1(−,Zn)

(2.61)
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H∗(−,Zm)
β(kn,m)

H∗+1(−,Zkn)

mod n

H∗(−,Zm)
β(n,m)

H∗+1(−,Zn)

(2.62)

Hence we have

β(n,m) = β(n,km) · k,(2.63)

and

ρ(kn,n)β(kn,m) = β(n,m).(2.64)

By definition,

β(2,2n) =
1

2n
δ mod 2(2.65)

where δ is the coboundary map.
Moreover, Sq1 = β(2,2).
By (2.64), β(2,4) = ρ(4,2)β(4,4), thus β(2,2)β(2,4) = β(2,2)ρ(4,2)β(4,4) = 0.
Similarly, β(2,8) = ρ(4,2)β(4,8), thus β(2,2)β(2,8) = β(2,2)ρ(4,2)β(4,8) = 0, etc.

Combining this with the Adem relation Sq1Sq1 = 0, we obtain the im-
portant formula:

Sq1β(2,2n) = 0(2.66)

2.6. Useful fomulas

Adem relations:

SqaSqb =

[a/2]∑
j=0

(
b− 1− j

a− 2j

)
Sqa+b−jSqj(2.67)

for 0 < a < 2b. In particular, we have Sq1Sq1 = 0, Sq1Sq2Sq1 = Sq2Sq2.
Recall that

H∗(BZ2,Z2) = Z2[a](2.68)

where a is the generator of H1(BZ2,Z2).

H∗(B2
Z2,Z2) = Z2[x2, x3, x5, x9, . . . ](2.69)
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where x2 is the generator of H2(B2Z2,Z2), x3 = Sq1x2, x5 = Sq2x3, x9 =
Sq4x5, etc.

H∗(BPSU(2),Z2) = Z2[w
′
2, w

′
3](2.70)

where w′
i is the i-th Stiefel-Whitney class of the universal PSU(2) = SO(3)

bundle.
Combining (2.52) and (2.50), we have the following useful formulas in

the presentation of cobordsim invariants:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 = Sq1a = w1a in 2d
x3 = Sq1x2 = w1x2 in 3d
w′
3 = Sq1w′

2 = w1w
′
2 in 3d

Sq1(ax2) = a2x2 + ax3 = w1ax2 in 4d
Sq2(ax2) = ax22 + a2x3 = (w2 + w2

1)ax2 in 5d
x5 = Sq2x3 = (w2 + w2

1)x3 in 5d
w′
2w

′
3 = Sq2(w′

3) = (w2 + w2
1)w

′
3 in 5d

Sq1(w2x2) = (w1w2 + w3)x2 + w2x3 = w1w2x2
⇒ w3x2 = w2x3 in 5d
Sq1(w2

1x2) = w2
1x3 = w3

1x2 in 5d
Sq3x2 = w1w2x2 = 0 in 5d
Sq1(w2w

′
2) = (w1w2 + w3)w

′
2 + w2w

′
3 = w1w2w

′
2

⇒ w3w
′
2 = w2w

′
3 in 5d

Sq1(w2
1w

′
2) = w2

1w
′
3 = w3

1w
′
2 in 5d

Sq3w′
2 = w1w2w

′
2 = 0 in 5d

Sq1(x22) = w1x
2
2 = 2x2x3 = 0 in 5d

Sq1(w′2
2 ) = w1w

′2
2 = 2w′

2w
′
3 = 0 in 5d

Sq1(w′
2x2) = w′

3x2 + w′
2x3 = w1w

′
2x2 in 5d

(2.71)

where wi is the i-th Stiefel-Whitney class of the tangent bundle of M , all co-
homology classes are pulled back toM along the maps given in the definition
of cobordism groups.

3. Warm-up examples

3.1. Perturbative chiral anomalies in even dd and associated
Chern-Simons (d + 1)-form theories — SO- and spin-

cobordism groups of BU(1)

3.1.1. Perturbative bosonic/fermionic anomaly in an even dd and
U(1) SPTs in an odd (d + 1)d. We start from a warming-up example
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familiar to most physicists and quantum field theorists: the perturbative

anomalies that can be captured by a 1-loop calculation via Feynman-Dyson

diagrams involved with a U(1) group. Of course, our discussion on the U(1)

group can be generalized to any compact semi-simple Lie group such as

SU(N), although we focus mostly on U(1) in this section. We will consider

a Dirac fermion theory in any even dimensional spacetime, denoted as dd

with d as the even integer (say d = 2, 4, 6, 8, 10, . . . ). The Dirac fermion Ψ

(or a complex Dirac spinor) is in a 2[d/2]-dimensional spinor representation

of Spin(1,d−1) (or Spin(d) in the Euclidean signature, where Spin(d)/ZF
2 =

SO(d), with the continuous spacetime rotational symmetry SO(d) and the

fermion parity ZF
2 symmetry acts on any fermion Ψ → −Ψ). The Dirac

fermion Ψ can be coupled to non-dynamical U(1) or dynamical U(1) gauge

fields, as Model (1) and Model (2) below respectively.

Model (1): The U(1) is treated as a U(1) global internal symmetry for the ’t

Hooft anomaly. The so-called path integral or partition function

Z of this Dirac fermion theory is defined as a functional integral

(here in Minkowski signature):

Z[A] :=

∫
[DΨ̄][DΨ] exp

(
+ iSM,Dirac

)
≡

∫
[DΨ̄][DΨ] exp

(
+ i

∫
Md

ddx(Ψ̄(i /DA)Ψ
)
,(3.1)

where /DA is the Dirac operator endorsed with the Feynman

slash notation, defined as:

/DA := γμDμ = γμ(∂μ − igAμ).(3.2)

The g is the coupling constant for the non-dynamical 1-form

U(1) gauge field A := Aμdx
μ. The γμ with μ = 0, 1, . . . , d −

1 are so-called gamma matrices, satisfying the Clifford algebra

C
1,d−1(R) under the anti-commutator constraint:

{γμ, γν} := γμγν + γνγμ = 2ημνI2[d/2](3.3)

The standard Dirac matrices correspond to d = 2[d/2] = 4. The

ημν is the Minkowski metric

ημν := diag(+,−,−, . . . ,−),
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with one + sign and (d − 1) − sign along the diagonal. The
hermitian chiral matrix γChiral ≡ γFIVE can be defined for even
d dimensions

γChiral ≡ γFIVE := id/2−1γ0γ1 . . . γd−1.(3.4)

Model (2): The U(1) is treated as a U(1) gauge group for the dynamical
gauge anomaly. The so-called path integral or partition function
Z of this Dirac fermion coupled to a dynamical U(1) gauge field
theory is defined as a functional integral (here in Minkowski
signature):

Z :=

∫
[DΨ̄][DΨ][DA] exp

(
+ iSM,Dirac-U(1) gauge theory

)(3.5)

≡
∫

[DΨ̄][DΨ][DA] exp
(
+ i

∫
Md

ddx(Ψ̄(i /DA)Ψ− 1

4
FμνF

μν)
)
.

Here the dynamical 1-form U(1) gauge field A is integrated
over in the path integral measure

∫
[DA] as a dynamical gauge

variable. For the quantum electrodynamics (QED) as a Dirac-
U(1) gauge theory, it is commonly defined as /DA := γμDμ =
γμ(∂μ + ieAμ) where e is the electric charge constant.

For the spacetime index μ = 0, 1, . . . , d− 1,
the left-moving current Jμ,L is defined as:

Jμ,L := Ψ̄γμ(
1− γChiral

2
)Ψ.(3.6)

The right-moving current Jμ,R is defined as:

Jμ,R := Ψ̄γμ(
1 + γChiral

2
)Ψ.(3.7)

The vector current Jμ ≡ Jμ,V is defined as:

Jμ,V := Jμ,L + Jμ,R ≡ Ψ̄γμΨ.(3.8)

The axial chiral current Jμ ≡ Jμ,A ≡ Jμ ≡ Jμ,Chiral is defined as:

Jμ,A := Jμ,L − Jμ,R ≡ Ψ̄γμγChiralΨ.(3.9)
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We also define the left and right-handed Weyl fermions, ΨL and ΨR, pro-
jected from the Dirac fermion via:

ΨL := (
1− γChiral

2
)Ψ,(3.10)

ΨR := (
1 + γChiral

2
)Ψ.(3.11)

In the classical theory (without doing the path integral), the classical Dirac
theory has both the continuous vector symmetry U(1)V and the continu-
ous axial symmetry (or the so-called chiral symmetry) U(1)A, given by the
following symmetry transformation:

U(1)V : Ψ → exp(iαV)Ψ(3.12)

ΨL → exp(iαV)ΨL

ΨR → exp(iαV)ΨR.

U(1)A : Ψ → exp(iαAγ
Chiral)Ψ(3.13)

ΨL → exp(iαA)ΨL

ΨR → exp(− iαA)ΨR.

Under the Noether theorem, the corresponding continuous currents are Jμ,V

and Jμ,A respect to the U(1)V and U(1)A symmetry respectively. In a clas-
sical theory, both U(1)V and U(1)A symmetries are global symmetries.

However, in the quantum theory, we need do the path integral to get
the partition function Z[A] for a quantum theory in eqn. (3.1). Now under
the continuous axial (or chiral) symmetry transformation labeled by a U(1)
parameter αA ∈ [0, 2π), the partition function Z[A] shifts to

(3.14) Z[A] →
∫

[DΨ̄][DΨ] exp

(
+i

∫
Md

ddx

(
Ψ̄(i /DA)Ψ+

αA

(
∂μJ

μ,Chiral +
2gd/2

(d/2)!(4π)d/2
εμ1μ2...μdFμ1μ2

. . . Fμd−1μd

)))
,

(In terms of quantum electrodynamics notation, people set the g = −e.)
This means the axial (chiral) current is not conserved ∂μJ

μ,Chiral 
= 0: If
the classical gauge field A has a nontrivial background for F ∧ . . . F term in
Model (1) where F = dA. The above calculation can be done based on the
Fujikawa’s path integral method [26].
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The non-conservation of the axial (chiral) current has the form:

∂μJ
μ,Chiral = − 2gd/2

(d/2)!(4π)d/2
εμ1μ2...μdFμ1μ2

. . . Fμd−1μd
.(3.15)

In the differential form in terms of the top form paired with the fundamental

class of the spacetime manifold, we can rewrite the above formula eqn. (3.15)

as:

(d � JChiral) ∝ −gd/2(F ∧ · · · ∧ F ).(3.16)

The above formula is for the ’t Hooft anomaly associated with the probed

background Abelian gauge fields (here U(1)).

If we instead consider the background non-Abelian gauge fields (like

SU(n)), then the (F ∧ · · · ∧ F ) with F = dA is replaced to a non-abelian

field strength F = dA+A∧A; while (F ∧ · · · ∧F ) is replaced by Tr
(
Fd/2

)
:

dωd−1 = Tr
(
Fd/2

)
.(3.17)

The ωd−1 is the Chern-Simons (d− 1)-form [16] as the secondary character-

istic classes:

ω1 ∝ Tr[A](3.18)

ω3 ∝ Tr

[
F ∧A− 1

3
A ∧A ∧A

]

ω5 ∝ Tr

[
F ∧ F ∧A− 1

2
F ∧A ∧A ∧A

+
1

10
A ∧A ∧A ∧A ∧A

]
. . .

Other than Fujikawa’s path integral method [26], we can also capture

the perturbative anomaly via a 1-loop Feynman-Dyson diagram calculation.

The vertex term means gΨ̄γμAμΨ := gΨ̄ /AΨ

How do we obtain an integer Z class for perturbative anomalies in an

even d-dimensional spacetime? Say from the formulas of eqn. (3.15) and

eqn. (3.16)? The answer is that we can consider the modified axial symmetry

transformation U(1)A,k labeled by a integer charge k ∈ Z class, such that

the ΨL and ΨR transformed differently,
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Figure 7: Perturbative anomalies with an integer Z class in an even d-
dimensional spacetime. Here the anomalies are captured by a 1-loop Feyn-
man diagram with a number (d2 +1) amount of vertex terms gΨ̄ /AΨ and one

vertex term among the total (d2 +1) vertex terms can be associated with the
JChiral current. The chiral fermion runs on the solid-line loop (—). The wavy
line (∼) represents the propagator (Green’s function) of 1-form vector boson
gauge field. (The gauge field is a probed background gauge field for the ’t
Hooft anomaly.) In the subfigures, we show 1-loop Feynman diagrams for (1)
2d anomaly, (2) 4d anomaly, (3) 6d anomaly, (4) 8d anomaly, and (5) 10d
anomaly, etc., of chiral fermions coupled to U(1) background probed gauge
fields. A physical explanation of Z class is given in Sec. 3.1.2 for 2d bosonic
anomaly and Sec. 3.1.3 for 2d fermionic anomaly. Similarly, the analysis can
be generalized to any even dd by writing down a one-higher dimensional
Chern-Simons theory given by Chern-Simons (d+ 1)d form.

U(1)A,k : ΨL → exp(iαA,k)ΨL,(3.19)

ΨR → exp(− ikαA,k)ΨR.

k ∈ Z.
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The chiral symmetry transformation is labeled by a U(1) parameter αA,k ∈
[0, 2π). Below we give a physical explanation of a Z class in Sec. 3.1.2 for 2d

bosonic anomaly, and also of a Z class Sec. 3.1.3 for 2d fermionic anomaly.

Below our derivation is in a similar spirit of 2d anomaly and 3d Chern-

Simons theory [50, 79], but ours is generalizable to arbitary dimensions

analogs to [79].

In general, we suggest that the for generic even dd U(1) bosonic or

fermionic anomalies (on non-spin or spin manifolds respectively) can be

captured by a partition function depending on the probed U(1) background

gauge field A:

Z[A] = exp[i
c · k

(2π)d/2

∫
A ∧ (F )d/2], k ∈ Z(3.20)

where the precise normalization c depends on the dimensions d, and non-spin

or spin manifolds, with the integer k ∈ Z class.

3.1.2. 2d anomaly and 3d bosonic-U(1) SPTs: integer Z class ∈
TP3(SO × U(1)) = Z2. Below we explicitly derive the analogous eqn.

(3.20) for d = 2 bosonic anomaly (on non-spin manifolds). The physics idea

is that we write down the internal field theory with dynamical gauge fields

a coupled to background non-dynamical gauge fields A, and integrate out

those internal degrees of freedom to get a response theory depending on A.

The symmetric bilinear form K matrix Chern-Simons theory with a

U(1)2 gauge group of internal dynamical a gauge field, and the charge q

vector coupling to the background U(1) gauge fields A are the following:

K := KIJ =

(
0 1
1 2k

)
IJ

,

and qT = (1, 1). In other words, the path integral, written by dynamical

gauge fields a and background fields A, is

Z[A] =

∫
[Da] exp[i

( 1

4π

(
0 1
1 2k

)
IJ

∫
aI ∧ daJ

+
1

2π
qTI

∫
A ∧ daI |qT=(1,1)

)
].(3.21)

Under GL(2,Z) or SL(2,Z) redefinition of gauge fields, theK can be changed
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to K =

(
0 1
1 0

)
, and qT = (1, k). In other words, the path integral is

Z[A] =

∫
[Da] exp[i

( 1

4π

(
0 1
1 0

)
IJ

∫
aI ∧ daJ

+
1

2π
qTI

∫
A ∧ daI |qT=(1,k)

)
].(3.22)

If we integrate out the dynamical internal gauge field a (“emergent”
from the gapped matter field) of SPTs, we obtain the partition function of
probed background field

Z[A] = exp[i
2k

4π

∫
A ∧ dA], k ∈ Z(3.23)

This Chern-Simons field theory characterizes the low energy physics of a
quantum Hall state and its response function. So the effective bulk quantized
Hall conductance is labeled by 2k in 2Z, as

σxy =
qK−1q

2π
(
e2

�
) =

2k

2π
(
e2

�
) = 2k(

e2

h
).

The boundary theory has a Z class of perturbative Adler-Bell-Jackiw type of
U(1)-axial-background gauge anomaly. (Due to the L and R chiral fermion

carrying imbalanced U(1) charges, in K =

(
0 1
1 0

)
, and q = (1, k).)

The above physics derivation coincides with the mathematical cobordism
group calculation, matching one of the integer Z class ∈ TP3(SO×U(1)) =
Z2 shown later in our Theorem 17. The reason we require the (co)bordism
group of SO × U(1) is due to that the bosonic system has a continuous
spacetime SO(d) symmetry (in the dd Euclidean signature), while the boson
has an internal U(1) symmetry.

Similarly, the above analysis can be generalized to any even dd by writing
down a one-higher dimensional bosonic (on manifolds with SO(d + 1) or
non-spin structures) Chern-Simons theory given by a certain Chern-Simons
(d+ 1)d form.

3.1.3. 2d anomaly and 3d fermionic-U(1) SPTs: integer Z class

∈ TP3(
Spin×U(1)

Z2
) = Z2. Similar to Sec. 3.1.2, for a fermionic theory, we

should have a SPT invariant of U(1) background gauge field,

Z[A] = exp[i
k

4π

∫
A ∧ dA], k ∈ Z.(3.24)
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This may be obtained from integrating out the fermionic SPTs

K =

(
1 0
0 −1

)
, and qT = (1,−k + 1) or simply qT = (0,−k). In other

words, the path integral is

Z[A] =

∫
[Da] exp[i

( 1

4π

(
1 0
0 −1

)
IJ

∫
aI ∧ daJ

+
1

2π
qTI

∫
A ∧ daI |qT=(1,−k+1)

)
].(3.25)

This Chern-Simons field theory characterizes the low energy physics of an-
other fermionic quantum Hall state and its response function. So the effective
bulk quantized Hall conductance is labeled by k in Z, as

σxy =
qK−1q

2π
(
e2

�
) =

k

2π
(
e2

�
) = k(

e2

h
).

The above physics derivation coincides with the mathematical cobordism

group calculation, matching one of the integer Z class ∈ TP3(
Spin×U(1)

Z2
) =

TP3(Spin
c) = Z2 shown later in our Theorem 17.

The reason we require the (co)bordism group of (Spin×U(1)
Z2

) ≡ Spinc

is due to that this fermionic system has a continuous spacetime Spin(d)
symmetry (in the dd Euclidean signature) under, the extension of SO(d) via
1 → ZF

2 → Spin(d) → SO(d) → 1, while the fermion has an internal U(1)
⊃ ZF

2 containing the fermion parity symmetry. A common normal subgroup
ZF
2 is mod out due to the fact that rotating a fermion by 2π in the spacetime

(i.e., the spin statistics) gives rise to the same fermion parity minus sign for
the fermion field Ψ → −Ψ.

Similarly, the above analysis can be generalized to any even dd by writing
down a one-higher dimensional fermionic (on manifolds with Spin(d + 1)
thus spin structures) Chern-Simons theory given by a certain Chern-Simons
(d+ 1)d form.

3.1.4. ΩSO
d (BU(1)). Since the computation involves no odd torsion, we

can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MSO ∧ BU(1)+,Z2),Z2)

⇒ πt−s(MSO ∧ BU(1)+)
∧
2 = ΩSO

t−s(BU(1)).(3.26)

The mod 2 cohomology of Thom spectrum MSO is

H∗(MSO,Z2) = A2/A2Sq
1 ⊕ Σ4A2/A2Sq

1 ⊕ Σ5A2 ⊕ · · · .(3.27)
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· · · −→ Σ3A2 −→ Σ2A2 −→ ΣA2 −→ A2 −→ A2/A2Sq
1(3.28)

is an A2-resolution where the differentials d1 are induced by Sq1.
We also have

H∗(BU(1),Z2) = Z2[c1](3.29)

where c1 is the first Chern class of the universal U(1) bundle.
The E2 page is shown in Figure 8.
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Figure 8: ΩSO
∗ (BU(1)).

Hence we have the following theorem

Theorem 12.

i ΩSO
i (BU(1))

0 Z

1 0
2 Z

3 0
4 Z

2

5 Z2

6 Z
2

7 Z2
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The bordism invariant of ΩSO
2 (BU(1)) is c1.

The bordism invariants of ΩSO
4 (BU(1)) are σ, c21.

Here σ is the signature of a 4-manifold.
The bordism invariant of ΩSO

5 (BU(1)) is w2w3.
The bordism invariants of ΩSO

6 (BU(1)) are σc1, c
3
1.

Here σc1 = σ(PD(c1)) where PD(c1) is the submanifold of the 6-manifold
which represents the Poincaré dual of c1.

The bordism invariant of ΩSO
7 (BU(1)) is c1w2w3.

Theorem 13.

Table 17: Note that one of the Z classes in TP3(SO × U(1)) = Z2 is given
by eqn. (3.22). Similarly, one of the Z classes in TPd+1(SO × U(1)) for an
even d is given by eqn. (3.20)

i TPi(SO×U(1))
0 0
1 Z

2 0
3 Z

2

4 0
5 Z

2 × Z2

6 0

The 1d topological term is the Chern-Simons 1-form CS
(U(1))
1 of the U(1)

bundle.
The 3d topological terms are 1

3CS
(TM)
3 and CS

(U(1))
1 c1 where CS

(TM)
3 is

the Chern-Simons 3-form of the tangent bundle.

The 5d topological terms are c1
1
3CS

(TM)
1 , CS

(U(1))
1 c21 and w2w3.

3.1.5. ΩSpin
d (BU(1)). Since the computation involves no odd torsion, we

can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MSpin ∧ BU(1)+,Z2),Z2)

⇒ πt−s(MSpin ∧ BU(1)+)
∧
2 = ΩSpin

t−s (BU(1)).(3.30)

The mod 2 cohomology of Thom spectrum MSpin is

H∗(MSpin,Z2) = A2 ⊗A2(1) {Z2 ⊕M}(3.31)

where M is a graded A2(1)-module with the degree i homogeneous part
Mi = 0 for i < 8. Here A2(1) stands for the subalgebra of A2 generated by
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Sq1 and Sq2. For t− s < 8, we can identify the E2-page with

Exts,tA2(1)
(H∗(BU(1),Z2),Z2).

The A2(1)-module structure of H∗(BU(1),Z2) is shown in Figure 9.

1

c1

c21

c31

c41

Figure 9: The A2(1)-module structure of H∗(BU(1),Z2).

The E2 page is shown in Figure 10.
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Figure 10: ΩSpin
∗ (BU(1)).
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Hence we have the following theorem

Theorem 14.

i ΩSpin
i (BU(1))

0 Z

1 Z2

2 Z× Z2

3 0
4 Z

2

5 0
6 Z

2

7 0

The bordism invariant of ΩSpin
1 (BU(1)) is η̃.

Here η̃ is the “mod 2 index” of the 1d Dirac operator (# zero eigenvalues
mod 2, no contribution from spectral asymmetry).

The bordism invariants of ΩSpin
2 (BU(1)) are c1 and Arf (the Arf invari-

ant).

The bordism invariants of ΩSpin
4 (BU(1)) are σ

16 and c21
2 .

Here c21 is divided by 2 since c21 = Sq2c1 = (w2(TM) + w1(TM)2)c1 = 0
mod 2 on Spin 4-manifolds.

The bordism invariants of ΩSpin
6 (BU(1)) are c31 and c1(σ−F ·F )

8 .

Here c1(σ−F ·F )
8 is defined to be 1

8(σ(PD(c1)) − F · F ) where PD(c1) is
the submanifold of a Spin 6-manifold which represents the Poincaré dual of
c1, σ(PD(c1)) is the signature of PD(c1), and F is a characteristic surface
of PD(c1). By Rokhlin’s theorem, σ(PD(c1)) − F · F is a multiple of 8 and
1
8(σ(PD(c1)) − F · F ) = Arf(PD(c1), F ) mod 2. See [57]’s Lecture 10 for
more details.

Theorem 15.

i TPi(Spin×U(1))
0 0
1 Z× Z2

2 Z2

3 Z
2

4 0
5 Z

2

6 0

The 1d topological terms are CS
(U(1))
1 and η̃.

The 2d topological term is Arf.
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The 3d topological terms are 1
48CS

(TM)
3 and 1

2CS
(U(1))
1 c1.

The 5d topological terms are CS
(U(1))
1 c21 and μ(PD(c1)).

Here μ(PD(c1)) is the Rokhlin invariant (see [57]’s Lecture 11) of PD(c1)
where PD(c1) is the submanifold of a Spin 5-manifold which represents the
Poincaré dual of c1

3.1.6. Ω
(Spin×U(1)

Z2
)

d = ΩSpinc

d . Since the computation involves no odd tor-
sion, we can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MTSpinc,Z2),Z2)

⇒ πt−s(MTSpinc)∧2 = ΩSpinc

t−s .(3.32)

By [6], we have MTSpinc = MSpin ∧ Σ−2MU(1).
The mod 2 cohomology of Thom spectrum MSpin is

H∗(MSpin,Z2) = A2 ⊗A2(1) {Z2 ⊕M}(3.33)

where M is a graded A2(1)-module with the degree i homogeneous part
Mi = 0 for i < 8. Here A2(1) stands for the subalgebra of A2 generated by
Sq1 and Sq2. For t− s < 8, we can identify the E2-page with

Exts,tA2(1)
(H∗+2(MU(1),Z2),Z2).

By Thom’s isomorphism, H∗+2(MU(1),Z2) = Z2[c1]U where U is the
Thom class of the universal U(1) bundle and c1 is the first Chern class of
the universal U(1) bundle.

The A2(1)-module structure of H∗+2(MU(1),Z2) is shown in Figure 11.

U

c1U

c21U

c31U

Figure 11: The A2(1)-module structure of H∗+2(MU(1),Z2).

The E2 page is shown in Figure 12.
Hence we have the following theorem
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Figure 12: ΩSpinc

∗ .

Theorem 16.

i ΩSpinc

i

0 Z

1 0
2 Z

3 0
4 Z

2

5 0
6 Z

2

7 0

The bordism invariants of ΩSpinc

2 is c1
2 .

Here c1 is divided by 2 since c1 mod 2 = w2(TM) while w2(TM) = 0

on Spinc 2-manifolds.

The bordism invariants of ΩSpinc

4 are c21 and σ−F ·F
8 .

Here F is a characteristic surface of the Spinc 4-manifold M . By

Rokhlin’s theorem, σ−F ·F is a multiple of 8 and 1
8(σ−F ·F ) = Arf(M,F )

mod 2. See [57]’s Lecture 10 for more details.

The bordism invariants of ΩSpinc

6 are c31
2 and c1

σ
16 .
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Here c1
σ
16 = σ

16(PD(c1)) where PD(c1) is the submanifold of the Spinc

6-manifold which represents the Poincaré dual of c1. Note that PD(c1) is
Spin.

Theorem 17.

Table 18: Note that one of the Z classes in TP3(Spin
c) = Z2 is given by

eqn. (3.24). Similarly, one of the Z classes in TPd+1(Spin
c) for an even d is

given by eqn. (3.20)

i TPi(Spin
c)

0 0
1 Z

2 0
3 Z

2

4 0
5 Z2

6 0

The 1d topological term is 1
2CS

(U(1))
1 .

