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A unified Monte-Carlo jackknife for small area
estimation after model selection

JIMING JIANG*, P. LAHIRI*, AND THUAN NGUYEN*

We consider estimation of measure of uncertainty in small area es-
timation (SAE) when a procedure of model selection is involved
prior to the estimation. A unified Monte-Carlo jackknife method,
called McJack, is proposed for estimating the logarithm of the
mean squared prediction error. We prove the second-order unbi-
asedness of McJack, and demonstrate the performance of McJack
in assessing uncertainty in SAE after model selection through em-
pirical investigations that include simulation studies and real-data
analyses.
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1. Introduction

Small area estimation (SAE) has become a very active area of statistical
research and applications. Here the term small area typically refers to a
population for which reliable statistics of interest cannot be produced based
on direct sampling from the population due to certain limitations of the
available data. Examples of small areas include a geographical region (e.g.,
a state, county, municipality, etc.), a demographic group (e.g., a specific
age X sex X race group), a demographic group within a geographic region,
etc. See, for example, Rao and Molina (2015) for an updated, comprehensive
account of various methods used in SAE. Statistical models, especially mixed
effects models, have played key roles in improving small area estimates by
borrowing strength from relevant sources. Therefore, it is not surprising
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that model selection in SAE has received considerable attention in recent
literature. See, for example, Jiang, Nguyen and Rao (2010), Datta, Hall and
Mandal (2011), Pfeffermann (2013), Lahiri and Suntornchost (2014), and
Rao and Molina (2015).

The errors from model selection are likely to affect the uncertainty mea-
sures in SAE estimates. To elaborate this point, let us consider a specific
aspect of model selection—inclusion of small area specific random effects.
Should one include area specific random effect in small area modeling? Such
a component is a compromise between area specific fixed effects and no area
effect and helps improving the properties of model-based estimators. For ex-
ample, without such an area specific random effect, the model-based estima-
tor may not be design-consistent, which may result in model-based estimate
for an area with large sample size to deviate significantly from the corre-
sponding design-based estimate, especially if area specific auxiliary variables
fail to capture variation across the areas. A decision to exclude small area
specific random effect may be based on a significance test. But such a deci-
sion is anything but perfect and depends very much on the subjective choice
of the prespecified level of significance. A reasonable uncertainty measure
estimator must incorporate the impact of model selection. However, most
of the uncertainty measure estimators, with the exception of Molina, Rao
and Datta (2015), do not attempt to capture the variation due to the model
choice and there is no analytical study to examine the important second-
order unbiasedness property of any of these estimators, including that of
Molina et al. (2015).

In this paper, we propose a new uncertainty measure of any small area
model-based estimator that incorporates errors due to model selection and
a Monte-Carlo jackknife second-order unbiased estimator of the proposed
uncertainty measure. We propose to use the logarithm of the mean squared
prediction error (MSPE) as the uncertainty measure, where MSPE incorpo-
rates errors due to model selection. Our rationale behind using the log-MSPE
comes from the means by which lack-of-fit measure of a typical model selec-
tion criterion is constructed. To elaborate on this point, consider the case
of regression model selection with normal data. The well-known information
criteria take the form of

(1) nlog(62) + An|M],

where n is the sample size, 62 is the standard estimator of the error variance,
o2, |[M| is the dimension of the model, M, typically defined as the number
of free parameters under M, and A, is a penalty function. Thus, in this
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case, the measure of lack-of-fit is proportional (under a fixed sample size) to
the logarithm of a variance estimator. Note that, typically, the variance is
of the same scale as the MSPE. Therefore, it is reasonable to consider the
logarithm of the MSPE as a measure of uncertainty in SAE when a model
selection procedure, such as an information criterion, is involved.

