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The Marr conjecture and uniqueness of wavelet
transforms

Benjamin Allen and Mark A. Kon

The inverse question of identifying a function from the nodes (ze-
roes) of its wavelet transform arises in a number of fields. These
include whether the nodes of a heat or hypoelliptic equation so-
lution determine its initial conditions, and in mathematical vision
theory the Marr conjecture, on whether an image is mathematically
determined by its edge information. We prove a general version of
this conjecture by reducing it to the moment problem, using a basis
dual to the monomial basis xα on R

n.
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1. Introduction

The inverse problem of determining a function f from the nodes (zeroes)
of its wavelet transform has a number of applications. In partial differential
equations this becomes the question of recovering the solution of a heat or
hypoelliptic equation from its nodes. In mathematical vision theory it is
a generalization of the problem known as the Marr conjecture, about the
unique determination of a function from its multiscale edges. Here we give
conditions on the wavelet and the function f for its recovery, and show that
these conditions are the best of their kind.

There has been both theoretical [27, 17, 35, 7, 15, 29, 2] and empirical [24]
evidence related to the Marr conjecture, regarding both its range of validity
and some restrictions on it. As shown by Meyer originally [27, Ch. 8], the
truth of the conjecture has limitations, and it is in general false for non-
decaying f .

It is shown here that for compactly supported or exponentially decaying
f , the conjecture holds in a general form; however, it is false for algebraically
decaying f .
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The Marr conjecture was originally motivated by the fact that visual
images are in practice often easy to reconstruct from their edges. To this
extent these results are a mathematical formalization of this fact. In one
dimension we apply our results to the Richter (Mexican hat) wavelet, which
was the original convolving function studied by Marr [26, 25].

Our methods reduce the recovery of f to the moment problem, using
the duality of two bases for functions on Rn, the Taylor monomials xα and
the derivatives δ(α) of the delta distribution at 0. The method of moments
provides a natural approach to the problem, since the effects of different
moments become asymptotically separated under the wavelet transform.

1.1. Background

The standard d-dimensional continuous wavelet transform of f with a smooth
wavelet ψ̃ has the form

Wf(σ,x) = σd/2

∫
Rd

f(t) ψ̃

(
t− x

σ

)
dt = σd/2f ∗ ψσ(x),

where for convenience we define ψ(x) = ψ̃(−x), and ψσ(x) = σ−dψ(x/σ) is
a rescaling (and normalization) of ψ by σ. We ask under what conditions
a locally integrable function f is uniquely determined (up to a constant
multiple) by the nodes of its wavelet transform. It is in fact possible to answer
a stronger version of this question, namely whether f can be recovered from
knowledge of the nodes of Wf(σ,x) only at an (arbitrary) discrete sequence
of scales {σi}i≥0.

There are several versions of this question:

• In wavelet theory this is an inverse problem for the continuous wavelet
transform [24, 23, 27, 17], and the dyadic transform [24, 23] (which is
continuous in the space variable x but discrete in the scaling variable
σ).

• In mathematical vision theory [25] f represents an image. Convolu-
tions of f with rescalings of ψ(x) = G(x) = (2π)−d/2e−|x|2/2 repre-
sent Gaussian kernel smoothings (blurrings) of the image at different
scales. Defining the Ricker (Mexican hat) wavelet as M(x) = ΔG(x),
and its rescaling by σ > 0 as Mσ(x) = σ−dM(x/σ), it follows that
the zeros of f ∗ Mσ(x) represent points of maximal change in the
smoothed image, which can be interpreted as edges (generalized dis-
continuities) of f at scale σ. Thus the nodes of f ∗ Mσ(x) as σ in-
creases form successively sparser “line sketches” of the image f . The
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unique determination question (the Marr conjecture) asks whether
these nodes (edges) form a complete representation of the image. The
traditional focus on this question in mathematical vision theory has
been based on the widespread use of edge perception as a model for
vision.

• For hypoelliptic partial differential equations, scaled smoothing func-
tions often arise as fundamental solutions (Green’s functions). For ex-
ample, the Gaussian function u(x, t) = (2πt)−d/2e−|x|2/2t is the funda-
mental solution of the heat equation ut =

1
2Δu, and the solution to an

initial value problem is obtained by convolution of the initial condi-
tion with the fundamental solution. The question is then whether the
nodes of a solution uniquely determine it.

In wavelet theory this question has been studied theoretically and numer-
ically by Meyer [27, 17] and Mallat [24, 23], and the mathematical question
in vision theory has also received a good deal of attention [26, 25, 35, 7, 15,
29, 2]. Although the problem of determining nodes of parabolic equations
and their properties has been studied in a number of settings [1, 21, 33], the
inverse problem of determining a solution from its nodes has received less
attention.

The Marr conjecture in vision theory [26, 25] is motivated by problems
of edge detection and image reconstruction in biological and artificial neu-
ral systems. In this setting it is natural to restrict to functions f that are
compactly supported, or more generally, satisfy some decay condition. The
conjecture can be stated as

Marr Conjecture. A locally integrable function f of sufficiently rapid decay
is uniquely determined (up to a constant multiple) by the zero sets of f ∗Mσj

for any sequence of positive scales {σj}∞j=1 tending to infinity.

This conjecture has remained open, although special cases have been
proved [35, 7]. The corresponding statement for nondecaying functions was
disproved by Meyer [27], who found distinct periodic functions whose Ricker
wavelet transforms have identical zero sets at all scales.

More generally, we can ask for minimal conditions on a general wavelet
ψ allowing for such unique determination:

Question. What conditions on a twice-differentiable function ψ are neces-
sary and sufficient to imply that any function f , of sufficiently rapid decay,
is uniquely determined (up to a constant multiple) by (a) the zeros in (σ,x)
of Wf(σ,x) (b) the zero sets of f ∗ ψσj

, for any sequence of positive scales
{σj}∞j=1 tending to infinity.
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1.2. Results on unique determination

Here we answer this question by finding conditions on f and ψ that are
sufficient and the best of their type for such unique determination. We re-
quire that f be integrable and of negative exponential order—meaning that
f belongs to a class P ′

γ of exponentially decaying functions. We require that
ψ belong to a class P of smooth functions whose derivatives grow slower
than exponentially, and satisfy the following:

Genericity Condition. The regular zero set of any derivative of fixed order
n is not contained in the zero set of any other derivative of fixed order m,
for any n,m ≥ 0.

A regular (transverse) zero of a function ψ is a point in all of whose
neighborhoods ψ(x) takes both positive and negative values. By “derivative
of fixed order m”, we mean a linear combination of partial derivatives of
ψ of order m, (i.e., a homogeneous linear differential operator of order m
applied to ψ), modulo multiplication by a nonzero constant. As an example,
the one-dimensional Gaussian wavelet G(x) fails this genericity condition, in
that the regular zero set of G is empty and is therefore trivially contained in
the zero set of G(n) for any n > 0. However its second derivative, the Ricker
wavelet M(x), satisfies this condition, as we will show in Section 3.3.

Our main result can be stated as follows:

Theorem 1. Given ψ ∈ P satisfying the above genericity condition, any
function f ∈ P ′

γ ∩L1(Rd) is uniquely determined (up to a constant multiple)
by the zero sets of its wavelet transform f ∗ ψσj

at any sequence of positive
scales {σj}∞j=1 tending to infinity.

We will show that the conditions in this theorem are the best of their
kind, in the following sense. First, the theorem fails if the exponential decay
condition f ∈ Pγ is weakened to algebraic decay (see Section 7), although
this leaves the conjecture open for the restricted set of functions f with decay
that is between algebraic and exponential, e.g. f(x) = e−|x|1/2 Second, if the
genericity condition on the regular zeroes of the wavelet ψ (see above) fails
weakly, then the theorem fails to hold (see Section 3.1).

Corollary 2. Given ψ and f as above, f is uniquely determined by the zero
sets of its continuous wavelet transform f ∗ψσ for σ > 0, and more generally
its dyadic wavelet transform f ∗ ψσj

with σj = 2j , j ∈ N.

In the case of the Ricker (Gaussian derivative) wavelet M(x) = G′′(x),
we prove the following:
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Corollary 3. (Marr conjecture in one dimension)

(a) Any f ∈ P ′
γ∩L1(R) is uniquely determined (up to a constant multiple)

by the zero sets of f ∗Mσj
at any sequence of positive scales {σj}∞j=1

with a positive or infinite limit point.
(b) This unique determination can fail if the only limit point of {σj}∞j=1

is zero.
(c) This unique determination also can fail if f is of (negative) algebraic

rather than exponential order (i.e. decays algebraically rather than ex-
ponentially).

Corollary 3 is proved using properties of the Hermite polynomialsHn(x),
which are defined by the relation

(1.1) G(n)(x) = (−1)nHn(x)G(x).

For dimensions d > 1, Theorem 1 reduces the Marr conjecture to a
statement about polynomial zeros. For any multiindex of nonegative integers
α = (α1, . . . , αd), we define the Laplace-Hermite polynomial Lα(x) in x =
(x1, . . . , xd) by

(1.2) ΔG(α)(x) = (−1)|α|Lα(x)G(x).

Above, the superscript (α) indicates a mixed partial derivative in the orders
specified by α. Note that Lα is a polynomial of degree |α|+ 2, where |α| =
α1 + . . .+ αd. We thus have:

Corollary 4. (Marr conjecture in d dimensions) If there is no pair of
distinct Laplace-Hermite polynomials of degree greater than zero such that
the zero set of one contains the regular zero set of the other, then any
f ∈ P ′

γ ∩ L1(R) is uniquely determined, up to a constant multiple, by the
zero sets of f ∗ Mσj

for any sequence of positive scales {σj}∞j=1 tending to
infinity.

Thus in any dimension the Marr conjecture is equivalent to a condition
on the zeros of Laplace-Hermite polynomials.

1.3. Results on asymptotic moment expansions

Our approach is based on moment expansions, which rely on the duality of
the basis of Taylor monomials xα = xα1

1 . . . xαd

d in Rd, with distributions δ(α)

localized at the origin. Here δ(α) denotes a distributional partial derivative
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of the Dirac distribution δ in the orders specified by the multiindex α. The

moment expansion represents a function as a series in δ(α), with coefficients

in terms of the function’s moments μα = 〈f(x),xα〉. Specifically, in a distri-

butional sense (see Section 2.1), it is an expansion dual to a Taylor series,

in the form f ∼
∑

α cαδ
(α), with cα = (−1)|α|μα/α!. This expansion con-

verges asymptotically in an appropriate distribution space, as we describe

in Section 2.

Moment expansions have been used to study electromagnetism (in mul-

tipole expansions), gravitation, and acoustics. They have more recently also

been applied to the Navier-Stokes [10, 28] and other differential equations

[8, 18, 22, 11, 34].

We extend the theory of asymptotic moment expansions in two ways.

First, we prove the following continuity result for convolutions of moment

expansions, in terms of the rescaled variable w = x/σ:

Theorem 5. If f is replaced by its asymptotic moment expansion in the

convolution f ∗ ψσ(σw), the asymptotic convergence of the resulting series,

as σ → ∞, is locally uniform in w.

Second, we generalize the theory of asymptotic moment expansions to

distributions on R with only finitely many moments:

Theorem 6. If the first N moments of f are well-defined, then f has an

asymptotic moment expansion to order N−1. If f is replaced by this moment

expansion in the convolution f ∗ ψσ(σw), the asymptotic convergence of the

resulting series, as σ → ∞, is locally uniform in w.

The phrase “asymptotic converge” is defined in the formal statements
of these theorems, which appear in Sections 2.2 and 6.3 respectively.

1.4. Results on the geometry of heat equation nodes

This work leads to some new results on the nodes of solutions to the heat

equation initial value problem:

(1.3)

{
Ft =

1
2Fxx x ∈ (−∞,∞), t ∈ [0,∞)

F (x, 0) = f(x).

The nodes (zeros) of F form algebraic curves which we call zero contours of

f . We show that new zero contours do not appear as t increases, strength-

ening and complementing previous results [1, 35, 2, 15, 21, 33]:
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Theorem 7. For any f ∈ P ′
γ∩L1(R) and positive numbers t1 < t2, the zero

contours of f intersecting the line t = t2 are a subset of those that intersect
t = t1.

We also obtain the following unique determination result:

Theorem 8. Let F be a solution to (1.3) for some initial condition f ∈
L1(R). If it is known that the second integral

a(x) =

∫ x

−∞

∫ y

−∞
f(z) dz dy

is a function of negative exponential order, then f is uniquely determined by
the zeros of F (x, tj) for any sequence {tj}∞j=1 of positive real numbers with
a positive or infinite limit point.

1.5. Results for discrete zero-crossings

In some applications to discrete images or signals, knowledge of exact zero
sets of the wavelet transform is replaced by information only about discrete
zero-crossings, i.e., pairs of adjacent lattice points between which the wavelet
transform changes sign. One can ask whether such discrete zero-crossing
information suffices to uniquely determine a discretized function f , which
we represent as a finite sum of δ-distributions localized at integer lattice
points: f(x) =

∑n
i=1 aiδ(x − xi) where ai ∈ R and xi ∈ Zd. We show that

unique determination fails in this setting, even in one dimension:

Theorem 9. There exist distributions f(x) =
∑n

i=1 aiδ(x− xi) and g(x) =∑m
i=1 biδ(x−yi) with ai, bi ∈ R and xi, yi ∈ Z, not constant multiples of each

other, such that the discrete zero-crossings (i.e. pairs of consecutive integers
between which the wavelet transform changes sign) of f and g, with respect
to the Ricker wavelet M(x), coincide at a sequence of scales {σj}∞j=1 tending
to infinity.