The 3d topological terms are CS
(U(1))
1 c1 and μ.

Here μ is the Rokhlin invariant (see [57]’s Lecture 11) of the Spinc 3-
manifold.

The 5d topological terms are 1
2CS

(U(1))
1 c21 and c1

1
48CS

(TM)
1 .

3.2. Non-perturbative global anomalies: Witten’s SU(2) anomaly
and a new SU(2) anomaly in 4d and 5d

We now provide another warm-up example, a (d+1)-th cobordism group cal-
culation associated with dd non-perturbative global anomalies for the SU(2)
anomaly of Witten [87] and the new SU(2) anomaly [76].

Here these SU(2) anomalies will be interpreted as the ’t Hooft anomalies
of the internal SU(2) global symmetries in the QFT, whose fermion multi-
plets are only in half-integer isospin (say, 1/2, 3/2, 5/2, . . . )-representation
of SU(2); while whose bosons are only in an integer isospin (say, 0, 1, 2,
. . . )-representation of SU(2).

Similar to the Spinc ≡ (Spin×U(1)
Z2

) of Sec. 3.1.3, in the following subsec-

tions, we will study the (co)bordism group of (Spin×SU(2)
Z2

).
Here the fermionic system has a continuous spacetime Spin(d) symmetry

(in the dd Euclidean signature) under, the extension of SO(d) via 1 →
ZF
2 → Spin(d) → SO(d) → 1, while the fermion has an internal SU(2)
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⊃ ZF
2 containing the fermion parity symmetry at SU(2)’s center. A common

normal subgroup ZF
2 is mod out due to the fact that rotating a fermion by

2π in the spacetime (i.e., the spin statistics) gives rise to the same fermion
parity minus sign for the fermion field Ψ → −Ψ. Thus we need to study the

(Spin×SU(2)
Z2

)-structure.

We will see that TP5(
Spin×SU(2)

ZF
2

) = (Z2)
2. These 5d bordism invariants

generates (Z2)
2, they correspond to the old SU(2) [87] and the new SU(2)

anomalies [76] in 4d, shown in Table 20.

We will see that TP6(
Spin×SU(2)

ZF
2

) = (Z2)
2. These 6d bordism invari-

ants generates (Z2)
2, they correspond to the old SU(2) and the new SU(2)

anomalies in 5d [76], shown in Table 20.

3.2.1. Ω

Spin×SU(2)

ZF
2

d = Ω

Spin×Spin(3)

ZF
2

d . Let H = Spin×Spin(3)
ZF

2
, we have a homo-

topy pullback square

BH BSO(3)

w′
2

BSO
w2(TM)

B2Z2

(3.34)

There is a homotopy equivalence f : BSO× BSO(3)
∼−→ BSO× BSO(3)

by (V,W ) �→ (V −W + 3,W ). Note that f∗(w2) = w2(V −W ) = w2(V ) +
w1(V )w1(W ) +w2(W ) = w2(TM) +w′

2. Then we have the following homo-
topy pullback

BH
∼

BSpin× BSO(3)

BSO× BSO(3)
f

(V,W ) �→V w2(TM)+w′
2

BSO× BSO(3)
w2+0

(V,W ) �→V+W−3

B2Z2

BSO

(3.35)

This implies that BH ∼ BSpin× BSO(3).
MTH = Thom(BH;−V ), where V is the induced virtual bundle (of

dimension 0) by the map BH → BO.

We can identify BH → BO with BSpin×BSO(3)
V−V3+3−−−−−→ BSO ↪→ BO.

The spectrum MTH is homotopy equivalent to Thom(BSpin×BSO(3);
−(V − V3 + 3)), which is MSpin ∧ Σ−3MSO(3).
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For t− s < 8,

Exts,tA2(1)
(H∗+3(MSO(3),Z2),Z2) ⇒ Ω

Spin×Spin(3)

ZF
2

t−s .

By Thom’s isomorphism, H∗+3(MSO(3),Z2) = Z2[w
′
2, w

′
3]U where w′

i is
the Stiefel-Whitney class of the universal SO(3) bundle and U is the Thom
class of the universal SO(3) bundle.

Since w1(TM) = w′
1 = 0, and w2(TM) = w′

2 by the gauge bundle
constraint, we have w3(TM) = w′

3. Below we use wi to denote both wi(TM)
and w′

i for i ≤ 3.
The A2(1)-module structure of H∗+3(MSO(3),Z2) and the E2 page are

shown in Figure 13, 14.

U

w2U

w3U

w2
2U

w2w3U

w2
3U w2

3U + w3
2U

w2
2w3U

w2
3w2U

w3
3U

Figure 13: The A2(1)-module structure of H∗+3(MSO(3),Z2).

4. Higher group cobordisms and non-trivial fibrations

In this section, we use the Serre spectral sequence method explored in ap-
pendix of [41] and the Adams spectral sequence method to derive the 5d
topological terms for the higher group cobordism ΩG

5 with non-trivial fibra-
tion where G is defined as follows.

If Ga is a group, Gb is an abelian group, then it is well-known that BGb

is a group. Consider the group extension

1 → BGb → G → Ga → 1,(4.1)
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Figure 14: Ω

Spin×Spin(3)

ZF
2∗ .

Table 19: Bordism group. Here σ is the signature of 4-manifolds, PD(w2)
is the submanifold of a 6-manifold which represents the Poincaré dual of
w2. Note that PD(w2) is Spin. The N0 is the number of the zero modes
of the Dirac operator in 4d. It is defined in [35]. On oriented 4-manifolds,
N0 = N ′

0 = N+ − N− where N ′
0 is also defined in [35], and N± are the

numbers of zero modes of the Dirac operator with given chirality. The N
(5)
0

is the number of the zero modes of the Dirac operator in 5d. Its value mod
2 is a spin-topological invariant known as the mod 2 index defined in [76].

Bordism group

d Ω

Spin×SU(2)

Z
F
2

d bordism invariants
0 Z

1 0

2 0

3 0

4 Z
2 (σ,N0)

5 Z
2
2 (w2w3, N

(5)
0 mod 2)

6 Z
2
2 (w2w3 ∪ η̃, σ(PD(w2))

16 mod 2))
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Table 20: SPT states in d-dim spacetime. TP5(
Spin×SU(2)

ZF
2

) = (Z2)
2, whose

5d bordism invariants correspond to the old SU(2) [87] and the new SU(2)
anomalies [76] in 4d. A related cobordism group in one higher dimension,

TP6(
Spin×SU(2)

ZF
2

) = (Z2)
2, whose 6d bordism invariants correspond to the old

SU(2) and the new SU(2) anomalies in 5d [76]. Since Ω
Spin×Z2

SU(2)
3 = 0, for

any Spin×Z2
SU(2) 3-manifold M3, M3 is the boundary of a Spin×Z2

SU(2)
4-manifold M4, then we define the 3d topological term X on M3 to be N0 of
M4. Note that Dirac operator can be defined for manifolds with boundary.
If the bulk manifold has Dirac operator which has a mass m being gapped,
then the boundary manifold can have Dirac operator no mass m = 0 being
gapless.

Cobordism group

d TPd(
Spin×SU(2)

ZF
2

) topological terms

0 0

1 0

2 0

3 Z
2 ( 13CS

(TM)
3 , X)

4 0

5 Z
2
2 (w2w3, N

(5)
0 mod 2)

6 Z
2
2 (w2w3 ∪ η̃, σ(PD(w2))

16 mod 2)

we have a fibration

B2Gb BG

BGa

(4.2)

which is classified by the Postnikov class β ∈ H3(BGa, Gb).

4.1. (BGa,B
2Gb) : (BO,B2Z2)

We consider the simplest case: Ga = O and Gb = Z2. Note that there is also

a group action α : Ga → AutGb in [41], since AutZ2 is trivial, so α is trivial

in this special case.
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For the fibration

B2Z2 BG

BO,

(4.3)

there is a Serre spectral sequence

Hp(BO,Hq(B2
Z2,Z)) ⇒ Hp+q(BG,Z)(4.4)

where Hp(BO,Hq(B2Z2,Z)) actually should be the α-equivariant cohomol-
ogy, but since α is trivial, Hp(BO,Hq(B2Z2,Z)) is the ordinary cohomology.

Note that Hn(B2Z2,Z) is computed in Appendix C of [17].

Hn(B2
Z2,Z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z n = 0
0 n = 1
0 n = 2
Z2 n = 3
0 n = 4
Z4 n = 5
Z2 n = 6

(4.5)

The E2 page of the Serre spectral sequence is H
p(BO,Hq(B2Z2,Z)). The

shape of the relevant piece is shown in Figure 15.

Note that p labels the columns and q labels the rows.

The bottom row is Hp(BO,Z).

The universal coefficient theorem (2.15) tells us that H3(B2Z2,Z) =
H2(B2Z2,R/Z) = Hom(H2(B

2Z2,Z),R/Z) = Hom(π2(B
2Z2),R/Z) =

Hom(Z2,R/Z) = Ẑ2, so the q = 3 row is Hp(BO, Ẑ2).

It is also known that H5(B2Z2,Z) = H4(B2Z2,R/Z) is the group of
quadratic functions q : Z2 → R/Z [23]. The isomorphism is discussed in
detail in [42].

The first possibly non-zero differential is on the E3 page:

H0(BO,H5(B2
Z2,Z)) → H3(BO, Ẑ2).(4.6)

Following the appendix of [41], this map sends a quadratic form q : Z2 →
R/Z to 〈β,−〉q, where the bracket denotes the bilinear pairing 〈x, y〉q =
q(x+ y)− q(x)− q(y).



Higher anomalies, higher symmetries, and cobordisms I 179
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2 Z
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2 Z

6
2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Z2 Z2 Z
2
2 Z

3
2 Z

5
2 Z

7
2 Z

11
2 Z

15
2

0 0 0 0 0 0 0 0

Z4 Z2 Z
2
2 Z

3
2 Z4 × Z

4
2 Z

7
2 Z

11
2 Z

15
2

Z2 Z2 Z
2
2 Z

3
2 Z

5
2 Z

7
2 Z

11
2 Z

15
2

Figure 15: Serre spectral sequence for (BO,B2Z2). Here the row q = 0 is the
result of [10, Theorem 1.6]. The row q = 3 is the result that H∗(BO,Z2) =
Z2[w1, w2, . . . ] where wi is the Stiefel-Whitney class of the virtual bundle
(of dimension 0) over BO. The rows q = 0 and q = 3 are related by the
universal coefficient theorem (2.20). The row q = 5 is resulting from the row
q = 0 by the universal coefficient theorem (2.20).

The next possibly non-zero differentials are on the E4 page:

Hj(BO, Ẑ2) → Hj+3(BO,R/Z) → Hj+4(BO,Z).(4.7)

The first map is contraction with β. The second map comes from the long

exact sequence

· · · −→ Hn(BO,R) −→ Hn(BO,R/Z) −→ Hn+1(BO,Z)

−→ Hn+1(BO,R) −→ · · · .(4.8)
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If Hn(BO,R) = Hn+1(BO,R) = 0, then Hn(BO,R/Z) = Hn+1(BO,Z). Since

Hn(BO,R) = Hn(BO,Z)⊗R and Hn(BO,Z) is finite if n is not divisible by 4,

Hn(BO,R) = 0 if n is not divisible by 4, thus Hn(BO,R/Z) = Hn+1(BO,Z)

for n = 1, 2 mod 4.

The last relevant possibly non-zero differential is on the E6 page:

H0(BO,H5(B2
Z2,Z)) → H6(BO,Z).(4.9)

Following the appendix of [41], this differential is actually zero.

So the only possible differentials in Figure 15 below degree 5 are d3 from

(0, 5) to (3, 3) and d4 from the third row to the zeroth row.

By the Universal Coefficient Theorem (2.20),

Hn(BG,Z2) = Hn(BG,Z)⊗ Z2 ⊕ Tor(Hn+1(BG,Z),Z2).(4.10)

The Madsen-Tillmann spectrum MTG = Thom(BG;−V ) where V is

the induced virtual bundle over BG (of dimension 0) from BG → BO.

By Thom isomorphism (1.12), H∗(MTG,Z2) = H∗(BG,Z2)U where U

is the Thom class of −V with SqiU = w̄iU where w̄i is the Stiefel-Whitney

class of −V such that (1 + w̄1 + w̄2 + · · · )(1 +w1 +w2 + · · · ) = 1 where wi

is the Stiefel-Whitney class of V , i.e., w̄1 = w1, w̄2 = w2 +w2
1, etc. Here the

U on the right means the cup product with U .

We have the Adams spectral sequence

Exts,tA2
(H∗(MTG,Z2),Z2) ⇒ πt−s(MTG) = ΩG

t−s(4.11)

where A2 is the mod 2 Steenrod algebra. The last equality is Pontryagin-

Thom isomorphism.

The A2-module structure of H∗(MTG,Z2) below degree 5 is shown in

Figure 16 where we intentionally omit terms that don’t involve the coho-

mology classes of B2Z2.

Note that the position (0, 3) in Figure 15 contributes to both

H2(B2Z2,Z2) which is generated by x2 and H3(B2Z2,Z2) which is gener-

ated by x3, Sq
1x2 = x3. The position (2, 3) corresponds to xw2

1, xw2, the

position (3, 3) corresponds to xw3
1, xw1w2, xw3 for both x = x2 and x = x3.

Since 〈β, β〉q = −2q(β), 4q(β) = q(2β) = 0, there are 2 among the

4 choices of q(β) such that q → 〈β,−〉q maps to the dual linear function

of β, if we identify Ẑ2 with Z2, then the nonzero element in the image of

q → 〈β,−〉q is just β. So Imd
(0,5)
3 is spanned by xβ.



Higher anomalies, higher symmetries, and cobordisms I 181

x2U

x3U + x2w1U

x2
2U + x2(w2 + w2

1)U + x3w1U

x2
2w1U + x3(w2 + w2

1)U + x2(w3 + w3
1)U x5U + x3(w2 + w2

1)U + x2
2w1U + x2w1w2U

x3U

x3w1U

x5U + x3(w2 + w2
1)U

x2w2U

x3w2U + x2w3U

x2w
2
1U

x3w
2
1U + x2w

3
1U

x3w2U(x2w3U) x3w
2
1U(x2w

3
1U) x2x3U

Figure 16: The A2-module structure of H∗(MTG,Z2) below degree 5. Here
x2 is the generator of H2(B2Z2,Z2), x3 = Sq1x2, and x5 = Sq2x3.

The differential d
(2,3)
4 : H2(BO, Ẑ2) → H5(BO,R/Z) = H6(BO,Z) is

defined by

d
(2,3)
4 (γ)(v0, . . . , v5) = (γ(v0, . . . , v2))(β(v2, . . . , v5)).

Let β = a1w
3
1+a2w1w2+a3w3, if we identify Ẑ2 with Z2, then d

(2,3)
4 (γ) = γ∪β

which is in H5(BO,Z2), while H5(BO,R/Z) = H6(BO,Z). Let γ = b1w
2
1 +

b2w2, then γ ∪ β = a1b1w
5
1 + (a1b2 + a2b1)w

3
1w2 + a2b2w1w

2
2 + a3b1w

2
1w3 +

a3b2w2w3.

The differential d
(3,3)
4 : H3(BO, Ẑ2) → H6(BO,R/Z) = H7(BO,Z) is

defined by

d
(3,3)
4 (ζ)(v0, . . . , v6) = (ζ(v0, . . . , v3))(β(v3, . . . , v6)).

Let β = a1w
3
1 + a2w1w2 + a3w3, if we identify Ẑ2 with Z2, then d

(3,3)
4 (ζ) =

ζ ∪ β which is in H6(BO,Z2), while H6(BO,R/Z) = H7(BO,Z). Let ζ =

c1w
3
1 + c2w1w2 + c3w3, then ζ ∪ β = a1c1w

6
1 + a2c2w

2
1w

2
2 + a3c3w

2
3 + (a1c2 +

c1a2)w
4
1w2 + (a1c3 + c1a3)w

3
1w3 + (a2c3 + c2a3)w1w2w3.

Note that by the Universal Coefficient Theorem (2.20),

Hn(BO,Z2) = Hn(BO,Z)⊗ Z2 ⊕ Tor(Hn+1(BO,Z),Z2).(4.12)

By [10, Theorem 1.6]:

H∗(BO,Z)⊗ Z2

= Z2[w
2
2, Sq

1(w1), Sq
1(w2), Sq

1(w1w2),

Sq1(w4), Sq
1(w1w4), Sq

1(w2w4), . . . ](4.13)
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where we list the generators below degree 7. Among the linear combinations
of w5

1, w
3
1w2, w1w

2
2, w

2
1w3, w2w3, only w3

1w2+w2
1w3 is in H5(BO,Z)⊗Z2 While

among the linear combinations of w6
1, w

2
1w

2
2, w

2
3, w

4
1w2, w

3
1w3, w1w2w3, only

w2
1w

2
2, w

3
1w3, w

6
1, and w2

1w
2
2 + w2

3 are in H6(BO,Z)⊗ Z2.

So we claim that Kerd
(2,3)
4 is spanned by xγ where γ = b1w

2
1+ b2w2 with

a1b1 = 0, a1b2 + a2b1 = a3b1, a2b2 = 0, a3b2 = 0. While Kerd
(3,3)
4 is spanned

by xζ where ζ = c1w
3
1+c2w1w2+c3w3 with a1c2+c1a2 = 0, a2c3+c2a3 = 0.

In the following cases, we only consider the topological terms involving
the cohomology classes of B2Z2.

Case 1: β = 0, there is no differential in Figure 15, the 5d topological
terms are x3w2 (or x2w3), x3w

2
1 (or x2w

3
1) and x2x3 (see Figure 16). Note

that x3w2 = x2w3, x3w
2
1 = x2w

3
1 and x5 = x3(w

2
1 + w2) by Wu formula

(2.52). In this case BG = BO× B2Z2, MTG = MO ∧ (B2Z2)+, πdMTG =
ΩO
d (B

2Z2). This case will be discussed later in another way.

Case 2: β = w3
1, a1 = 1, a2 = a3 = 0. Kerd

(2,3)
4 is spanned by xγ

where γ = b1w
2
1 + b2w2 with b1 = b2 = 0. Kerd

(3,3)
4 is spanned by xζ where

ζ = c1w
3
1 + c2w1w2 + c3w3 with c2 = 0. At the position (3,3), x2w

3
1 is killed

in the E3 page, x2w3 survives to the E∞ page, so the 5d topological terms
are x2w3 and x2x3.

Case 3: β = w1w2, a1 = 0, a2 = 1, a3 = 0. Kerd
(2,3)
4 is spanned by xγ

where γ = b1w
2
1 + b2w2 with b1 = b2 = 0. Kerd

(3,3)
4 is spanned by xζ where

ζ = c1w
3
1 + c2w1w2+ c3w3 with c1 = c3 = 0. At the position (3,3), x2w3 and

x2w
3
1 are killed in the E4 page, so the 5d topological term is x2x3.

Case 4: β = w3, a1 = a2 = 0, a3 = 1. Kerd
(2,3)
4 is spanned by xγ

where γ = b1w
2
1 + b2w2 with b1 = b2 = 0. Kerd

(3,3)
4 is spanned by xζ where

ζ = c1w
3
1 + c2w1w2 + c3w3 with c2 = 0. At the position (3,3), x2w3 is killed

in the E3 page, x2w
3
1 survives to the E∞ page, so the 5d topological terms

are x2w
3
1 and x2x3.

Case 5: β = w3
1 + w1w2, a1 = a2 = 1, a3 = 0. Kerd

(2,3)
4 is spanned by

xγ where γ = b1w
2
1 + b2w2 with b1 = b2 = 0. Kerd

(3,3)
4 is spanned by xζ

where ζ = c1w
3
1 + c2w1w2 + c3w3 with c1 + c2 = 0, c3 = 0. At the position

(3,3), x2(w
3
1 +w1w2) is killed in the E3 page, x2w3 is killed in the E4 page,

but since x2w1w2 = Sq3x2 = 0 by Wu formula (2.52), so the 5d topological
term is x2x3.

Case 6: β = w1w2 + w3, a1 = 0, a2 = a3 = 1. Kerd
(2,3)
4 is spanned by

xγ where γ = b1w
2
1 + b2w2 with b2 = 0. Kerd

(3,3)
4 is spanned by xζ where

ζ = c1w
3
1 + c2w1w2 + c3w3 with c1 = 0, c2 + c3 = 0. At the position (3,3),

x2(w1w2 + w3) is killed in the E3 page, x2w
3
1 is killed in the E4 page, but



Higher anomalies, higher symmetries, and cobordisms I 183

since x2w1w2 = Sq3x2 = 0 by Wu formula (2.52), so the 5d topological term
is x2x3.

Case 7: β = w3
1+w3, a1 = 1, a2 = 0, a3 = 1. Kerd

(2,3)
4 is spanned by xγ

where γ = b1w
2
1 + b2w2 with b1 = b2 = 0. Kerd

(3,3)
4 is spanned by xζ where

ζ = c1w
3
1 + c2w1w2 + c3w3 with c2 = 0. At the position (3,3), x2(w

3
1 + w3)

is killed in the E3 page, so the 5d topological terms are x2w
3
1 = x2w3 and

x2x3.

Case 8: β = w3
1 + w1w2 + w3, a1 = a2 = a3 = 1. Kerd

(2,3)
4 is spanned

by xγ where γ = b1w
2
1 + b2w2 with b1 = b2 = 0. Kerd

(3,3)
4 is spanned by

xζ where ζ = c1w
3
1 + c2w1w2 + c3w3 with c1 + c2 = 0, c2 + c3 = 0. At

the position (3,3), x2(w
3
1 + w1w2 + w3) is killed in the E3 page, but since

x2w1w2 = Sq3x2 = 0 by Wu formula (2.52), so the 5d topological term are
x2w

3
1 = x2w3 and x2x3.

5. O/SO/Spin/Pin± bordism groups of classifying spaces

In this section, we compute the O/SO/Spin/Pin± bordism groups of the
classifying space of the group G = Ga×BGb: BG = BGa×B2Gb. Here BGb

is a group since Gb is abelian.

We briefly comment the difference between a previous cobordism theory
[35] and this work: In all Adams charts of the computation in [35], there
are no nonzero differentials, while in this paper we encounter nonzero differ-
entials dn due to the (p, pn)-Bockstein homomorphisms in the computation
involving B2Zpn and BZpn .

5.1. Introduction

For H = O/SO/Spin/Pin± and the group H ×G, define

MT (H ×G) := Thom(B(H ×G);−V )(5.1)

where V is the induced virtual bundle over B(H × G) by the composition
B(H × G) → BH → BO where the first map is the projection, the second
map is the natural homomorphism.

By the Pontryagin-Thom isomorphism (1.10) and the property of Thom
space (1.7), ΩH

d (BG) = πd(MTH ∧BG+) = πd(MT (H ×G)). Hence we can
define

ΩH×G

d := πd(MT (H ×G)) = ΩH
d (BG).(5.2)
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TPn(H ×G) := [MT (H ×G),Σn+1IZ](5.3)

Here X+ is the disjoint union of X and a point. MTO = MO, MTSO =
MSO, MTSpin = MSpin, MTPin+ = MPin−, MTPin− = MPin+. πd(B)
is the d-th stable homotopy group of the spectrum B.

[B,Σn+1IZ] stands for the homotopy classes of maps from spectrum B
to the (n + 1)-th suspension of spectrum IZ. The Anderson dual IZ is a
spectrum that is the fiber of IC → IC× where IC(IC×) is the Brown-
Comenetz dual spectrum defined by

[X, IC] = Hom(π0X,C),(5.4)

[X, IC×] = Hom(π0X,C×).(5.5)

By the work of Freed-Hopkins [25], there is a 1:1 correspondence⎧⎨
⎩

deformation classes of reflection positive
invertible n-dimensional extended topological
field theories with symmetry group Hn ×G

⎫⎬
⎭

∼= [MT (H ×G),Σn+1IZ]tors.(5.6)

There is an exact sequence

0 → Ext1(πnB,Z) → [B,Σn+1IZ] → Hom(πn+1B,Z) → 0(5.7)

for any spectrum B, especially for MT (H ×G). The torsion part [MT (H ×
G),Σn+1IZ]tors is Ext

1((πnMT (H×G))tors,Z) = Hom((πnMT (H×G))tors,
U(1)).

H∗(BZ2,Z2) = Z2[a](5.8)

where |a| = 1.

Theorem 18 (Serre, Ref. [63]).

H∗(B2
Z2,Z2)

= Z2[Sq
Ix2|I admissible, ex(I) < 2]

= Z2[Sq
2i−1 · · · Sq2Sq1x2|i ≥ 0](5.9)

where x2 is the generator of H2(B2Z2,Z2).
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Denote Sq2
i−1 · · · Sq2Sq1x2 = x2i+1.

Here SqI = Sqi1Sqi2 · · · and I = (i1, i2, . . . ) is admissible if is ≥ 2is+1

for s ≥ 1, ex(I) =
∑

s≥1(is − 2is+1).

Theorem 19 (Ref. [63]).

H∗(BZ3,Z3) = FZ3
[a′, b′] = ΛZ3

(a′)⊗ Z3[b
′](5.10)

where |a′| = 1 and b′ = β(3,3)a
′.

Here β(3,3) is the Bockstein homomorphism in A3.

(5.11) H∗(B2
Z3,Z3) = FZ3

[x′2, β(3,3)x
′
2, Qix

′
2, β(3,3)Qix

′
2, i ≥ 1]

= Z3[x
′
2, β(3,3)Qix

′
2, i ≥ 1]⊗ ΛZ3

(β(3,3)x
′
2, Qix

′
2, i ≥ 1),

where |x′2| = 2 and Qi is defined inductively by Q0 = β(3,3), Qi = P 3i−1

Qi−1−
Qi−1P

3i−1

for i ≥ 1. Let x′3 = β(3,3)x
′
2, x

′
2·3i+1 = Qix

′
2, x

′
2·3i+2 = β(3,3)Qix

′
2

for i ≥ 1.

Here Pn is the n-th Steenrod power in A3.

H∗(BPSU(2),Z2) = Z2[w
′
2, w

′
3].(5.12)

H∗(BPSU(3),Z2) = Z2[c2, c3].(5.13)

Here w′
i is the i-th Stiefel-Whitney class wi(PSU(2)) of the universal

principal PSU(2)-bundle over BPSU(2). Let p′i be the i-th Pontryagin class

pi(PSU(2)) of the universal principal PSU(2)-bundle over BPSU(2), then

p′1( mod 2) = w′2
2 .

ci is the i-th Chern class ci(PSU(3)) of the universal principal PSU(3)-

bundle over BPSU(3).

Since SU(3)×U(1)
Z3

= U(3), PSU(3) = PU(3).

Theorem 20 (Ref. [48]).