Besides the intuitive link to model selection, there are other advantages
of using the log-MSPE as a measure of uncertainty. In the SAE literature,
MSPE estimates have been routinely used in assessing an improvement of the
empirical best linear unbiased predictor (EBLUP) over the direct estimator.
For such a purpose, one can equivalently use the log-MSPE, and report the
improvement in the log-scale. An advantage of log-MSPE over MSPE occurs
when it is desirable to model uncertainty measure estimators. This is because
one can reasonably assume normality of the error term when log-MSPE
estimators are considered. Zimmerman et al. (1999) emphasized the need to
model log-MSPE in the context of a geo-spatial application. Gershunskaya
and Dorfman (2013) considered modeling of logarithm of variances in an
application related to Current Employment Statistics survey. In a small
area context, such a model can provide a guideline for making important
decisions on the choice of different design factors (e.g., sample size, number
of clusters) for a future survey in achieving an approximate certain desired
level of log-MSPE of the proposed predictor for different small areas. Also,
the model can be used for quickly producing uncertainty measures when it
is time consuming to compute such measures when dealing with big data
as well as computational comlexity to meet a tight production deadline.
Furthermore, when dealing with large observations (e.g., income), it takes
space to report estimates and the associated MSPE estimates. For example,
if estimates of average income for small areas in a country with high inflation
are in billions, the order of MSPE will be in squared billions. It will be
cumbersome to produce a large number of tables with such huge estimates
and MSPE estimates. Creating such tables with log-MSPE may be more
sensible in such situations.

In terms of statistical inference, it is easier to carry out hypothesis test-
ing when considering log-MSPE. For example, suppose that one wishes to
compare MSPE; with MSPEs, which may correspond to two different meth-
ods of SAE. If one has second-order unbiased estimators of the log-MSPEs,
say, l}- for I; = log(MSPE;), j = 1,2, it is possible to construct a z-test, or
t-test, by assuming (approximately) that Zj =1l +e5,j =1,2, where ¢; is
normal with mean zero and constant variance.

Another issue related to the second-order unbiased MSPE estimation
is that, in practice, square roots of MSPE estimates are usually reported
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in official publications. However, second-order unbiased MSPE estimators
do not automatically generate second-order unbiased estimators of square
roots of MSPE. On the other hand, in a log-scale this issue does not arise,
as second-order estimator of log-vMSPE can be obtained as half of the
second-order estimator of log-MSPE.

Finally, a desirable property for an MSPE estimator is that it needs to
be positive. If the property is combined with the second-order unbiasedness
property, it turns out that it is very difficult to produce an estimator that has
both of these properties. Typically, it is relatively easy to obtain a positive
MSPE estimator that is first-order unbiased. To achieve the second-order un-
biasedness, either analytical (e.g., Prasad and Rao 1990) or resampling (e.g.,
Jiang, Lahiri and Wan 2002, Hall and Maiti 2006) methods are used. How-
ever, with very few exceptions (Prasad and Rao 1990, Chen and Lahiri 2011),
these techniques do not produce MSPE estimators that are guaranteed pos-
itive, in spite of achieving the second-order unbiasedness. To ensure that the
MSPE estimator is positive, some modification of the (second-order unbi-
ased) MSPE estimator is often made. For example Hall and Maiti (2006)
suggested the following strategy. Let MSPE1 and MSPE2 be two estima-
tors of the same MSPE, for example, the former being an MSPE estimator
with an additive bias-correction, and the latter one with a multiplicative
bias-correction. Both MSPE estimators have some types of problems. For
example, M/S?El can take negative values, and l\mg can be unreliable
(Hall and Maiti 2006). The idea is to combine the two estimators by letting
MSPE = M/S-P\El if something happens, and MSPE = RTS?EQ otherwise.
This strategy takes care of the positivity issue, but it does not necessar-
ily preserve the second-order unbiasedness, even if M/SP\E1 and M/SP\EQ are
both second-order unbiased. In fact, no rigorous proof has even been given
that such a combined MSPE estimator is both positive and second-order
unbiased. In contrast, there is no requirement that log-MSPE needs to be
positive. Therefore, for log-MSPE, one can simply focus on the second-order
unbiasedness of its estimator. Question is: How to obtain such an estima-
tor?