1.6. Outline

Section 2 derives key results on asymptotic moment expansions which are
used throughout the paper. The main result (Theorem 1) and its application
to the Ricker wavelet (Corollary 3(ab)) are proven in Section 3. Section 4
obtains results on the geometry of edge contours (nodal sets) in the case
of the Ricker wavelet, which are used in the following sections. In Section
5 we prove that, for the one-dimensional Ricker wavelet, unique determina-
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tion holds for sequences of scales with a (finite) positive limit point, but not
for sequences whose only limit point is zero. Section 6 extends the theory of
asymptotic moment expansions to distributions that have only finitely many
moments. In Section 7 we prove Corollary 3(c), showing that the require-
ment of exponential decay in Theorem 1 cannot be weakened to algebraic
decay. Section 8 considers the question of discrete zero-crossings and proves
Theorem 9. Finally, in Section 9 we obtain the unique determination result,
Theorem 8, for the heat equation.

2. Moment expansion

Moment expansions represent functions (and more generally, distributions)
as series in derivatives

δ(α)(x) ≡ ∂|α|

∂xα1

1 . . . ∂xαd

d

δ(x),

of the Dirac δ distribution. These are based on the fact that these derivatives
and the monomials

xα ≡ xα1

1 . . . xαd

d

form a biorthogonal system:

(2.1) 〈δ(α),xβ〉 =
{
(−1)|α|α! α = β

0 otherwise,

with

|α| = α1 + . . .+ αd, α! = α1! . . . αd!.

In principle, the moment expansion of a function or distribution f is the
series

(2.2) f(x) =
∑
|α|≥0

(−1)|α|

α!
μα δ(α)(x),

where μα is the αth moment of f :

μα = 〈f(x),xα〉.

We observe that, by the biorthogonality relation (2.1), the two sides of (2.2)
agree when applied to any polynomial function f(x). However, the asymp-
totic convergence of the sum in (2.2) requires an appropriate choice of dis-
tribution spaces.
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In this section we first review the theory of asymptotic moment expan-
sions. We then prove Theorem 5 regarding the local uniform convergence of
asymptotic moment expansions applied to convolutions.

2.1. Asymptotic moment expansions

We begin by defining the relevant spaces of test functions and distributions.
For γ > 0, let Pγ = Pγ(R

d) be the space of smooth functions ψ on Rd with
derivatives asymptotically bounded by eγ|x|, so that

lim
|x|→∞

e−γ|x| ψ(α)(x) = 0,

for each α. The topology on Pγ is generated by the seminorms

||ψ||γ,α = sup
x∈Rd

∣∣∣e−γ|x| ψ(α)(x)
∣∣∣ ,

varying over multiindices α, with γ fixed. Define the space P = P(Rd) by

P =
⋂
γ>0

Pγ ,

with topology generated by the seminorms || ||γ,α as γ and α both vary. P
is the space of smooth functions with slower-than-exponential growth. The
dual spaces to Pγ and P are denoted by P ′

γ and P ′, respectively. Informally,

distributions in P ′
γ decay as e−γ|x| or faster, and while those in P ′ have

exponential or faster decay. Clearly P ′
γ ⊂ P ′ for each γ > 0.

The asymptotic moment expansion of a distribution f ∈ P ′ is essentially
the dual of a Taylor expansion, given by [9, Theorem 4.3.1]

f(σx) ∼
∑
|α|≥0

(−1)|α|

α!
μα σ−|α|−d δ(α)(x) (σ → ∞),

where

μα = 〈f(x),xα〉
is the αth moment of f . This expansion holds in that for any ψ ∈ P and
N ≥ 0,
(2.3)

〈f(σx), ψ(x)〉 =
∑

0≤|α|≤N

μα

α!
σ−|α|−d ψ(α)(0) +O(σ−N−d−1) (σ → ∞),
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where by definition limσ→∞O(L(σ))/L(σ) < ∞. The above asymptotic ex-
pansion is equivalent to the following equation for all N ≥ 0:

lim
σ→∞

σN+d

∣∣∣∣∣∣〈f(σx), ψ(x)〉 −
∑

0≤|α|≤N

μα

α!
σ−|α|−d ψ(α)(0)

∣∣∣∣∣∣ = 0.

Note that for polynomial ψ of degree ≤ N , the two sides of (2.3) coincide
(without the error term) according to the biorthogonality relation (2.1). The
moment expansion (2.3) for general ψ ∈ P is an asymptotic version of this
biorthogonality relation.

2.2. Local uniform convergence of convolved moment expansions

Here we prove the continuity result, Theorem 5 from Section 1.3, which we
state here in a more detailed form:

Theorem 5. For all f ∈ P ′, ψ ∈ P, and N ≥ 0, the σ-indexed family of
functions

w �−→ σN+d

⎛
⎝(f ∗ ψσ)(σw)−

∑
0≤|α|≤N

(−1)|α|

α!
μα σ−|α|−d ψ(α)(w)

⎞
⎠

converges locally uniformly (in w) to the zero function of w as σ → ∞.

Above, “converges locally uniformly” is shorthand for “converges uni-
formly on compact subsets”. We remark that in the special case ψ(x) = G(x)
(the standard Gaussian in one dimension), letting σ = t2, the above expres-
sion (f ∗ψσ)(σw) is just the solution of the heat equation with initial condi-
tion f , at time t, with the spatial variable x rescaled by a factor

√
t. In this

case the expansion is interpretable precisely as an asymptotic expansion for
a heat equation solution whose leading term is the Gaussian ψ, and whose
higher terms are derivatives ψ(α) of the Gaussian.

The proof of Theorem 5 is based on that of the asymptotic moment
expansion in Theorem 4.3.1 of [9]. We begin with the following lemma.

Lemma 10. Let ρ = ρ(w,y) ∈ P(R2d), and for each fixed w ∈ Rd define
ρw(y) = ρ(w,y) (hence ρw ∈ P(Rd).) Suppose that for some integer N ≥ 0,
ρ satisfies

ρ
(α)
w (0) ≡ ∂|α|ρ

∂yα
(w,y)

∣∣∣∣
y=0

= 0
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for all w and each multiindex α with |α| ≤ N . Then for any continuous
seminorm || || on P(Rd), the following σ-indexed family of functions of w,

w �−→ σN ||ρw(·/σ)||,

converges locally uniformly (in w) to the zero function (of w) as σ → ∞.

We use the symbol · to denote function or distribution arguments for
the purposes the bracket operation 〈 , 〉 or seminorms. Here, the notation
ρw(·/σ) represents the function mapping y ∈ Rd to ρw(y/σ).

Proof. We prove the stronger statement that the family of functions

w �−→ lim
σ→∞

σN+1||ρw(·/σ)||

is locally uniformly bounded inw, where lim denotes limit superior. Consider
first the seminorm || ||γ,0 for fixed γ > 0, and suppose the lemma is false
for this seminorm. Then there must be a compact neighborhood K ⊂ Rd

and a pair of sequences {wj ∈ K}j≥0, {σj ∈ R}j≥0, with σj → ∞, such that

(2.4) ∞ = lim
j→∞

σN+1
j

∣∣∣∣ρwj
(·/σj)

∣∣∣∣
γ,0

= lim
j→∞

σN+1
j sup

y∈Rd

∣∣∣e−γ|y|ρwj
(y/σj)

∣∣∣ .
By passing to a subsequence if necessary, we may assume {wj} converges to
some w′ ∈ K.

Since

lim
|y|→∞

∣∣∣e−γ|y|ρwj
(y/σj)

∣∣∣ = 0

for each j, the supremum on the right-hand side of (2.4) is realized at some
yj ∈ Rd. Hence

∞ = lim
j→∞

σN+1
j

∣∣∣∣ρwj
(y/σj)

∣∣∣∣
γ,0

= lim
j→∞

σN+1
j

∣∣∣e−γ|yj |ρwj
(yj/σj)

∣∣∣
= lim

j→∞

(
|yj |N+1e−γ|yj |(1−σ−1

j )
)(

e−γ|yj/σj ||yj/σj |−N−1|ρwj
(yj/σj)|

)
.

The expression |yj |N+1e−γ|yj |(1−σ−1
j ) is bounded in j since σj → ∞, so we

must have

(2.5) lim
j→∞

e−γ|yj/σj ||yj/σj |−N−1|ρwj
(yj/σj)| = ∞.
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By passing to a subsequence if necessary, we may assume that the se-
quence {yj/σj}j≥0 either approaches the origin as a limit or is bounded
away from the origin. In the first case, limj→∞ yj/σj = 0, the quantity

|yj/σj |−N−1 |ρw′(yj/σj)|

is bounded by the derivative condition on ρ, and so the quantity

|yj/σj |−N−1
∣∣ρwj

(yj/σj)
∣∣

appearing in (2.5) is bounded by continuity of the (N +1)st derivative of ρ.
Therefore

e−γ|yj/σj ||yj/σj |−N−1|ρwj
(yj/σj)|

is bounded, contradicting (2.5). In the second case, lim infj→∞ |yj/σj | > 0,
we note that |wj | is bounded since K is compact. Therefore, the quantity

e−γ|yj/σj ||ρwj
(yj/σj)| = e−γ|yj/σj ||ρ(wj ,yj/σj)|

appearing in (2.5) is less than or equal to

(2.6) Be−γ
√

|wj |2+|yj/σj |2 |ρ(wj ,yj/σj)|,

for some B > 0. Quantity (2.6) is bounded in j since ρ(·, ·) ∈ P(R2d).
Combining this with the boundedness of |yj/σj |−N−1 (for this case) again
yields a contradiction of (2.5). The lemma is therefore true for the seminorm
|| ||γ,0.

For the seminorm || ||γ,α with |α| > 0 we have

||ρw(·/σ)||γ,α = σ−|α|||ρ(α)w (·/σ)||γ,0,

whereupon we may apply the above argument to ρ
(α)
w in place of ρw, yield-

ing the desired result. Since the family of seminorms || ||γ,α generates the
topology on P , the result is true for any continuous seminorm.

Proof of Theorem 5. Let

PN (w,y) =
∑

0≤|α|≤N

(−1)|α|

α!
yα ψ(α)(w)

be the Taylor expansion of ψ(w − y) about y = 0 to order N , and define
the remainder function

ρN,w(y) = ψ(w − y)− PN (w,y).
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Then

(f ∗ ψσ)(σw) = σ−d
〈
f(·), ψ((σw − ·)/σ)

〉
= σ−d

〈
f(·), ψ(w − ·/σ)

〉
= σ−d

〈
f(·), PN (w, ·/σ)

〉
+ σ−d

〈
f(·), ρN,w(·/σ)

〉
=

∑
0≤|α|≤N

(−1)|α|

α!
μα σ−|α|−d ψ(α)(w) + σ−d

〈
f(·), ρN,w(·/σ)

〉
.

Rearranging, we obtain

(2.7) σN+d

⎛
⎝(f ∗ ψσ)(σw)−

∑
0≤|α|≤N

(−1)|α|

α!
μα σ−|α|−d ψ(α)(w)

⎞
⎠

= σN 〈f(·), ρN,w(·/σ)〉.

To finish, note that the seminorm ||ρN,w|| = |〈f(·), ρN,w(·)〉| is continuous
on ρN,w ∈ P(Rd) for any f ∈ P ′, and ρN (w,y) ≡ ρN,w(y) satisfies the
conditions of Lemma 10. Therefore, the family of functions

w �−→ σN 〈f(·), ρN,w(·/σ)〉

converges locally uniformly in w to the zero function as σ → ∞, which
together with (2.7) proves the theorem.

3. Proof of unique determination

3.1. General wavelets

Here we prove our main result, Theorem 1, regarding unique determination
of a function from the nodes of its wavelet transform at a discrete set of
scales.

Fix ψ ∈ P(Rd), and let f ∈ P ′
γ ∩ L1(Rd), for some γ > 0, be a function

to be determined. We define the ψ-zeros of f at scale σ > 0 to be the zeros
of f ∗ ψσ(x), with ψσ(x) = σ−dψ(x/σ). We recall the genericity condition
from the Introduction:

Genericity Condition. The regular zero set of any derivative of fixed order
n is not contained in the zero set of any other derivative of fixed order m,
for any n,m ≥ 0.

Above, the regular (or transverse) zeros of ψ are those around which the
function takes both positive and negative values in any open neighborhood.
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A derivative of fixed order n (or an order-n derivative) of ψ is a function of
the form

∑
|α|=nCαψ

(α) for some n ≥ 0, where the Cα are constants not all
equal to zero, defined up to multiplication by a nonzero scalar. Note that
this genericity condition on non-containment of zeroes includes the case of
two derivatives of the same order, i.e., where m = n.

Our main result can now be stated as follows:

Theorem 1. Given ψ ∈ P satisfying the above genericity condition, any
function f ∈ P ′

γ ∩ L1(Rd) (for any γ > 0) is uniquely determined (up to a
constant multiple) by its ψ-zeros at any sequence of positive scales {σj}∞j=1

tending to infinity.

Proof. For convenience we introduce w = x/σ. Moment expansion (Theo-
rem 5) gives

(3.1) f ∗ ψσ(x) ∼
∑
|α|≥0

(−1)|α|

α!
μα σ−|α|−d ψ(α)(w) (σ → ∞).

Also for convenience, we introduce the function Z(σ,w) = σn0+d (f ∗
ψσ)(σw), where n0 is the order of the lowest-order nonzero moment of f . Z
admits the moment expansion

(3.2) Z(σ,w) ∼
∑

|α|≥n0

(−1)|α|

α!
μα σn0−|α| ψ(α)(w) (σ → ∞).

By locally uniform convergence of the moment expansion (Theorem 5) in
the case N = n0, as σ → ∞, Z(σ,w) converges locally uniformly in w to

(3.3) z(w) = (−1)n0

∑
|α|=n0

μα

α!
ψ(α)(w).

The ψ-zeros at scale σ correspond to the zeros, in w, of Z(σ,w). By
assumption, we are given the zero sets Ej = {w : Z(σj ,w) = 0} ⊂ Rd at
scale σ = σj for each j ≥ 0. We call the limiting set E of {Ej} as j → ∞
(i.e. the set of all limits of sequences {wj ∈ Ej}j≥0) the asymptotic zero set.