H∗(BPSU(3),Z3) = FZ3
[z2, z3, z7, z8, z12]/J(5.14)

where |zi| = i, J = (z2z3, z2z7, z2z8 + z3z7) is the ideal generated by

z2z3, z2z7, z2z8 + z3z7 and z3 = β(3,3)z2, z7 = P 1z3, z8 = β(3,3)z7. Note

that c2( mod 3) = z22, c3( mod 3) = z32.
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In the following subsections, all bordism invariants are the pullback of

cohomology classes along classifying maps f : M → X and g : M → BH.

5.2. Point

5.2.1. ΩO
d . Since the computation involves no odd torsion, we can use the

Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MO,Z2),Z2) ⇒ πt−s(MO)∧2 = ΩO
t−s.(5.15)

Here πt−s(MO)∧2 is the 2-completion of the group πt−s(MO).

The mod 2 cohomology of Thom spectrum MO is

H∗(MO,Z2) = A2 ⊗ Ω∗(5.16)

where Ω = Z2[y2, y4, y5, y6, y8, . . . ] is the unoriented bordism ring, Ω∗ is the

Z2-linear dual of Ω.

On the other hand, H∗(MO,Z2) = Z2[w1, w2, w3, . . . ]U where U is the

Thom class of the virtual bundle (of dimension 0) over BO which is the

colimit of En − n and En is the universal n-bundle over BO(n), wi is the

i-th Stiefel-Whitney class of the virtual bundle (of dimension 0) over BO.

Note that the pullback of the virtual bundle (of dimension 0) over BO along

the map g : M → BO is just TM − d where M is a d-dimensional manifold

and TM is the tangent bundle of M , g is given by the O-structure on M .

We will not distinguish wi and wi(TM).

Here yi are manifold generators, for example, y2 = RP
2, y4 = RP

4,

y5 is Wu manifold SU(3)/SO(3). By Thom’s result [65], two manifolds are

unorientedly bordant if and only if they have identical sets of Stiefel-Whitney

characteristic numbers. The nonvanishing Stiefel-Whitney numbers of y2 =

RP
2 are w2 and w2

1, the nonvanishing Stiefel-Whitney numbers of y22 =

RP
2 × RP

2 are w2
2 and w4, the nonvanishing Stiefel-Whitney numbers of

y4 = RP
4 are w4

1 and w4, the only nonvanishing Stiefel-Whitney number of

Wu manifold SU(3)/SO(3) is w2w3.

So y∗2 = w2
1 or w2, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc, where y∗i is the

Z2-linear dual of yi ∈ Ω.

Below we choose y∗2 = w2
1 by default, this is reasonable since Sq2(xd−2) =

(w2 + w2
1)xd−2 on d-manifold by Wu formula (2.52).
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Hence we have the following theorem

Theorem 21.

i ΩO
i

0 Z2

1 0
2 Z2

3 0
4 Z

2
2

5 Z2

The bordism invariant of ΩO
2 is w2

1.
The bordism invariants of ΩO

4 are w4
1, w

2
2.

The bordism invariant of ΩO
5 is w2w3.

Theorem 22.

i TPi(O)
0 Z2

1 0
2 Z2

3 0
4 Z

2
2

5 Z2

The 2d topological term is w2
1.

The 4d topological terms are w4
1, w

2
2.

The 5d topological term is w2w3.

5.2.2. ΩSO
d . Since the computation involves no odd torsion, we can use

the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MSO,Z2),Z2) ⇒ πt−s(MSO)∧2 = ΩSO
t−s.(5.17)

The mod 2 cohomology of Thom spectrum MSO is

H∗(MSO,Z2) = A2/A2Sq
1 ⊕ Σ4A2/A2Sq

1 ⊕ Σ5A2 ⊕ · · · .(5.18)

· · · −→ Σ3A2 −→ Σ2A2 −→ ΣA2 −→ A2 −→ A2/A2Sq
1(5.19)

is an A2-resolution where the differentials d1 are induced by Sq1.
The E2 page is shown in Figure 17.
Hence we have the following theorem



188 Zheyan Wan and Juven Wang

0 1 2 3 4 5 t− s

0

1

2

3

4

5

s

Figure 17: ΩSO
∗ .

Theorem 23.

i ΩSO
i

0 Z

1 0
2 0
3 0
4 Z

5 Z2

The bordism invariant of ΩSO
4 is σ.

Here σ is the signature of a 4-manifold.
The bordism invariant of ΩSO

5 is w2w3.

Theorem 24.

i TPi(SO)
0 0
1 0
2 0
3 Z

4 0
5 Z2
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Since σ = p1(TM)
3 , p1(TM) = dCS

(TM)
3 , the 3d topological term is

1
3CS

(TM)
3 .

The 5d topological term is w2w3.

5.2.3. ΩSpin
d . Since the computation involves no odd torsion, we can use

the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MSpin,Z2),Z2)

⇒ πt−s(MSpin)∧2 = ΩSpin
t−s .(5.20)

The mod 2 cohomology of Thom spectrum MSpin is

H∗(MSpin,Z2) = A2 ⊗A2(1) {Z2 ⊕M}(5.21)

where M is a graded A2(1)-module with the degree i homogeneous part

Mi = 0 for i < 8. Here A2(1) stands for the subalgebra of A2 generated by

Sq1 and Sq2. For t− s < 8, we can identify the E2-page with

Exts,tA2(1)
(Z2,Z2).

The E2 page is shown in Figure 18.

Hence we have the following theorem

Theorem 25.

i ΩSpin
i

0 Z

1 Z2

2 Z2

3 0
4 Z

5 0

The bordism invariant of ΩSpin
1 is η̃.

Here η̃ is the “mod 2 index” of the 1d Dirac operator (# zero eigenvalues

mod 2, no contribution from spectral asymmetry).

The bordism invariant of ΩSpin
2 is Arf (the Arf invariant).

The bordism invariant of ΩSpin
4 is σ

16 .
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Figure 18: ΩSpin
∗ .

Theorem 26.

i TPi(Spin)
0 0
1 Z2

2 Z2

3 Z

4 0
5 0

The 1d topological term is η̃.
The 2d topological term is Arf.

The 3d topological term is 1
48CS

(TM)
3 .

5.2.4. ΩPin+

d . Since the computation involves no odd torsion, we can use
the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MPin−,Z2),Z2)

⇒ πt−s(MPin−)∧2 = ΩPin+

t−s .(5.22)

MPin− = MTPin+ ∼ MSpin ∧ S1 ∧MTO(1).
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For t− s < 8, we can identify the E2-page with

Exts,tA2(1)
(H∗−1(MTO(1),Z2),Z2).

By Thom’s isomorphism,

H∗−1(MTO(1),Z2) = Z2[w1]U(5.23)

where U is the Thom class of the virtual bundle −E1 over BO(1), E1 is the
universal 1-bundle over BO(1) and w1 is the 1st Stiefel-Whitney class of E1

over BO(1). The A2(1)-module structure of H∗−1(MTO(1),Z2) and the E2

page are shown in Figure 19, 20.

U

Figure 19: The A2(1)-module structure of H∗−1(MTO(1),Z2).

Hence we have the following theorem

Theorem 27.

i ΩPin+

i

0 Z2

1 0
2 Z2

3 Z2

4 Z16

5 0

The bordism invariant of ΩPin+

2 is w1 ∪ η̃.
The bordism invariant of ΩPin+

3 is w1 ∪Arf.
The bordism invariant of ΩPin+

4 is η.
Here η is the usual Atiyah-Patodi-Singer eta-invariant of the 4d Dirac

operator (=“#zero eigenvalues + spectral asymmetry”).
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Figure 20: ΩPin+

∗ .

Theorem 28.

i TPi(Pin
+)

0 Z2

1 0
2 Z2

3 Z2

4 Z16

5 0

The 2d topological term is w1 ∪ η̃.
The 3d topological term is w1 ∪Arf.
The 4d topological term is η.

5.2.5. ΩPin−

d . Since the computation involves no odd torsion, we can use
the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MPin+,Z2),Z2)

⇒ πt−s(MPin+)∧2 = ΩPin−

t−s .(5.24)

MPin+ = MTPin− ∼ MSpin ∧ S−1 ∧MO(1).
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For t− s < 8, we can identify the E2-page with

Exts,tA2(1)
(H∗+1(MO(1),Z2),Z2).

By Thom’s isomorphism,

H∗+1(MO(1),Z2) = Z2[w1]U(5.25)

where U is the Thom class of the universal 1-bundle E1 over BO(1) and

w1 is the 1st Stiefel-Whitney class of E1 over BO(1). The A2(1)-module

structure of H∗+1(MO(1),Z2) and the E2 page are shown in Figure 21, 22.

U

Figure 21: The A2(1)-module structure of H∗+1(MO(1),Z2).

Hence we have the following theorem

Theorem 29.

i ΩPin−

i

0 Z2

1 Z2

2 Z8

3 0
4 0
5 0

The bordism invariant of ΩPin−

1 is η̃.

The bordism invariant of ΩPin−

2 is ABK (the Arf-Brown-Kervaire invari-

ant).
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Figure 22: ΩPin−

∗ .

Theorem 30.

i TPi(Pin
−)

0 Z2

1 Z2

2 Z8

3 0
4 0
5 0

The 1d topological term is η̃.

The 2d topological term is ABK.

5.3. Atiyah-Hirzebruch spectral sequence

If H = O/SO/Spin/Pin±, by the Atiyah-Hirzebruch spectral sequence, we

have

Hp(BG,ΩH
q ) ⇒ ΩH

p+q(BG).(5.26)
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If H = O/Pin±, since ΩH
d are finite, ΩH×G

d = ΩH
d (BG) are also finite, so

TPd(H ×G) = ΩH×G

d for H = O/Pin±.
If H = SO/Spin,

ΩSO
q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z q = 0
0 q = 1
0 q = 2
0 q = 3
Z q = 4
Z2 q = 5
0 q = 6

.(5.27)

ΩSpin
q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z q = 0
Z2 q = 1
Z2 q = 2
0 q = 3
Z q = 4
0 q = 5
0 q = 6

.(5.28)

If Hp(BG,Z) are finite for p > 0, then ΩH
6 (BG) is finite and TP5(H ×

G) = ΩH
5 (BG) for H = SO/Spin.

If G = PSU(2) = SO(3), since H2(BSO(3),Z) and H6(BSO(3),Z) are

finite, ΩH
6 (BG) is also finite and TP5(H ×G) = ΩH

5 (BG) for H = SO/Spin.

IfG = PSU(3), then H6(BPSU(3),Z) contains a Z while H2(BPSU(3),Z)

does not, so ΩH
6 (BG) contains a Z and TP5(H × G) = ΩH

5 (BG) × Z for

H = SO/Spin.

5.4. B2Gb : B2Z2,B
2Z3

5.4.1. ΩO
d (B2Z2). Since the computation involves no odd torsion, we can

use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MO ∧ (B2
Z2)+,Z2),Z2)

⇒ πt−s(MO ∧ (B2
Z2)+)

∧
2 = ΩO

t−s(B
2
Z2).(5.29)

Theorem 31 (Thom). • π∗MO = Ω = Z2[y2, y4, y5, y6, y8, . . . ].

• H∗(MO,Z2) = A2 ⊗ Ω∗ where Ω∗ is the Z2-linear dual of Ω.
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y2 = RP
2, y4 = RP

4, y5 is the Wu manifold W = SU(3)/SO(3), . . .
y∗2 = w2(TM) or w1(TM)2, y∗2 = w2(TM)2, y∗4 = w1(TM)4, y∗5 =
w2(TM)w3(TM), . . .

Theorem 32 (Serre).

H∗(B2
Z2,Z2) = Z2[x2, x3, x5, x9, . . . ]

where x3 = Sq1x2, x5 = Sq2x3, x9 = Sq4x5, . . .

By Künneth theorem,

H∗(MO ∧ (B2
Z2)+,Z2)

= H∗(MO,Z2)⊗H∗(B2
Z2,Z2)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ Z2[x2, x3, x5, x9, . . . ]

= A2 ⊕ 2Σ2A2 ⊕ Σ3A2 ⊕ 4Σ4A2 ⊕ 4Σ5A2 ⊕ · · ·(5.30)

Here ΣnA2 is the n-th iterated shift of the graded algebra A2.

Since

Exts,tA2
(ΣrA2,Z2)

=

{
Homt

A2
(ΣrA2,Z2) = Z2 if t = r, s = 0

0 else
,(5.31)

we have the following theorem

Theorem 33.

i ΩO
i (B

2
Z2)

0 Z2

1 0
2 Z

2
2

3 Z2

4 Z
4
2

5 Z4
2

The bordism invariants of ΩO
2 (B

2Z2) are x2, w
2
1.

The bordism invariant of ΩO
3 (B

2Z2) is x3 = w1x2.

The bordism invariants of ΩO
4 (B

2Z2) are x22, w
4
1, w

2
1x2, w

2
2.

The bordism invariants of ΩO
5 (B

2Z2) are x2x3, x5, w
2
1x3, w2w3.
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Here wi is the i-th Stiefel-Whitney class of the tangent bundle of M ,
x2 is the generator of H2(B2Z2,Z2), x3 = Sq1x2, x5 = Sq2Sq1x2, since
there is a map f : M → B2Z2 in the definition of cobordism group, we
identify x2 with f∗(x2) = f . By Wu formula, Sq2xd−2 = (w2 + w2

1)xd−2 on
d-manifolds.

Theorem 34.

i TPi(O× BZ2)
0 Z2

1 0
2 Z

2
2

3 Z2

4 Z
4
2

5 Z
4
2

The 2d topological terms are x2, w
2
1.

The 3d topological term is x3 = w1x2.
The 4d topological terms are x22, w

4
1, w

2
1x2, w

2
2.

The 5d topological terms are x2x3, x5, w
2
1x3, w2w3.

5.4.2. ΩSO
d (B2Z2). Since the computation involves no odd torsion, we

can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MSO ∧ (B2
Z2)+,Z2),Z2)

⇒ πt−s(MSO ∧ (B2
Z2)+)

∧
2 = ΩSO

t−s(B
2
Z2).(5.32)

Since H∗(B2Z2,Z2) = Z2[x2, x3, x5, x9, . . . ] where x2 is the generator of
H2(B2Z2,Z2), x3 = Sq1x2, x5 = Sq2Sq1x2, x9 = Sq4Sq2Sq1x2, etc, Sq

1x2 =
x3, Sq

1x3 = 0, Sq1(x22) = 0, Sq1(x2x3) = Sq1(x5) = x23. We have used (2.50)
and the Adem relations (2.67).

We shift Figure 2 the same times as the dimension of H∗(B2Z2,Z2) at
each degree as a Z2-vector space. We obtain the E1 page for Ω

SO
∗ (B2Z2), the

differentials d1 are induced by Sq1, as shown in Figure 23.
There is a differential d2 corresponding to the Bockstein homomorphism

β(2,4) : H∗(−,Z4) → H∗+1(−,Z2) associated to 0 → Z2 → Z8 → Z4 → 0
[51]. See 2.5 for the definition of Bockstein homomorphisms. Note that

β(2,4)P2(x2) =
1

4
δP2(x2) mod 2

=
1

4
δ(x2 ∪ x2 + x2 ∪

1

δx2)
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Figure 23: E1 page for ΩSO
∗ (B2Z2).

=
1

4
(δx2 ∪ x2 + x2 ∪ δx2 + δ(x2 ∪

1

δx2))

=
1

4
(2x2 ∪ δx2 + δx2 ∪

1

δx2)

= x2 ∪ (
1

2
δx2) + (

1

2
δx2) ∪

1

(
1

2
δx2)

= x2Sq
1x2 + Sq1x2 ∪

1

Sq1x2

= x2Sq
1x2 + Sq2Sq1x2

= x2x3 + x5(5.33)

We have used β(2,4) = 1
4δ mod 2, the Steenrod’s formula (2.12), Sq1 =

β(2,2) =
1
2δ mod 2, and the definition Sqkxn = xn ∪

n−k

xn.

So there is a differential such that d2(x2x3 + x5) = x22h
2
0.

Then take the differentials d2 into account, we obtain the E2 page for

ΩSO
∗ (B2Z2), as shown in Figure 24.



Higher anomalies, higher symmetries, and cobordisms I 199
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Figure 24: ΩSO
∗ (B2Z2).

Hence we have the following theorem

Theorem 35.

i ΩSO
i (B2

Z2)
0 Z

1 0
2 Z2

3 0
4 Z× Z4

5 Z
2
2

The bordism invariant of ΩSO
2 (B2Z2) is x2.

The bordism invariants of ΩSO
4 (B2Z2) are σ and P2(x2).

The bordism invariants of ΩSO
5 (B2Z2) are x5 = x2x3 and w2w3.

Here P2(x2) is the Pontryagin square of x2. σ is the signature of a 4-

manifold M . x2x3 + x5 = 1
2 w̃1P2(x2) [21] where w̃1 is the twisted first

Stiefel-Whitney class of the tangent bundle, in particular, w1 = 0 implies

w̃1 = 0, so x2x3 = x5 on oriented 5-manifolds.
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Theorem 36.

i TPi(SO× BZ2)
0 0
1 0
2 Z2

3 Z

4 Z4

5 Z
2
2

The 2d topological term is x2.

The 3d topological term is 1
3CS

(TM)
3 .

The 4d topological term is P2(x2).

The 5d topological terms are x5 = x2x3 and w2w3.

5.4.3. ΩSpin
d (B2Z2). Since the computation involves no odd torsion, we

can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MSpin ∧ (B2
Z2)+,Z2),Z2)

⇒ πt−s(MSpin ∧ (B2
Z2)+)

∧
2 = ΩSpin

t−s (B
2
Z2).(5.34)

For t− s < 8, we can identify the E2-page with

Exts,tA2(1)
(H∗(B2

Z2,Z2),Z2).

H∗(B2Z2,Z2) = Z2[x2, x3, x5, x9, . . . ] where x2 is the generator of

H2(B2Z2,Z2), x3 = Sq1x2, x5 = Sq2Sq1x2, x9 = Sq4Sq2Sq1x2, etc, Sq
1x2 =

x3, Sq
2x2 = x22, Sq

1x3 = 0, Sq2x3 = x5, Sq
1(x22) = 0, Sq1(x2x3) = x23,

Sq1x5 = Sq2x22 = x23, Sq
2x5 = 0. Sq2(x2x3) = x22x3 + x2x5. We have used

(2.50) and the Adem relations (2.67).

There is a differential d2 corresponding to the Bockstein homomorphism

β(2,4) : H∗(−,Z4) → H∗+1(−,Z2) associated to 0 → Z2 → Z8 → Z4 → 0

[51]. See 2.5 for the definition of Bockstein homomorphisms.

By (5.33), there is a differential such that d2(x2x3 + x5) = x22h
2
0.

The A2(1)-module structure of H∗(B2Z2,Z2) is shown in Figure 25. The

dot at the bottom is a Z2 which has been discussed before. Now we consider

the part above the bottom dot. We will use Lemma 11 several times. Two

steps are shown in Figure 26, 27.

We will proceed in the reversed order.
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1

x2

x2x3

Figure 25: The A2(1)-module structure of H∗(B2Z2,Z2).

L M

x2

x2x3

N

x2

x2x3

Figure 26: First step to get the E2 page of ΩSpin
∗ (B2Z2).

First, we apply Lemma 11 to the short exact sequence of A2(1)-modules:

0 → P → N → Q → 0 in the second step (as shown in Figure 27), the Adams

chart of Exts,tA2(1)
(N,Z2) is shown in Figure 28.

Next, we apply Lemma 11 to the short exact sequence of A2(1)-modules:

0 → L → M → N → 0 in the first step (as shown in Figure 26), the Adams

chart of Exts,tA2(1)
(M,Z2) is shown in Figure 29.

Then take the differentials d2 into account, we obtain the E2 page for

ΩSpin
∗ (B2Z2), as shown in Figure 30.
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P N

x2

x2x3

Q

x2

x2x3

Figure 27: Second step to get the E2 page of ΩSpin
∗ (B2Z2).
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Figure 28: Adams chart of Exts,tA2(1)
(N,Z2). The arrows indicate the differ-

ential d1.
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Figure 29: Adams chart of Exts,tA2(1)
(M,Z2). The arrows indicate the differ-

ential d1.
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Figure 30: ΩSpin
∗ (B2Z2).
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Hence we have the following theorem

Theorem 37.

i ΩSpin
i (B2

Z2)
0 Z

1 Z2

2 Z
2
2

3 0
4 Z× Z2

5 0

The bordism invariants of ΩSpin
2 (B2Z2) are x2 and Arf.

The bordism invariants of ΩSpin
4 (B2Z2) are

σ
16 and P2(x2)

2 .
By Wu formula, x22 = Sq2(x2) = (w2(TM) + w1(TM)2)x2 = 0 on

Spin 4-manifolds, x5 = Sq2(x3) = (w2(TM) + w1(TM)2)x3 = 0 on Spin
5-manifolds, P2(x2) = x22 = 0 mod 2 on Spin 4-manifolds.

Here Arf is the Arf invariant. σ is the signature of Spin 4-manifold, it is
a multiple of 16 by Rokhlin’s theorem.

Theorem 38.

i TPi(Spin× BZ2)
0 0
1 Z2

2 Z
2
2

3 Z

4 Z2

5 0

The 2d topological terms are x2 and Arf.

The 3d topological term is 1
48CS

(TM)
3 .

The 4d topological term is P2(x2)
2 .

5.4.4. ΩPin+

d (B2Z2). Since the computation involves no odd torsion, we
can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MPin− ∧ (B2
Z2)+,Z2),Z2)

⇒ πt−s(MPin− ∧ (B2
Z2)+)

∧
2 = ΩPin+

t−s (B2
Z2).(5.35)

MPin− = MTPin+ ∼ MSpin ∧ S1 ∧MTO(1).
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For t− s < 8, we can identify the E2-page with

Exts,tA2(1)
(H∗−1(MTO(1),Z2)⊗H∗(B2

Z2,Z2),Z2).

The A2(1)-module structure of H∗−1(MTO(1),Z2)⊗ H∗(B2Z2,Z2) and

the E2 page are shown in Figure 31, 32.

U 1

x2

x2x3

⊗

=

U

x2U

w1x2U

x2
2U

w2
1x3Ux2x3U

Figure 31: The A2(1)-module structure of H∗−1(MTO(1),Z2) ⊗
H∗(B2Z2,Z2).

Hence we have the following theorem
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Figure 32: ΩPin+

∗ (B2Z2).

Theorem 39.

i ΩPin+

i (B2
Z2)

0 Z2

1 0
2 Z2

2

3 Z
2
2

4 Z4 × Z16

5 Z
2
2

The bordism invariants of ΩPin+

2 (B2Z2) are x2 and w1η̃.

The bordism invariants of ΩPin+

3 (B2Z2) are w1x2 = x3 and w1Arf.

The bordism invariants of ΩPin+

4 (B2Z2) are qs(x2) and η.

The bordism invariants of ΩPin+

5 (B2Z2) are x2x3 and w2
1x3(= x5).

Here η̃ is the “mod 2 index” of the 1d Dirac operator (#zero eigenvalues
mod 2, no contribution from spectral asymmetry).

x3 = Sq1x2 = w1x2 on 3-manifolds by Wu formula.

qs is explained in the footnotes of Table 5.

η is the usual Atiyah-Patodi-Singer eta-invariant of the 4d Dirac operator
(=“#zero eigenvalues + spectral asymmetry”).

x5 = Sq2x3 = (w2 +w2
1)x3 = w2

1x3 on Pin+ 5-manifolds by Wu formula.
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Theorem 40.

i TPi(Pin
+ × BZ2)

0 Z2

1 0
2 Z

2
2

3 Z
2
2

4 Z4 × Z16

5 Z
2
2

The 2d topological terms are x2 and w1η̃.

The 3d topological terms are w1x2 = x3 and w1Arf.

The 4d topological terms are qs(x2) and η.

The 5d topological terms are x2x3 and w2
1x3(= x5).

5.4.5. ΩPin−

d (B2Z2). Since the computation involves no odd torsion, we

can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MPin+ ∧ (B2
Z2)+,Z2),Z2)

⇒ πt−s(MPin+ ∧ (B2
Z2)+)

∧
2 = ΩPin−

t−s (B2
Z2).(5.36)

MPin+ = MTPin− ∼ MSpin ∧ S−1 ∧MO(1).

For t− s < 8, we can identify the E2-page with

Exts,tA2(1)
(H∗+1(MO(1),Z2)⊗H∗(B2

Z2,Z2),Z2).

The A2(1)-module structure of H∗+1(MO(1),Z2) ⊗ H∗(B2Z2,Z2) and

the E2 page are shown in Figure 33, 34.

Hence we have the following theorem

Theorem 41.

i ΩPin−

i (B2
Z2)

0 Z2

1 Z2

2 Z2 × Z8

3 Z2

4 Z2

5 Z2
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U 1

x2

x2x3

⊗

=

U

x2U

x3U

w2
1x2U

x2x3U

Figure 33: The A2(1)-module structure of H∗+1(MO(1),Z2)⊗H∗(B2Z2,Z2).

The bordism invariants of ΩPin−

2 (B2Z2) are x2 and ABK.

The bordism invariant of ΩPin−

3 (B2Z2) is w1x2 = x3.

The bordism invariant of ΩPin−

4 (B2Z2) is w
2
1x2.

The bordism invariant of ΩPin−

5 (B2Z2) is x2x3.

Here ABK is the Arf-Brown-Kervaire invariant. x3 = Sq1x2 = w1x2 on

3-manifolds by Wu formula.
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Figure 34: ΩPin−

∗ (B2Z2).

Theorem 42.

i TPi(Pin
− × BZ2)

0 Z2

1 Z2

2 Z2 × Z8

3 Z2

4 Z2

5 Z2

The 2d topological terms are x2 and ABK.
The 3d topological term is w1x2 = x3.
The 4d topological term is w2

1x2.
The 5d topological term is x2x3.

5.4.6. ΩO
d (B2Z3).

Exts,tA2
(H∗(MO ∧ (B2

Z3)+,Z2),Z2) ⇒ ΩO
t−s(B

2
Z3)

∧
2 .(5.37)

Exts,tA3
(H∗(MO ∧ (B2

Z3)+,Z3),Z3) ⇒ ΩO
t−s(B

2
Z3)

∧
3 .(5.38)

Since MO is the wedge sum of suspensions of the Eilenberg-MacLane spec-
trum HZ2, H

∗(MO,Z3) = 0, thus ΩO
d (B

2Z3)
∧
3 = 0.
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Since H∗(B2Z3,Z2) = Z2, we have ΩO
d (B

2Z3)
∧
2 = ΩO

d .
Hence ΩO

d (B
2Z3) = ΩO

d .

Theorem 43.

i ΩO
i (B

2
Z3)

0 Z2

1 0
2 Z2

3 0
4 Z

2
2

5 Z2

The bordism invariant of ΩO
2 (B

2Z3) is w
2
1.