In the context of MSPE estimation, a standard approach is Prasad-Rao
(P-R) linearization (Prasad and Rao 1990). However, the approach is not
feasible to handle our current problem, which is much more complicated.
More specifically, we are interested in estimating the log-MSPE when the
small area predictor is obtained after a model-selection procedure. The ex-
isting literature on inference after model selection has mainly focused on
the case of independent observations (e.g., Rao and Wu 2001, sec. 12 and
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the references therein, Leeb 2009, Berk, Brown and Zhao 2010). In par-
ticular, the potential impact of model selection on MSPE has never been
rigorously addressed in the SAE literature. Intuitively, there is an addi-
tional uncertainty involved in the model-selection process, that needs to be
taken into account in the MSPE estimation. The P-R linearization method
requires differentiability of the underlying operation. This usually holds for
standard estimation and prediction procedures, but not for model selec-
tion. For example, the information criteria, such as AIC (Akaike 1973) and
BIC (Schwarz 1978), or the fence methods (see Jiang 2014 for a review),
select models from a discrete space of candidate models. Even the shrink-
age methods (e.g., Tibshirani 1996, Fan and Li 2001) involve continuous
but non-differentiable penalty functions, such as the L' norm. See Miiller,
Scealy and Welsh (2013) for a review. Even if it is possible to develop a P-R
type method, the derivation is tedious, and the final analytic expression is
likely to be complicated. More importantly, errors often occur in the pro-
cess of derivations as well as computer programming based on the lengthy
expressions.

In this paper, we develop a unified jackknife approach that is assisted by
Monte-Carlo simulations for the estimation of log-MSPE. As will be seen,
the approach is applicable not just to the current problem of SAE after
model selection, but to a much broader class of problems to obtain nearly
unbiased estimators of quantities that can be obtained via Monte-Carlo sim-
ulation, if one knows the parameters that are involved. The method is espe-
cially attractive if the quantity of interest does not carry a constraint, such
as non-negativity. This will be the case for the log-MSPE. Furthermore,
the Monte-Carlo jackknife method, called McJack, is “one-formula-for-all”,
which means that one needs not re-derive the formula, as in P-R type meth-
ods, every time there is a new problem.

The rest of the paper is organized as follows. The McJack is introduced
in Section 2 by first considering a special case for ease of illustration. A
simple example is used to demonstrate numerical performance of McJack
before a general theory is established. In Section 3 we offer a critical re-
view of Jiang, Lahiri and Wan (2002; hereafter, JLW). We point out some
undesirable features of JLW, and make two important observations that mo-
tivate McJack. We also note some major differences between McJack and a
jackknife-after-bootstrap method. For those who are more interested in the
motivation before learning about the method, the orders of Section 2 and
Section 3 may be reversed. In Section 4, we carry out further simulation
studies on the performance of McJack, and compare it with alternative ap-
proaches. A real data application is considered in Section 5. Proofs of the
theorems are given in Section 6.
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2. Monte-Carlo jackknife
2.1. A special case

We first illustrate the method using an example of EBLUP under a Fay-
Herriot model (Fay and Herriot 1979), where the BIC (Schwarz 1978) is
used to select the fixed covariates and the area-specific random effects. The
model can be expressed in a way more convenient for the model selection
problem:

(2) yi = B+ VAL +e,

i =1,...,m, where the components of x; are to be selected from a set of
candidate covariates; § ~ N(0,1); if A > 0, the random effects are included
in the model; if A = 0, the random effects are excluded from the model;
e; ~ N(0,D;), where D;,;1 < i < m are known; and the &’s and e;’s are
independent. Note that there have been further considerations regarding the
choice of the random effects; see, for example, Datta et al. (2011), but here
we focus on a simpler situation. Let M; denote a full model, under which z;
is the vector that includes all of the candidate covariates, and A > 0. Denote
the z; under My by x¢;, and the corresponding 3 by f. Let ¢ = (5f, A)’. It is
easy to see that M is, at least, a correct model, which means that (2) holds
with x; replaced by ¢ ;, 5 replaced by S, and the range of A being [0, c0).
Of course, the reason for the model selection is that some of the components
of B¢ may be zero, in case that the full model can be simplified, and the true
A may be zero. But this does not change the fact M; is a correct model. In
particular, the true small-area mean, 6;, can be expressed as

(3) 0; = af;Br+ VAL

On the other hand, under a candidate model, M, which corresponds to (2),
the EBLUP of 6; can be expressed as