E contains all regular zeros of z since regular zeros persist under small
locally uniform perturbations. So if w′ is a regular zero of z(w) we may,
from knowledge of {Ej}j≥0, choose a sequence {wj ∈ Ej}j≥0 such that
limj→∞wj = w′. By locally uniform convergence (Theorem 5), we may
substitute σ = σj and w = wj into (3.2), obtaining
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0 = Z(σj ,wj) ∼
∑

|α|≥n0

(−1)|α|

α!
μα σ

n0−|α|
j ψ(α)(wj).

This expansion holds in the sense that for each k ≥ 0, the partial sum of the
right-hand side with |α| up to n0 + k vanishes up to order σ−k

j as j → ∞:

(3.4) lim
j→∞

σk
j

∑
n0≤|α|≤n0+k

(−1)|α|

α!
μα σ

n0−|α|
j ψ(α)(wj) = 0,

for all k ≥ 0. We separate the left-hand side of (3.4) into terms involving
moments of order n0 + k and those involving lower-order moments:

(3.5)
∑

|α|=n0+k

(−1)|α|

α!
μαψ

(α)(w′)

+ lim
j→∞

∑
n0≤|α|<n0+k

(−1)|α|

α!
μα σ

n0+k−|α|
j ψ(α)(wj) = 0.

The two terms of Equation (3.5) form a linear recursion relation for the
moments μα of order |α| = n0 + k in terms of lower-order moments. We
now show by induction on k that Equation (3.5) recursively determines all
moments of f up to a constant multiple.

As a basis step we observe that, for k = 0, the second term on the left-
hand size of Equation (3.5) vanishes, while the first term is equal to z(w′).
Since Z(σ,w) converges locally uniformly in w to z(w), the asymptotic zero
set E contains the regular zero set of z and is contained in the zero set of z.
Furthermore, since z is an order-n0 derivative of ψ, the genericity condition
ensures that E cannot contain the regular zero set of any other fixed-order
derivative of ψ (if so, this regular zero set would also be contained in the
zero set of z, violating the genericity condition). Thus z(w) is the unique
fixed-order derivative of ψ whose regular zeros are contained in E. Since
E is uniquely determined by the given zero sets {Ej}, it follows that n0

and all moments μα with |α| = n0, up to a common multiple, are uniquely
determined by these zero sets (using the above genericity condition for n =
m).

Now assume for induction that for some k ≥ 1, all moments μα with
|α| < n0+k are known. Then the first term on the left-hand side of Equation
(3.5) can be evaluated at any w′ ∈ E by choosing a corresponding sequence
{wj ∈ Ej} with wj → w′ and evaluating the second term. The genericity
condition ensures that the moments μα with |α| = n0 + k are uniquely
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determined by the values of the first term as w′ ranges over the regular zeros
of z, since the difference between any two distinct choices for the first term
of (3.5) would be an order-(n0+k) derivative of ψ that is identically zero on
the regular zero set of z, an order-n0 derivative of ψ. Thus the moments of
order n0 + k are uniquely determined by the lower-order moments together
with the given zero sets {Ej}. If the lower-order moments are known only up
to a common multiple, then since Equation (3.5) is linear in the moments,
those of order n0+k are determined up to this same common multiple. This
completes the induction, showing that all moments of f are determined up
to a constant multiple by the zero sets {Ej}.

To determine f from its moments {μα}α we first determine its Fourier
transform

f̂(ω) =

∫
Rd

f(x)e−iω·x dx.

We claim that f̂(ω) is well-defined and analytic for all ω ∈ Cd with | Imω| <
γ. This result is well-known as a version of the Payley-Wiener theorem for
f ∈ P ′

γ ∩ L2; we provide the argument for f ∈ P ′
γ ∩ L1.

Fix such an ω. The Fourier transform f̂ is well-defined at ω since f ∈
P ′
γ ∩ L1(Rd). Furthermore, the (complex) partial derivative of f̂ in the jth

coordinate at ω is given by

(3.6)
∂f̂

∂ωj
(ω) = lim

ε→0
ε∈C

∫
Rd

f(x)
1

ε

(
e−i(ω·x+εxj) − e−iω·x

)
dx.

Fix λ ∈ R satisfying | Imω| < λ < γ. For sufficiently small ε, the integrand
in (3.6) is absolutely bounded over all x ∈ Rd by

|xf(x)|eλ|x|,

which is integrable since f ∈ P ′
γ ∩ L1(Rd). By dominated convergence, the

limit and integral in (3.6) can be interchanged, yielding

∂f̂

∂ωj
(ω) =

∫
Rd

(−ixj)f(x)e
−iω·x dx.

This shows that all complex first partials of f̂(ω) exist; thus f̂ is analytic at
ω.

Using dominated convergence to iteratively evaluate derivatives of f̂(ω)
as in (3.6), we obtain the Taylor expansion
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f̂(ω) =
∑
|α|≥0

μα
(−iω)α

α!
.

By analytic continuation, the moments {μα}|α|≥0 uniquely determine f̂ on

Rd. Since the Fourier transform is one-to-one on L1(Rd), f is uniquely de-
termined by its moments. This completes the proof.

3.2. Counterexamples to unique determination if the conditions
of Thereom 1 are weakened

Thereom 1 can be described as the strongest of its kind in two senses. First
(Section 7), the theorem is false if the exponential decay required by the
condition f ∈ P ′

γ is relaxed to algebraic decay.
Second, if the above genericity condition is relaxed even mildly, the the-

orem becomes false for f ∈ P ′
γ . Specifically, if we consider the weakened

genericity condition that the entire (not just regular) zero set of any deriva-
tive of fixed order derivative n is not contained in the zero set of any other
derivative of fixed order m, there exists a ψ ∈ P and f ∈ P ′

γ for which the
conclusion of the theorem is false.

The simplest example of this involves an R1-wavelet based on the Gaus-
sian, for which two finite δ-series have the same zeros. This wavelet ψ(x) is
based on a triplet of reals (a, b, x∗) solving the system of equations

−x∗e−(x∗)2/2 + ax∗ + b = 0(3.7a) (
(x∗)2 − 1

)
e−(x∗)2/2 + a = 0(3.7b)

√
3e−3/2 −

√
3a+ b = 0,(3.7c)

where x∗ �= −
√
3. A numerical solution exists with x∗ ≈ 0.71, a ≈ 0.38,

and b ≈ 0.28. Note that x∗ is necessarily a transcendental (non-algebraic)
number, as we will show.

Let

(3.8) ψ(x) = −xe−x2/2 + ax+ b.

The wavelet ψ(x) has a non-regular (double) zero at x = x∗ and a regular
zero at x = −

√
3. Its derivative ψ′(x) has regular zeros at x = ±x∗. Its

second derivative ψ′′(x) has regular zeros at x = 0 and x = ±
√
3 (see Figure

1). All derivatives of order n ≥ 3 have (algebraic) zeroes given by the roots
of the Hermite polynomial Hn+1(x).
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Figure 1: Graphs of ψ(x), defined in Eq. (3.8), and its second derivative.
Note ψ(x) has a non-regular zero at x = x∗ and a regular zero at x = −

√
3,

while ψ′′(x) has regular zeros at x = 0 and x = ±
√
3 and no non-regular

zeros.

The wavelet ψ satisfies the weakened genericity condition. Indeed, none

of ψ, ψ′ or ψ′′ have a zero set contained in the zero set of another. Further,

the zeroes of ψ(n) for n ≥ 3 are algebraic, and therefore cannot contain the

zero sets of ψ or ψ′, which include the transcendental number x∗. Finally,
the irreducibility of Hermite polynomials (see Section 3.3) implies that the

zeros of ψ(n), n ≥ 2, are not contained in the zeroes of any other ψ(m),

m ≥ 2.

Note however that ψ does not satisfy the original genericity condition,

since its only regular zero (at x = −
√
3) is contained in the zero set of ψ′′.

For c > 0 sufficiently small and σ > 0 sufficiently large, the function

ψ(w) + cσ−2ψ′′(w) has zeros only at x = −
√
3, independent of the choice

of (small) c. Thus for sufficiently small c > 0, the initial distributions δ(0)

and δ(0) + cδ(2) cannot be distinguished by their zeros when the scaling σ

is sufficiently large. This shows that the weakened genericity condition is

insufficient for the conclusion of Marr’s conjecture to hold.

It remains to show that x∗ is transcendental (i.e., not an algebraic num-

ber). To this end, solving (3.7b) for a we have

a =
(
1− (x∗)2

)
e(−x∗)2/2.
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Now substituting for a in (3.7a) and solving for b:

b = (x∗)3e(−x∗)2/2.

Substituting in (3.7c) and rearranging,

√
3e−3/2+(x∗)2/2 =

√
3
(
1− (x∗)2

)
− (x∗)3.

If x∗ were algebraic then the left side would be transcendental (since the
exponentials of non-zero algebraics are transcendental by the Hermite-Linde-
mann theorem) while the right side would be algebraic, which would give a
contradiction. Therefore x∗ is transcendental.

3.3. Ricker wavelets and the Marr conjecture

We now specialize Theorem 1 to the Ricker (Mexican hat) wavelet M(x) =
ΔG(x), which is clearly in P . We first consider the one-dimensional case:

Corollary 3(a). (Infinite limit case) Any f ∈ P ′
γ ∩L1(R) is uniquely deter-

mined (up to a constant multiple) by the zero sets of f ∗Mσj
at any sequence

of positive scales {σj}∞j=1 tending to infinity.

Proof. To apply Theorem 1 we need to verify the genericity condition for
the one-dimensional Ricker wavelet M(x). This wavelet has derivatives

M (n)(x) = (−1)nHn+2(x)G(x),

where

(3.9) Hn(x) =

	n/2
∑
k=0

(−1)k
n!

k!(n− 2k)!2k
xn−2k

is the nth (probabilists’) Hermite polynomial.
We claim that two Hermite polynomials of different degree have at most

the root x = 0 in common. This will follow from an irreducibility result of
Schur [31, 30], which applies to the physicists’ Hermite polynomials, defined
by

(3.10) H̃n(x) =

	n/2
∑
k=0

(−1)k
n!

k!(n− 2k)!
(2x)n−2k

Schur [31, 30] proved that H̃2n(x) and H̃2n+1(x)/x are irreducible over the
rationals (cannot be nontrivially factored into polynomials with rational co-
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efficients) for all n ≥ 0. If two irreducible polynomials have a common real
root x0, then both must be scalar multiples of the minimal polynomial of
x0 (i.e., the unique monic polynomial of minimal degree that has a root at
x0; see [16, Theorem V.1.6]). Therefore, two irreducible polynomials can-
not have a common root unless they are scalar multiples of each other.
Inspection of Eq. (3.10) shows that no distinct polynomials from the set
{H̃2n(x)}n≥0 ∪ {H̃2m+1(x)/x}m≥0 are scalar multiples of each other (note
in particular that H̃2n(x) and H̃2n+1(x)/x have the same constant term but
different leading coefficient.) The claim is therefore true for the physicists’
Hermite polynomials. The claim for the probabilists’ Hermite polynomials
then follows from the relation Hn(x) = 2−n/2H̃n(x/

√
2).

Moreover, the relation H ′
n(x) = nHn−1(x), together with the above irre-

ducibility result, implies that Hermite polynomials have no multiple roots,
i.e. all zeros are regular. The genericity condition on M(x) follows, and the
corollary is proven by application of Theorem 1.

In higher dimensions, the genericity condition on M reduces to polyno-
mial relations. Partial derivatives ofM are described by the Laplace-Hermite
polynomials Lα(x), defined in equation (1.2), which have the explicit form

Lα(x) =

d∑
i=1

⎛
⎜⎜⎝Hαi+2(xi)

∏
1≤j≤d
j �=i

Hαj
(xj)

⎞
⎟⎟⎠ .

The genericity condition reduces to a statement about zeroes of these poly-
nomials, as stated in Corollary 4 (Section 1.2). We have numerically verified
the genericity condition on M in dimension d = 2 for n = 0, 0 ≤ m ≤ 15.

4. Geometry of Gaussian edge contours

Having proved the Marr conjecture in one dimension (Corollary 3(a)), we
ask in Sections 4–7 whether this result can be extended to other sequences
of scales and to functions that decay less rapidly than those in P ′

γ . We
therefore restrict our focus to one-dimensional Gaussian edges—that is, zeros
of f ∗Mσ, or equivalently, of Δ(f ∗Gσ)—for f ∈ L1(R). (Recall the notation
ψσ(x) = σ−1ψ(x/σ) for any smooth function ψ ∈ P(R)). Our results are
summarized in Corollary 3(b,c) (Section 1.2).

This section gives a characterization of the geometry of one-dimensional
Gaussian edges, which we will later use in proving unique determination
from sequences of bounded-scale edges. Since these edges are nodes of a



The Marr conjecture and uniqueness of wavelet transforms 493

heat equation solution, we will represent scale using the variable t = σ2

rather than σ.
We remark that the results of this section hold for zero contours (i.e.

points where f ∗ G√
t = 0) as well as edge contours (Δf ∗ G√

t = 0), us-
ing the same arguments. The results are stated for edge contours only for
convenience in applying them to further results.

Given f ∈ P ′
γ ∩ L1(R), define

F (x, t) = f ∗G√
t(x).

F is jointly analytic in both variables on the upper half-plane H+ = R ×
(0,∞) (e.g. [5, Theorem 10.3.1]). Both F and Fxx = ∂2F

∂x2 satisfy the heat
equation (1.3), and so are subject to the following maximum principle (e.g.
[5, Theorem 15.3.1]):

Theorem 11. For t2 > t1 ≥ 0, let s1, s2 : [t1, t2] → R be continuous
functions with s1(t) < s2(t) for all t ∈ (t1, t2]. Let D be the parabolic interior

(4.1) D = {(x, t) : t ∈ (t1, t2], s1(t) < x < s2(t)},

Let u(x, t) satisfy the heat equation uxx = 1
2ut on D̄, the closure of D. Then

if the maximum (or minimum) value of u over D̄ is achieved on D, u is
constant on D̄.