The bordism invariants of ΩO
4 (B

2Z3) are w4
1, w

2
2.

The bordism invariant of ΩO
5 (B

2Z3) is w2w3.

Theorem 44.

i TPi(O× BZ3)
0 Z2

1 0
2 Z2

3 0
4 Z

2
2

5 Z2

The 2d topological term is w2
1.

The 4d topological terms are w4
1, w

2
2.

The 5d topological term is w2w3.

5.4.7. ΩSO
d (B2Z3).

Exts,tA2
(H∗(MSO ∧ (B2

Z3)+,Z2),Z2) ⇒ ΩSO
t−s(B

2
Z3)

∧
2 .(5.39)

Since H∗(B2Z3,Z2) = Z2, we have ΩSO
d (B2Z3)

∧
2 = ΩSO

d .

Exts,tA3
(H∗(MSO ∧ (B2

Z3)+,Z3),Z3) ⇒ ΩSO
t−s(B

2
Z3)

∧
3 .(5.40)

The dual of A3 = H∗(HZ3,Z3) is

A3∗ = H∗(HZ3,Z3) = ΛZ3
(τ0, τ1, . . . )⊗ Z3[ξ1, ξ2, . . . ](5.41)
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where τi = (P 3i−1 · · ·P 3P 1β(3,3))
∗ and ξi = (P 3i−1 · · ·P 3P 1)∗. Let C =

Z3[ξ1, ξ2, . . . ] ⊆ A3∗, then

H∗(MSO,Z3) = C ⊗ Z3[z
′
1, z

′
2, . . . ](5.42)

where |z′k| = 4k for k 
= 3t−1
2 .

H∗(MSO,Z3) = (Z3[z
′
1, z

′
2, . . . ])

∗ ⊗ C∗ = C∗ ⊕ Σ8C∗ ⊕ · · ·(5.43)

where C∗ = A3/(β(3,3)) and (β(3,3)) is the two-sided ideal of A3 generated

by β(3,3).

· · · −→ Σ2A3 ⊕ Σ6A3 ⊕ · · · −→ ΣA3 ⊕ Σ5A3 ⊕ · · · −→ A3

−→ A3/(β(3,3))(5.44)

is an A3-resolution of A3/(β(3,3)) where the differentials d1 are induced by

β(3,3)..

H∗(B2
Z3,Z3) = Z3[x

′
2, x

′
8, . . . ]⊗ ΛZ3

(x′3, x
′
7, . . . )(5.45)

β(3,3)x
′
2 = x′3, β(3,3)x

′2
2 = 2x′2x

′
3.

The E2 page is shown in Figure 35.

Hence we have the following

Theorem 45.

i ΩSO
i (B2

Z3)
0 Z

1 0
2 Z3

3 0
4 Z× Z3

5 Z2

The bordism invariant of ΩSO
2 (B2Z3) is x

′
2.

The bordism invariants of ΩSO
4 (B2Z3) are σ and x′22 .

The bordism invariant of ΩSO
5 (B2Z3) is w2w3.
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Figure 35: ΩSO
∗ (B2Z3)

∧
3 .

Theorem 46.

i TPi(SO× BZ3)
0 0
1 0
2 Z3

3 Z

4 Z3

5 Z2

The 2d topological term is x′2.

The 3d topological term is 1
3CS

(TM)
3 .

The 4d topological term is x′22 .
The 5d topological term is w2w3.

5.4.8. ΩSpin
d (B2Z3).

Exts,tA2
(H∗(MSpin ∧ (B2

Z3)+,Z2),Z2) ⇒ ΩSpin
t−s (B

2
Z3)

∧
2 .(5.46)

Since H∗(B2Z3,Z2) = Z2, we have ΩSpin
d (B2Z3)

∧
2 = ΩSpin

d .
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Exts,tA3
(H∗(MSpin ∧ (B2

Z3)+,Z3),Z3) ⇒ ΩSpin
t−s (B

2
Z3)

∧
3 .(5.47)

Since there is a short exact sequence of groups

1 −→ Z2 −→ Spin −→ SO −→ 1,(5.48)

we have a fibration

BZ2 BSpin

BSO

(5.49)

Take the localization at prime 3, we have a homotopy equivalence BSpin(3) ∼
BSO(3) since the localization of BZ2 at 3 is trivial. Take the Thom spectra,
we have a homotopy equivalence MSpin(3) ∼ MSO(3). Hence

H∗(MSpin,Z3) = H∗(MSO,Z3).(5.50)

We have the following

Theorem 47.

i ΩSpin
i (B2

Z3)
0 Z

1 Z2

2 Z2 × Z3

3 0
4 Z× Z3

5 0

The bordism invariants of ΩSpin
2 (B2Z3) are Arf and x′2.

The bordism invariants of ΩSpin
4 (B2Z3) are

σ
16 and x′22 .

Theorem 48.

i TPi(Spin× BZ3)
0 0
1 Z2

2 Z2 × Z3

3 Z

4 Z3

5 0



214 Zheyan Wan and Juven Wang

The 2d topological terms are Arf and x′2.

The 3d topological term is 1
48CS

(TM)
3 .

The 4d topological term is x′22 .

5.4.9. ΩPin+

d (B2Z3).

Exts,tA2
(H∗(MPin− ∧ (B2

Z3)+,Z2),Z2) ⇒ ΩPin+

t−s (B2
Z3)

∧
2 .(5.51)

Exts,tA3
(H∗(MPin+ ∧ (B2

Z3)+,Z3),Z3) ⇒ ΩPin−

t−s (B2
Z3)

∧
3 .(5.52)

Since MTPin+ = MPin− ∼ MSpin∧S1∧MTO(1) and H∗(MTO(1),Z3) =
0, we have H∗(MPin−,Z3) = 0, thus ΩPin+

d (B2Z3)
∧
3 = 0.

Since H∗(B2Z3,Z2) = Z2, we have ΩPin+

d (B2Z3)
∧
2 = ΩPin+

d .

Hence ΩPin+

d (B2Z3) = ΩPin+

d .

Theorem 49.

i ΩPin+

i (B2
Z3)

0 Z2

1 0
2 Z2

3 Z2

4 Z16

5 0

The bordism invariant of ΩPin+

2 (B2Z3) is w1η̃.
The bordism invariant of ΩPin+

3 (B2Z3) is w1Arf.
The bordism invariant of ΩPin+

4 (B2Z3) is η.

Theorem 50.

i TPi(Pin
+ × BZ3)

0 Z2

1 0
2 Z2

3 Z2

4 Z16

5 0

The 2d topological term is w1η̃.
The 3d topological term is w1Arf.
The 4d topological term is η.
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5.4.10. ΩPin−

d (B2Z3).

Exts,tA2
(H∗(MPin+ ∧ (B2

Z3)+,Z2),Z2) ⇒ ΩPin−

t−s (B2
Z3)

∧
2 .(5.53)

Exts,tA3
(H∗(MPin+ ∧ (B2

Z3)+,Z3),Z3) ⇒ ΩPin−

t−s (B2
Z3)

∧
3 .(5.54)

Since MTPin− = MPin+ ∼ MSpin∧S−1∧MO(1) and H∗(MO(1),Z3) = 0,
we have H∗(MPin+,Z3) = 0, thus ΩPin−

d (B2Z3)
∧
3 = 0. Since H∗(B2Z3,Z2) =

Z2, we have ΩPin−

d (B2Z3)
∧
2 = ΩPin−

d .

Hence ΩPin−

d (B2Z3) = ΩPin−

d .

Theorem 51.

i ΩPin−

i (B2Z3)
0 Z2

1 Z2

2 Z8

3 0
4 0
5 0

The bordism invariant of ΩPin−

2 (B2Z3) is ABK.

Theorem 52.

i TPi(Pin
− × BZ3)

0 Z2

1 Z2

2 Z8

3 0
4 0
5 0

The 2d topological term is ABK.

5.5. BGa : BPSU(2),BPSU(3)

5.5.1. ΩO
d (BPSU(2)).

H∗(MO,Z2)⊗H∗(BPSU(2),Z2)

= A2 ⊕ 2Σ2A2 ⊕ Σ3A2 ⊕ 4Σ4A2 ⊕ 3Σ5A2 ⊕ · · · .(5.55)
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Exts,tA2
(H∗(MO ∧ (BPSU(2))+,Z2),Z2) ⇒ ΩO

t−s(BPSU(2))∧2(5.56)

Theorem 53.

i ΩO
i (BPSU(2))

0 Z2

1 0
2 Z

2
2

3 Z2

4 Z
4
2

5 Z
3
2

The bordism invariants of ΩO
2 (BPSU(2)) are w′

2, w
2
1.

The bordism invariant of ΩO
3 (BPSU(2)) is w′

3 = w1w
′
2.

The bordism invariants of ΩO
4 (BPSU(2)) are w′2

2 , w
4
1, w

2
1w

′
2, w

2
2.

The bordism invariants of ΩO
5 (BPSU(2)) are w2w3, w

2
1w

′
3, w

′
2w

′
3.

Theorem 54.

i TPi(O× PSU(2))
0 Z2

1 0
2 Z2

2

3 Z2

4 Z
4
2

5 Z
3
2

The 2d topological terms are w′
2, w

2
1.

The 3d topological term is w′
3 = w1w

′
2.

The 4d topological terms are w′2
2 , w

4
1, w

2
1w

′
2, w

2
2.

The 5d topological terms are w2w3, w
2
1w

′
3, w

′
2w

′
3.

5.5.2. ΩSO
d (BPSU(2)).

Exts,tA2
(H∗(MSO ∧ (BPSU(2))+,Z2),Z2)

⇒ ΩSO
t−s(BPSU(2))∧2 .(5.57)

The E2 page is shown in Figure 36.
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Figure 36: ΩSO
∗ (BPSU(2))∧2 .

Theorem 55.

i ΩSO
i (BPSU(2))

0 Z

1 0
2 Z2

3 0
4 Z

2

5 Z2
2

The bordism invariant of ΩSO
2 (BPSU(2)) is w′

2.

The bordism invariants of ΩSO
4 (BPSU(2)) are σ, p′1.

The bordism invariants of ΩSO
5 (BPSU(2)) are w2w3, w

′
2w

′
3.

The manifold generators of ΩSO
4 (BPSU(2)) are (CP2, 3) and (CP2, LC+1)

where n is the trivial real n-plane bundle and LC is the tautological complex

line bundle over CP2. Note that the principal SO(3)-bundle P associated to
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LC + 1 is the induce bundle P ′ ×SO(2) SO(3) from P ′

S1 = SO(2) S5

CP
2

(5.58)

by the group homomorphism φ : SO(2) → SO(3) which is the inclusion map,
that means P = P ′×SO(2)SO(3) = (P ′×SO(3))/SO(2) which is the quotient
of P ′ × SO(3) by the right SO(2) action

(p, g)h = (ph, φ(h−1)g).(5.59)

p1(LC + 1) = p1(LC) = −c2(LC ⊗R C) = −c2(LC ⊕ L̄C)

= −c1(LC)c1(L̄C) = c1(LC)
2.(5.60)

So ∫
CP

2

p1(LC + 1) = 1.(5.61)

Theorem 56.

i TPi(SO× PSU(2))
0 0
1 0
2 Z2

3 Z2

4 0
5 Z

2
2

The 2d topological term is w′
2.

Since p′1 = dCS
(SO(3))
3 , the 3d topological terms are 1

3CS
(TM)
3 and

CS
(SO(3))
3 .
The 5d topological terms are w2w3, w

′
2w

′
3.

5.5.3. ΩSpin
d (BPSU(2)).

Exts,tA2
(H∗(MSpin ∧ (BPSU(2))+,Z2),Z2)

⇒ ΩSpin
t−s (BPSU(2))∧2 .(5.62)
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For t− s < 8,

Exts,tA2(1)
(H∗(BPSU(2),Z2),Z2) ⇒ ΩSpin

t−s (BPSU(2))∧2 .(5.63)

The A2(1)-module structure of H∗(BPSU(2),Z2) and the E2 page are

shown in Figure 37, 38.

1

w′
2

Figure 37: The A2(1)-module structure of H∗(BPSU(2),Z2).
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Figure 38: ΩSpin
∗ (BPSU(2))∧2 .
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Theorem 57.

i ΩSpin
i (BPSU(2))

0 Z

1 Z2

2 Z
2
2

3 0
4 Z

2

5 0

The bordism invariants of ΩSpin
2 (BPSU(2)) are w′

2 and Arf.
By Wu formula (2.52), w′2

2 = Sq2(w′
2) = (w2(TM) + w1(TM)2)w′

2 = 0
on Spin 4-manifolds, p′1 = w′2

2 = 0 mod 2 on Spin 4-manifolds.

The bordism invariants of ΩSpin
4 (BPSU(2)) are σ

16 and p′
1

2 .

Theorem 58.

i TPi(Spin× PSU(2))
0 0
1 Z2

2 Z
2
2

3 Z
2

4 0
5 0

The 2d topological terms are w′
2 and Arf.

The 3d topological terms are 1
48CS

(TM)
3 and 1

2CS
(SO(3))
3 .

5.5.4. ΩPin+

d (BPSU(2)).

Exts,tA2
(H∗(MTPin+ ∧ (BPSU(2))+,Z2),Z2)

⇒ ΩPin+

t−s (BPSU(2))∧2 .(5.64)

MTPin+ = MSpin ∧ S1 ∧MTO(1).
For t− s < 8,

Exts,tA2(1)
(H∗−1(MTO(1),Z2)⊗H∗(BPSU(2),Z2),Z2)

⇒ ΩPin+

t−s (BPSU(2))∧2 .(5.65)

The A2(1)-module structure of H∗−1(MTO(1),Z2) ⊗ H∗(BPSU(2),Z2)
and the E2 page are shown in Figure 39, 40.
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U 1

w′
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⊗
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′
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w′2
2 U

w2
1w

′
3U

Figure 39: The A2(1)-module structure of H∗−1(MTO(1),Z2) ⊗
H∗(BPSU(2),Z2).

Theorem 59.

i ΩPin+

i (BPSU(2))
0 Z2

1 0
2 Z

2
2

3 Z
2
2

4 Z4 × Z16

5 Z2

The bordism invariants of ΩPin+

2 (BPSU(2)) are w′
2 and w1η̃.
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Figure 40: ΩPin+

∗ (BPSU(2))∧2 .

The bordism invariants of ΩPin+

3 (BPSU(2)) are w1w
′
2 = w′

3 and w1Arf.

The bordism invariants of ΩPin+

4 (BPSU(2)) are qs(w
′
2) (this invariant has

another form, see the footnotes of Table 5) and η.

The bordism invariant of ΩPin+

5 (BPSU(2)) is w2
1w

′
3(= w′

2w
′
3).

Theorem 60.

i TPi(Pin
+ × PSU(2))

0 Z2

1 0
2 Z

2
2

3 Z
2
2

4 Z4 × Z16

5 Z2

The 2d topological terms are w′
2 and w1η̃.

The 3d topological terms are w1w
′
2 = w′

3 and w1Arf.

The 4d topological terms are qs(w
′
2) and η.

The 5d topological term is w2
1w

′
3(= w′

2w
′
3).
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5.5.5. ΩPin−

d (BPSU(2)).

Exts,tA2
(H∗(MTPin− ∧ (BPSU(2))+,Z2),Z2)

⇒ ΩPin−

t−s (BPSU(2))∧2 .(5.66)

MTPin− = MSpin ∧ S−1 ∧MO(1).
For t− s < 8,

Exts,tA2(1)
(H∗+1(MO(1),Z2)⊗H∗(BPSU(2),Z2),Z2)

⇒ ΩPin−

t−s (BPSU(2))∧2 .(5.67)

TheA2(1)-module structure of H∗+1(MO(1),Z2)⊗H∗(BPSU(2),Z2) and
the E2 page are shown in Figure 41, 42.

Theorem 61.

i ΩPin−

i (BPSU(2))
0 Z2

1 Z2

2 Z2 × Z8

3 Z2

4 Z2

5 0

The bordism invariants of ΩPin−

2 (BPSU(2)) are w′
2 and ABK.

The bordism invariant of ΩPin−

3 (BPSU(2)) is w1w
′
2 = w′

3.
The bordism invariant of ΩPin−

4 (BPSU(2)) is w2
1w

′
2.

Theorem 62.

i TPi(Pin
− × PSU(2))

0 Z2

1 Z2

2 Z2 × Z8

3 Z2

4 Z2

5 0

The 2d topological terms are w′
2 and ABK.

The 3d topological term is w1w
′
2 = w′

3.
The 4d topological term is w2

1w
′
2.
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U 1
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⊗
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2U
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3U
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′
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Figure 41: The A2(1)-module structure of H∗+1(MO(1),Z2) ⊗
H∗(BPSU(2),Z2).

5.5.6. ΩO
d (BPSU(3)).

Exts,tA3
(H∗(MO,Z3)⊗H∗(BPSU(3),Z3),Z3)

⇒ ΩO
t−s(BPSU(3))∧3 .(5.68)

Since H∗(MO,Z3) = 0, ΩO
d (BPSU(3))∧3 = 0.

Exts,tA2
(H∗(MO,Z2)⊗H∗(BPSU(3),Z2),Z2)

⇒ ΩO
t−s(BPSU(3))∧2 .(5.69)

H∗(MO,Z2)⊗H∗(BPSU(3),Z2)

= A2 ⊕ Σ2A2 ⊕ 3Σ4A2 ⊕ Σ5A2 ⊕ · · · .(5.70)
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Figure 42: ΩPin−

∗ (BPSU(2))∧2 .

Theorem 63.

i ΩO
i (BPSU(3))

0 Z2

1 0
2 Z2

3 0
4 Z

3
2

5 Z2

The bordism invariant of ΩO
2 (BPSU(3)) is w2

1.
The bordism invariants of ΩO

4 (BPSU(3)) are w4
1, w

2
2, c2( mod 2).

The bordism invariant of ΩO
5 (BPSU(3)) is w2w3.

Theorem 64.

i TPi(O× PSU(3))
0 Z2

1 0
2 Z2

3 0
4 Z

3
2

5 Z2
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The 2d topological term is w2
1.

The 4d topological terms are w4
1, w

2
2, c2( mod 2).

The 5d topological term is w2w3.

5.5.7. ΩSO
d (BPSU(3)).

Exts,tA2
(H∗(MSO,Z2)⊗H∗(BPSU(3),Z2),Z2)

⇒ ΩSO
t−s(BPSU(3))∧2 .(5.71)

H∗(BPSU(3),Z2) = Z2[c2, c3].(5.72)

The E2 page is shown in Figure 43.
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Figure 43: ΩSO
∗ (BPSU(3))∧2 .

Exts,tA3
(H∗(MSO,Z3)⊗H∗(BPSU(3),Z3),Z3)

⇒ ΩSO
t−s(BPSU(3))∧3 .(5.73)

H∗(BPSU(3),Z3)

= (Z3[z2, z8, z12]⊗ ΛZ3
(z3, z7))/(z2z3, z2z7, z2z8 + z3z7)(5.74)
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β(3,3)z2 = z3, β(3,3)z
2
2 = 2z2z3 = 0, β(3,3)z

3
2 = 0.

The E2 page is shown in Figure 44.
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Figure 44: ΩSO
∗ (BPSU(3))∧3 .

Theorem 65.

i ΩSO
i (BPSU(3))

0 Z

1 0
2 Z3

3 0
4 Z

2

5 Z2

6 Z

The bordism invariant of ΩSO
2 (BPSU(3)) is z2.

The bordism invariants of ΩSO
4 (BPSU(3)) are σ, c2.

The bordism invariant of ΩSO
5 (BPSU(3)) is w2w3.

The bordism invariant of ΩSO
6 (BPSU(3)) is c3.

The manifold generators of ΩSO
4 (BPSU(3)) are (CP2,CP2×PSU(3)) and
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(S4, H) where H is the induced bundle from the Hopf fibration H ′

S3 = SU(2) S7

S4

(5.75)

by the group homomorphism ρ : SU(2) → PSU(3) which is the composition
of the inclusion map SU(2) → SU(3) and the quotient map SU(3) → PSU(3),
that means H = H ′ ×SU(2) PSU(3) = (H ′ × PSU(3))/SU(2) which is the
quotient of H ′ × PSU(3) by the right SU(2) action

(p, g)h = (ph, ρ(h−1)g).(5.76)

Theorem 66.

i TPi(SO× PSU(3))
0 0
1 0
2 Z3

3 Z
2

4 0
5 Z× Z2

The 2d topological term is z2.

Since c2 = dCS
(PSU(3))
3 , the 3d topological terms are 1

3CS
(TM)
3 and

CS
(PSU(3))
3 .

Since c3 = dCS
(PSU(3))
5 , the 5d topological term are CS

(PSU(3))
5 and w2w3.

5.5.8. ΩSpin
d (BPSU(3)). For t− s < 8,

Exts,tA2(1)
(H∗(BPSU(3),Z2),Z2) ⇒ ΩSpin

t−s (BPSU(3))∧2 .(5.77)

The E2 page is shown in Figure 45.

Exts,tA3
(H∗(MSpin,Z3)⊗H∗(BPSU(3),Z3),Z3)

⇒ ΩSpin
t−s (BPSU(3))∧3 .(5.78)
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Figure 45: ΩSpin
∗ (BPSU(3))∧2 .

Since H∗(MSpin,Z3) = H∗(MSO,Z3), the E2 page is shown in Figure

46.

Theorem 67.

i ΩSpin
i (BPSU(3))

0 Z

1 Z2

2 Z2 × Z3

3 0
4 Z

2

5 0
6 Z

The bordism invariants of ΩSpin
2 (BPSU(3)) are Arf and z2.

The bordism invariants of ΩSpin
4 (BPSU(3)) are σ

16 and c2.

By Wu formula (2.52), c3 = Sq2c2 = (w2(TM)+w2
1(TM))c2 = 0 mod 2

on Spin 6-manifolds.

The bordism invariant of ΩSpin
6 (BPSU(3)) is c3

2 .
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Figure 46: ΩSpin
∗ (BPSU(3))∧3 .

Theorem 68.

i TPi(Spin× PSU(3))
0 0
1 Z2

2 Z2 × Z3

3 Z
2

4 0
5 Z

The 2d topological terms are Arf and z2.

The 3d topological terms are 1
48CS

(TM)
3 and CS

(PSU(3))
3 .

The 5d topological term is 1
2CS

(PSU(3))
5 .

5.5.9. ΩPin+

d (BPSU(3)).

Exts,tA3
(H∗(MPin−,Z3)⊗H∗(BPSU(3),Z3),Z3)

⇒ ΩPin+

t−s (BPSU(3))∧3 .(5.79)
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Since H∗(MPin−,Z3) = H∗(MO,Z3) = 0, ΩPin+

t−s (BPSU(3))∧3 = 0.

Exts,tA2
(H∗(MPin−,Z2)⊗H∗(BPSU(3),Z2),Z2)

⇒ ΩPin+

t−s (BPSU(3))∧2 .(5.80)

For t− s < 8,

Exts,tA2(1)
(H∗−1(MTO(1),Z2)⊗H∗(BPSU(3),Z2),Z2)

⇒ ΩPin+

t−s (BPSU(3))∧2 .(5.81)

The A2(1)-module structure of H∗−1(MTO(1),Z2) ⊗ H∗(BPSU(3),Z2)

and the E2 page are shown in Figure 47, 48.

Theorem 69.

i ΩPin+

i (BPSU(3))
0 Z2

1 0
2 Z2

3 Z2

4 Z2 × Z16

5 0

The bordism invariant of ΩPin+

2 (BPSU(3)) is w1η̃.

The bordism invariant of ΩPin+

3 (BPSU(3)) is w1Arf.

The bordism invariants of ΩPin+

4 (BPSU(3)) are c2( mod 2) and η.

Theorem 70.

i TPi(Pin
+ × PSU(3))

0 Z2

1 0
2 Z2

3 Z2

4 Z2 × Z16

5 0

The 2d topological term is w1η̃.

The 3d topological term is w1Arf.

The 4d topological terms are c2( mod 2) and η.
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Figure 47: The A2(1)-module structure of H∗−1(MTO(1),Z2) ⊗
H∗(BPSU(3),Z2).

5.5.10. ΩPin−

d (BPSU(3)).

Exts,tA3
(H∗(MPin+,Z3)⊗H∗(BPSU(3),Z3),Z3)

⇒ ΩPin−

t−s (BPSU(3))∧3 .(5.82)

Since H∗(MPin+,Z3) = H∗(MO,Z3) = 0, ΩPin−

t−s (BPSU(3))∧3 = 0.

Exts,tA2
(H∗(MPin+,Z2)⊗H∗(BPSU(3),Z2),Z2)

⇒ ΩPin−

t−s (BPSU(3))∧2 .(5.83)
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Figure 48: ΩPin+

∗ (BPSU(3))∧2 .

For t− s < 8,

Exts,tA2(1)
(H∗+1(MO(1),Z2)⊗H∗(BPSU(3),Z2),Z2)

⇒ ΩPin−

t−s (BPSU(3))∧2 .(5.84)

TheA2(1)-module structure of H∗+1(MO(1),Z2)⊗H∗(BPSU(3),Z2) and

the E2 page are shown in Figure 49, 50.

Theorem 71.

i ΩPin−

i (BPSU(3))
0 Z2

1 Z2

2 Z8

3 0
4 Z2

5 0

The bordism invariant of ΩPin−

2 (BPSU(3)) is ABK.

The bordism invariant of ΩPin−

4 (BPSU(3)) is c2( mod 2).
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U 1
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Figure 49: The A2(1)-module structure of H∗+1(MO(1),Z2) ⊗
H∗(BPSU(3),Z2).

i TPi(Pin
− × PSU(3))

0 Z2

1 Z2

2 Z8

3 0
4 Z2

5 0

Theorem 72.

The 2d topological term is ABK.

The 4d topological term is c2( mod 2).
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Figure 50: ΩPin−

∗ (BPSU(3))∧2 .

5.6. (BGa,B
2Gb) : (BZ2,B

2Z2), (BZ3,B
2Z3)

5.6.1. ΩO
d (BZ2×B2Z2). Since the computation involves no odd torsion,

we can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MO ∧ (BZ2 × B2
Z2)+,Z2),Z2)

⇒ πt−s(MO ∧ (BZ2 × B2
Z2)+)

∧
2 = ΩO

t−s(BZ2 × B2
Z2).(5.85)

H∗(MO,Z2)⊗H∗(BZ2 × B2
Z2,Z2)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ Z2[a, x2, x3, x5, x9, . . . ]

= A2 ⊕ ΣA2 ⊕ 3Σ2A2 ⊕ 4Σ3A2 ⊕ 8Σ4A2 ⊕ 12Σ5A2 ⊕ · · ·(5.86)

Theorem 73.

i ΩO
i (BZ2 × B2

Z2)
0 Z2

1 Z2

2 Z3
2

3 Z
4
2

4 Z
8
2

5 Z
12
2
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The bordism invariants of ΩO
2 (BZ2 × B2Z2) are a2, x2, w

2
1.