_ A D; .
(4) 0, = —= Yi + = i3,

where 3 = {37 (A + D;) a2t} S0 (A4 Dy) Ly, and A s a consis-
tent estimator of A obtained using a certain method (e.g., P-R, ML, REML;
see Rao and Molina 2015). The BIC procedure chooses the model, M, by
minimizing

(5) BIC(M) = —20+ |M]|log(m),
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where [ is the maximized log-likelihood under M; |M| = dim(8) + 1 if M
includes the random effects, and |M| = dim(8) if M excludes the random
effects. Here, for simplicity, we assume that X = (2})1<ij<m, is full rank under
any M. Let the minimizer of (5) be M. We then compute the EBLUP (4)
under M = M, that is,

. . D;
(6) 0 = ~ M Yi + = B )

‘ AM —+ D,L ! A D M M
where 5 o> Ay are the B , A obtained under M, respectively. The MSPE of
interest is

(7) MSPE(0;) = E(6; —6,)*,

where 0; is given by (3). It is clear that the joint distribution of (0;,y;),1 <
i < m depends only on ¢ = (8f, A). Thus, (7) is a function of ¢ and so is
its logarithm. Let

(8) b(¢p)) = log{MSPE(6;)}.

Note that, in the context of SAE, b(1)) typically depends on ¢, but for nota-
tional simplicity the subscript ¢ is dropped when considering a fixed i. Given
1, for the kth Monte-Carlo simulation, one first generates 6; by (3) with &;

replaced by §§k), 1 <i < m, generated independently from N(0,1). Denote

the generated 6; by 92( ) Next, let y(k) GZ(k) + egk), 1 < i < m, where
(k)

e;  ~N(0,D;),1 <i < m, generated independently and independent with

ffk)’s. The Monte-Carlo approximation to b(v) is

- LS~ [ 400 o2
9) b)) = log EZ{@ — 6! } ,
k=1

5(k)

where 0,

k
by yz()

mcjack(y), that computes (9) for every given ¥. Now suppose that ¥ is an
M-estimator of 1. For example, A is the P-R estimator (Prasad and Rao
1990; truncated at zero if the expression turns out to be negative), and B
is given below (4) with z; = x¢;,1 <7 < m. Let ﬁ_j be the delete-j version
of ¥. The McJack estimator of (8) is then given by

is obtained the same way as the 6; of (6) except with y; replaced

, 1 < i < m. Write the above procedure as a function, say, 5(1/1) =
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(10) b)) = b(eh) — ——— {b(dh—;) — b(sh)}.

The motivation of (10), including its connection to JLW, will be dis-
cussed in the next section. Before we present the McJack under a general
framework and develop a related theory, we would like to demonstrate its
numerical performance using a simulated example.

2.2. Numerical demonstration

Let us consider a very simple situation, which may be viewed as a special
case of the Fay-Herriot model,

(11) yi = Tf4vite, i=1,....m,

where the components of x; consist of an intercept, a group indicator, z1;,
which is 0if 1 <7 <mj =m/2, and 1 if m; + 1 <i < m, and potentially a
third component, x2;, which is generated from the N (0, 1) distribution, and
fixed throughout the simulation. There are two candidate models: Model 1,
which includes x2;, and Model 2: which does not include ;. The model
selection is carried out by BIC (Schwarz 1978).

For this demonstration, we consider a special case that the variance of
the random effects, v;, is known to be zero, that is, A = 0. There have
been considerations of such situations in SAE (e.g., Datta et al. 2011). The
variance of e;, D;, is equal to 1 for 1 < i < my, and a for m; +1 < i <
m, where the value of a is either 4 or 16. Because A = 0, the small area
mean, 6;, under a given model, is equal to z}3. The corresponding EBLUP
is 0; = a/f, where B = (X'D7'X)"'X'D~'y, with X = (2})1<i<m and
D = diag(D;,1 <1i <m), is the best linear unbiased estimator (BLUE) of
(e.g., Jiang 2007, sec. 2.3), under the given model. Due to the unbiasedness
of the BLUE, the MSPE of the EBLUP is equal to its variance, that is,