An immediate consequence of the maximum principle is that Fxx has
no isolated zeros, since such a zero would be a local extremum. Further-
more, since Fxx is analytic, the resolution of analytic singularities in two
real dimensions [12, 13, 3] (or Puiseux series expansion, e.g. [4] or Theorem
4.2.11 of [19]) implies that for each zero (x0, t0) ∈ H+ of Fxx there must
be a neighborhood W ⊂ H+ containing (x0, t0) and a collection of injective
real-analytic mappings

(χ1, τ1) : (−ε1, ε1) → W,

...

(χk, τk) : (−εk, εk) → W,(4.2)

the images of which intersect only at (x0, t0) = (χ1(0), τ1(0)) = . . . =
(χk(0), τk(0)), and the union of whose images is precisely the zero set of Fxx

in W . By analytic continuation of these mappings, the zero set of Fxx in H+

can be uniquely described as a union of real-analytic curves or curve seg-
ments that have locally injective parameterizations of the form (4.2) around



494 Benjamin Allen and Mark A. Kon

each point, endpoints (if they exist) only on the line t = 0, and whose in-
tersections form a discrete subset of H+. We call these curves and curve
segments the edge contours of F . (The above statements also apply to the
zero set of F rather than Fxx; we call the curves and curve segments com-
prising this set the zero contours of F .)

It is commonly observed computationally [35] that edge contours either
form arcs from one point on the x-axis to another, or else extend from t = 0
to t = ∞. Solutions for which new edge contours are generated with increas-
ing t have not been observed numerically or analytically. This observation
has been formalized and proven in several ways [2, 15]; here we prove Theo-
rem 7, which strengthens previous formalizations. We begin with a lemma.

Lemma 12. If Fxx(x0, t0) = 0, then Fxx has at least one zero in any rect-
angle [x0 − ε, x0 + ε]× [t0 − δ, t0) with ε, δ > 0.

Proof. Assume, to the contrary, that there is a rectangle [x0−ε, x0+ε]×[t0−
δ, t0) that contains no zeros of Fxx. Defining D = (x0−ε, x0+ε)×(t0−δ, t0],
we find that Fxx is either maximized or minimized over D̄ = [x0 − ε, x0 +
ε] × [t0 − δ, t0] at (x0, t0) ∈ D. By the maximum principle (Theorem 11),
Fxx ≡ 0 on D̄, contradicting our assumption.

As an immediate consequence, edge contours cannot have local minima
in t:

Corollary 13. If (χ, τ) : (−ε, ε) → H+ is a local parameterization of an
edge contour of F , then τ has no local minimum on (−ε, ε).

We next define a persistent edge contour as an edge contour that extends
to arbitrarily large values of t (or equivalently, arbitrarily large values of
σ =

√
t). We immediately obtain the following two results:

Corollary 14. A persistent edge contour can intersect the line t = t1 no
more than once.

Corollary 15. If (χ, τ) : (−ε, ε) → H+ is a local parameterization of a
persistent edge contour of F , then τ has no local maximum on (−ε, ε).

Proof. Topologically, for each local maximum of a curve that is not a global
maximum, there must also be a local minimum. Since persistent edge con-
tours have no global maxima or local minima, they therefore cannot have
local maxima.

We now prove Theorem 7, which formalizes the observation that edge
contours are not generated with increasing t. Again, we note that this result
applies also to zero contours; the proof is the same but with Fxx and G(2)

replaced with F and G respectively.
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Theorem 7. For any f ∈ P ′
γ∩L1(R) and positive numbers t1 < t2, the edge

contours of f intersecting the line t = t2 are a subset of those that intersect
t = t1.

Proof. Since edge contours are never minimized in t (Corollary 13), it only
needs to be shown that there is no edge contour whose t-value decreases
asymptotically to an intermediate value t′, t1 < t′ < t2, as its x-value di-
verges to positive or negative infinity.

Assume the contrary, and without loss of generality assume the x-value
of the edge contour in question diverges to positive infinity as t decreases to
t′. Then there is a locally analytic curve s �→ (χ(s), τ(s)) defined for all s
greater than some s0, with

• Fxx(χ(s), τ(s)) = 0, ∀s > s0,
• τ(s) monotonically decreasing,
• lims→∞ χ(s) = ∞,
• lims→∞ τ(s) = t′.

For x1 > χ(s0), define D1 ⊂ H+ to be the closed connected region
bounded by the curve (χ(s), τ(s)) and the lines t = t2 and x = x1 (Figure 2).
Since Fxx is zero on the curve (χ(s), τ(s)), the maximum principle (Theorem
11) implies that |Fxx(x, t)| achieves its maximum value over D1 at a point on
the line x = x1. We denote this maximizing point (x1, t

∗
1). For any x2 > x1,

|Fxx| achieves its maximum over the domain D2 (defined similarly to D1

with x1 replaced by x2; see Figure 2) at a point on the line x = x2, which
we denote (x2, t

∗
2). Moreover, |Fxx(x2, t

∗
2)| > |Fxx(x1, t

∗
1)| since D1 ⊂ D2.

Iterating this argument, we obtain a sequence {(xi, t∗i )}i≥1, with xi → ∞
and |Fxx(xi, t

∗
i )| monotonically increasing. Thus

(4.3) lim
i→∞

|Fxx(xi, t
∗
i )| > 0.

On the other hand, since xi → ∞ while t∗i is confined to the interval
(t′, t2] for each i, it is easily verified that the sequence of functions {gi(y)}∞i=1

with

gi(y) = G
(2)√
t∗i
(xi − y)

converges as i → ∞ to the zero function in the topology of Pγ . Then, since
f ∈ P ′

γ ,

lim
i→∞

Fxx(xi, t
∗
i ) = lim

i→∞
f ∗G(2)√

t∗i
(xi) = lim

i→∞
〈f, gi〉 = 0.

This contradicts (4.3); hence no such edge contour exists.
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Figure 2: Regions defined in proof of Theorem 7. D1 is bounded by the curve
(χ(s), τ(s)) and the lines t = t2 and x = x1. D2 is bounded by the curve
(χ(s), τ(s)) and the lines t = t2 and x = x2, with x2 > x1.

5. Reconstruction from other edge sequences

The above proof of unique determination from Gaussian edges (Marr’s con-
jecture, Corollary 3(a)) uses only the asymptotics of the edges of f for
large scales σ. This is unexpected, since one would anticipate more infor-
mation would arise from small-scale rather than large-scale edges. We show
here that in the one-dimensional Gaussian case, a sequence of bounded-scale
edges (i.e. with σ remaining bounded) is also sufficient to uniquely deter-
mine any f ∈ P ′

γ ∩ L1(R), as long as the sequence of scales has a positive
limit point.

5.1. Sequences of scales with a positive limit point

With f and F as above, let {tj}j≥1 be a sequence of positive real numbers
with a limit point t′ > 0, for which the solutions (in x) to Fxx(x, tj) = 0 are
given.

The asymptotic edge (Section 3.1) of the Ricker wavelet transform of
f is given by the zeros of Hn0+2

(
x/

√
t
)
, where n0 is the order of the first

nonzero moment of f . Since Hn0+2 has n0 + 2 distinct regular real roots,
there are exactly n0 + 2 persistent edge contours. Theorem 7 implies that
the persistent edge contours intersect the lines t = tj for all j, as well as the
limiting line t = t′. Further, by Lemma 12, the persistent edge contours cross
the lines t = tj rather than achieving local minima at the intersection points.
Thus by analytic continuation, the persistent edge contours are uniquely
determined by the given solutions to Fxx(x, tj) = 0. We now recall that the
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edge contours of f are the zeros of f ∗Mσ, with Mσ(x) = σ−1M(x/σ) and
σ =

√
t. The infinite-limit (σj → ∞) case of Corollary 3(a), proven above,

guarantees that the persistent edge contours uniquely determine f . We have
thus proved:

Corollary 3(a). (General case) Any f ∈ P ′
γ∩L1(R) is uniquely determined

(up to a constant multiple) by the zero sets of f ∗Mσj
at any set of scales

{σj}∞j=1 with a positive or infinite limit point.

5.2. Sequences of scales converging only to zero

Perhaps surprisingly, unique determination is not guaranteed in the case
that the scales {σj} have zero as their only limit point, as we now show:

Corollary 3(b). For any γ > 0, there exist two functions f1, f2 ∈ P ′
γ ∩

L1(R), which are not constant multiples of each other, and a sequence of
scales {σj}∞j=1 converging to zero, such that f1 ∗ Mσj

and f2 ∗ Mσj
have

identical zero sets for every j ≥ 1.

Proof. Fix γ > 0. We will prove this statement by constructing a com-
pactly supported function h ∈ P ′

γ ∩ L1(R) and defining f1(x) = G(x) ≡
(2π)−1/2e−x2/2 and f2(x) = G(x) + h(x). The function h will be defined by
its second derivative Δh ∈ P ′, which we represent as an infinite sum

Δh =

∞∑
n=1

cnJαn,βn
.

Above, for any real numbers 0 < |β| < α < 1, the distribution Jα,β ∈ P ′
γ is

defined as a combination δ-distributions localized at x = ±(1 + β)± α:

Jα,β(x) = δ(x+ 1 + α+ β)− δ(x+ 1− α+ β)

− δ(x− 1 + α− β) + δ(x− 1− α− β).

We will choose cn, αn, and βn inductively, so that the edge contours of G+h
oscillate about those of G as σ → 0.

We begin by setting c1 = 1 and choosing 0 < −β1 < α1 < 1 arbitrarily.
We define h1 by

Δh1(x) = c1Jα1,β1
(x),

together with the requirement that h1 be compactly supported. (We as-
sume all hn are compactly supported, and so can be defined by their second
derivatives.) The function h1 is illustrated in Figure 3.
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Figure 3: The graph of hn − hn−1, which satsifies Δ(hn − hn−1) = cnJαn,βn
.

Note that

∫ ∞

−∞
|hn(x)− hn−1(x)| dx = 4cnαn(1 + βn). For n = 1 this is the

graph of h1. h is constructed as an infinite sum of functions of this form.

There are two edge contours of G (i.e. zero curves of Δ(G ∗ Gσ) =

G
(2)√
σ2+1

), described by x = ±
√
σ2 + 1. Since Jα1,β1

is nonnegative/nonposi-

tive wherever G(2) is, the addition of h1 to G creates no new edge contours

(any such created edge contours would have to manifest themselves at ar-

bitrarily small scales by Theorem 7), and perturbs the edge contours of G

symmetrically about the σ-axis (by the symmetry of Jα1,β1
).

Furthermore, since β1 < 0, the positive point masses of Jα1,β1
are closer

to ±1 than the negative ones. Thus there is a sufficiently small σ1 > 0, for

which

Δ(h1 ∗Gσ1
)

(
±
√

σ2
1 + 1

)
> 0.

Now suppose inductively that for some n ≥ 1 we have a compactly

supported function hn ∈ L1(R) such that Δhn is zero in neighborhoods of

±1, and a strictly decreasing sequence of positive scales {σ1, . . . σn} such

that

(5.1)

⎧⎨
⎩
Δ(hn ∗Gσk

)
(
±
√

σ2
k + 1

)
> 0 for k odd

Δ(hn ∗Gσk
)
(
±
√

σ2
k + 1

)
< 0 for k even, 1 ≤ k ≤ n.



The Marr conjecture and uniqueness of wavelet transforms 499

As an induction step, we will choose real numbers cn+1, αn+1, βn+1, and
σn+1, with cn+1 > 0, 0 < (−1)n+1βn+1 < αn+1 < 1, |βn+1| < αn+1, and
0 < σn+1 < σn, such that if hn+1 ∈ L1(R) is defined by

Δhn+1(x) =Δhn(x) + cn+1Jαn+1,βn+1
,

then

(5.2)

⎧⎨
⎩
Δ(hn+1 ∗Gσk

)
(
±
√

σ2
k + 1

)
> 0 for k odd

Δ(hn+1 ∗Gσk
)
(
±
√

σ2
k + 1

)
< 0 for k even, 1 ≤ k ≤ n+ 1.

First, note that for any fixed σ (in particular for σ = σk with 1 ≤ k ≤ n),
the quantity ∣∣Jαn+1,βn+1

∗Gσ(x)
∣∣

is uniformly bounded over all choices of αn+1 and βn+1 and all x. Thus
for cn+1 sufficiently small, the desired relationships (5.2) hold for k ≤ n no
matter the values of αn+1 and βn+1. We choose cn+1 so that this property
is satisfied and also cn+1 < cn/2.

Second, since Δhn is zero in neighborhoods of ±1, there exist arbitrarily
small σn+1, αn+1 and βn+1 such that

Δ(hn ∗Gσn+1
)

(
±
√

σ2
n+1 + 1

)

is arbitrarily small in magnitude relative to

Jαn+1,βn+1
∗Gσn+1

(
±
√

σ2
n+1 + 1

)
,

and therefore the sign of

Δ(hn+1 ∗Gσn+1
)

(
±
√

σ2
n+1 + 1

)

= Δ(hn∗Gσn+1
)

(
±
√

σ2
n+1 + 1

)
+cn+1Jαn+1,βn+1

∗Gσn+1

(
±
√

σ2
n+1 + 1

)

coincides with that of

Jαn+1,βn+1
∗Gσn+1

(
±
√

σ2
n+1 + 1

)
.
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Finally, since αn+1 and βn+1 were chosen to satisfy 0 < (−1)n+1βn+1 <
αn+1, it follows that

(−1)nJαn+1,βn+1
∗Gσn+1

(
±
√

σ2
n+1 + 1

)
> 0,

and hence

(−1)nΔ(hn+1 ∗Gσn+1
)

(
±
√

σ2
n+1 + 1

)
> 0,

as desired. This completes the inductive construction of hn+1 and σn+1.