The bordism invariants of ΩO
3 (BZ2 ×B2Z2) are x3 = w1x2, ax2, aw

2
1, a

3.

The bordism invariants of ΩO
4 (BZ2 ×B2Z2) are w4

1, w
2
2, a

4, a2x2, ax3, x
2
2,

w2
1a

2, w2
1x2.

The bordism invariants of ΩO
5 (BZ2 × B2Z2) are

a5, a2x3, a
3x2, a

3w2
1, ax

2
2, aw

4
1, ax2w

2
1, aw

2
2, x2x3, w

2
1x3, x5, w2w3.

Theorem 74.

i TPi(O× Z2 × BZ2)
0 Z2

1 Z2

2 Z3
2

3 Z
4
2

4 Z
8
2

5 Z
12
2

The 2d topological terms are a2, x2, w
2
1.

The 3d topological terms are x3 = w1x2, ax2, aw
2
1, a

3.

The 4d topological terms are w4
1, w

2
2, a

4, a2x2, ax3, x
2
2, w

2
1a

2, w2
1x2.

The 5d topological terms are

a5, a2x3, a
3x2, a

3w2
1, ax

2
2, aw

4
1, ax2w

2
1, aw

2
2, x2x3, w

2
1x3, x5, w2w3.

5.6.2. ΩSO
d (BZ2×B2Z2). Since the computation involves no odd torsion,

we can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MSO ∧ (BZ2 × B2
Z2)+,Z2),Z2)

⇒ πt−s(MSO ∧ (BZ2 × B2
Z2)+)

∧
2 = ΩSO

t−s(BZ2 × B2
Z2).(5.87)

There is a differential d2 corresponding to the Bockstein homomorphism

β(2,4) : H∗(−,Z4) → H∗+1(−,Z2) associated to 0 → Z2 → Z8 → Z4 → 0

[51]. See 2.5 for the definition of Bockstein homomorphisms.

By (5.33), there is a differential such that d2(x2x3 + x5) = x22h
2
0.

The E2 page is shown in Figure 51.
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Figure 51: ΩSO
∗ (BZ2 × B2Z2).

Theorem 75.

i ΩSO
i (BZ2 × B2

Z2)
0 Z

1 Z2

2 Z2

3 Z
2
2

4 Z× Z2 × Z4

5 Z
6
2

The bordism invariant of ΩSO
2 (BZ2 × B2Z2) is x2.

The bordism invariants of ΩSO
3 (BZ2 × B2Z2) are ax2, a

3.

The bordism invariants of ΩSO
4 (BZ2 × B2Z2) are σ, ax3(= a2x2) and

P2(x2).

The bordism invariants of ΩSO
5 (BZ2 ×B2Z2) are ax22, a

5, x5, a
3x2, w2w3,

aw2
2.

Theorem 76.

The 2d topological term is x2.

The 3d topological terms are 1
3CS

(TM)
3 , ax2, a

3.

The 4d topological terms are ax3(= a2x2) and P2(x2).

The 5d topological terms are ax22, a
5, x5, a

3x2, w2w3, aw
2
2.
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i TPi(SO× Z2 × BZ2)
0 0
1 Z2

2 Z2

3 Z× Z
2
2

4 Z2 × Z4

5 Z6
2

5.6.3. ΩSpin
d (BZ2 × B2Z2). Since the computation involves no odd tor-

sion, we can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MSpin ∧ (BZ2 × B2
Z2)+,Z2),Z2)

⇒ πt−s(MSpin ∧ (BZ2 × B2
Z2)+)

∧
2 = ΩSpin

t−s (BZ2 × B2
Z2).(5.88)

For t− s < 8,

Exts,tA2(1)
(H∗(BZ2 × B2

Z2,Z2),Z2) ⇒ ΩSpin
t−s (BZ2 × B2

Z2).(5.89)

H∗(BZ2 × B2Z2,Z2) = Z2[a, x2, x3, x5, x9, . . . ] where Sq1x2 = x3,
Sq2x2 = x22, Sq

1x3 = 0, Sq2x3 = x5, Sq
1x5 = Sq2x22 = x23, Sq

2x5 = 0.
There is a differential d2 corresponding to the Bockstein homomorphism

β(2,4) : H∗(−,Z4) → H∗+1(−,Z2) associated to 0 → Z2 → Z8 → Z4 → 0
[51]. See 2.5 for the definition of Bockstein homomorphisms.

By (5.33), there is a differential such that d2(x2x3 + x5) = x22h
2
0.

The A2(1)-module structure of H∗(BZ2×B2Z2,Z2) and the E2 page are
shown in Figure 52, 53.

Theorem 77.

i ΩSpin
i (BZ2 × B2

Z2)
0 Z

1 Z
2
2

2 Z
3
2

3 Z2 × Z8

4 Z× Z
2
2

5 Z2

The bordism invariants of ΩSpin
2 (BZ2 × B2Z2) are x2,Arf, aη̃.

The bordism invariants of ΩSpin
3 (BZ2 × B2Z2) are ax2, aABK.

The bordism invariants of ΩSpin
4 (BZ2 × B2Z2) are σ

16 , ax3(= a2x2) and
P2(x2)

2 .

The bordism invariant of ΩSpin
5 (BZ2 × B2Z2) is a

3x2.
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1

a

1

x2

x2x3

⊗

=

1

a

x2

ax2

ax3

a3x2

Figure 52: The A2(1)-module structure of H∗(BZ2 × B2Z2,Z2).
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Figure 53: ΩSpin
∗ (BZ2 × B2Z2).

i TPi(Spin× Z2 × BZ2)
0 0
1 Z

2
2

2 Z
3
2

3 Z× Z2 × Z8

4 Z2
2

5 Z2

Theorem 78.

The 2d topological terms are x2,Arf, aη̃.

The 3d topological terms are 1
48CS

(TM)
3 , ax2, aABK.

The 4d topological terms are ax3(= a2x2) and
P2(x2)

2 .
The 5d topological term is a3x2.

5.6.4. ΩPin+

d (BZ2 ×B2Z2). Since the computation involves no odd tor-
sion, we can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MPin− ∧ (BZ2 × B2
Z2)+,Z2),Z2)

⇒ πt−s(MPin− ∧ (BZ2 × B2
Z2)+)

∧
2 = ΩPin+

t−s (BZ2 × B2
Z2).(5.90)

MPin− = MTPin+ ∼ MSpin ∧ S1 ∧MTO(1).
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For t− s < 8,

Exts,tA2(1)
(H∗−1(MTO(1),Z2)⊗H∗(BZ2 × B2

Z2,Z2),Z2)

⇒ ΩPin+

t−s (BZ2 × B2
Z2).(5.91)

The A2(1)-module structure of H∗−1(MTO(1),Z2)⊗H∗(BZ2×B2Z2,Z2)
and the E2 page are shown in Figure 54, 55.

Theorem 79.

i ΩPin+

i (BZ2 × B2
Z2)

0 Z2

1 Z2

2 Z
3
2

3 Z
5
2

4 Z
2
2 × Z4 × Z8 × Z16

5 Z
7
2

The bordism invariants of ΩPin+

2 (BZ2 × B2Z2) are w1a = a2, x2, w1η̃.

The bordism invariants of ΩPin+

3 (BZ2 × B2Z2) are a3, w1x2 = x3, ax2,
w1aη̃, w1Arf.

The bordism invariants of ΩPin+

4 (BZ2 × B2Z2) are ax3,
w1ax2(= a2x2 + ax3), qs(x2), w1a(ABK), η.

The bordism invariants of ΩPin+

5 (BZ2 × B2Z2) are

w4
1a, a

5(= w2
1a

3), w2
1x3(= x5), x2x3, w

2
1ax2(= ax22 + a2x3),

w1ax3(= a2x3), a
3x2.

Theorem 80.

i TPi(Pin
+ × Z2 × BZ2)

0 Z2

1 Z2

2 Z
3
2

3 Z
5
2

4 Z2
2 × Z4 × Z8 × Z16

5 Z
7
2

The 2d topological terms are w1a = a2, x2, w1η̃.

The 3d topological terms are a3, w1x2 = x3, ax2, w1aη̃, w1Arf.
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U 1

a
x2

x2x3

ax2

ax3

a3x2

⊗

=

U

aU

w1aU

a3U

w4
1aU a5U

x2U

w1x2U

x2
2U

w2
1x3Ux2x3U

ax2U

w1ax2U

w2
1ax2U

ax3U

w1ax3Ua3x2U

Figure 54: The A2(1)-module structure of H∗−1(MTO(1),Z2) ⊗ H∗(BZ2 ×
B2Z2,Z2).
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Figure 55: ΩPin+

∗ (BZ2 × B2Z2).

The 4d topological terms are ax3, w1ax2(= a2x2 + ax3), qs(x2),

w1a(ABK), η.

The 5d topological terms are

w4
1a, a

5(= w2
1a

3), w2
1x3(= x5), x2x3, w

2
1ax2(= ax22 + a2x3),

w1ax3(= a2x3), a
3x2.

5.6.5. ΩPin−

d (BZ2 ×B2Z2). Since the computation involves no odd tor-

sion, we can use the Adams spectral sequence

Es,t
2 = Exts,tA2

(H∗(MPin+ ∧ (BZ2 × B2
Z2)+,Z2),Z2)

⇒ πt−s(MPin+ ∧ (BZ2 × B2
Z2)+)

∧
2 = ΩPin−

t−s (BZ2 × B2
Z2).(5.92)

MPin+ = MTPin− ∼ MSpin ∧ S−1 ∧MO(1).

For t− s < 8,

Exts,tA2(1)
(H∗+1(MO(1),Z2)⊗H∗(BZ2 × B2

Z2,Z2),Z2)

⇒ ΩPin−

t−s (BZ2 × B2
Z2).(5.93)
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The A2(1)-module structure of H∗+1(MO(1),Z2)⊗H∗(BZ2 ×B2Z2,Z2)

and the E2 page are shown in Figure 56, 57.

Theorem 81.

i ΩPin−

i (BZ2 × B2
Z2)

0 Z2

1 Z
2
2

2 Z2 × Z4 × Z8

3 Z
4
2

4 Z
3
2

5 Z5
2

The bordism invariants of ΩPin−

2 (BZ2 × B2Z2) are x2, q(a),ABK. (q(a)

is explained in the footnotes of Table 2.)

The bordism invariants of ΩPin−

3 (BZ2×B2Z2) are a
3, w2

1a, x3 = w1x2,ax2.

The bordism invariants of ΩPin−

4 (BZ2 × B2Z2) are w2
1x2,

w1ax2(= a2x2 + ax3), ax3.

The bordism invariants of ΩPin−

5 (BZ2 × B2Z2) are w2
1a

3, x2x3, w
2
1ax2,

w1ax3(= a2x3), a
3x2.

Theorem 82.

i TPi(Pin
− × Z2 × BZ2)

0 Z2

1 Z
2
2

2 Z2 × Z4 × Z8

3 Z
4
2

4 Z
3
2

5 Z5
2

The 2d topological terms are x2, q(a),ABK.

The 3d topological terms are a3, w2
1a, x3 = w1x2, ax2.

The 4d topological terms are w2
1x2, w1ax2(= a2x2 + ax3), ax3.

The 5d topological terms are w2
1a

3, x2x3, w
2
1ax2, w1ax3(= a2x3), a

3x2.

5.6.6. ΩO
d (BZ3 × B2Z3).

Exts,tA2
(H∗(MO ∧ (BZ3 × B2

Z3)+,Z2),Z2)

⇒ ΩO
t−s(BZ3 × B2

Z3)
∧
2 .(5.94)
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U 1

a
x2

x2x3

ax2

ax3

a3x2

⊗

=

U
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a2U

a3U w2
1aU

w2
1a

3U

x2U

x3U

w2
1x2U

x2x3U

ax2U

w1ax2U

w2
1ax2U

ax3U

w1ax3Ua3x2U

Figure 56: The A2(1)-module structure of H∗+1(MO(1),Z2) ⊗ H∗(BZ2 ×
B2Z2,Z2).



246 Zheyan Wan and Juven Wang
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Figure 57: ΩPin−

∗ (BZ2 × B2Z2).

Exts,tA3
(H∗(MO ∧ (BZ3 × B2

Z3)+,Z3),Z3)

⇒ ΩO
t−s(BZ3 × B2

Z3)
∧
3 .(5.95)

Since H∗(MO,Z3) = 0, we have ΩO
d (BZ3 × B2Z3)

∧
3 = 0.

Since H∗(BZ3 × B2Z3,Z2) = Z2, we have ΩO
d (BZ3 × B2Z3)

∧
2 = ΩO

d .

Hence ΩO
d (BZ3 × B2Z3) = ΩO

d .

Theorem 83.

i ΩO
i (BZ3 × B2

Z3)
0 Z2

1 0
2 Z2

3 0
4 Z

2
2

5 Z2

The bordism invariant of ΩO
2 (BZ3 × B2Z3) is w

2
1.

The bordism invariants of ΩO
4 (BZ3 × B2Z3) are w4

1, w
2
2.

The bordism invariant of ΩO
5 (BZ3 × B2Z3) is w2w3.
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Theorem 84.

i TPi(O× Z3 × BZ3)
0 Z2

1 0
2 Z2

3 0
4 Z

2
2

5 Z2

The 2d topological term is w2
1.

The 4d topological terms are w4
1, w

2
2.

The 5d topological term is w2w3.

5.6.7. ΩSO
d (BZ3 × B2Z3).

Exts,tA2
(H∗(MSO ∧ (BZ3 × B2

Z3)+,Z2),Z2)

⇒ ΩSO
t−s(BZ3 × B2

Z3)
∧
2 .(5.96)

Since H∗(BZ3 × B2Z3,Z2) = Z2, we have ΩSO
d (BZ3 × B2Z3)

∧
2 = ΩSO

d .

Exts,tA3
(H∗(MSO ∧ (BZ3 × B2

Z3)+,Z3),Z3)

⇒ ΩSO
t−s(BZ3 × B2

Z3)
∧
3 .(5.97)

H∗(BZ3 × B2
Z3,Z3)

= Z3[b
′, x′2, x

′
8, . . . ]⊗ ΛZ3

(a′, x′3, x
′
7, . . . )(5.98)

β(3,3)a
′ = b′, β(3,3)x

′
2 = x′3, β(3,3)x

′2
2 = 2x′2x

′
3.

The E2 page is shown in Figure 58.
Hence we have the following

Theorem 85.

i ΩSO
i (BZ3 × B2

Z3)
0 Z

1 Z3

2 Z3

3 Z
2
3

4 Z× Z
2
3

5 Z2 × Z
2
3 × Z9
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Figure 58: ΩSO
∗ (BZ3 × B2Z3)

∧
3 .

The bordism invariant of ΩSO
2 (BZ3 × B2Z3) is x

′
2.

The bordism invariants of ΩSO
3 (BZ3 × B2Z3) are a′b′, a′x′2.

The bordism invariants of ΩSO
4 (BZ3×B2Z3) are σ, a

′x′3(= b′x′2) and x′22 .
The bordism invariants of ΩSO

5 (BZ3×B2Z3) are w2w3, a
′b′x′2,a

′x′22 ,P3(b
′).

Here P3 is the Postnikov square.

Theorem 86.

i TPi(SO× Z3 × BZ3)
0 0
1 Z3

2 Z3

3 Z× Z
2
3

4 Z
2
3

5 Z2 × Z
2
3 × Z9

The 2d topological term is x′2.

The 3d topological terms are 1
3CS

(TM)
3 , a′b′, a′x′2.

The 4d topological terms are a′x′3(= b′x′2) and x′22 .
The 5d topological terms are w2w3, a

′b′x′2, a
′x′22 ,P3(b

′).
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5.6.8. ΩSpin
d (BZ3 × B2Z3).

Exts,tA2
(H∗(MSpin ∧ (BZ3 × B2

Z3)+,Z2),Z2)

⇒ ΩSpin
t−s (BZ3 × B2

Z3)
∧
2 .(5.99)

Since H∗(BZ3 × B2Z3,Z2) = Z2, we have ΩSpin
d (BZ3 × B2Z3)

∧
2 = ΩSpin

d .

Exts,tA3
(H∗(MSpin ∧ (BZ3 × B2

Z3)+,Z3),Z3)

⇒ ΩSpin
t−s (BZ3 × B2

Z3)
∧
3 .(5.100)

Since

H∗(MSpin,Z3) = H∗(MSO,Z3),

we have the following

Theorem 87.

i ΩSpin
i (BZ3 × B2

Z3)
0 Z

1 Z2 × Z3

2 Z2 × Z3

3 Z
2
3

4 Z× Z
2
3

5 Z
2
3 × Z9

The bordism invariants of ΩSpin
2 (BZ3 × B2Z3) are Arf and x′2.

The bordism invariants of ΩSpin
3 (BZ3 × B2Z3) are a′b′, a′x′2.

The bordism invariants of ΩSpin
4 (BZ3 × B2Z3) are σ

16 , a
′x′3(= b′x′2) and

x′22 .

The bordism invariants of ΩSpin
5 (BZ3 × B2Z3) are a′b′x′2, a

′x′22 ,P3(b
′).

Theorem 88.

i TPi(Spin× Z3 × BZ3)
0 0
1 Z2 × Z3

2 Z2 × Z3

3 Z× Z
2
3

4 Z
2
3

5 Z
2
3 × Z9
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The 2d topological terms are Arf and x′2.

The 3d topological terms are 1
48CS

(TM)
3 , a′b′, a′x′2.

The 4d topological terms are a′x′3(= b′x′2) and x′22 .
The 5d topological terms are a′b′x′2, a

′x′22 ,P3(b
′).

5.6.9. ΩPin+

d (BZ3 × B2Z3).

Exts,tA2
(H∗(MPin− ∧ (BZ3 × B2

Z3)+,Z2),Z2)

⇒ ΩPin+

t−s (BZ3 × B2
Z3)

∧
2 .(5.101)

Exts,tA3
(H∗(MPin+ ∧ (BZ3 × B2

Z3)+,Z3),Z3)

⇒ ΩPin−

t−s (BZ3 × B2
Z3)

∧
3 .(5.102)

Since H∗(MPin−,Z3) = 0, we have ΩPin+

d (BZ3 × B2Z3)
∧
3 = 0.

Since H∗(BZ3 ×B2Z3,Z2) = Z2, we have ΩPin+

d (BZ3 ×B2Z3)
∧
2 = ΩPin+

d .

Hence ΩPin+

d (BZ3 × B2Z3) = ΩPin+

d .

Theorem 89.

i ΩPin+

i (BZ3 × B2
Z3)

0 Z2

1 0
2 Z2

3 Z2

4 Z16

5 0

The bordism invariant of ΩPin+

2 (BZ3 × B2Z3) is w1η̃.
The bordism invariant of ΩPin+

3 (BZ3 × B2Z3) is w1Arf.
The bordism invariant of ΩPin+

4 (BZ3 × B2Z3) is η.

Theorem 90.

i TPi(Pin
+ × Z3 × BZ3)

0 Z2

1 0
2 Z2

3 Z2

4 Z16

5 0
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The 2d topological term is w1η̃.

The 3d topological term is w1Arf.

The 4d topological term is η.

5.6.10. ΩPin−

d (BZ3 × B2Z3).

Exts,tA2
(H∗(MPin+ ∧ (BZ3 × B2

Z3)+,Z2),Z2)

⇒ ΩPin−

t−s (BZ3 × B2
Z3)

∧
2 .(5.103)

Exts,tA3
(H∗(MPin+ ∧ (BZ3 × B2

Z3)+,Z3),Z3)

⇒ ΩPin−

t−s (BZ3 × B2
Z3)

∧
3 .(5.104)

Since H∗(MPin+,Z3) = 0, we have ΩPin−

d (BZ3 × B2Z3)
∧
3 = 0.

Since H∗(BZ3 ×B2Z3,Z2) = Z2, we have ΩPin−

d (BZ3 ×B2Z3)
∧
2 = ΩPin−

d .

Hence ΩPin−

d (BZ3 × B2Z3) = ΩPin−

d .

Theorem 91.

i ΩPin−

i (BZ3 × B2Z3)
0 Z2

1 Z2

2 Z8

3 0
4 0
5 0

The bordism invariant of ΩPin−

2 (BZ3 × B2Z3) is ABK.

Theorem 92.

i TPi(Pin
− × Z3 × BZ3)

0 Z2

1 Z2

2 Z8

3 0
4 0
5 0

The 2d topological term is ABK.
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5.7. (BGa,B
2Gb) : (BPSU(2),B2Z2), (BPSU(3),B2Z3)

5.7.1. ΩO
d (BPSU(2) × B2Z2).

Exts,tA2
(H∗(MO,Z2)⊗H∗(BPSU(2)× B2

Z2,Z2),Z2)

⇒ ΩO
t−s(BPSU(2)× B2

Z2).(5.105)

H∗(BPSU(2),Z2) = Z2[w
′
2, w

′
3],(5.106)

H∗(B2
Z2,Z2) = Z2[x2, x3, x5, x9, . . . ],(5.107)

H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗.(5.108)

H∗(MO,Z2)⊗H∗(BPSU(2),Z2)⊗H∗(B2
Z2,Z2)

= A2 ⊕ 3Σ2A2 ⊕ 2Σ3A2 ⊕ 7Σ4A2 ⊕ 8Σ5A2 ⊕ · · · .(5.109)

Theorem 93.

i ΩO
i (BPSU(2)× B2

Z2)
0 Z2

1 0
2 Z3

2

3 Z
2
2

4 Z
7
2

5 Z
8
2

The bordism invariants of ΩO
2 (BPSU(2)× B2Z2) are w′

2, x2, w
2
1.

The bordism invariants of ΩO
3 (BPSU(2) × B2Z2) are x3 = w1x2, w

′
3 =

w1w
′
2.
The bordism invariants of ΩO

4 (BPSU(2)×B2Z2) are w
4
1, w

2
2, x

2
2, w

′2
2 , x2w

2
1,

w′
2w

2
1, w

′
2x2.

The bordism invariants of ΩO
5 (BPSU(2)× B2Z2) are w′

2w
′
3, x2w

′
3, w

2
1w

′
3,

w′
2x3, x2x3, w

2
1x3, x5, w2w3.

Theorem 94.

i TPi(O× PSU(2)× BZ2)
0 Z2

1 0
2 Z

3
2

3 Z
2
2

4 Z7
2

5 Z
8
2
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The 2d topological terms are w′
2, x2, w

2
1.

The 3d topological terms are x3 = w1x2, w
′
3 = w1w

′
2.

The 4d topological terms are w4
1, w

2
2, x

2
2, w

′2
2 , x2w

2
1, w

′
2w

2
1, w

′
2x2.

The 5d topological terms are w′
2w

′
3, x2w

′
3, w

2
1w

′
3, w

′
2x3, x2x3, w

2
1x3, x5,

w2w3.

5.7.2. ΩSO
d (BPSU(2) × B2Z2).

Exts,tA2
(H∗(MSO,Z2)⊗H∗(BPSU(2)× B2

Z2,Z2),Z2)

⇒ ΩSO
t−s(BPSU(2)× B2

Z2).(5.110)

There is a differential d2 corresponding to the Bockstein homomorphism

β(2,4) : H∗(−,Z4) → H∗+1(−,Z2) associated to 0 → Z2 → Z8 → Z4 → 0

[51]. See 2.5 for the definition of Bockstein homomorphisms.

By (5.33), there is a differential such that d2(x2x3 + x5) = x22h
2
0.

The E2 page is shown in Figure 59.

0 1 2 3 4 5 t− s

0

1

2

3

4

5

s

Figure 59: ΩSO
∗ (BPSU(2)× B2Z2).
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Theorem 95.

i ΩSO
i (BPSU(2)× B2

Z2)
0 Z

1 0
2 Z

2
2

3 0
4 Z

2 × Z2 × Z4

5 Z4
2

The bordism invariants of ΩSO
2 (BPSU(2)× B2Z2) are w′

2, x2.
The bordism invariants of ΩSO

4 (BPSU(2) × B2Z2) are σ, p′1, w
′
2x2 and

P2(x2).
The bordism invariants of ΩSO

5 (BPSU(2) × B2Z2) are w′
2w

′
3, x5,

w′
3x2(= w′

2x3), w2w3.

Theorem 96.

i TPi(SO× PSU(2)× BZ2)
0 0
1 0
2 Z2

2

3 Z
2

4 Z2 × Z4

5 Z
4
2

The 2d topological terms are w′
2, x2.

The 3d topological terms are 1
3CS

(TM)
3 , CS

(SO(3))
3 .

The 4d topological terms are w′
2x2 and P2(x2).

The 5d topological terms are w′
2w

′
3, x5, w

′
3x2(= w′

2x3), w2w3.

5.7.3. ΩSpin
d (BPSU(2) × B2Z2). For t− s < 8,

Exts,tA2(1)
(H∗(BPSU(2)× B2

Z2,Z2),Z2)

⇒ ΩSpin
t−s (BPSU(2)× B2

Z2).(5.111)

There is a differential d2 corresponding to the Bockstein homomorphism
β(2,4) : H∗(−,Z4) → H∗+1(−,Z2) associated to 0 → Z2 → Z8 → Z4 → 0
[51]. See 2.5 for the definition of Bockstein homomorphisms.

By (5.33), there is a differential such that d2(x2x3 + x5) = x22h
2
0.

The A2(1)-module structure of H∗(BPSU(2)×B2Z2,Z2) and the E2 page
is shown in Figure 60, 61.
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1

w′
2

1

x2

x2x3

⊗

=

1

w′
2

x2

x2x3

w′
2x2

w′
3x2

Figure 60: The A2(1)-module structure of H∗(BPSU(2)× B2Z2,Z2).

Theorem 97.

i ΩSpin
i (BPSU(2)× B2

Z2)
0 Z

1 Z2

2 Z
3
2

3 0
4 Z

2 × Z
2
2

5 Z2



256 Zheyan Wan and Juven Wang

0 1 2 3 4 5 t− s
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Figure 61: ΩSpin
∗ (BPSU(2)× B2Z2).

The bordism invariants of ΩSpin
2 (BPSU(2)× B2Z2) are w′

2, x2,Arf.

The bordism invariants of ΩSpin
4 (BPSU(2)×B2Z2) are

σ
16 ,

p′
1

2 , w
′
2x2 and

P2(x2)
2 .

The bordism invariant of ΩSpin
5 (BPSU(2)× B2Z2) is w

′
3x2(= w′

2x3).

Theorem 98.

i TPi(Spin× PSU(2)× BZ2)
0 0
1 Z2

2 Z
3
2

3 Z
2

4 Z
2
2

5 Z2

The 2d topological terms are w′
2, x2,Arf.

The 3d topological terms are 1
48CS

(TM)
3 , 1

2CS
(SO(3))
3 .