(12)  MSPE(6;) = var(;) = /(X' D' X)tay, 1<i<m,

which are known under the given model. Now suppose that the EBLUP is
obtained based on the model selected by the BIC. A naive estimator of the
MSPE of éi, which ignores model selection, would be (12) computed under
the selected model. The naive estimator of the log-MSPE is the logarithm of
the naive MSPE estimator. We compare this estimator with two competitors.
The first is what we call bootstrap MSPE estimator, which corresponds to
the first term in (10), that is, without the jackknife bias correction, where b(-)
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is the log-MSPE function. The second is the McJack estimator given by (10).
The bootstrap and McJack estimators are computed based on K = 1000
Monte-Carlo samples.

A series of simulation studies were carried out with m = 20 and Gy =
B1 = 1, where fy is the intercept and (i the slope of z1;, and under two
different true underlying models. In the first scenario, Model 1 is the true
underlying model with the slope of x2;, 82 = 0.5. In the second scenario,
Model 2 is the true underlying model (i.e., B2 = 0). We present the simulated
percentage relative bias (%RB), based on Ny, = 1000 simulation runs, in
Figures 2 and 3, where, for a given area, the %RB is defined as

—

| E{log(MSPE)} — log(MSPE)
(13) %RB = og(MSPE)] x 100%,

—

MSPE is the true MSPE based on the simulations, and E{log(MSPE)} is the
mean of the estimated log-MSPE based on the simulations. It is seen that
the naive estimator significantly underestimates the log-MSPE; in fact, when
Model 1 is the true model, the %RB for one of the areas is 516% in the case
of a = 4, and there is a similar case in the case of a = 16. More specifically,
there are some interesting trends observed. Namely, when the true model is
Model 1, all of the methods seem to underestimate the log-MSPE, but the
bootstrap and McJack estimators are doing much better, with McJack of-
fering significant improvement over the bootstrap. On the other hand, when
the true model is Model 2, the naive estimator again underestimate the log-
MSPE, but the bootstrap and McJack estimators seem to overestimate the
log-MSPE, with McJack significantly improving the bootstrap. The amount
of underestimation by the naive estimator is less dramatic when Model 2 is
the true model compared to when Model 1 is the true model. One explana-
tion is that the BIC is known to have the tendency to overpenalize larger
models. This would have bigger impact when Model 1 is the true model,
which is the full model. In other words, there is a higher chance of model
misspecification by the BIC, which impacts the log-MSPE estimation. To
have a closer look at the numbers, we present one set of the detailed results
in Table 1.

2.3. A unified approach, and theory
Although the above illustration is based on the Fay-Herriot model, its gen-

eral principle, namely, (7)—(10), applies to much broader cases. Using the
result of JLW, we can justify the second-order unbiasedness of McJack un-
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Figure 1: Boxplots of %RB when Model 1 is the true model. In each plot,
from left to right: 1-Naive estimator, 2-bootstrap estimator, and 3—McJack
estimator, of log-MSPE.

der the general framework. The justification also takes into account the
effect of the Monte-Carlo errors. First note that, to establish a rigorous re-
sult about the unbiasedness, we need to make sure that the expectations
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Figure 2: Boxplots of %RB when Model 2 is the true model. In each plot,
from left to right: 1-Naive estimator, 2-bootstrap estimator, and 3—McJack
estimator, of log-MSPE.

of B(ﬁ_j), 0 < j < m exist. To avoid complicated technical conditions, we
regularize these estimators (e.g., Jiang et al. 2002, Das et al. 2004). Let

() = exp{g(w)}, and define
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Table 1: Log-MSPE estimation: Model 2 is True Model; a = 4; %RB in