Having defined the partial sums hn inductively, we now define h to be
their limit in the L1 topology. This limit exists because hn − hn−1 has L1-
norm 4αncn(1 + βn) (see Figure 3), and therefore the L1-norm of hn is
bounded for each n by 4

∑∞
m=1 cmαm(1+βm). This sum converges since the

cn are bounded by a geometric sequence (cn+1 < cn/2), and |βn| < αn < 1
for each n. The latter inequality also implies that h is compactly supported;
therefore, h ∈ P ′

γ ∩ L1(R).

In the above limit, the relationships (5.1) are preserved with ≤ in place
of <: ⎧⎨

⎩
Δ(h ∗Gσn

)
(
±
√

σ2
n + 1

)
≥ 0 for n odd

Δ(h ∗Gσn
)
(
±
√

σ2
n + 1

)
≤ 0 for n even.

Thus, letting xn =
√

σ2
n + 1, we have shown that the sign of Δ((G + h) ∗

Gσn
)(xn) − Δ(G ∗ Gσn

)(xn) alternates with n. Since σn → 0, this implies
that the edge contours of G and G+ h cross infinitely often as σ → 0. The
two edge contours of both G and G+h are symmetric about the σ-axis, the
intersections of edge contours on each side of the σ-axis occur at the same
σ-values. Thus the edges of G and G + h agree on an infinite sequence of
scales tending to zero.

6. Distributions with finitely many moments

We have shown that any one-dimensional function with exponential decay
is uniquely determined by a sequence of scaled Gaussian edges, thus giving
a sufficient condition for the Marr conjecture in one dimension. One can ask
whether this result could be extended to functions that decay less rapidly—
for example, functions with algebraic decay. Addressing this question re-
quires a formal notion of distributions with only finitely many moments. To
that end, this section introduces the space MN of smooth test functions of
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asymptotic order |x|N or less, and its dual M′
N , whose elements are distri-

butions with moments through order N . We first define these spaces, then
consider derivatives and antiderivatives of distributions in M′

N , and finally

we prove the existence and continuity of asymptotic moment expansions for
such distributions.

We consider only one-dimensional distributions, but the definitions and
results presented here can readily be generalized to arbitrary dimensions.

6.1. Definitions

For any nonnegative integer N , let MN denote the space of smooth test
functions ψ on R such that, for each integer n ≥ 0, the seminorm

(6.1) ||ψ||N,n = sup
x∈R

(1 + |x|)−(N−n)|ψ(n)(x)|

is finite. (These seminorms were first introduced by Hörmander [14] and are
often used to define symbol classes of pseudodifferential operators; e.g. [32].)

The topology on MN is generated by the family of seminorms || ||N,n for
n ≥ 0. Functions in MN behave asymptotically as |x|N or less, and their nth

derivatives behave asymptotically as |x|N−n or less. In particular, xm ∈ MN

for each integer 0 ≤ m ≤ N . We also observe from (6.1) that for M ≤ N ,
||ψ||N,n ≤ ||ψ||M,n for each ψ ∈ MM and n ≥ 0, from which it follows that
MM ⊂ MN .

We denote the dual space of distributions on MN by M′
N . Distributions

in M′
N have moments through order N , where the nth moment of f ∈ M′

N

is defined as

μn(f) = 〈f, xn〉, 0 ≤ n ≤ N.

For M ≤ N , we have M′
N ⊂ M′

M since MM ⊂ MN . We also note that for

all N , MN ⊂ P and hence P ′ ⊂ M′
N .

6.2. Derivatives and antiderivatives

We observe from (6.1) that for each n ≥ 0, 0 ≤ m ≤ N ,

(6.2) ||ψ(m)||N−m,n = ||ψ||N,n+m,

and therefore, ψ(m) ∈ MN−m whenever ψ ∈ MN . This relation also shows
that the derivative is a continuous linear operator from MN to MN−1.
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The derivative of a distribution f ∈ M′
N is defined, according to inte-

gration by parts, as the element of f ′ ∈ M′
N+1 that satisfies

(6.3) 〈f ′, ψ〉 = −〈f, ψ′〉

for all ψ ∈ MN+1. By extension, the mth derivative of f ∈ M′
N , denoted

f (m), is an element of M′
N+m, for each integer m ≥ 0.

We can also define the antiderivative of a distribution f ∈ M′
N , provided

that f has vanishing zeroth moment. This definition requires the following
lemma regarding antiderivatives of test functions:

Lemma 16. If ψ is a smooth function and ψ′ ∈ MN−1, N ≥ 1, then
ψ ∈ MN .

Proof. Since ||ψ||N,n = ||ψ′||N−1,n−1 for all n ≥ 1, we need only verify
that ||ψ||N,0 is finite. To show this, we note that ψ′ ∈ MN−1 implies that
||ψ′||(N−1,0) is finite, and thus there exists some constant C > 0 such that

|ψ′(x)| ≤ C(1 + |x|)N−1 for all x ∈ R. In particular, we have

−C(1 + x)N−1 ≤ ψ′(x) ≤ C(1 + x)N−1 for x > 0(6.4a)

−C(1− x)N−1 ≤ ψ′(x) ≤ C(1− x)N−1 for x < 0.(6.4b)

Upon integrating (6.4a) from x = 0 to x = ∞, and (6.4b) from x = −∞ to
x = 0 (and recalling that N ≥ 1), it follows that there exists some K such
that |ψ(x)| ≤ K(1 + |x|)N . Thus ||ψ||N,0 is finite, completing the proof.

Using the above lemma, we show that any f ∈ M′
N with μ0(f) = 0 has

an antiderivative in M′
N−1.

Corollary 17. If f ∈ M′
N , N ≥ 1, and μ0(f) = 0, then there exists a

unique g ∈ M′
N−1 with g′ = f .

Proof. For ψ ∈ MN−1, define 〈g, ψ〉 = −〈f, φ〉, where φ is any antiderivative
of ψ. It is clear from Eq. (6.3) that any antiderivative of f must have this
form. The quantity 〈f, φ〉 is well-defined since φ ∈ MN by Lemma 16. To
show uniqueness, we note that the value of 〈g, ψ〉 does not depend on the
choice of φ since

〈f, φ+ C〉 = 〈f, φ〉+ Cμ0(f) = 〈f, φ〉.

To show that g is a continuous functional on MN−1, consider a sequence
{ψi ∈ MN−1}i≥1 converging to the zero function in the topology of MN−1.
We define a corresponding sequence {φi ∈ MN}i≥1 by
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φi(x) =

∫ x

−∞
ψi(y) dy for each i.

We claim that {φi}i≥1 converges as i → ∞ to the zero function in the
topology of MN . Indeed, for n ≥ 1 we have from (6.2) that

lim
i→∞

||φi||N,n = lim
i→∞

||ψi||N−1,n−1 = 0.

It therefore only remains to show that limi→∞ ||φi||N,0 = 0. This can be
shown by observing that, since limi→∞ ||ψi||N−1,0 = 0, there is a sequence of
positive numbers {Ci}i≥1, Ci → 0, with ψi(x) bounded in absolute value by
Ci(1 + |x|)N−1. Integrating separately over the domains (−∞, 0] and [0,∞)
as in the proof of Lemma 16, it follows that there is a sequence of positive
numbers {Ki}i≥1, Ki → 0, such that φi(x) is bounded in absolute value by
Ki(1 + |x|)N . This proves that limi→∞ ||φi||N,0 = 0 and thereby verifies the
claim that {φi}i≥1 converges to the zero function in the topology of MN .

The continuity of g as a functional on MN−1 now follows from its defi-
nition and the continuity of f :

lim
i→∞

〈g, ψi〉 = − lim
i→∞

〈f, φi〉 = 0.

We conclude that g ∈ M′
N−1 as required.

Iterating Corollary 17, a distribution in M′
N whose first m moments

vanish has a unique mth antiderivative in M′
N−m:

Corollary 18. Consider f ∈ M′
N , N ≥ 1 such that μ0(f) = . . . =

μm−1(f) = 0, for some positive integer m ≤ N . Then there exists a unique
g ∈ M′

N−m with g(m) = f .

Proof. We proceed by induction on m, with Corollary 17 serving as a base
(m = 1) case. Suppose the claim holds in the case m = m∗ for some positive
integer m∗ ≤ N − 1; we will prove it for m = m∗ + 1. Consider f ∈ M′

N

with μ0(f) = . . . = μm∗(f) = 0. By the inductive hypothesis, there exists a
unique h ∈ M′

N−m∗ with h(m
∗) = f . Iteratively applying (6.3) m∗ times, we

have that

0 = μm∗(f)

=
〈
h(m

∗), xm
∗
〉

= (−1)m
∗
(m∗)! 〈h, 1〉

= (−1)m
∗
(m∗)! μ0(h).
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Thus μ0(h) = 0, which allows us to apply Corollary 17 to h. We obtain that
there exists a unique g ∈ M′

N−m∗−1 with g′ = h. Taking m∗ derivatives of

both sides yields g(m
∗+1) = f , completing the induction step.

6.3. Asymptotic moment expansion

Here introduce the asymptotic moment expansion for distributions with
finitely many moments. A distribution f ∈ M′

N has an asymptotic mo-
ment expansion to order N − 1 in the moments of f , convolutions of which
converge locally uniformly, as we show in the following analogue of Theorem
5:

Theorem 6. For all integers 0 ≤ M ≤ N − 1 and f ∈ M′
N , ψ ∈ MN , the

σ-indexed family of functions

w �−→ σM+1

(
f ∗ ψσ(σw)−

M∑
n=0

(−1)n

n!
μn σ−n−1 ψ(n)(w)

)
,

converges locally uniformly (in w) to the zero function (of w) as σ → ∞.

Once the following analogue of Lemma 10 is proved, the proof of The-
orem 6 follows exactly the proof of Theorem 5 (in the case d = 1, which is
the only case we consider here).

Lemma 19. Let ρ(w, y) be a smooth function and, for fixed w ∈ R, define
ρw by ρw(y) = ρ(w, y). Suppose that

(a) ρw ∈ MN for some fixed N ≥ 1,
(b) For each n ≥ 0, ||ρw||N,n is locally uniformly bounded in w, and
(c) There is some integer M , 0 ≤ M ≤ N − 1, such that for each w ∈ R

and 0 ≤ m ≤ M ,
dm

dym
ρw(0) = 0.

Then for any continuous seminorm || || on MN , the σ-indexed family of
functions

w �−→ σM ||ρw(·/σ)||
converges locally uniformly (in w) to the zero function (of w) as σ → ∞.

(We recall that the symbol · represents function or distribution argu-
ments with regard to the bracket and seminorm operations.)

Proof. Suppose the conclusion is false for the seminorm || ||N,n. Then there
is a compact neighborhood K ⊂ R and a pair of sequences {wj ∈ K}j≥0,
{σj ∈ R}j≥0, with σj → ∞, such that
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0 < lim
j→∞

σM
j

∣∣∣∣ρwj
(·/σj)

∣∣∣∣
N,n

= lim
j→∞

σM−n
j sup

y∈R
(1 + |y|)−(N−n) |ρ(n)wj

(y/σj)|.

The equality above uses

dn

dyn
(
ρwj

(y/σj)
)
= σ−n

j ρ(n)wj
(y/σj).

By passing to a subsequence if necessary, we may assume {wj} converges to
a w′ ∈ K. Since for fixed wj , values of y can be chosen to make the quantity

(1 + |y|)−(N−n) |ρ(n)wj
(y/σj)|

arbitrary close to its supremum over y ∈ R, there is a sequence {yj}j≥0 such
that

(6.5) lim
j→∞

σM−n
j (1 + |yj |)−(N−n) |ρ(n)wj

(yj/σj)| > 0.

Passing to further subsequences if necessary, we may assume that {yj/σj}
either converges to 0 or is bounded away from 0 in absolute value as j → ∞.

Case 1: limj→∞ yj/σj = 0 and n ≤ M . In this case we rewrite (6.5) as

(6.6) lim
j→∞

(
|yj |M−n

(1 + |yj |)N−n

)(
|yj/σj |−(M−n) |ρ(n)wj

(yj/σj)|
)
> 0.

Above, the first parenthesized quantity |yj |M−n

(1+|yj |)N−n is bounded above by 1

for all j since 0 ≤ M − n < N − n. For the second parenthesized quantity,
we have that

lim
j→∞

|yj/σj |−(M−n) |ρ(n)w′ (yj/σj)| = 0,

by condition (c) of the statement of the lemma, so

lim
j→∞

|yj/σj |−(M−n) |ρ(n)wj
(yj/σj)| = 0,

by the smoothness of ρ in both arguments. Thus

lim
j→∞

(
|yj |M−n

(1 + |yj |)N−n

)(
|yj/σj |−(M−n) |ρ(n)wj

(yj/σj)|
)
= 0,

contradicting (6.6).
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Case 2: limj→∞ yj/σj = 0 and n > M . In this case we rewrite (6.5) as

(6.7) lim
j→∞

(σ−1
j + |yj/σj |)n−M

(1 + |yj |)N−M
|ρ(n)wj

(yj/σj)| > 0.

The quantity

(σ−1
j + |yj/σj |)n−M

(1 + |yj |)N−M

converges to 0 as j → ∞ since σ−1
j and yj/σj both converge to 0, and n−M

and N −M are both positive in this case. On the other hand,

lim
j→∞

|ρ(n)wj
(yj/σj)| = |ρ(n)w′ (0)|,

by the smoothness of ρ. Thus

lim
j→∞

(σ−1
j + |yj/σj |)n−M

(1 + |yj |)N−M
|ρ(n)wj

(yj/σj)| = 0,

contradicting (6.7).

Case 3: |yj/σj | > B for some B > 0 and all j ≥ 0. In this case, we
rewrite (6.5) as
(6.8)

lim
j→∞

(
σM−n
j (1 + |yj/σj |)N−n

(1 + |yj |)N−n

)(
(1 + |yj/σj |)−(N−n)|ρ(n)wj

(yj/σj)|
)
> 0.