The 4d topological terms are w′
2x2 and P2(x2)

2 .

The 5d topological term is w′
3x2(= w′

2x3).



Higher anomalies, higher symmetries, and cobordisms I 257

5.7.4. ΩPin+

d (BPSU(2) × B2Z2). For t− s < 8,

Exts,tA2(1)
(H∗−1(MTO(1),Z2)⊗H∗(BPSU(2)× B2

Z2,Z2),Z2)(5.112)

⇒ ΩPin+

t−s (BPSU(2)× B2
Z2).

The A2(1)-module structure of H∗−1(MTO(1),Z2) ⊗ H∗(BPSU(2) ×
B2Z2,Z2) and the E2 page are shown in Figure 62, 63.

Theorem 99.

i ΩPin+

i (BPSU(2)× B2Z2)
0 Z2

1 0
2 Z

3
2

3 Z
3
2

4 Z2
4 × Z16 × Z2

5 Z
5
2

The bodism invariants of ΩPin+

2 (BPSU(2)× B2Z2) are w′
2, x2, w1η̃.

The bodism invariants of ΩPin+

3 (BPSU(2) × B2Z2) are w1w
′
2 = w′

3,
w1x2 = x3, w1Arf.

The bodism invariants of ΩPin+

4 (BPSU(2) × B2Z2) are qs(w
′
2), qs(x2), η,

w′
2x2.
The bodism invariants of ΩPin+

5 (BPSU(2)× B2Z2) are

w2
1w

′
3(= w′

2w
′
3), w

2
1x3(= x5), x2x3, w

′
3x2, w1w

′
2x2(= w′

2x3 + w′
3x2).

Theorem 100.

i TPi(Pin
+ × PSU(2)× BZ2)

0 Z2

1 0
2 Z

3
2

3 Z
3
2

4 Z
2
4 × Z16 × Z2

5 Z
5
2

The 2d topological terms are w′
2, x2, w1η̃.

The 3d topological terms are w1w
′
2 = w′

3, w1x2 = x3, w1Arf.
The 4d topological terms are qs(w

′
2), qs(x2), η, w

′
2x2.

The 5d topological terms are

w2
1w

′
3(= w′

2w
′
3), w

2
1x3(= x5), x2x3, w

′
3x2, w1w

′
2x2(= w′

2x3 + w′
3x2).
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U 1

w′
2

x2

x2x3

w′
2x2

w′
3x2

⊗

=

U

w′
2U

w1w
′
2U

w′2
2 U

w2
1w

′
3U

x2U

w1x2U

x2
2U

w2
1x3Ux2x3U

w′
2x2U

w1w
′
2x2U

w′
3x2U

Figure 62: The A2(1)-module structure of H∗−1(MTO(1),Z2) ⊗
H∗(BPSU(2)× B2Z2,Z2).
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0

1

2

3

4

5

s

Figure 63: ΩPin+

∗ (BPSU(2)× B2Z2).

5.7.5. ΩPin−

d (BPSU(2) × B2Z2). For t− s < 8,

Exts,tA2(1)
(H∗+1(MO(1),Z2)⊗H∗(BPSU(2)× B2

Z2,Z2),Z2)(5.113)

⇒ ΩPin−

t−s (BPSU(2)× B2
Z2).

The A2(1)-module structure of H∗+1(MO(1).Z2) ⊗ H∗(BPSU(2) ×
B2Z2,Z2) and the E2 page are shown in Figure 64, 65.

Theorem 101.

i ΩPin−

i (BPSU(2)× B2Z2)
0 Z2

1 Z2

2 Z
2
2 × Z8

3 Z
2
2

4 Z3
2

5 Z
3
2

The bordism invariants of ΩPin−

2 (BPSU(2)× B2Z2) are w′
2, x2,ABK.

The bordism invariants of ΩPin−

3 (BPSU(2) × B2Z2) are w1w
′
2 = w′

3,
w1x2 = x3.
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U 1

w′
2

x2

x2x3

w′
2x2

w′
3x2

⊗

=

U

w′
2U

w′
3U

w2
1w

′
2U

x2U

x3U

w2
1x2U

x2x3U

w′
2x2U

w1w
′
2x2U

w′
3x2U

Figure 64: TheA2(1)-module structure of H∗+1(MO(1),Z2)⊗H∗(BPSU(2)×
B2Z2,Z2).



Higher anomalies, higher symmetries, and cobordisms I 261
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Figure 65: ΩPin−

∗ (BPSU(2)× B2Z2).

The bordism invariants of ΩPin−

4 (BPSU(2)×B2Z2) are w
2
1w

′
2, w

2
1x2, w

′
2x2.

The bordism invariants of ΩPin−

5 (BPSU(2) × B2Z2) are x2x3, w
′
3x2,

w1w
′
2x2(= w′

2x3 + w′
3x2).

Theorem 102.

i TPi(Pin
− × PSU(2)× BZ2)

0 Z2

1 Z2

2 Z
2
2 × Z8

3 Z
2
2

4 Z
3
2

5 Z
3
2

The 2d topological terms are w′
2, x2,ABK.

The 3d topological terms are w1w
′
2 = w′

3, w1x2 = x3.
The 4d topological terms are w2

1w
′
2, w

2
1x2, w

′
2x2.

The 5d topological terms are x2x3, w
′
3x2, w1w

′
2x2(= w′

2x3 + w′
3x2).

5.7.6. ΩO
d (BPSU(3) × B2Z3).

Exts,tA3
(H∗(MO ∧ (BPSU(3)× B2

Z3)+,Z3),Z3)



262 Zheyan Wan and Juven Wang

⇒ ΩO
t−s(BPSU(3)× B2

Z3)
∧
3 .(5.114)

Since H∗(MO,Z3) = 0, ΩO
d (BPSU(3)× B2Z3)

∧
3 = 0.

Exts,tA2
(H∗(MO ∧ (BPSU(3)× B2

Z3)+,Z2),Z2)

⇒ ΩO
t−s(BPSU(3)× B2

Z3)
∧
2 .(5.115)

Since H∗(BPSU(3) × B2Z3,Z2) = H∗(BPSU(3),Z2), ΩO
d (BPSU(3) ×

B2Z3)
∧
2 = ΩO

d (BPSU(3))∧2 .

Theorem 103.

i ΩO
i (BPSU(3)× B2

Z3)
0 Z2

1 0
2 Z2

3 0
4 Z

3
2

5 Z2

The bordism invariant of ΩO
2 (BPSU(3)× B2Z3) is w

2
1.

The bordism invariants of ΩO
4 (BPSU(3)×B2Z3) are w

4
1, w

2
2, c2( mod 2).

The bordism invariant of ΩO
5 (BPSU(3)× B2Z3) is w2w3.

Theorem 104.

i TPi(O× PSU(3)× BZ3)
0 Z2

1 0
2 Z2

3 0
4 Z

3
2

5 Z2

The 2d topological term is w2
1.

The 4d topological terms are w4
1, w

2
2, c2( mod 2).

The 5d topological term is w2w3.

5.7.7. ΩSO
d (BPSU(3) × B2Z3).

Exts,tA2
(H∗(MSO ∧ (BPSU(3)× B2

Z3)+,Z2),Z2)

⇒ ΩSO
t−s(BPSU(3)× B2

Z3)
∧
2 .(5.116)
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Since H∗(BPSU(3) × B2Z3,Z2) = H∗(BPSU(3),Z2), ΩSO
d (BPSU(3) ×

B2Z3)
∧
2 = ΩSO

d (BPSU(3))∧2 .

Exts,tA3
(H∗(MSO ∧ (BPSU(3)× B2

Z3)+,Z3),Z3)

⇒ ΩSO
t−s(BPSU(3)× B2

Z3)
∧
3 .(5.117)

β(3,3)x
′
2 = x′3, β(3,3)z2 = z3, β(3,3)x

′2
2 = 2x′2x

′
3, β(3,3)(x

′
2z2) = x′2z3+x′3z2,

β(3,3)(x
′
2z3) = x′3z3 = −β(3,3)(x

′
3z2).

The E2 page is shown in Figure 66.
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Figure 66: ΩSO
∗ (BPSU(3)× B2Z3)

∧
3 .

Theorem 105.

i ΩSO
i (BPSU(3)× B2

Z3)
0 Z

1 0
2 Z2

3

3 0
4 Z

2 × Z
2
3

5 Z2 × Z3

The bordism invariants of ΩSO
2 (BPSU(3)× B2Z3) are x′2, z2.

The bordism invariants of ΩSO
4 (BPSU(3)×B2Z3) are σ, c2, x

′2
2 and x′2z2.
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The bordism invariants of ΩSO
5 (BPSU(3) × B2Z3) are w2w3,

z2x
′
3(= −z3x

′
2).

Theorem 106.

i TPi(SO× PSU(3)× BZ3)
0 0
1 0
2 Z

2
3

3 Z
2

4 Z
2
3

5 Z× Z2 × Z3

The 2d topological terms are x′2, z2.

The 3d topological terms are 1
3CS

(TM)
3 , CS

(PSU(3))
3 .

The 4d topological terms are x′22 and x′2z2.

The 5d topological terms are CS
(PSU(3))
5 , w2w3, z2x

′
3(= −z3x

′
2).

5.7.8. ΩSpin
d (BPSU(3) × B2Z3).

Exts,tA2
(H∗(MSpin ∧ (BPSU(3)× B2

Z3)+,Z2),Z2)

⇒ ΩSpin
t−s (BPSU(3)× B2

Z3)
∧
2 .(5.118)

Since H∗(BPSU(3) × B2Z3,Z2) = H∗(BPSU(3),Z2), Ω
Spin
d (BPSU(3) ×

B2Z3)
∧
2 = ΩSpin

d (BPSU(3))∧2 .

Exts,tA3
(H∗(MSpin ∧ (BPSU(3)× B2

Z3)+,Z3),Z3)

⇒ ΩSpin
t−s (BPSU(3)× B2

Z3)
∧
3 .(5.119)

Since H∗(MSO,Z3) = H∗(MSpin,Z3), ΩSpin
d (BPSU(3) × B2Z3)

∧
3 =

ΩSO
d (BPSU(3)× B2Z3)

∧
3 .

Theorem 107.

i ΩSpin
i (BPSU(3)× B2

Z3)
0 Z

1 Z2

2 Z2 × Z
2
3

3 0
4 Z

2 × Z
2
3

5 Z3
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The bordism invariants of ΩSpin
2 (BPSU(3)× B2Z3) are Arf, x′2, z2.

The bordism invariants of ΩSpin
4 (BPSU(3) × B2Z3) are σ

16 , c2, x
′2
2 and

x′2z2.

The bordism invariant of ΩSpin
5 (BPSU(3)× B2Z3) is z2x

′
3(= −z3x

′
2).

Theorem 108.

i TPi(Spin× PSU(3)× BZ3)
0 0

1 Z2

2 Z2 × Z2
3

3 Z
2

4 Z2
3

5 Z× Z3

The 2d topological terms are Arf, x′2, z2.

The 3d topological terms are 1
48CS

(TM)
3 , CS

(PSU(3))
3 .

The 4d topological terms are x′22 and x′2z2.

The 5d topological terms are 1
2CS

(PSU(3))
5 , z2x

′
3(= −z3x

′
2).

5.7.9. ΩPin+

d (BPSU(3) × B2Z3).

Exts,tA3
(H∗(MPin− ∧ (BPSU(3)× B2

Z3)+,Z3),Z3)

⇒ ΩPin+

t−s (BPSU(3)× B2
Z3)

∧
3 .(5.120)

Since H∗(MPin−,Z3) = 0, ΩPin+

d (BPSU(3)× B2Z3)
∧
3 = 0.

Exts,tA2
(H∗(MPin− ∧ (BPSU(3)× B2

Z3)+,Z2),Z2)

⇒ ΩPin+

t−s (BPSU(3)× B2
Z3)

∧
2 .(5.121)

Since H∗(BPSU(3) × B2Z3,Z2) = H∗(BPSU(3),Z2), Ω
Pin+

d (BPSU(3) ×
B2Z3)

∧
2 = ΩPin+

d (BPSU(3))∧2 .
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Theorem 109.

i ΩPin+

i (BPSU(3)× B2Z3)
0 Z2

1 0
2 Z2

3 Z2

4 Z2 × Z16

5 0

The bordism invariant of ΩPin+

2 (BPSU(3)× B2Z3) is w1η̃.

The bordism invariant of ΩPin+

3 (BPSU(3)× B2Z3) is w1Arf.

The bordism invariants of ΩPin+

4 (BPSU(3)×B2Z3) are c2( mod 2) and η.

Theorem 110.

i TPi(Pin
+ × PSU(3)× BZ3)

0 Z2

1 0
2 Z2

3 Z2

4 Z2 × Z16

5 0

The 2d topological term is w1η̃.

The 3d topological term is w1Arf.

The 4d topological terms are c2( mod 2) and η.

5.7.10. ΩPin−

d (BPSU(3) × B2Z3).

Exts,tA3
(H∗(MPin+ ∧ (BPSU(3)× B2

Z3)+,Z3),Z3)

⇒ ΩPin−

t−s (BPSU(3)× B2
Z3)

∧
3 .(5.122)

Since H∗(MPin+,Z3) = 0, ΩPin−

d (BPSU(3)× B2Z3)
∧
3 = 0.

Exts,tA2
(H∗(MPin+ ∧ (BPSU(3)× B2

Z3)+,Z2),Z2)

⇒ ΩPin−

t−s (BPSU(3)× B2
Z3)

∧
2 .(5.123)

Since H∗(BPSU(3) × B2Z3,Z2) = H∗(BPSU(3),Z2), Ω
Pin−

d (BPSU(3) ×
B2Z3)

∧
2 = ΩPin−

d (BPSU(3))∧2 .
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Theorem 111.

i ΩPin−

i (BPSU(3)× B2
Z3)

0 Z2

1 Z2

2 Z8

3 0
4 Z2

5 0

The bordism invariant of ΩPin−

2 (BPSU(3)× B2Z3) is ABK.
The bordism invariant of ΩPin−

4 (BPSU(3)× B2Z3) is c2( mod 2).

Theorem 112.

i TPi(Pin
− × PSU(3)× BZ3)

0 Z2

1 Z2

2 Z8

3 0
4 Z2

5 0

The 2d topological term is ABK.
The 4d topological term is c2( mod 2).

6. More computation of O/SO bordism groups

6.1. Summary

Below we use the following notations, all cohomology class are pulled back
to the d-manifold M along the maps given in the definition of cobordism
groups:
• wi is the Stiefel-Whitney class of the tangent bundle of M ,
• a is the generator of H1(BZ2,Z2),
• a′ is the generator of H1(BZ3,Z3), b

′ = β(3,3)a
′,

• x2 is the generator of H2(B2Z2,Z2), x3 = Sq1x2, x5 = Sq2x3,
• x′2 is the generator of H2(B2Z3,Z3), x

′
3 = β(3,3)x

′
2,

• x′′2 is the generator of H2(B2Z4,Z4), x
′′
3 = β(2,4)x

′′
2, x

′′
5 = Sq2x′′3,

• w′
i = wi(O(n)) ∈ Hi(BO(n),Z2) is the Stiefel-Whitney class of the princi-

pal O(n) bundle,
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• p′1 = p1(O(n)) ∈ H4(BO(n),Z2) is the first Pontryagin class of the princi-
pal O(n) bundle,
• z2 = w2(PSU(3)) ∈ H2(BPSU(3),Z3) is the generalized Stiefel-Whitney
class of the principal PSU(3) bundle, z3 = β(3,3)z2.

• z′2 = w2(PSU(4)) ∈ H2(BPSU(4),Z4) is the generalized Stiefel-Whitney
class of the principal PSU(4) bundle, z′3 = β(2,4)z

′
2.

• For n > 1, we also use the notation a for the generator of H1(BZ2n ,Z2n),
ã = a mod 2, b is the generator of H2(BZ2n ,Z2n), b̃ = b mod 2 and
b̃ = β(2,2n)a.

• For n > 1, we also use the notation a′ for the generator of H1(BZ3n ,Z3n),
ã′ = a′ mod 3, b′ is the generator of H2(BZ3n ,Z3n), b̃′ = b′ mod 3 and
b̃′ = β(3,3n)a

′.
• P2 is the Pontryagin square (see 1.5).
• P3 is the Postnikov square (see 1.5).
Convention: All product between cohomology classes are cup product.

Table 21: 2d bordism groups-3

ΩH
d (−) BO(3) BO(4) BO(5) B(Z2 � PSU(3)) B(Z2 � PSU(4))

2 SO
Z2:
w′

2

Z2:
w′

2

Z2:
w′

2

Z3:
z2

Z4:
z′2

2 O
Z
3
2:

w2
1,

w′2
1 , w

′
2

Z
3
2:

w2
1,

w′2
1 , w

′
2

Z
3
2:

w2
1,

w′2
1 , w

′
2

Z
2
2:

w2
1, a

2

Z
2
2:

w2
1, a

2,
z̃′2

Table 22: 2d bordism groups-4

ΩH
d (−) B2

Z4 BZ4 × B2
Z2 BZ6 × B2

Z3 BZ8 × B2
Z2 BZ18 × B2

Z3

2 SO
Z4:
x′′
2

Z2:
x2

Z3:
x′
2

Z2:
x2

Z3:
x′
2

2 O
Z
2
2:

w2
1, x̃

′′
2

Z
3
2:

w2
1, b̃,

x2

Z
2
2:

w2
1, a

2

Z
3
2:

w2
1, b̃,

x2

Z
2
2:

w2
1, a

2

Table 23: 3d bordism groups-3

ΩH
d (−) BO(3) BO(4) BO(5)

3 SO
Z
2
2:

w′3
1 ,

w′
1w

′
2 = w′

3

Z
2
2:

w′3
1 ,

w′
1w

′
2 = w′

3

Z
2
2:

w′3
1 ,

w′
1w

′
2 = w′

3

3 O
Z
4
2:

w′
1w

2
1, w

′3
1 ,

w′
1w

′
2, w

′
3

Z
4
2:

w′
1w

2
1, w

′3
1 ,

w′
1w

′
2, w

′
3

Z
4
2:

w′
1w

2
1, w

′3
1 ,

w′
1w

′
2, w

′
3
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Table 24: 3d bordism groups-4

ΩH
d (−) B(Z2 � PSU(3)) B(Z2 � PSU(4))

3 SO
Z2:
a3

Z2
2:

a3, az̃′2

3 O
Z
2
2:

a3, aw2
1

Z
4
2:

a3, aw2
1,

z′3, az̃
′
2

Table 25: 3d bordism groups-5

ΩH
d (−) B2Z4 BZ4 × B2Z2 BZ6 × B2Z3 BZ8 × B2Z2 BZ18 × B2Z3

3 SO 0
Z4 ×Z2:
ab, ãx2

Z
2
3 × Z2:

a′b′, a′x′
2,

a3

Z8 ×Z2:
ab, ãx2

Z9×Z3×
Z2:
a′b′, ã′x′

2,
a3

3 O
Z2:
x′′
3

Z
4
2:

ãb̃, x3,
ãx2, ãw

2
1

Z2
2:

a3, aw2
1

Z
4
2:

ãb̃, x3,
ãx2, ãw

2
1

Z2
2:

a3, aw2
1

Table 26: 4d bordism groups-3

ΩH
d (−) BO(3) BO(4) BO(5)

4 SO
Z
2 × Z2:

σ, p′1,
w′2

1 w
′
2

Z
2 × Z

2
2:

σ, p′1,
w′2

1 w
′
2, w

′
4

Z
2 × Z

2
2:

σ, p′1,
w′2

1 w
′
2, w

′
4

4 O

Z
8
2:

w4
1, w

2
2,

w2
1w

′2
1 , w

2
1w

′
2,

w′
1w

′
3, w

′2
1 w

′
2,

w′4
1 , w

′2
2

Z8
2:

w4
1, w

2
2,

w2
1w

′2
1 , w

2
1w

′
2,

w′
1w

′
3, w

′2
1 w

′
2,

w′4
1 , w

′2
2 ,

w′
4

Z8
2:

w4
1, w

2
2,

w2
1w

′2
1 , w

2
1w

′
2,

w′
1w

′
3, w

′2
1 w

′
2,

w′4
1 , w

′2
2 ,

w′
4

Table 27: 4d bordism groups-4

ΩH
d (−) B2

Z4 BZ4 × B2
Z2 BZ6 × B2

Z3

4 SO
Z× Z8:
σ,P2(x

′′
2)

Z × Z4 ×
Z2:
σ,P2(x2),
b̃x2

Z× Z
2
3:

σ, a′x′
3 =

b′x′
2,

x′2
2

4 O
Z
4
2:

w4
1, w

2
2,

w2
1x̃

′′
2 , x̃

′′2
2

Z
8
2:

ãx3, b̃x2,
b̃2, x2

2,
w4

1, w
2
2,

b̃w2
1, x2w

2
1

Z
4
2:

w4
1, w

2
2,

a4, a2w2
1
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Table 28: 4d bordism groups-5

ΩH
d (−) BZ8 × B2Z2 BZ18 × B2Z3

4 SO

Z × Z4 ×
Z2:
σ,P2(x2),
b̃x2

Z× Z
2
3:

σ, b̃′x′
2,

x′2
2

4 O

Z
8
2:

ãx3, b̃x2,
b̃2, x2

2,
w4

1, w
2
2,

b̃w2
1, x2w

2
1

Z
4
2:

w4
1, w

2
2,

a4, a2w2
1

Table 29: 5d bordism groups-3

ΩH
d (−) BO(3) BO(4) BO(5)

5 SO

Z
6
2:

w2w3, w
2
2w

′
1,

w′
2w

′
3, w

′
1w

′2
2 ,

w′2
1 w

′
3 =

w′3
1 w

′
2, w

′5
1

Z
6
2:

w2w3, w
2
2w

′
1,

w′
2w

′
3, w

′
1w

′2
2 ,

w′2
1 w

′
3 =

w′3
1 w

′
2, w

′5
1

Z
7
2:

w2w3, w
2
2w

′
1,

w′
2w

′
3, w

′
1w

′2
2 ,

w′2
1 w

′
3 =

w′3
1 w

′
2, w

′5
1 ,

w′
1w

′
4 = w′

5

5 O

Z
11
2 :

w2w3, w
2
2w

′
1,

w4
1w

′
1, w

2
1w

′3
1 ,

w2
1w

′
1w

′
2, w

2
1w

′
3,

w′
2w

′
3, w

′
1w

′2
2 ,

w′2
1 w

′
3, w

′3
1 w

′
2,

w′5
1

Z
12
2 :

w2w3, w
2
2w

′
1,

w4
1w

′
1, w

2
1w

′3
1 ,

w2
1w

′
1w

′
2, w

2
1w

′
3,

w′
2w

′
3, w

′
1w

′2
2 ,

w′2
1 w

′
3, w

′3
1 w

′
2,

w′5
1 , w

′
1w

′
4

Z
13
2 :

w2w3, w
2
2w

′
1,

w4
1w

′
1, w

2
1w

′3
1 ,

w2
1w

′
1w

′
2, w

2
1w

′
3,

w′
2w

′
3, w

′
1w

′2
2 ,

w′2
1 w

′
3, w

′3
1 w

′
2,

w′5
1 , w

′
1w

′
4,

w′
5

6.2. B2Z4

6.2.1. ΩO
d (B2Z4).

Exts,tA2
(H∗(MO,Z2)⊗H∗(B2

Z4,Z2),Z2) ⇒ ΩO
t−s(B

2
Z4)(6.1)

H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗(6.2)

where y∗2 = w2
1, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc.

H∗(B2
Z4,Z2) = Z2[x̃

′′
2, x

′′
3, x

′′
5, x

′′
9, . . . ](6.3)

where x̃′′2 = x′′2 mod 2, x′′2 ∈ H2(B2Z4,Z4), x′′3 = β(2,4)x
′′
2, x′′5 = Sq2x′′3,
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Table 30: 5d bordism groups-4

ΩH
d (−) B2Z4 BZ4 × B2Z2 BZ6 × B2Z3

5 SO
Z
2
2:

w2w3, x
′′
5

Z3
4 × Z3

2:
aP2(x2), ab

2,
a(σ
mod 4), x5 =
x2x3,
ãb̃x2, w2w3

Z
3
2 × Z

2
3 × Z9:

a5, aw2
2,

w2w3, a
′b′x′

2

a′x′2
2 ,P3(b

′)

5 O
Z
4
2:

w2w3, w
2
1x

′′
3 ,

x̃′′
2x

′′
3 , x

′′
5

Z
12
2 :

ãx2
2, b̃x3,

x2x3, ãb̃
2,

x5, ãb̃x2,
w2w3, ãw

2
2,

ãw4
1, ãb̃w

2
1,

x3w
2
1 =

w3
1x2, ãx2w

2
1

Z
5
2:

a5, a3w2
1,

aw4
1, aw

2
2,

w2w3

Table 31: 5d bordism groups-5

ΩH
d (−) BZ8 × B2

Z2 BZ18 × B2
Z3

5 SO

Z4 × Z
2
8 × Z

3
2:

(a
mod 4)P2(x2), ab

2,
a(σ mod 8), x5 =
x2x3,
ãb̃x2, w2w3

Z3
2 × Z3

3 × Z27:
a5, aw2

2,
w2w3, ã

′(σ
mod 3),
ã′b̃′x′

2, ã
′x′2

2 ,
P3(b

′)

5 O

Z12
2 :

ãx2
2, b̃x3,

x2x3, ãb̃
2,

x5, ãb̃x2,
w2w3, ãw

2
2,

ãw4
1, ãb̃w

2
1,

x3w
2
1 =

w3
1x2, ãx2w

2
1

Z
5
2:

a5, a3w2
1,

aw4
1, aw

2
2,

w2w3

x′′9 = Sq4x′′5, etc.

H∗(MO,Z2)⊗H∗(B2
Z4,Z2)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ Z2[x̃

′′
2, x

′′
3, x

′′
5, x

′′
9, . . . ](6.4)

= A2 ⊕ 2Σ2A2 ⊕ Σ3A2 ⊕ 4Σ4A2 ⊕ 4Σ5A2 ⊕ · · ·

Hence we have the following theorem
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Theorem 113.

i ΩO
i (B

2
Z4)

0 Z2

1 0
2 Z

2
2

3 Z2

4 Z
4
2

5 Z4
2

The 2d bordism invariants are w2
1, x̃

′′
2.

The 3d bordism invariant is x′′3.
The 4d bordism invariants are w4

1, w
2
2, w

2
1x̃

′′
2, x̃

′′2
2 .

The 5d bordism invariants are w2w3, w
2
1x

′′
3, x̃

′′
2x

′′
3, x

′′
5.

6.2.2. ΩSO
d (B2Z4).