The second parenthesized quantity in (6.8),

(1 + |yj/σj |)−(N−n)|ρ(n)wj
(yj/σj)|,

is positive, less than or equal to ||ρwj
||N,n by this norm’s definition, and

therefore bounded in j since ||ρw||N,n is locally uniformly bounded in w. As
for the first parenthesized quantity, since |yj/σj |>B implies limj→∞|yj |=∞,

lim
j→∞

σM−n
j (1 + |yj/σj |)N−n

(1 + |yj |)N−n
= lim

j→∞

σM−n
j (1 + |yj/σj |)N−n

|yj |N−n

= lim
j→∞

σM−N
j (|yj/σj |−1 + 1)N−n

= 0.
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The last equality follows from the facts that |yj/σj |−1 < B−1 for all j, and
that σM−N

j → 0 since M < N . We conclude

lim
j→∞

(
σM−n
j (1 + |yj/σj |)N−n

(1 + |yj |)N−n

)(
(1 + |yj/σj |)−(N−n)|ρ(n)wj

(yj/σj)|
)
= 0,

contradicting (6.8).
We have shown that the σ-indexed family of functions

w �−→ σM ||ρw(·/σ)||N,n

converges locally uniformly (in w) to the zero function of w as σ → ∞ for
each n ≥ 0. Since the family of seminorms || ||N,n generates the topology on
MN , the result is true for any continuous seminorm.

For the Gaussian wavelet ψ = G we have:

Corollary 20. For all f ∈ M′
N , N ≥ 0, and all M , 0 ≤ M ≤ N − 1, the

family of functions

w �→ σM+1

(
f ∗Gσ(σw)−

M∑
n=0

μn

n!
σ−n−1Hn(w)G(w)

)

converges locally uniformly to the zero function of w as σ → ∞.

7. Necessity of strong decay

Corollary 3(a) states that a real-valued function with exponential decay is
uniquely determined by its Gaussian edges at any sequence of scales not
converging to zero. On the other hand, Meyer’s counterexample [27] shows
that such unique determination fails for non-decaying functions. This raises
the question of what requirements on a function f guarantee it to be uniquely
determined by a sequence of its Gaussian edges at a sequence of scales. One
might conjecture that unique determination can be extended to all functions
vanishing at infinity.

Here we prove Corollary 3(c), showing that the above conjecture is false.
We will prove this by constructing two functions, f and g, that have a
fixed, arbitrarily large, number of finite moments, and whose Gaussian edges
coincide on an infinite sequence of scales tending to infinity. Thus the unique
determination result, Corollary 3(a), does not, in general, extend to functions
with algebraic decay, leaving open only classes of functions with decay rates
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between exponential and algebraic, e.g. classes decaying as the log-normal
function �(x) = 1

xe
−(ln |x|)2 or faster.

Let N be a positive even integer such thatHN (±1) > 0. (We will show in
Lemma 23 below that infinitely many such N exist. From inspection of the
first six Hermite polynomials, we see that the smallest such N is N = 6.)
Let h ∈ L1(R) be a positive symmetric function satisfying the following
conditions:

(i) For all φ ∈ MN−1,

(7.1)

∫
R

|φ(x)|h(x) dx < ∞.

(Thus h can be regarded as an element of M′
N−1; see Section 6.1 for

definitions.)

(ii) h has divergent Nth moment:

∫
R

xNh(x) dx = ∞.

(iii) h has second moment < 2:

∫
R

x2h(x) dx < 2.

(We note that the third condition can always be arranged by multiplying h
by an appropriate constant.)

Starting with any such h we will construct a pair of distributions f, g ∈
M′

N−3, which have finite moments up to order N−3 but divergent (N−2)nd
moment. We will show that f and g have exactly two persistent edge contours
each, which are symmetric in the coordinate w = x/σ. We will further
show that there is a sequence of pairs {(wi, σi)}i≥1, with wi, σi > 0 and σi
increasing to infinity, such that

Δ
(
f ∗Gσi

)
(σiwi) ≥ 0 ≥ Δ

(
g ∗Gσi

)
(σiwi) for i odd

Δ
(
f ∗Gσi

)
(σiwi) ≤ 0 ≤ Δ

(
g ∗Gσi

)
(σiwi) for i even.

(7.2)

These statements together imply that edge contours of f and g intersect
on a sequence of scales tending to infinity. Finally, to obtain a violation of
Marr’s conjecture, we replace the distributions f, g ∈ M′

N−3 by the inte-
grable functions f ∗G and g ∗G, whose edge contours are the same as those
of f and g, but shifted by one unit in σ.

The argument consists of two parts. The first constructs f , g, and
{(wi, σi)}i≥1, demonstrates the existence of two persistent, symmetric edge
contours, and verifies (7.2). The second part shows that f and g have no
other persistent edge contours. Condition (iii) above will only be invoked in
the second part.
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7.1. Part 1: iterative construction of f and g

We construct f , g, and {(wi, σi)}i≥1 inductively, similarly to the argument
of Section 5. At each step k of the induction we will construct a pair of
distributions fk+1, gk+1 ∈ M′

N−3 and pairs (w2k, σ2k) and (w2k+1, σ2k+1)
such that (7.2) holds for 1 ≤ i ≤ 2k + 1, with fk+1 and gk+1 in place of f
and g. After the induction, the final distributions f and g will be obtained
as the weak-* limits of fk and gk, respectively, as k → ∞.

Base step. As a base step, we construct distributions f1, g1 ∈ M′
N−3

and a pair (w1, σ1) such that (7.2) holds for i = 1 with f1 and g1 in place
of f and g. For arbitrary real numbers c1 and d1 with d1 > c1 > 0, let
C1, D1 ⊂ R be the intervals [−c1, c1] and [−d1, d1], respectively. We define
f1 and g1 by specifying their second derivatives Δf1,Δg1 ∈ M′

N−1:

Δf1 = δ(2) + χC1
h−

∑
m even

0≤m≤N−2

a1,mδ(m)

Δg1 = δ(2) + χD1
h−

∑
m even

0≤m≤N−2

b1,mδ(m).
(7.3)

Here, χU denotes the characteristic function of U ⊂ R, which has value 1
on U and zero elsewhere. The coefficients a1,m and b1,m in (7.3), for m even
and 0 ≤ m ≤ N − 2, are set as

a1,m =

∫
C1

xm

m!
h(x) dx

b1,m =

∫
D1

xm

m!
h(x) dx.

This guarantees that μ2

(
Δf1

)
= μ2

(
Δg1

)
= 2, and μn

(
Δf1

)
= μn

(
Δg1

)
= 0

for 0 ≤ n ≤ N − 1, n �= 2. Thus, by construction, the moments of Δf1 and
Δg1 coincide with those of δ(2) to order N − 1. (Note that the odd moments
of Δf1 and Δg1 vanish due to the symmetry of h.) Since, in particular, the
zeroth and first moments of Δf1 and Δg1 are zero, Corollary 18 guarantees
that f1 and g1 are uniquely defined from (7.3) as elements of M′

N−3. More-
over, Δf1 and Δg1 are compactly supported and therefore in P ′. Since P is
closed under derivatives, P ′ is closed under antiderivatives; thus f1 and g1
are in P ′ as well.

Expanding Δf1 ∗Gσ and Δg1 ∗Gσ as in (3.1) (with Δf replacing f) and
invoking (1.1), we can describe the edges of f1 and g1 in w and σ as the
respective zeros of
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Δ
(
f1 ∗Gσ

)
(σw) = σ−3H2(w)G(w) +

μN

(
Δf1

)
N !

σ−N−1HN (w)G(w)

+O(σ−N−2)

Δ
(
g1 ∗Gσ

)
(σw) = σ−3H2(w)G(w) +

μN

(
Δg1

)
N !

σ−N−1HN (w)G(w)

+O(σ−N−2) (σ → ∞).

(7.4)

For |w| close to 1, both coefficients of σ−N−1 in (7.4) are positive.
This follows since h is positive—hence so are μN (Δf1) and μN (Δg1)—and
HN (±1) is positive by assumption. Furthermore, since C1 ⊂ D1, we have
μN (Δf1) < μN (Δg1) and so the larger of the two coefficients of σ−N−1 is
that associated to g1. We conclude from this analysis of the coefficients in
(7.4) that for any fixed w sufficiently close to ±1,

(7.5) Δ
(
f1 ∗Gσ

)
(σw) < Δ

(
g1 ∗Gσ

)
(σw)

for all sufficiently large σ.
We also observe from (7.4) that f1 and g1 each have (at least) two

persistent edge contours, corresponding to the roots w = ±1 of H2(w) =
w2 − 1. By Corollary 14, each of these edge contours can be parameterized
with w as a function of σ; moreover, by the symmetry of f1 and g1, these
parameterizations can be written in the form w = ±ef1(σ) and w = ±eg1(σ).
Since the coefficients of σ−N−1 in (7.4) are both positive for |w| ≈ 1 as
previously stated, and the coefficients of σ−3 have the sign ofH2(w) = w2−1,
ef1(σ) and eg1(σ) both approach 1 from below as σ → ∞ (see Figure 4).
Therefore, for any w1 less than but sufficiently close to 1, the line w = w1

intersects both edge contours described by w = ef1(σ) and w = eg1(σ).
Combining this observation with (7.5) implies that for w1 less than but
sufficiently close to 1, there is a range of σ values satisfying

(7.6) Δ
(
f1 ∗Gσ

)
(σw1) < 0 < Δ

(
g1 ∗Gσ

)
(σw1) .

(See Figure 4.) Moreover, the upper bound of σ values satisfying (7.6) in-
creases without bound as w1 increases to 1. Fix w1 and σ = σ1 such that
(7.6) is satisfied. We have thus constructed f1, g1 ∈ P ′ ⊂ M′

N−3 and the
pair (w1, σ1), as required for the base step.

Inductive hypothesis. Let k be an arbitrary natural number, and suppose
we have distributions fk, gk ∈ P ′ ⊂ M′

N−3 defined by

Δfk = δ(2) + χCk
h−

∑
m even

0≤m≤N−2

ak,mδ(m)
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Figure 4: The edge contours of example distributions f1 and g1 are shown
together with a choice of w1 and σ1.

Δgk = δ(2) + χDk
h−

∑
m even

0≤m≤N−2

bk,mδ(m).

Here Ck, Dk ⊂ R are compact and symmetric about the origin, and

ak,m =

∫
Ck

xm

m!
h(x) dx

bk,m =

∫
Dk

xm

m!
h(x) dx, 0 ≤ m ≤ N − 2,

so that as in the base case, the moments of Δfk and Δgk agree with those

of δ(2) to order N − 1. Suppose further that there are pairs (w1, σ1), . . . ,

(w2k−1, σ2k−1), with σi increasing in i, satisfying

Δ
(
fk ∗Gσi

)
(σiwi) < 0 < Δ

(
gk ∗Gσi

)
(σiwi) for i odd

(7.7)

Δ
(
fk ∗Gσi

)
(σiwi) > 0 > Δ

(
gk ∗Gσi

)
(σiwi) for i even, 1 ≤ i ≤ 2k − 1.
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Induction step. The induction step consists of two halves. In the first,
we construct the distribution fk+1 and the pair (w2k, σ2k) from fk and gk.
In the second, we construct gk+1 and the pair (w2k+1, σ2k+1), from fk+1 and
gk.

For the first half, we will construct fk+1 ∈ P ′ of the same form as above,

Δfk+1 = δ(2) + χCk+1
h−

∑
m even

0≤m≤N−2

ak+1,mδ(m),

with

(7.8) ak+1,m =

∫
Ck+1

xm

m!
h(x) dx,

such that

(a) the relationships (7.7) are preserved,

Δ
(
fk+1 ∗Gσi

)
(σiwi) < 0 < Δ

(
gk ∗Gσi

)
(σiwi) for i odd(7.9)

Δ
(
fk+1 ∗Gσi

)
(σiwi) > 0 > Δ

(
gk ∗Gσi

)
(σiwi) for i even

1 ≤ i ≤ 2k − 1,

(b) μN (Δfk+1) > μN (Δgk) + 1.

We do this by setting Ck+1 = Ck ∪C ′
k+1 where C ′

k+1 = [−ck+1,−c′k+1]∪
[c′k+1, ck+1] for some appropriately chosen positive real numbers ck+1 and
c′k+1 with ck+1 > c′k+1 > ck, to be determined later. Note

(
(Δfk+1 −Δfk) ∗Gσ

)
(σw)

=

⎛
⎜⎝
⎛
⎜⎝χC′

k+1
h−

∑
m even

0≤m≤N−2

a′k+1,mδ(m)

⎞
⎟⎠ ∗Gσ

⎞
⎟⎠ (σw)

=

∫
C′

k+1

h(y)Gσ(σw − y) dy −
∑

m even
0≤m≤N−2

a′k+1,mG(m)
σ (σw),(7.10)

where

a′k+1,m =

∫
C′

k+1

xm

m!
h(x) dx = 2

∫ ck+1

c′k+1

xm

m!
h(x) dx.

By (7.1), the integrals
∫
R

xm

m! h(x) dx converge for all nonegative integers
m ≤ N − 1. It follows that the coefficients a′k+1,m can be made arbitrarily
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small uniformly over all choices of ck+1, by choosing a sufficiently large value
of c′k+1. The decay properties of Gσ and integrability of h imply that for any
fixed σ and w, the first term of (7.10)—and hence the full quantity (7.10)—
can also be made arbitrarily small uniformly over ck+1, by a sufficiently
large choice of c′k+1. Since this holds in particular for w = wi and σ = σi,
1 ≤ i ≤ 2k−1, we can choose c′k+1 such that condition (7.9) holds regardless
of the value later chosen for ck+1, validating condition (a). We fix such a
c′k+1. Then since h is positive and has divergent Nth moment, a sufficiently
large choice of ck+1 will guarantee μN (χCk+1

h) > μN (χDk
h) + 1, and hence

μN (Δfk+1) > μN (Δgk) + 1, validating condition (b).
We now construct the pair (w2k, σ2k). By our choice of the coefficients

ak+1,m in (7.8), the moments of Δfk+1 coincide with those of δ(2) through
order N − 1 (as do the moments of Δgk according to our inductive as-
sumption). Furthermore, condition (b) implies that μN (Δfk+1) > μN (Δgk).
These observations enable us, using an argument similar to that used in the
base case above, to choose w2k > 0 and σ2k > σ2k−1 + 1 satisfying

Δ(fk+1 ∗Gσ2k
) (σ2kw2k) > 0 > Δ(gk ∗Gσ2k

) (σ2kw2k) .