Exts,tA2
(H∗(MSO,Z2)⊗H∗(B2

Z4,Z2),Z2) ⇒ ΩSO
t−s(B

2
Z4)(6.5)

H∗(MSO,Z2) = A2/A2Sq
1 ⊕ Σ4A2/A2Sq

1 ⊕ Σ5A2 ⊕ · · ·(6.6)

Note that Sq1x̃′′2 = 2β(2,4)x
′′
2 = 0, β(2,4)(x

′′
2) =

1
4δx

′′
2 = x′′3, β(2,4)(x

′′2
2 ) =

2x′′2x
′′
3 = 2x̃′′2x

′′
3 = 0, Sq1(x̃′′22 ) = 2β(2,4)(x

′′2
2 ) = 0, Sq1x′′3 = 0, Sq1(x̃′′2x

′′
3) = 0,

Sq1x′′5 = Sq1Sq2β(2,4)x
′′
2 = Sq3β(2,4)x

′′
2 = (β(2,4)x

′′
2)

2 = x′′23 . We have used
the properties of Bockstein homomorphisms, (2.50) and the Adem relations
(2.67).

Also note that

β(2,8)P2(x
′′
2) =

1

8
δP2(x

′′
2) mod 2

=
1

8
δ(x′′2 ∪ x′′2 + x′′2 ∪

1

δx′′2)

=
1

8
(δx′′2 ∪ x′′2 + x′′2 ∪ δx′′2 + δ(x′′2 ∪

1

δx′′2))

=
1

8
(2x′′2 ∪ δx′′2 + δx′′2 ∪

1

δx′′2)

= x′′2 ∪ (
1

4
δx′′2) + 2(

1

4
δx′′2) ∪

1

(
1

4
δx′′2)

= x′′2β(2,4)x
′′
2 + 2β(2,4)x

′′
2 ∪

1

β(2,4)x
′′
2

= x′′2β(2,4)x
′′
2 + 2Sq2β(2,4)x

′′
2

= x̃′′2x
′′
3 + 2x′′5

= x̃′′2x
′′
3(6.7)
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We have used β(2,8) =
1
8δ mod 2, the Steenrod’s formula (2.12), β(2,4) =

1
4δ

mod 2, and the definition Sqkxn = xn ∪
n−k

xn.

There is a differential dn corresponding to the Bockstein homomorphism
β(2,2n) : H

∗(−,Z2n) → H∗+1(−,Z2) associated to 0 → Z2 → Z2n+1 → Z2n →
0 [51]. See 2.5 for the definition of Bockstein homomorphisms.

So there are differentials such that d2(x
′′
3) = x̃′′2h

2
0, d3(x̃

′′
2x

′′
3) = x̃′′22 h30.

The E2 page is shown in Figure 67.

0 1 2 3 4 5 t− s

0

1

2

3

4

5

s

Figure 67: ΩSO
∗ (B2Z4).

Hence we have the following theorem

Theorem 114.

i ΩSO
i (B2

Z4)
0 Z

1 0
2 Z4

3 0
4 Z× Z8

5 Z
2
2

The 2d bordism invariant is x′′2.
The 4d bordism invariants are σ,P2(x

′′
2).

The 5d bordism invariants are w2w3, x
′′
5.
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6.3. BO(3)

6.3.1. ΩO
d (BO(3)).

Exts,tA2
(H∗(MO,Z2)⊗H∗(BO(3),Z2),Z2) ⇒ ΩO

t−s(BO(3))(6.8)

H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗(6.9)

where y∗2 = w2
1, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc.

H∗(BO(3),Z2) = Z2[w
′
1, w

′
2, w

′
3](6.10)

H∗(MO,Z2)⊗H∗(BO(3),Z2)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ Z2[w

′
1, w

′
2, w

′
3](6.11)

= A2 ⊕ ΣA2 ⊕ 3Σ2A2 ⊕ 4Σ3A2 ⊕ 8Σ4A2 ⊕ 11Σ5A2 ⊕ · · ·

Hence we have the following theorem

Theorem 115.

i ΩO
i (BO(3))

0 Z2

1 Z2

2 Z
3
2

3 Z
4
2

4 Z
8
2

5 Z
11
2

The 2d bordism invariants are w2
1, w

′2
1 , w

′
2.

The 3d bordism invariant are w′
1w

2
1, w

′3
1 , w

′
1w

′
2, w

′
3.

The 4d bordism invariants are w4
1, w

2
2, w

2
1w

′2
1 , w

2
1w

′
2, w

′
1w

′
3, w

′2
1 w

′
2, w

′4
1 ,w

′2
2 .

The 5d bordism invariants are

w2w3, w
2
2w

′
1, w

4
1w

′
1, w

2
1w

′3
1 , w

2
1w

′
1w

′
2, w

2
1w

′
3, w

′
2w

′
3, w

′
1w

′2
2 , w

′2
1 w

′
3, w

′3
1 w

′
2, w

′5
1 .

6.3.2. ΩSO
d (BO(3)).

Exts,tA2
(H∗(MSO,Z2)⊗H∗(BO(3),Z2),Z2) ⇒ ΩSO

t−s(BO(3))(6.12)

H∗(MSO,Z2) = A2/A2Sq
1 ⊕ Σ4A2/A2Sq

1 ⊕ Σ5A2 ⊕ · · ·(6.13)

H∗(BO(3),Z2) = Z2[w
′
1, w

′
2, w

′
3](6.14)
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0 1 2 3 4 5 t− s

0

1

2

3

4

5

s

Figure 68: ΩSO
∗ (BO(3)).

where Sq1w′
2 = w′

1w
′
2 + w′

3, Sq
1w′

3 = w′
1w

′
3.

The E2 page is shown in Figure 68.

Hence we have the following theorem

Theorem 116.

i ΩSO
i (BO(3))

0 Z

1 Z2

2 Z2

3 Z
2
2

4 Z2 × Z2

5 Z
6
2

The 2d bordism invariant is w′
2.

The 3d bordism invariants are w′3
1 , w

′
1w

′
2 = w′

3.

The 4d bordism invariants are σ, p′1, w
′2
1 w

′
2.

The 5d bordism invariants are w2w3, w
2
2w

′
1, w

′
2w

′
3, w

′
1w

′2
2 , w

′2
1 w

′
3 =

w′3
1 w

′
2, w

′5
1 .
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6.4. BO(4)

6.4.1. ΩO
d (BO(4)).

Exts,tA2
(H∗(MO,Z2)⊗H∗(BO(4),Z2),Z2) ⇒ ΩO

t−s(BO(4))(6.15)

H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗(6.16)

where y∗2 = w2
1, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc.

H∗(BO(4),Z2) = Z2[w
′
1, w

′
2, w

′
3, w

′
4](6.17)

H∗(MO,Z2)⊗H∗(BO(4),Z2)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ Z2[w

′
1, w

′
2, w

′
3, w

′
4](6.18)

= A2 ⊕ ΣA2 ⊕ 3Σ2A2 ⊕ 4Σ3A2 ⊕ 9Σ4A2 ⊕ 12Σ5A2 ⊕ · · ·

Hence we have the following theorem

Theorem 117.

i ΩO
i (BO(4))

0 Z2

1 Z2

2 Z
3
2

3 Z
4
2

4 Z9
2

5 Z
12
2

The 2d bordism invariants are w2
1, w

′2
1 , w

′
2.

The 3d bordism invariant are w′
1w

2
1, w

′3
1 , w

′
1w

′
2, w

′
3.

The 4d bordism invariants are w4
1, w

2
2, w

2
1w

′2
1 , w

2
1w

′
2, w

′
1w

′
3, w

′2
1 w

′
2, w

′4
1 ,

w′2
2 , w

′
4.

The 5d bordism invariants are

w2w3, w
2
2w

′
1, w

4
1w

′
1, w

2
1w

′3
1 , w

2
1w

′
1w

′
2, w

2
1w

′
3, w

′
2w

′
3, w

′
1w

′2
2 , w

′2
1 w

′
3, w

′3
1 w

′
2,

w′5
1 , w

′
1w

′
4.
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6.4.2. ΩSO
d (BO(4)).

Exts,tA2
(H∗(MSO,Z2)⊗H∗(BO(4),Z2),Z2) ⇒ ΩSO

t−s(BO(4))(6.19)

H∗(MSO,Z2) = A2/A2Sq
1 ⊕ Σ4A2/A2Sq

1 ⊕ Σ5A2 ⊕ · · ·(6.20)

H∗(BO(4),Z2) = Z2[w
′
1, w

′
2, w

′
3, w

′
4](6.21)

where Sq1w′
2 = w′

1w
′
2 + w′

3, Sq
1w′

3 = w′
1w

′
3, Sq

1w′
4 = w′

1w
′
4.

The E2 page is shown in Figure 69.
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Figure 69: ΩSO
∗ (BO(4)).

Hence we have the following theorem

Theorem 118.

i ΩSO
i (BO(4))

0 Z

1 Z2

2 Z2

3 Z
2
2

4 Z
2 × Z

2
2

5 Z6
2
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The 2d bordism invariant is w′
2.

The 3d bordism invariants are w′3
1 , w

′
1w

′
2 = w′

3.
The 4d bordism invariants are σ, p′1, w

′2
1 w

′
2, w

′
4.

The 5d bordism invariants are w2w3, w
2
2w

′
1, w

′
2w

′
3, w

′
1w

′2
2 , w

′2
1 w

′
3 =

w′3
1 w

′
2, w

′5
1 .

6.5. BO(5)

6.5.1. ΩO
d (BO(5)).

Exts,tA2
(H∗(MO,Z2)⊗H∗(BO(5),Z2),Z2) ⇒ ΩO

t−s(BO(5))(6.22)

H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗(6.23)

where y∗2 = w2
1, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc.

H∗(BO(5),Z2) = Z2[w
′
1, w

′
2, w

′
3, w

′
4, w

′
5](6.24)

H∗(MO,Z2)⊗H∗(BO(5),Z2)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ Z2[w

′
1, w

′
2, w

′
3, w

′
4, w

′
5](6.25)

= A2 ⊕ ΣA2 ⊕ 3Σ2A2 ⊕ 4Σ3A2 ⊕ 9Σ4A2 ⊕ 13Σ5A2 ⊕ · · ·

Hence we have the following theorem

Theorem 119.

i ΩO
i (BO(5))

0 Z2

1 Z2

2 Z
3
2

3 Z
4
2

4 Z
9
2

5 Z13
2

The 2d bordism invariants are w2
1, w

′2
1 , w

′
2.

The 3d bordism invariant are w′
1w

2
1, w

′3
1 , w

′
1w

′
2, w

′
3.

The 4d bordism invariants are w4
1, w

2
2, w

2
1w

′2
1 , w

2
1w

′
2, w

′
1w

′
3, w

′2
1 w

′
2, w

′4
1 ,

w′2
2 , w

′
4.

The 5d bordism invariants are

w2w3, w
2
2w

′
1, w

4
1w

′
1, w

2
1w

′3
1 , w

2
1w

′
1w

′
2, w

2
1w

′
3, w

′
2w

′
3, w

′
1w

′2
2 , w

′2
1 w

′
3, w

′3
1 w

′
2,

w′5
1 , w

′
1w

′
4, w

′
5.
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6.5.2. ΩSO
d (BO(5)).

Exts,tA2
(H∗(MSO,Z2)⊗H∗(BO(5),Z2),Z2) ⇒ ΩSO

t−s(BO(5))(6.26)

H∗(MSO,Z2) = A2/A2Sq
1 ⊕ Σ4A2/A2Sq

1 ⊕ Σ5A2 ⊕ · · ·(6.27)

H∗(BO(5),Z2) = Z2[w
′
1, w

′
2, w

′
3, w

′
4, w

′
5](6.28)

where Sq1w′
2 = w′

1w
′
2 + w′

3, Sq
1w′

3 = w′
1w

′
3, Sq

1w′
4 = w′

1w
′
4 + w′

5.
The E2 page is shown in Figure 70.

0 1 2 3 4 5 t− s

0

1

2

3

4

5

s

Figure 70: ΩSO
∗ (BO(5)).

Hence we have the following theorem

Theorem 120.

i ΩSO
i (BO(5))

0 Z

1 Z2

2 Z2

3 Z
2
2

4 Z
2 × Z

2
2

5 Z
7
2

The 2d bordism invariant is w′
2.
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The 3d bordism invariants are w′3
1 , w

′
1w

′
2 = w′

3.
The 4d bordism invariants are σ, p′1, w

′2
1 w

′
2, w

′
4.

The 5d bordism invariants are w2w3, w
2
2w

′
1, w

′
2w

′
3, w

′
1w

′2
2 , w

′2
1 w

′
3 = w′3

1 w
′
2,

w′5
1 , w

′
1w

′
4 = w′

5.

6.6. BZ2n × B2Zn

6.6.1. ΩO
d (BZ4 × B2Z2).

H∗(BZ4,Z4) = Z4[a, b]/(a
2 = 2b)(6.29)

where a ∈ H1(BZ4,Z4), b ∈ H2(BZ4,Z4).

H∗(BZ4,Z2) = ΛZ2
(ã)⊗ Z2[b̃](6.30)

where ã = a mod 2 ∈ H1(BZ4,Z2), b̃ = b mod 2 ∈ H2(BZ4,Z2).

H∗(B2
Z2,Z2) = Z2[x2, x3, x5, x9, . . . ](6.31)

Exts,tA2
(H∗(MO,Z2)⊗H∗(BZ4 × B2

Z2,Z2),Z2)

⇒ ΩO
t−s(BZ4 × B2

Z2)(6.32)

H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗(6.33)

where y∗2 = w2
1, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc.

H∗(MO,Z2)⊗H∗(BZ4 × B2
Z2,Z2)(6.34)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ ΛZ2

(ã)⊗ Z2[b̃]⊗ Z2[x̃2, x3, x5, x9, . . . ]

= A2 ⊕ ΣA2 ⊕ 3Σ2A2 ⊕ 4Σ3A2 ⊕ 8Σ4A2 ⊕ 12Σ5A2 ⊕ · · ·

Hence we have the following theorem

Theorem 121. The bordism groups are

i ΩO
i (BZ4 × B2

Z2)
0 Z2

1 Z2

2 Z
3
2

3 Z
4
2

4 Z
8
2

5 Z12
2
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The 2d bordism invariants are b̃, x2, w
2
1.

The 3d bordism invariants are ãb̃, x3, ãx2, ãw
2
1.

The 4d bordism invariants are ãx3, b̃x2, b̃
2, x22, w

4
1, w

2
2, b̃w

2
1, x2w

2
1.

The 5d bordism invariants are

ãx22, b̃x3, x2x3, ãb̃
2, x5, ãb̃x2, w2w3, ãw

2
2, ãw

4
1, ãb̃w

2
1, x3w

2
1= w3

1x2, ãx2w
2
1.

6.6.2. ΩSO
d (BZ4 × B2Z2).

Exts,tA2
(H∗(MSO,Z2)⊗H∗(BZ4 × B2

Z2,Z2),Z2)

⇒ ΩSO
t−s(BZ4 × B2

Z2)(6.35)

H∗(MSO,Z2) = A2/A2Sq
1 ⊕ Σ4A2/A2Sq

1 ⊕ Σ5A2 ⊕ · · ·(6.36)

Note that β(2,4)a = b̃, Sq1x2 = x3, Sq
1(ãx2) = ãx3, Sq

1(b̃x2) = b̃x3,

β(2,4)(ab) = b̃2, β(2,4)(P2(x2)) = x2x3 + x5, Sq1(x2x3) = Sq1x5 = x23,

Sq1(ãb̃x2) = ãb̃x3, β(2,4)(aP2(x2)) = b̃x22 + ã(x2x3 + x5), β(2,4)(ab
2) = b̃3,

β(2,4)(a(σ mod 4)) = b̃w2
2.

There is a differential d2 corresponding to the Bockstein homomorphism
β(2,4) : H∗(−,Z4) → H∗+1(−,Z2) associated to 0 → Z2 → Z8 → Z4 → 0
[51]. See 2.5 for the definition of Bockstein homomorphisms.

So there are differentials such that d2(b̃) = ãh20, d2(b̃
2) = ãb̃h20, d2(x2x3+

x5) = x22h
2
0, d2(b̃x

2
2 + ã(x2x3 + x5)) = ãx22h

2
0, d2(b̃

3) = ãb̃2h20, d2(b̃w
2
2) =

ãw2
2h

2
0.

The E2 page is shown in Figure 71.
Hence we have the following theorem

Theorem 122. The bordism groups are

i ΩSO
i (BZ4 × B2

Z2)
0 Z

1 Z4

2 Z2

3 Z4 × Z2

4 Z× Z4 × Z2

5 Z
3
4 × Z

3
2

The 2d bordism invariant is x2.
The 3d bordism invariants are ab and ãx2.
The 4d bordism invariants are σ, P2(x2) and b̃x2.
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Figure 71: ΩSO
∗ (BZ4 × B2Z2).

The 5d bordism invariants are aP2(x2), ab
2, a(σ mod 4), x5 = x2x3,

ãb̃x2 and w2w3.

6.6.3. ΩO
d (BZ6 × B2Z3).

H∗(BZ6 × B2
Z3,Z2) = H∗(BZ2,Z2) = Z2[a](6.37)

where a ∈ H1(BZ2,Z2).

Exts,tA3
(H∗(MO,Z3)⊗H∗(BZ6 × B2

Z3,Z3),Z3)

⇒ ΩO
t−s(BZ6 × B2

Z3)
∧
3(6.38)

Since H∗(MO,Z3) = 0, we have ΩO
d (BZ6 × B2Z3)

∧
3 = 0.

Exts,tA2
(H∗(MO,Z2)⊗H∗(BZ6 × B2

Z3,Z2),Z2)

⇒ ΩO
t−s(BZ6 × B2

Z3)
∧
2(6.39)

H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗(6.40)
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where y∗2 = w2
1, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc.

H∗(MO,Z2)⊗H∗(BZ6 × B2
Z3,Z2)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ Z2[a](6.41)

= A2 ⊕ ΣA2 ⊕ 2Σ2A2 ⊕ 2Σ3A2 ⊕ 4Σ4A2 ⊕ 5Σ5A2 ⊕ · · ·

Hence we have the following theorem

Theorem 123. The bordism groups are

i ΩO
i (BZ6 × B2

Z3)
0 Z2

1 Z2

2 Z
2
2

3 Z
2
2

4 Z
4
2

5 Z
5
2

The 2d bordism invariants are w2
1, a

2.

The 3d bordism invariants are a3, aw2
1.

The 4d bordism invariants are a4, a2w2
1, w

4
1, w

2
2.

The 5d bordism invariants are a5, a3w2
1, aw

4
1, aw

2
2, w2w3.

6.6.4. ΩSO
d (BZ6 × B2Z3).

Exts,tA2
(H∗(MSO ∧ (BZ6 × B2

Z3)+,Z2),Z2)

⇒ ΩSO
t−s(BZ6 × B2

Z3)
∧
2 .(6.42)

Since H∗(BZ6 × B2Z3,Z2) = H∗(BZ2,Z2), we have ΩSO
d (BZ6 × B2Z3)

∧
2 =

ΩSO
d (BZ2).

The E2 page is shown in Figure 72.

Exts,tA3
(H∗(MSO ∧ (BZ6 × B2

Z3)+,Z3),Z3)

⇒ ΩSO
t−s(BZ6 × B2

Z3)
∧
3 .(6.43)

Since H∗(BZ6 × B2Z3,Z3) = H∗(BZ3 × B2Z3,Z3), we have ΩSO
d (BZ6 ×

B2Z3)
∧
3 = ΩSO

d (BZ3 × B2Z3)
∧
3 .

Hence we have the following theorem
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Figure 72: ΩSO
∗ (BZ2).

Theorem 124. The bordism groups are

i ΩSO
i (BZ6 × B2

Z3)
0 Z

1 Z3 × Z2

2 Z3

3 Z
2
3 × Z2

4 Z× Z
2
3

5 Z3
2 × Z2

3 × Z9

The 2d bordism invariant is x′2.
The 3d bordism invariants are a′b′, a′x′2, a

3.
The 4d bordism invariants are σ, a′x′3(= b′x′2) and x′22 .
The 5d bordism invariants are a5, aw2

2, w2w3, a
′b′x′2, a

′x′22 ,P3(b
′).

Here P3 is the Postnikov square.

6.7. BZ2n2 × B2Zn

6.7.1. ΩO
d (BZ8 × B2Z2).

H∗(BZ8,Z8) = Z8[a, b]/(a
2 = 4b)(6.44)
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where a ∈ H1(BZ8,Z8), b ∈ H2(BZ8,Z8).

H∗(BZ8,Z2) = ΛZ2
(ã)⊗ Z2[b̃](6.45)

where ã = a mod 2 ∈ H1(BZ8,Z2), b̃ = b mod 2 ∈ H2(BZ8,Z2).

H∗(B2
Z2,Z2) = Z2[x2, x3, x5, x9, . . . ](6.46)

Exts,tA2
(H∗(MO,Z2)⊗H∗(BZ8 × B2

Z2,Z2),Z2)

⇒ ΩO
t−s(BZ8 × B2

Z2)(6.47)

H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗(6.48)

where y∗2 = w2
1, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc.

H∗(MO,Z2)⊗H∗(BZ4 × B2
Z2,Z2)(6.49)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ ΛZ2

(ã)⊗ Z2[b̃]⊗ Z2[x̃2, x3, x5, x9, . . . ]

= A2 ⊕ ΣA2 ⊕ 3Σ2A2 ⊕ 4Σ3A2 ⊕ 8Σ4A2 ⊕ 12Σ5A2 ⊕ · · ·

Hence we have the following theorem

Theorem 125. The bordism groups are

i ΩO
i (BZ8 × B2

Z2)
0 Z2

1 Z2

2 Z
3
2

3 Z
4
2

4 Z
8
2

5 Z
12
2

The 2d bordism invariants are b̃, x2, w
2
1.

The 3d bordism invariants are ãb̃, x3, ãx2, ãw
2
1.

The 4d bordism invariants are ãx3, b̃x2, b̃
2, x22, w

4
1, w

2
2, b̃w

2
1, x2w

2
1.

The 5d bordism invariants are

ãx22, b̃x3, x2x3, ãb̃
2, x5, ãb̃x2, w2w3, ãw

2
2, ãw

4
1, ãb̃w

2
1, x3w

2
1= w3

1x2, ãx2w
2
1.
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6.7.2. ΩSO
d (BZ8 × B2Z2).

Exts,tA2
(H∗(MSO,Z2)⊗H∗(BZ8 × B2

Z2,Z2),Z2)

⇒ ΩSO
t−s(BZ8 × B2

Z2)(6.50)

H∗(MSO,Z2) = A2/A2Sq
1 ⊕ Σ4A2/A2Sq

1 ⊕ Σ5A2 ⊕ · · ·(6.51)

Note that β(2,8)a = b̃, Sq1x2 = x3, Sq
1(ãx2) = ãx3, Sq

1(b̃x2) = b̃x3,

β(2,8)(ab) = b̃2, β(2,4)(P2(x2)) = x2x3 + x5, Sq1(x2x3) = Sq1x5 = x23,

Sq1(ãb̃x2) = ãb̃x3, β(2,4)((a mod 4)P2(x2)) = 2β(2,8)(a)x
2
2 + ã(x2x3 + x5) =

2b̃x22 + ã(x2x3 + x5) = ã(x2x3 + x5), β(2,8)(ab
2) = b̃3, β(2,8)(a(σ mod 8)) =

b̃w2
2.
There is a differential dn corresponding to the Bockstein homomorphism

β(2,2n) : H
∗(−,Z2n) → H∗+1(−,Z2) associated to 0 → Z2 → Z2n+1 → Z2n →

0 [51]. See 2.5 for the definition of Bockstein homomorphisms.
So there are differentials such that d3(b̃) = ãh20, d3(b̃

2) = ãb̃h20, d2(x2x3+
x5) = x22h

2
0, d2(ã(x2x3 + x5)) = ãx22h

2
0, d3(b̃

3) = ãb̃2h20, d3(b̃w
2
2) = ãw2

2h
2
0.

The E2 page is shown in Figure 73.
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Figure 73: ΩSO
∗ (BZ8 × B2Z2).

Hence we have the following theorem
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Theorem 126. The bordism groups are

i ΩSO
i (BZ8 × B2

Z2)
0 Z

1 Z8

2 Z2

3 Z8 × Z2

4 Z× Z4 × Z2

5 Z4 × Z
2
8 × Z

3
2

The 2d bordism invariant is x2.

The 3d bordism invariants are ab and ãx2.

The 4d bordism invariants are σ, P2(x2) and b̃x2.

The 5d bordism invariants are (a mod 4)P2(x2), ab
2, a(σ mod 8), x5 =

x2x3, ãb̃x2 and w2w3.

6.7.3. ΩO
d (BZ18 × B2Z3).

H∗(BZ18 × B2
Z3,Z2) = H∗(BZ2,Z2) = Z2[a](6.52)

where a ∈ H1(BZ2,Z2).

Exts,tA3
(H∗(MO,Z3)⊗H∗(BZ18 × B2

Z3,Z3),Z3)

⇒ ΩO
t−s(BZ18 × B2

Z3)
∧
3(6.53)

Since H∗(MO,Z3) = 0, we have ΩO
d (BZ18 × B2Z3)

∧
3 = 0.

Exts,tA2
(H∗(MO,Z2)⊗H∗(BZ18 × B2

Z3,Z2),Z2)

⇒ ΩO
t−s(BZ18 × B2

Z3)
∧
2(6.54)

H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗(6.55)

where y∗2 = w2
1, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc.

H∗(MO,Z2)⊗H∗(BZ18 × B2
Z3,Z2)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ Z2[a](6.56)

= A2 ⊕ ΣA2 ⊕ 2Σ2A2 ⊕ 2Σ3A2 ⊕ 4Σ4A2 ⊕ 5Σ5A2 ⊕ · · ·
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Hence we have the following theorem

Theorem 127. The bordism groups are

i ΩO
i (BZ18 × B2

Z3)
0 Z2

1 Z2

2 Z2
2

3 Z
2
2

4 Z
4
2

5 Z
5
2

The 2d bordism invariants are w2
1, a

2.

The 3d bordism invariants are a3, aw2
1.

The 4d bordism invariants are a4, a2w2
1, w

4
1, w

2
2.

The 5d bordism invariants are a5, a3w2
1, aw

4
1, aw

2
2, w2w3.

6.7.4. ΩSO
d (BZ18 × B2Z3).

Exts,tA2
(H∗(MSO ∧ (BZ18 × B2

Z3)+,Z2),Z2)

⇒ ΩSO
t−s(BZ18 × B2

Z3)
∧
2 .(6.57)

Since H∗(BZ18 × B2Z3,Z2) = H∗(BZ2,Z2), we have ΩSO
d (BZ18 × B2Z3)

∧
2 =

ΩSO
d (BZ2).