We observe that since Δfk+1 is compactly supported, it is in P ′ and
hence also in M′

N−1. This finishes the first half of the induction step.
For the second half of the induction step we construct, in similar fashion,

a distribution gk+1 ∈ P ′ ⊂ M′
N−3 satisfying

Δgk+1 = δ(2) + χDk+1
h−

∑
m even

0≤m≤N−2

bk+1,mδ(m),

with

bk+1,m =

∫
Dk+1

xm

m!
h(x) dx,

where Dk+1 ⊂ R is compact and symmetric about the origin, such that

(a) the relationships (7.7) are preserved now for i up to 2k rather than
2k − 1,

Δ
(
fk+1 ∗Gσi

)
(σiwi) < 0 < Δ

(
gk+1 ∗Gσi

)
(σiwi) for i odd

Δ
(
fk+1 ∗Gσi

)
(σiwi) > 0 > Δ

(
gk+1 ∗Gσi

)
(σiwi) for i even,

1 ≤ i ≤ 2k,

(b) μN (Δgk+1) > μN (Δfk+1) + 1.
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After fixing gk+1 we choose w2k+1 and σ2k+1 > σ2k + 1 such that

Δ(fk+1 ∗Gσ2k+1
) (σ2k+1w2k+1) < 0 < Δ(gk+1 ∗Gσ2k+1

) (σ2k+1w2k+1) .

To summarize, we have constructed distributions fk+1, gk+1 ∈ P ′ ⊂ M′
N−3

and pairs (w2k, σ2k) and (w2k+1, σ2k+1) such that (7.7) holds with k replaced
by k + 1. This completes the induction step.

Conclusion of induction. By induction, we have constructed two se-
quences of distributions {fk}k≥1, {gk}k≥1 and pairs {(wi, σi)}i≥1 such that
(7.7) holds for all k ≥ 1.

Limit construction of f and g. We claim that the sequence
{
Δfk

}
k≥1

converges in the weak-* topology on M′
N−1 to the distribution

(7.11) Δf = δ(2) + χCh−
∑

m even
0≤m≤N−2

amδ(m),

where

(7.12) am =

∫
C

xm

m!
h(x) dx, C =

∞⋃
k=1

Ck,

and similarly for
{
Δgk

}
k≥1

, with D =
⋃

k Dk in place of C. To verify this
claim, consider an arbitrary test function φ ∈ MN−1. For each k ≥ 0 we
have

(7.13) 〈Δfk, φ〉 = φ(2)(0) +

∫
R

χCk
(x)h(x)φ(x) dx−

∑
m even

0≤m≤N−2

ak,mφ(m)(0).

The integrand χCk
(x)h(x)φ(x) of the middle term of (7.13) is bounded in

absolute value by the function h(x)|φ(x)|—which is integrable by (7.1)—
and converges pointwise to χC(x)h(x)φ(x). It follows from the dominated
convergence theorem that the middle term of (7.13) converges to the finite
quantity ∫

R

χC(x)h(x)φ(x) dx,

as desired. To verify convergence of the third term of (7.13), it suffices to
show that for each even m, 0 ≤ m < N , the sequence {ak,m}k≥0 converges
to am as given by (7.12). Since each ak,m is a constant multiple of the
integral of χCk

(x)xmh(x) and xm ∈ MN−1 for 0 ≤ m < N , convergence
of each sequence {ak,m}k≥0 follows with the same argument used to prove
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convergence of the middle term of (7.13). We conclude that
{
Δfk

}
converges

as claimed, and a similar argument establishes the convergence of
{
Δgk

}
.

We have thus constructed Δf and Δg as elements of M′
N−1. Since Gσ ∈

MN−1 for each σ > 0, the relationships (7.7) are preserved under the weak-*
limits Δfk → Δf , Δgk → Δg, with ≤ in place of < as in (7.2). We define
f, g ∈ M′

N−3 as the second antiderivatives of Δf and Δg respectively. (This
construction is allowed by Corollary 18 since the zeroth and first moments
of Δf and Δg are zero. It can also be shown that f and g are the respective
limits of the sequences {fk} and {gk} in the weak-* topology on M′

N−3, but
we will not use this fact.)

Properties of f and g. We know the following about f, g ∈ M′
N−3: They

are symmetric about the origin since C and D are. It can be seen from
(7.11) that the moments of Δf coincide with those of δ(2) through order
N − 1, and thus f and g each have a pair of persistent edge contours, also
symmetric about the origin, approaching w = ±1. Since (7.2) is satisfied,
these edge contours of intersect on an infinite sequence of scales. Finally,
since we required σi+1 > σi+1 for all i ≥ 1, the sequence {σi}i≥1 is increasing
and diverges to positive infinity. This completes the first part of the proof
of Corollary 3(c): the existence of f and g with edge contours that intersect
at a sequence of scales tending to infinity.

It remains to be shown that there are no other edge contours of f and
g that might allow these distributions to be distinguished from their edges
at the scales {σi}i≥1. This will be shown in the second part. For the second
part we will need that, since Condition (b) on fk+1 and gk+1 holds for each
k,

μN (Δfk+1) > μN (Δgk) + 1 and μN (Δgk+1) > μN (Δfk+1) + 1,

and it follows that

(7.14)

∫
C
xNh(x) dx = ∞ and

∫
D
xNh(x) dx = ∞.

7.2. Part 2: non-existence of divergent edge contours

For the second (final) part of the argument, we show that the persistent
edge contours approaching w = ±1 are the only persistent edge contours of
f and g. We state this as a theorem:

Theorem 21. Let N be an even number greater than or equal to 4, and
consider a positive symmetric function h̃ ∈ L1(R) satisfying the following
conditions:
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(i) For all φ ∈ MN−1,
∫
R
|φ(x)|h̃(x) dx < ∞. (Thus h̃ can be regarded as

an element of M′
N−1.)

(ii) h̃ has infinite N th moment:

∫
R

xN h̃(x) dx = ∞.

(iii) h̃ has second moment < 2:

∫
R

x2h̃(x) dx < 2.

Define the distribution u ∈ M′
N−3 by its second derivative:

(7.15) Δu = δ(2) + h̃−
∑

m even
0≤m≤N−2

cmδ(m), cm =

∫
R

xm

m!
h̃(x) dx.

Then u has exactly two persistent edge contours, which approach w = ±1 as
σ → ∞.

This theorem can be applied to the distributions f and g (in place of
u) by setting h̃ = χCh and h̃ = χDh respectively. This will complete the
argument that the edge contours of f and g intersect on a sequence of scales
tending to infinity.

The proof of Theorem 21 requires the following lemma:

Lemma 22. Let h̃ ∈ L1(R) and cm be as in the statement of Theorem 21.
For x, σ ∈ R, x > 0, define

Q(x, σ) = −c0Gσ(x) + h̃ ∗Gσ(x).

Then for each σ > 0, Q(x, σ) has exactly two zeros in x, is negative be-
tween these zeros, and positive outside of them. Moreover, these zeros satisfy
x/σ → ±1 as σ → ∞.

Proof. First we show that Q(0, σ) < 0 for each σ > 0. To see this we expand

Q(0, σ) =
1√
2πσ

(
−c0 +

∫
R

h̃(y)e−y2/(2σ2) dy

)

=
1√
2πσ

∫
R

h̃(y)
(
−1 + e−y2/(2σ2)

)
dy.

The integrand is negative for each y �= 0 and σ > 0; therefore, Q(0, σ) < 0.
We now consider the absolute ratio, R(x, σ), of the two terms in Q(x, σ).

This ratio can be written

R(x, σ) =
(
h̃ ∗Gσ(x)

)/(
c0Gσ(x)

)
=

1

c0

∫
R

h̃(y)e(2xy−y2)/(2σ2) dy.
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We note that Q(x, σ) has the same sign as R(x, σ)−1. Our above observation
that Q(0, σ) < 0 implies that R(0, σ) < 1. Using the symmetry of h̃, we can
rewrite the ratio R(x, σ) as

R(x, σ) =
1

c0

∫ ∞

0
h̃(y)

(
e(2xy−y2)/(2σ2) + e(−2xy−y2)/(2σ2)

)
dy

=
2

c0

∫ ∞

0
h̃(y) e−y2/(2σ2) cosh

(xy
σ2

)
dy.

(7.16)

We note that cosh(xy/σ2) grows monotonically without bound in |x| for
each fixed y > 0 and σ > 0. Therefore, R(x, σ) grows monotonically without
bound in |x| for fixed σ > 0, surpassing 1 at exactly one value of |x|. This
proves that Q(x, σ) has exactly two zeros in x for each σ > 0, and is negative
between them and zero outside of them.

For the convergence claim, we note that the zeroth moment μ0

(
h̃−c0δ

(0)
)

vanishes by the definition of c0, while the first moment μ1

(
h̃−c0δ

(0)
)
vanishes

since h̃ is symmetric. Moment expansion (Corollary 20 with M = 2), applied
to the distribution h̃− c0δ

(0), therefore implies that the quantity

σ3
((

h̃− c0δ
(0)

)
∗Gσ

)
(σw)−

μ2

(
h̃− c0δ

(0)
)

2!
H2(w)G(w)

converges to zero locally uniformly in w as σ → ∞. The first term above is
equal to σ3Q(σw, σ). It follows that, as σ → ∞, the zeros of Q(x, σ) satisfy
x/σ → ±1, corresponding to the zeros w = ±1 of H2(w).

Proof of Theorem 21. We begin by applying the moment expansion (Corol-
lary 20 with M = 2) to the distribution Δu ∈ M′

N−1. (Recall N ≥ 4 and
thus M < N − 1 for M = 2.) Since the moments of Δu coincide with those
of δ(2) through order N − 1, the quantity

σ3Δ
(
u ∗Gσ

)
(σw)−H2(w)G(w)

converges to zero locally uniformly in w, as σ → ∞. Thus any persistent
edge contours of u must either approach the roots w = ±1 of H2(w), or
diverge in w as σ → ∞. We now show that the second case cannot occur.

Assume, to the contrary, that a persistent edge contour Z ⊂ H+ of
u diverges to (without loss of generality) +∞ in w as σ → ∞. Define a
mapping σ = s(x) so that for each x greater than or equal to some x0 > 0,
(x, s(x)) ∈ Z. (There is some freedom in this construction, since a line x = x′

may intersect Z multiple times.) By Corollary 15, local parameterizations of
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Z have no local maxima, so s(x) can be chosen to be monotone increasing
in x. However, s(x) is not necessarily continuous—it may jump between
branches of the set-valued function S(x) = {σ : (x, σ) ∈ Z}.

For all x ≥ x0, (x, s(x)) lies on an edge contour of u, so convolving (7.15)
with Gs(x) and applying (1.1) yields

0 = (Δu) ∗Gs(x)(x)(7.17)

= s(x)−2H2

(
x

s(x)

)
Gs(x)(x) +

(
h̃ ∗Gs(x)

)
(x)

−
∑

m even
0≤m≤N−2

cms(x)−mHm

(
x

s(x)

)
Gs(x)(x).

(Here expressions u ∗ Gs(x)(x) are calculated by first evaluating the convo-
lution u ∗Gσ(x) and then substituting σ = s(x). The argument of s is thus
not considered part of the argument of Gs(x)(·) in the convolution.)

Since Z diverges to infinity in w = x/s(x), we have

lim
x→∞

x

s(x)
= ∞.

We consider two cases, depending on the asymptotic behavior of x/s(x)2.

Case 1: lim inf
x→∞

x/s(x)2 = 0. In this case we rewrite the right-hand side

of (7.17) as a sum of two expressions (separately enclosed in parentheses):

(7.18)
((

h̃ ∗Gs(x)

)
(x)− c0Gs(x)(x)

)

+

⎛
⎜⎝(1− c2)s(x)

−2H2

(
x

s(x)

)
−

∑
m even

4≤m≤N−2

cms(x)−mHm

(
x

s(x)

)⎞⎟⎠Gs(x)(x).

We will show that there is an x for which both of these expressions are
positive, contradicting (7.17).

The first expression of (7.18) can be written as as Q
(
x, s(x)

)
, with

Q(x, σ) defined as in Lemma 22. Lemma 22 asserts that Q(x, σ) has two
zero curves, approaching x/σ = ±1, and is negative between these curves
and positive outside of them. Since limx→∞ x/s(x) = ∞, the point (x, s(x))
lies outside of the zero curves of Q(x, σ) for all sufficiently large x. Therefore,
the first expression of (7.18) is positive for sufficiently large x.
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The sign of the second expression of (7.18) is that of

(7.19) (1− c2)s(x)
−2H2

(
x

s(x)

)
−

∑
m even

4≤m≤N−2

cms(x)−mHm

(
x

s(x)

)
.

Since limx→∞ x/s(x) = ∞, each of the Hermite polynomials Hm

(
x/s(x)

)
in

(7.19) becomes dominated as x → ∞ by its highest-order term,
(
x/s(x)

)m
.