Exts,tA3
(H∗(MSO ∧ (BZ18 × B2

Z3)+,Z3),Z3)

⇒ ΩSO
t−s(BZ18 × B2

Z3)
∧
3 .(6.58)

Since H∗(BZ18×B2Z3,Z3) = H∗(BZ9×B2Z3,Z3), we have Ω
SO
d (BZ18×

B2Z3)
∧
3 = ΩSO

d (BZ9 × B2Z3)
∧
3 .

H∗(BZ9,Z9) = ΛZ9
(a′)⊗ Z9[b

′],(6.59)

where a′ ∈ H1(BZ9,Z9), b
′ ∈ H2(BZ9,Z9).

H∗(BZ9,Z3) = ΛZ3
(ã′)⊗ Z3[b̃

′],(6.60)

where ã′ = a′ mod 3, b̃′ = b′ mod 3, b̃′ = β(3,9)(a
′).

H∗(B2
Z3,Z3) = Z3[x

′
2, x

′
8, . . . ]⊗ ΛZ3

(x′3, x
′
7, . . . )(6.61)
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Note that β(3,3)(ã
′) = 3β(3,9)(a

′) = 3b̃′ = 0, β(3,3)(x
′
2) = x′3, β(3,3)(x

′2
2 ) =

2x′2x
′
3, β(3,9)(a

′b′) = b̃′2, β(3,9)(a
′b′2) = b̃′3, β(3,3)(ã

′x′2) = ã′x′3, β(3,3)(b̃
′x′2) =

b̃′x′3, β(3,3)(ã
′b̃′x′2) = ã′b̃′x′3, β(3,3)(ã

′x′22 ) = 2ã′x′2x
′
3.

There is a differential d2 corresponding to the (3, 9)-Bockstein [51].

So there are differentials such that d2(b̃
′) = ã′h′20 , d2(b̃

′2) = ã′b̃′h′20 ,
d2(b̃

′3) = ã′b̃′2h′20 .
The E2 page is shown in Figure 74.

0 1 2 3 4 5 6 t− s

0

1

2

3

4

5

s

Figure 74: ΩSO
∗ (BZ9 × B2Z3)

∧
3 .

Hence we have the following theorem

Theorem 128. The bordism groups are

i ΩSO
i (BZ18 × B2

Z3)
0 Z

1 Z9 × Z2

2 Z3

3 Z9 × Z3 × Z2

4 Z× Z
2
3

5 Z
3
2 × Z

3
3 × Z27

The 2d bordism invariant is x′2.
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The 3d bordism invariants are a′b′, ã′x′2, a
3.

The 4d bordism invariants are σ, b̃′x′2, x
′2
2 .

The 5d bordism invariants are a5, aw2
2, w2w3, ã

′(σ mod 3), ã′b̃′x′2, ã
′x′22 ,

P3(b
′).
Here P3 is the Postnikov square.

6.8. B(Z2 � PSU(N))

For N > 2, the outer automorphism group of PSU(N) is Z2, where Z2 acts
on PSU(N) via complex conjugation.

6.8.1. ΩO
3 (B(Z2 � PSU(3))).

Exts,tA2
(H∗(MO,Z2)⊗H∗(B(Z2 � PSU(3)),Z2),Z2)

⇒ ΩO
t−s(B(Z2 � PSU(3)))(6.62)

H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗(6.63)

where y∗2 = w2
1, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc.

We have a fibration

BPSU(3) → B(Z2 � PSU(3)) → BZ2,(6.64)

and

H∗(BZ2,Z2) = Z2[a](6.65)

H∗(BPSU(3),Z2) = Z2[c2, c3](6.66)

By Serre spectral sequence, we have

(6.67) Hp(BZ2,H
q(BPSU(3),Z2)) ⇒ Hp+q(B(Z2 � PSU(3)),Z2).

The relevant piece is shown in Figure 75.
Hence H∗(B(Z2 � PSU(3)),Z2) = H∗(BZ2,Z2) for ∗ ≤ 3.

H∗(MO,Z2)⊗H∗(BZ2,Z2)(6.68)

= A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗ ⊗ Z2[a]

= A2 ⊕ ΣA2 ⊕ 2Σ2A2 ⊕ 2Σ3A2 ⊕ · · ·

Hence we have the following theorem
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0 1 2 3

0

1

2

3

Z2 Z2 Z2 Z2

0 0 0 0

0 0 0 0

0 0 0 0

Figure 75: Serre spectral sequence for (BZ2,BPSU(3)) with coefficients Z2.

Theorem 129. The bordism groups are

i ΩO
i (B(Z2 � PSU(3)))

0 Z2

1 Z2

2 Z
2
2

3 Z
2
2

The 1d bordism invariant is a.
The 2d bordism invariants are a2, w2

1.
The 3d bordism invariants are a3, aw2

1.

6.8.2. ΩSO
3 (B(Z2 � PSU(3))).

Exts,tA2
(H∗(MSO,Z2)⊗H∗(B(Z2 � PSU(3)),Z2),Z2)

⇒ ΩSO
t−s(B(Z2 � PSU(3)))∧2(6.69)

Exts,tA3
(H∗(MSO,Z3)⊗H∗(B(Z2 � PSU(3)),Z3),Z3)

⇒ ΩSO
t−s(B(Z2 � PSU(3)))∧3(6.70)

H∗(BPSU(3),Z3)

= (Z3[z2, z8, z12]⊗ ΛZ3
(z3, z7))/(z2z3, z2z7, z2z8 + z3z7)(6.71)
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By Serre spectral sequence, we have

Hp(BZ2,H
q(BPSU(3),Z3)) ⇒ Hp+q(B(Z2 � PSU(3)),Z3).(6.72)

The relevant piece is shown in Figure 76.

0 1 2 3

0

1

2

3

Z3 0 0 0

0 0 0 0

Z3 0 0 0

Z3 0 0 0

Figure 76: Serre spectral sequence for (BZ2,BPSU(3)) with coefficients Z3.

Hence H∗(B(Z2 � PSU(3)),Z3) = H∗(BPSU(3),Z3) for ∗ ≤ 3.
Combining this with previous results, we have the following theorem

Theorem 130. The bordism groups are

i ΩSO
i (B(Z2 � PSU(3)))

0 Z

1 Z2

2 Z3

3 Z2

The 1d bordism invariant is a.
The 2d bordism invariant is z2.
The 3d bordism invariant is a3.
Here z2 = w2(PSU(3)) ∈ H2(BPSU(3),Z3) is the generalized Stiefel-

Whitney class of the principal PSU(3) bundle.

6.8.3. ΩO
3 (B(Z2 � PSU(4))).

Exts,tA2
(H∗(MO,Z2)⊗H∗(B(Z2 � PSU(4)),Z2),Z2)

⇒ ΩO
t−s(B(Z2 � PSU(4)))(6.73)
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H∗(MO,Z2) = A2 ⊗ Z2[y2, y4, y5, y6, y8, . . . ]
∗(6.74)

where y∗2 = w2
1, (y

2
2)

∗ = w2
2, y

∗
4 = w4

1, y
∗
5 = w2w3, etc.

We have a fibration

BPSU(4) → B(Z2 � PSU(4)) → BZ2,(6.75)

and

H∗(BZ2,Z2) = Z2[a](6.76)

We also have a fibration

BSU(4) → BPSU(4) → B2
Z4(6.77)

and

H∗(BSU(4),Z2) = Z2[c2, c3, c4](6.78)

H∗(B2
Z4,Z2) = Z2[x̃

′′
2, x

′′
3, x

′′
5, x

′′
9, . . . ](6.79)

By Serre spectral sequence, we have

Hp(B2
Z4,H

q(BSU(4),Z2)) ⇒ Hp+q(BPSU(4),Z2).(6.80)

The relevant piece is shown in Figure 77.

0 1 2 3

0

1

2

3

Z2 0 Z2 Z2

0 0 0 0

0 0 0 0

0 0 0 0

Figure 77: Serre spectral sequence for (B2Z4,BSU(4)).
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Hence H∗(BPSU(4),Z2) = H∗(B2Z4,Z2) for ∗ ≤ 3.

Again by Serre spectral sequence, we have

Hp(BZ2,H
q(BPSU(4),Z2)) ⇒ Hp+q(B(Z2 � PSU(4)),Z2).(6.81)

The relevant piece is shown in Figure 78.

0 1 2 3 4

0

1

2

3

Z2 Z2 Z2 Z2 Z2

0 0 0 0 0

Z2 Z2 Z2 Z2 Z2

Z2 Z2 Z2 Z2 Z2

Figure 78: Serre spectral sequence for (BZ2,BPSU(4)).

There are no differentials,

Hn(B(Z2 � PSU(4)),Z2) =

⎧⎪⎪⎨
⎪⎪⎩

Z2 n = 0
Z2 n = 1
Z2
2 n = 2

Z3
2 n = 3

(6.82)

H∗(MO,Z2)⊗H∗(B(Z2 � PSU(4)),Z2)(6.83)

= A2 ⊕ ΣA2 ⊕ 3Σ2A2 ⊕ 4Σ3A2 ⊕ · · ·

Hence we have the following theorem

Theorem 131. The bordism groups are

i ΩO
i (B(Z2 � PSU(4)))

0 Z2

1 Z2

2 Z
3
2

3 Z
4
2
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The 1d bordism invariant is a.
The 2d bordism invariants are a2, z̃′2, w

2
1.

The 3d bordism invariants are a3, z′3, az̃
′
2, aw

2
1.

Here z′2 = w2(PSU(4)) ∈ H2(BPSU(4),Z4) is the generalized Stiefel-
Whitney class of the principal PSU(4) bundle, z̃′2 = z′2 mod 2, z′3 = β(2,4)z

′
2.

6.8.4. ΩSO
3 (B(Z2 � PSU(4))).

Exts,tA2
(H∗(MSO,Z2)⊗H∗(B(Z2 � PSU(4)),Z2),Z2)

⇒ ΩSO
t−s(B(Z2 � PSU(4)))(6.84)

There is a differential d2 corresponding to the Bockstein homomorphism
β(2,4) : H∗(−,Z4) → H∗+1(−,Z2) associated to 0 → Z2 → Z8 → Z4 → 0
[51]. See 2.5 for the definition of Bockstein homomorphisms.

Since β(2,4)(z
′
2) = z′3, there is a differential such that d2(z

′
3) = z̃′2h

2
0.

The E2 page is shown in Figure 79.

0 1 2 3 t− s

0

1

2

3

s

Figure 79: ΩSO
∗ (B(Z2 � PSU(4))).

Hence we have the following theorem

Theorem 132. The bordism groups are

i ΩSO
i (B(Z2 � PSU(4)))

0 Z

1 Z2

2 Z4

3 Z
2
2
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The 1d bordism invariant is a.
The 2d bordism invariant is z′2.
The 3d bordism invariants are a3, az̃′2.

7. Final comments and remarks

7.1. Relations to non-Abelian gauge theories and sigma models

As we mentioned, this article is a companion Reference with further detailed
calculations supporting other shorter articles [67–69]. Now we make final
comments and remarks on how our cobordism group calculations in the
preceding Sec. 5 and Sec. 6 are applied in these works [67–69].

1. Pure SU(2) Yang-Mills theory’s higher anomaly : Ref. [30] introduces the
generalized global symmetries include higher symmetries (See a brief re-
view in Sec. 1.4, Items (♦ 1) and (♦ 2)). The pure SU(N) Yang-Mills
(YM) gauge theory has a higher-1-dimensional (1-form) electric symme-
try, denoted as Ze

N,[1] (previously known as the ZN-center symmetry).

The pure SU(N) YM theory in 4d has the corresponding 1-form elec-
tric Ze

N,[1] symmetry charged object: the 1-dimensional gauge-invariant
Wilson line We:

We = TrR(P exp(i

∮
a)),(7.1)

and the 2-dimensional charge operator: the 2-dimensional charge surface
operator Ue.

Ue = exp(i
2π

N

∮
Λ).(7.2)

The spacetime path integral formulation of SU(N) YM higher symmetry
becomes a relation:

〈We Ue〉 = 〈TrR(P exp(i

∮
γ1

a)) exp(iπ

∮
Σ2

Λ)〉

= exp(
i2π

N
Lk(γ1,Σ2)),(7.3)

with R in fundamental representation. The remarkable Ref. [29] discovers
the mixed higher ’t Hooft anomaly of pure SU(N) YM theory at an
even integer N with a second Chern class topological term (π

∫
M4

c2 	
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∫
M4

θ
8π2TrFa ∧ Fa at θ = π with the YM field strength curvature Fa)

between time-reversal ZT
2 symmetry (with a schematic background field

T or w1(TM)) and the 1-form electric Ze
N,[1] symmetry (with a schematic

2-form background field B), via a schematic 5d topological term:

∼ exp(iπ

∫
M5

T BB).(7.4)

Ref. [67, 69] shows that this precise 5d topological term written as a 5d
bordism invariant (at N = 2) of a mod 2 class term is:

exp(iπ

∫
M5

BSq1B + Sq2Sq1B)

= exp(i
π

2

∫
M5

w̃1(TM) ∪ P(B)),(7.5)

based on the notation introduced earlier in Sec. 5.4.1 and Sec. 5.4.1, it
can be written as:

exp(iπ

∫
M5

x2Sq
1x2 + Sq2Sq1x2) = exp(iπ

∫
M5

x2x3 + x5)

= exp(iπ

∫
M5

1

2
w̃1P2(x2)),(7.6)

where x2 = B is the generator of H2(B2Z2,Z2). Other than Ref. [67, 69],
the derivation of the relation of the topological invariant x2x3 + x5 =
1
2 w̃1P2(x2) has also been examined in an excellent note of Debray [21].
For eqn. (7.6), our relevant cobordism theory includes the unoriented
bordism group ΩO

d (B
2Z2) in Sec. 5.4.1 and the oriented bordism group

ΩSO
d (B2Z2) in Sec. 5.4.2.

2. Pure SU(N) Yang-Mills theory’s higher anomaly : The above formulas
(7.5) and (7.6), are 5d topological invariants characterizing the 4d SU(2)
YM at θ = π’s higher anomaly. For a generic 4d SU(N) YM at θ = π
of even integer N = 2n, Ref. [67] proposes a precise 5d topological term
written as a 5d bordism invariant (at N = 2n) which includes at least a
mod 2 class term:

Bβ(2,N=2n)B +
N

2
Sq2β(2,N)B =

1

N
w̃1(TM)P(B),(7.7)

characterizing (part of) the 4d SU(2) YM at θ = π’s higher anomaly.
Pontryagin square is defined as P : H2(−,Z2n) → H4(−,Z2n+1). For
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example, at N = 2, we get eqn. (7.7) coincides the same formula as

eqn. (7.6). At N = 4, we get the formula Bβ(2,N=4)B = 1
4 w̃1(TM)P(B).

Our corresponding cobordism group calculations are presented in

Sec. 6.2.1 and Sec. 6.2.2.

3. More discrete symmetries (e.g. charge conjugation) and more higher

anomalies : SU(N) YM theory has charge conjugation symmetry ZC
2 when

N > 2. Therefore, Ref. [67] presents additional higher ’t Hooft anoma-

lies associated to the charge conjugation ZC
2 background field AC . The

relevant cobordism group calculation involving additional ZC
2 symmetry

requires adding a new BZ2 sector into the previous classifying space.

Relevant cobordism group calculations are presented in Ref. [67], and

also some trial toy-model examples in Sec. 5.6, Sec. 6.6, and Sec. 6.7

involving the classifying space BZm and higher-classifying space B2Zn.

The combined higher-classifying space includes the forms of BZm×B2Zn

or BZm � B2Zn (in Ref. [67]).

4. Non-linear sigma models and their anomalies : Non-linear sigma models

such as the CP
N−1-sigma models (with the target space CP

N−1) have

a global symmetry of PSU(N). Therefore, the relevant cobordism group

calculations presented in Ref. [67] include the classifying space BPSU(N).

We include the pertinent cobordism group calculations also for BPSU(N)

in Sec. 5.5, BPSU(2)=BO(3) in Sec. 6.3, and B(Z2�PSU(N)) in Sec. 6.8.

The time reversal symmetry ZT
2 of bosonic or fermionic version of sigma

models corresponds to O or Pin± structure respectively. The charge con-

jugation symmetry ZC
2 corresponds to the BZ2 in B(Z2 � PSU(N)) in

Sec. 6.8

5. Higher-symmetry extension, and the fate of gapped and gapless-ness of

quantum phases : An SU(N) YM gauge theory coupled to SU(N) fun-

damental fermions break explicitly the 1-form Ze
N,[1]-symmetry (thus

does not have the 1-form Ze
N,[1]-symmetry). An SU(N) YM gauge the-

ory coupled to SU(N) adjoint fermions can still possess a 1-form Ze
N,[1]-

symmetry.

The SU(N) adjoint fermion YM gauge theory is known as the adjoint

QCD of SU(N) gauge group. The relevant global symmetries of this ad-

joint QCD thus includes Ze
N,[1] and a SU(m) flavor chiral symmetry (say,

if there is an m-flavor of Wely fermions in the adjoint representation of

SU(N)). Some trial toy-model examples of cobordism groups, involving

these classifying spaces BSU(m), BPSU(m) and B2ZN, are presented in

Sec. 5.7. For example, for the adjoint QCD with an SU(2) gauge group

and Nf = 2 adjoint Weyl fermions, the pertinent symmetry groups are



Higher anomalies, higher symmetries, and cobordisms I 299

Spin×ZF
2

(SU(2)×Z8,A

ZF
2

)
× Ze

2,[1] or Pin− ×ZF
2

(SU(2)×Z8,A

ZF
2

)
× Ze

2,[1] (includ-

ing a time-reversal symmetry), see their cobordism groups and higher-

anomalies in [67].

Along this development, the fate of relevant theories of the adjoint QCD

is explored recently using the modern language of higher-symmetries and

higher-anomalies in various other Ref. [3, 4, 9, 18, 53, 58], other than [67],

and References therein.

Ref. [67] employs a generalization of a symmetry-extension method of

[77] to a higher-symmetry-extension method, as a tool of constructing a

fully-symmetry-preserving gapped phase saturating the higher ’t Hooft

anomalies. It turns out that:

• Certain higher ’t Hooft anomalies cannot be saturated by a fully-

symmetry-preserving gapped phase (e.g. TQFT); which implies ei-

ther the symmetry-breaking or gapless-ness of the dynamical fate

of the theories. Examples include P(B) in H4(M,Z4) and AP(B)

in H5(M,Z4) where M is the spacetime manifold [67]. This higher-

symmetry-extension approach [67] thus rules out some candidate

low-energy infrared phases (as a dual phase of a high-energy QFT)

proposed in [9].

• Certain higher ’t Hooft anomalies can be saturated by a fully-

symmetry-preserving gapped phase (e.g. TQFT); which implies a

possible exotic dynamical fate as the confinement with no chiral

symmetry nor 1-form center symmetry breaking. Various examples

of pure SU(N) YM gauge theories with θ = π-topological term in-

deed afford such an exotic confinement without any (ordinary or

higher) symmetry-breaking, see Ref. [67, 69].

7.2. Relations to bosonic/fermionic higher-symmetry-

protected topological states: beyond generalized

super-group cohomology theories

1. Bosonic higher-symmetry protected topological states (b-higher-SPTs):

(1) Bosonic symmetry-protected topological states (bSPTs) in d+ 1d of

an internal (ordinary 0-form) global symmetry G(0) is proposed firstly

in Chen-Gu-Liu-Wen Ref. [14] to be classified by a cohomology group

Hd+1(G(0),U(1))(7.8)
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or the topological cohomology of classifying space BG0 as

Hd+1(BG(0),U(1)).(7.9)

(2) It is later proposed by Kapustin in Ref. [39], for bosonic SPTs of
G(0) and for bosonic symmetric invertible topological order (denoted as
b-iTO) of G(0), they are classify by a cobordism group classification,
which is beyond the group cohomology framework. The torsion (finite
group

∏
j Znj

) part of cobordism group classification contains:

Hom(ΩH
d+1,tors(BG(0)),U(1))(7.10)

where H is an oriented H = SO or an unoriented H = O for the
(co)bordism group. To include the free part (the non-torsion part, in-
finite integer

∏
j Z classes), we need to include additional contribution:

In physics, this is related to the nontrivial thermal Hall response and
gravitational Chern-Simons terms.

(3) Ref. [83] of Wen proposes the SO(∞) version of bosonic cohomology
group to classify the bSPTs beyond Chen-Gu-Liu-Wen’s Ref. [14] via

Hd+1(SO(∞)×G(0),U(1)),

Hd+1(B(SO(∞)×G(0)),U(1)).(7.11)

(4) Ref. [25] of Freed-Hopkins introduces this classification of topologi-
cal phases (TP), including the torsion and the free parts, defined as a
suitable new cobordism group denoted:

TPd+1(H ×G(0)).(7.12)

(5) In our work, we generalize the result of Ref. [25] of bosonic SPTs to
bosonic higher-SPTs including the higher-symmetries (e.g. G(1)), such
as

TPd+1(H × (G(0) × BG(1))),

TPd+1(H × (G(0) � BG(1))), . . .(7.13)

and more general constructions in Sec. 4.
2. Fermionic higher-symmetry protected topological states (f-higher-SPTs):

Fermionic symmetry-protected topological states (fSPTs) in d+1d of an
internal (ordinary 0-form) global symmetry G(0) is proposed in Ref. [33]
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by Gu-Wen to be classified by a super-cohomology group. A corrected
modification of Gu-Wen model is presented by Gaiotto-Kapustin in
Ref. [28]. The Gu-Wen model and Gaiotto-Kapustin model is more or
less complete for the 3d (2+1D) fSPTs with a global symmetry of finite
group G(0). They also provide lattice Hamiltonian or wavefunction model
constructions. The relation between the full fermionic symmetry group
GF and G(0) is based on a short exact sequence, extended by a normal

subgroup fermionic parity ZF
2 :

1 → Z
F
2 → GF → G(0) → 1.(7.14)

However, neither Gu-Wen nor Gaiotto-Kapustin models obtain a com-
plete classification for 4d (3+1D) fSPTs, even for a global symmetry
of finite group G(0). Improvements are made via several different ap-
proaches:

(1) Kitaev’s in Ref. [46] proposes a homotopy-theoretic approach to SPT
phases in action. This gives rise a correct Z16 classification of 3+1D
topological superconductors, matching to the cobordism group classifi-
cation. Kitaev’s Ref. [46] can be regarded as the interaction version of
SPT classification, improved from his previous K-theory approach for
the topological phase classification of free-fermion systems [47]. Kitaev’s
approach is reviewed, for example, in Ref. [27, 90].

(2) Kapustin-Thorngren-Turzillo-Wang [45] approaches is based on the
H = Spin or Pin± versions of cobordism group Hom(ΩH

d+1,tors(BG(0)),
U(1)).

(3) Freed-Hopkins [25] introduces a cobordism group TPd+1(H × G(0))
whose effective computation is based on the Adams spectral sequence,
with H = Spin or Pin± for a fermionic theory.

(4) Kapustin-Thorngren in Ref. [44] introduces the higher-dimensional
bosonization to construct higher-dimensional fSPTs, mostly focusing on
a finite symmetry group GF .

(5) Wang-Gu in Ref. [80, 81] introduces a generalized group super-
cohomology theory with multi-layers of group extension structures of
super-cohomology group, mostly focusing on a finite symmetry group
GF . The computation of fSPTs classification based on the generalized
super-cohomology group is similar to the Atiyah-Hirzebruch spectral
sequence method. See related discussions in Ref. [34, 60] on Atiyah-
Hirzebruch spectral sequence for classifying fSPTs.
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(6) Ref. [32, 38] use a mixture of Dai-Freed theorem [20] and Atiyah-
Hirzebruch-like spectral sequence to determine fSPTs and their discrete
anomalies on the boundaries.

(7) Ref. [34] computes various finite-group fSPTs via Adams spectral
sequence. Their methods and their derived fSPT terms can be regarded
as the complementary approach to those derived via Atiyah-Hirzebruch-
like spectral sequence [60, 80, 81].

(8) In our work, we generalize the result of Ref. [25] of fermionic SPTs to
fermionic higher-SPTs including the higher-symmetries (e.g. G(1)), such
as

TPd+1(H × (G(0) × BG(1))), TPd+1(H × (G(0) � BG(1))), . . .

with H = Spin or Pin±. Or slightly more generally, consider the classi-
fication of fermionic higher-SPTs via:

TPd+1(H)

such that the H, G and H satisfy the following exact sequences:⎧⎨
⎩

1 → G → H → Spin(d+ 1) → 1,
1 → ZF

2 → Spin(d+ 1) → SO(d+ 1) → 1,
B2G(1) → BG → BG(0) → B3G(1) → . . . .

(7.15)

or ⎧⎨
⎩

1 → G → H → Pin±(d+ 1) → 1,
1 → ZF

2 → Pin±(d+ 1) → O(d+ 1) → 1,
B2G(1) → BG → BG(0) → B3G(1) → . . . .

(7.16)

Even more general constructions are explored in Sec. 4.
3. Braiding statistics and link invariants approach to characterize bosonic/

fermionic SPTs and higher-SPTs: Another useful approach to classify
SPTs is based on gauging the global symmetry group of SPTs, such that
we obtain a gauge theory or TQFT at the end. The braiding statistics
of the fractionalized excitations of gauged SPTs can characterize the
pre-gauged SPTs, the explicit method of 3d (2+1D) SPTs is outlined
by Levin-Gu [49]. Here we focus on the case of continuum field theory
formulation of braiding statistics and link invariants approach to char-
acterize these higher-dimensional SPTs.
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(1) 4d (3+1D) bSPTs: Ref. [54, 70]
(2) 4d (3+1D) fSPTs: Ref. [15, 34, 44, 54]
(3) 5d (4+1D) SPTs or higher dimensions: Ref. [69].

4. A Generalized Cobordism Theory of higher-symmetry groups — beyond
Higher-Group Super-Cohomology Theories:

It is known that the cobordism theory approach of Kapustin et al. [39, 45]
and Freed-Hopkins [25] obtain the classification of fSPTs and bSPTs
beyond Chen-Gu-Liu-Wen’s group cohomology [14] or Gu-Wen’s group
super-cohomology [33]. A more refined version of generalized group
super-cohomology [80, 81] can obtain some missing classes of [33] to
match the cobordism classification.

Therefore, we expect that the our approach, on a generalized cobor-
dism theory including the higher-symmetry groups, can classify higher-
SPTs (including fSPTs and bSPTs) that may or may not be captured
by higher-group super-cohomology theories.
For future work, it will be illuminating to understand the distinctions
between the generalized higher-group cobordism theory approach and
the generalized higher-group super-cohomology theories. We expect the
comparison between two approaches can be rephrased as a certain version
of Adams spectral sequence method in contrast to a certain version of
Atiyah-Hirzebruch spectral sequence method.
It will also be important to figure the possible lattice-regularization (e.g.
lattice Hamiltonian on simplicial complex) of those higher-SPTs classi-
fied by our generalized cobordism theory.
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