Thus, for sufficiently large x, the sign of (7.19) coincides with the sign of

(1− c2)s(x)
−2

(
x

s(x)

)2

−
∑

m even
4≤m≤N−2

cms(x)−m

(
x

s(x)

)m

= (1− c2)

(
x(

s(x)
)2

)2

−
∑

m even
4≤m≤N−2

cm

(
x(

s(x)
)2

)m

.(7.20)

This expression is a polynomial in the variable x/
(
s(x)

)2
. Since we have

assumed (for Case 1) that lim infx→∞ x/
(
s(x)

)2
= 0, there exist arbitrarily

large x for which the sign of (7.20) coincides with the sign of its lowest-order
term’s coefficient 1− c2. By Condition (iii) on h̃,

1− c2 = 1−
∫
R

x2

2!
h̃(x) dx > 0.

Thus there exist arbitrarily large x for which (7.20)—and hence also the
second expression of (7.18)—is positive. Since the first expression of (7.18)
is positive for sufficiently large x, there are values of x for which both expres-
sions in (7.18) are positive, contradicting (7.17). Thus Case 1 is impossible.

Case 2: lim inf
x→∞

x/s(x)2 > 0. In this case we multiply both sides of (7.17)

by
√
2πs(x) and rewrite as

(7.21)⎛
⎜⎝s(x)−2H2

(
x

s(x)

)
−

∑
m even
0≤m<N

cms(x)−mHm

(
x

s(x)

)⎞
⎟⎠ exp

(
−x

2

x

s(x)2

)

+

∫
R

exp

(
−(x− y)2

2s(x)2

)
h̃(y) dy = 0.
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Since (in Case 2) x/s(x)2 is bounded below for sufficiently large x, the

quantity exp

(
−x

2

x

s(x)2

)
is bounded above by an exponentially decreasing

function of x. Further, since s(x) is monotone increasing, s(x)−1 is bounded,
and so the polynomial

s(x)−2H2

(
x

s(x)

)
−

∑
m even

0≤m≤N−2

cms(x)−mHm

(
x

s(x)

)

has at most polynomial growth in x. Combining these bounds, it follows
that the first term of (7.21) is absolutely bounded above for all sufficiently
large x by a function Ke−γx, with K, γ > 0. The two terms of (7.21) sum
to zero, so the second term also satisfies this bound, giving

(7.22) Ke−γx >

∫
R

exp

(
−(x− y)2

2s(x)2

)
h̃(y) dy,

for sufficiently large x. Also for x sufficiently large,

exp

(
−(x− y)2

2s(x)2

)
>

1

2
χ[−1,1](x− y),

with χ[−1,1] an indicator function as above. Combining with (7.22) yields

Ke−γx >
1

2

∫ x+1

x−1
h̃(y) dy,

again for sufficiently large x. Multiplying by xN and integrating from a
sufficiently large x0 to infinity,

K

∫ ∞

x0

xNe−γx dx >
1

2

∫ ∞

x0

xN
∫ x+1

x−1
h̃(y) dy dx.

The left-hand side is finite, and thus the right-hand side is finite as well.
Interchanging order of integration on the right-hand side and noting that
the integrand is nonnegative,

1

2

∫ ∞

x0

xN
∫ x+1

x−1
h̃(y) dy dx ≥ 1

2

∫ ∞

x0+1

(∫ y+1

y−1
xN dx

)
h̃(y) dy

≥ 1

2

∫ ∞

x0+1
2(y − 1)N h̃(y) dy
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=

∫ ∞

x0+1

(
y − 1

y

)N

yN h̃(y) dy

≥
(

x0
x0 + 1

)N ∫ ∞

x0+1
yN h̃(y) dy.

Thus ∫ ∞

x0+1
yN h̃(y) dy < ∞.

Since h̃ is symmetric, it follows that∫
R

yN h̃(y) dy < ∞.

But this contradicts Condition (ii) that the Nth moment of h̃ diverges. Thus
Case 2 is also impossible. We conclude that there are no edge contours of u
that diverge in w, and the only persistent edge contours of u are those for
which w → ±1 as σ → ∞.

To summarize, Theorem 21 shows that the only persistent edge contours
of f and g are those that approach w = ±1. We showed in the first part
(Section 7.1) that these edge contours intersect on a sequence of scales tend-
ing to infinity. Though f and g are distributions (rather than functions) we
can take the convolutions f ∗ G and g ∗ G as initial functions to obtain a
violation of Marr’s conjecture. This completes the proof of Corollary 3(c).

We conclude this section by proving that there are infinitely many even
N such that HN (±1) > 0. Recall that these conditions on N were required
in the proof of Corollary 3(c). The lemma below shows that infinitely many
such N can be chosen, and consequently, there exist counterexamples to
unique determination having an arbitrarily large number of finite moments.

Lemma 23. There exist infinitely many positive even integers N such that
HN (±1) > 0.

Proof. Consider the sequence {an}∞n=3 with an = Hn(1). The irreducibility
of Hermite polynomials (see Section 3.3) implies that an �= 0 for n ≥ 3.

We will prove that, if there is a sign change from an−1 to an for n ≥ 4,
the next sign change occurs either from an+1 to an+2 or an+2 to an+3. This
means that, in the sequence {an}∞n=3, a sign change occurs every two or
three elements.

The proof is based on the recurrence relation Hn+1(x) = xHn(x) −
nHn−1(x). Substituting x = 1 gives
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(7.23) an+1 = an − nan−1.

Suppose for some n ≥ 4 that an−1 < 0 and an > 0. Then Eq. (7.23)
guarantees that an+1 > 0. Similarly, if an−1 > 0 and an < 0 then an+1 < 0.
Overall, if there is a sign change from an−1 to an, then there is no sign
change from an to an+1.

Now suppose for some n ≥ 4 that an−1, an, and an+1 are all positive.
Eq. (7.23) implies that an+1 < an, from which it follows that an+2 = an+1−
(n + 1)an < 0. Therefore, there cannot be more than three consecutive
positive elements of {an}∞n=3. A similar argument shows there cannot be
more than three consecutive negative elements either.

Overall, we have shown that a sign change occurs every two or three
elements in the sequence {an}∞n=3. It follows that if an > 0, then either
an+2 > 0 or an+4 > 0. Since a6 = H6(1) > 0, there are infinitely many
positive even integers n such that an > 0. Finally, since HN (−1) = HN (1) =
aN for N even, there are infinitely many even N such that HN (±1) > 0.

8. Discrete zero-crossings

One version of the conjecture investigated here arose in mathematical vision
theory with regard to whether the multiscale edges of an image determine the
image. It may be natural to ask for the purpose of applications whether our
results extend to digital images and signals, which are discrete rather than
continuous. In this context, the given data consist of zero-crossings—pairs
of adjacent lattice points at which the scaled (discrete) wavelet transform of
a function changes sign. At issue is whether such zero-crossings contain suf-
ficient information about the function to allow for its unique determination.

To address this question within the framework of our paper, we for-
malize it in the following way: Consider a distribution f that is a sum of δ-
distributions located at a finite set of integer points: f(x) =

∑n
i=1 aiδ(x−xi)

where ai ∈ R and xi ∈ Z. We define a (discrete) zero-crossing at scale σ,
with respect to the Ricker wavelet M(x), to be a pair of consecutive integers
x and x+ 1 for which f ∗Mσ(x) and f ∗Mσ(x+ 1) have opposite sign. We
ask whether f is uniquely determined by its zero-crossings at a sequence of
scales {σj}∞j=1 tending to infinity.

We answer this question in the negative, as stated in the following theo-
rem. This suggests that, in contrast to the continuous case, the information
contained in the (discrete) zero-crossings of f ∗ Mσj

may be too coarse to
allow for the unique determination of f .

Theorem 9. There exist distributions f(x) =
∑n

i=1 aiδ(x− xi) and g(x) =∑m
i=1 biδ(x−yi) with ai, bi ∈ R and xi, yi ∈ Z, that are not constant multiples



The Marr conjecture and uniqueness of wavelet transforms 523

of each other, such that the (discrete) zero-crossings of f and g with respect
to the Ricker wavelet M(x) coincide at a sequence of scales {σj}∞j=1 tending
to infinity.

Proof. Fix a > 0. We let f(x) = δ(x) and

g(x) = δ(x) +
a

2
δ(x− 1) +

a

2
δ(x+ 1).

Convolving these distributions with the scaled Ricker wavelet yields

f ∗Mσ(x) = Mσ(x)

g ∗Mσ(x) = Mσ(x) +
a

2
(Mσ(x− 1) +Mσ(x+ 1))

= H2(x/σ)Gσ(x)

+
a

2

(
H2

(
x− 1

σ

)
Gσ(x− 1) +H2

(
x+ 1

σ

)
Gσ(x+ 1)

)
.

Simplifying g ∗Mσ(x) using the identities

Gσ(x+ 1) +Gσ(x− 1) = 2e−1/(2σ2)Gσ(x) cosh
(
x/σ2

)
Gσ(x+ 1)−Gσ(x− 1) = −2e−1/(2σ2)Gσ(x) sinh

(
x/σ2

)
,

we write

g ∗Mσ(x) = σ−2Gσ(x) Z(x, σ),

with

Z(x, σ) = x2 − σ2 + ae−1/(2σ2)
(
(x2 − σ2 + 1) cosh

( x

σ2

)
− 2x sinh

( x

σ2

))
.

Since σ−2Gσ(x) is always positive, the zero-crossings of g∗Mσ(x) and Z(x, σ)
coincide for each σ > 0.

We claim that Z(x, σ), and hence g ∗ Mσ(x), has no more than two
zero-crossings for sufficiently large σ. For this, it suffices to show that for
all sufficiently large σ, Z(x, σ) is convex in x. Moreover, since x2 − σ2 is
convex and ae−1/(2σ2) is a positive constant in x, it further suffices to show
the convexity of (x2 − σ2 + 1) cosh

(
x
σ2

)
− 2x sinh

(
x
σ2

)
. We compute:

d2

dx2
(
(x2 − σ2 + 1) cosh(x/σ2)− 2x sinh(x/σ2)

)
=

1

σ4

(
(x2 + 2σ4 − 5σ2 + 1) cosh

( x

σ2

)
+ (4σ2 − 2)x sinh

( x

σ2

))
.
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For σ > 1
2

√
5 +

√
17 ≈ 1.51, the polynomials 2σ4 − 5σ2 + 1 and 4σ2 − 2 are

both positive. Since cosh(x/σ2) is positive and x sinh(x/σ2) is nonnegative
for all values of x and σ, it follows that Z(x, σ) is convex for such σ. This
verifies the claim that Z(x, σ), and hence g ∗Mσ(x), has no more than two
zero-crossings for sufficiently large σ.

We now compare the scaled zero-crossings of g to those of f . The zero-
crossings of f ∗Mσ(x) are x = ±σ. Suppose that the given sequence of scales
{σj}∞j=1 is restricted to the set N+ 3

2 = {5
2 ,

7
2 ,

9
2 , . . .}. Scales σ in this set have

the properties that (i) g∗Mσ(x) has no more than two zero-crossings, and (ii)
the (discrete) zero-crossings of f ∗Mσ(x) occur at the pairs (−σ− 1

2 ,−σ+ 1
2)

and (σ − 1
2 , σ + 1

2). We compute the values of Z(x, σ) at the second pair:

Z
(
σ + 1

2 , σ
)
=

(
σ +

1

4

)(
1 + ae−1/(2σ2) cosh

(
σ + 1

2

σ2

))

+ ae−1/(2σ2)

(
cosh

(
σ + 1

2

σ2

)
− 2(σ + 1

2) sinh

(
σ + 1

2

σ2

))
.

Observing that limσ→∞ cosh(σ−1) = limσ→∞ σ sinh(σ−1) = 1, we obtain

Z
(
σ + 1

2 , σ
)
= (1 + a)σ +O(1) (σ → ∞).

A similar computation shows that

Z
(
σ − 1

2 , σ
)
= −(1 + a)σ +O(1) (σ → ∞).

Therefore, for all sufficiently large σ ∈ N + 3
2 , g ∗ Mσ(x) also has a zero-

crossing at the pair (σ− 1
2 , σ+

1
2). By symmetry, g∗Mσ(x) has a zero-crossing

at (−σ − 1
2 ,−σ + 1

2) as well. Since g ∗ Mσ(x) cannot have any other zero-
crossings for σ ∈ N+ 3

2 , we conclude that there is a sequence of scales {σj}∞j=1,
tending to infinity, at which the (discrete) zero-crossings of f ∗Mσj

(x) and
g ∗Mσj

(x) coincide.

9. Uniqueness of heat equation solutions

Our results also yield a uniqueness condition for solutions to the heat equa-
tion (1.3). If it is known that F (x, t) solves (1.3) for some initial condition
f ∈ P ′

γ ∩ L1(Rd), then by Corollary 3(a), both f and F are uniquely de-
termined (up to a multiplicative constant) by the zeros of Fxx(x, tj) for any
sequence {tj}∞j=1 of positive reals with a positive or infinite limit point.

As stated in Theorem 8 (Section 1.4), a similar result holds for the zeros
of F rather than Fxx provided it is known that that the second integral
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(9.1) a(x) =

∫ x

−∞

∫ y

−∞
f(z) dz dy

is in P ′
γ ∩ L1(Rd). (In particular this requires μ0(f) = μ1(f) = 0.) Letting

A(x, t) be the heat equation solution with initial condition A(x, 0) = a(x),
Theorem 8 follows from applying Corollary 3(a) to the zeros of Axx = F .

The condition a ∈ P ′
γ ∩ L1(Rd) above cannot be dispensed with. To

see this, let f1(x) and f2(x) be distinct anti-symmetric functions that are
positive for x > 0 and negative for x < 0. The respective solutions of (1.3)
with initial conditions given by such f1 and f2 have the same zero set,
consisting only of the line x = 0. In this case, f1 and f2 have positive first
moment, so their respective second integrals a1 and a2, defined as in (9.1),
are not in P ′

γ ∩ L1(Rd).

Theorem 8 appears to be a new type of uniqueness theorem for the heat
equation. In particular, it requires a type of global agreement between two
functions in order to imply their identity. In contrast, most heat equation
uniqueness theorems [20, 6] are based on local agreement to infinite order.
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