Area | True log-MSPE E(Naive Est.) E(Bootstrap Est.) E(McJack Est.)
1 1.08 2.26 (-14.0) 179 (9.6) 101 (3.3)
2 1,62 2.21 (-36.1) -1.22 (25.0) “1.41 (12.8)
3 2.07 -2.27 (-9.8) -1.95 (5.6) -2.01 (2.9)
4 -2.20 2.30 (-4.3) 12,26 (-2.5) 2,95 (-1.9)
5 1.70 2,92 (-30.4) “1.33 (21.7) “1.52 (10.7)
6 2.05 2,27 (-10.8) ~1.91 (6.7) -1.97 (3.7)
7 2.14 12.29 (-6.9) 2.11 (1.5) 2.16 (-1.0)
8 -1.55 -2.20 (-41.6) -1.11 (28.4) -1.28 (17.5)
9 2.19 12.30 (-4.8) 2,23 (-1.6) 2,92 (-1.4)
10 2.06 2,27 (-10.2) -1.94 (6.0) 2,00 (3.2)
11 -0.91 -0.92 (-0.5) -0.91 (0.6) -0.91 (-0.0)
12 0.91 -0.92 (-0.1) -0.91 (0.2) -0.92 (-0.1)
13 0.76 -0.89 (-17.4) -0.61 (19.8) -0.69 (9.5)
14 0.87 20.90 (-3.7) -0.78 (10.4) -0.82 (5.6)
15 0.92 -0.92 (0.3) 20.92 (0.1) 0.92 (-0.1)
16 0.92 0.92 (0.1) -0.92 (0.1) 0.92 (-0.1)
17 0.74 -0.88 (-18.1) -0.52 (30.9) 0.62 (17.2)
18 -0.92 -0.91 (0.1) 20.90 (2.1) 0.91 (1.1)
19 -0.91 -0.92 (-0.6) 20.90 (0.7) -0.91 (-0.0)
20 -0.88 -0.91 (-3.6) -0.84 (4.1) -0.87 (1.5)

e Am” if 5() < e ™,
) = 4 5(), e <5(y) <M
eMm” if 5(¢) > e M,

and b(¢)) = log{5(1))}, where X, p are given positive numbers. Let s(t)) de-
note MSPE(f;) when 1 is the true parameter vector. We truncate s(-) the
same way as §(+), and let b(¢)) = log{s(¢)}. For notation convenience, write
Yo = 1. Also, let F_o(v), F_j(¢) denote the left sides of (16) and (17),
respectively. The M-estimators, ﬂ,j,() < j < m are said to be consistent
uniformly (c.u.) at rate m~? if, for any § > 0, there is a constant cs such

that
P(AS5) < esm™, 0<j<m,
where A;s is the event that F_j(qﬁ_j) = 0 and \ﬁ_j — | <9, with ¢

being the true parameter vector. Also, write f; = fi(¥,v:), gi = O0fi/OV,
hig = 0? fik/0YOY', where f;j is the kth component of f;. Furthermore, for
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any function f of v, define

O3 f ()
OO,

HAngw = max sup

1<s,t,u<r |"Z’*¢‘<w ’

where 1 is the true parameter vector, and r = dim(v). A similar definition
is extended to ||A*f||,. The spectral norm of a matrix, B, is defined as
|B|| = \/Amax(B'B), where Apax denotes the largest eigenvalue. Also write
A; = a — a_j, where a,a_; are the functions of 1 that appear in (16)
and (17), respectively. We shall consider estimation of log-MSPE of éi, a
predictor of 6; after model selection, for a fixed ¢. Furthermore, we assume
that the Monte-Carlo samples, under 1, are generated by first generating
some standard [e.g., N(0,1)] random variables and then plugging 1. For
example, under the full Fay-Herriot model of (2), y; is generated by first
generating the &;’s and n;’s, which are independent N (0, 1), and then letting
Yyi = v ;B + VA& + VD, with ¢ = (B4, A)'. Let ¢ denote the vector of the
standard random variables. We first make the following general assumptions.

Al. There are d > 2 and w > 0 such that the 2dth moments of | f;|, ||g:l,
| hi k| HA?’fi,k wy, 1 <i<m,1 <k <r are bounded for some d > 2 + p.

A2. For the same d and w in A1, a_; and its up to third order partial
derivatives, 0 < j < m, as well as A;,1 < j < m, all evaluated at 1/;, are
bounded uniformly for |1j~1 — 9| < w, where 1 is the true parameter vector,
and m”(|A;] V [|[0A;/0¢]]),1 < j < m, evaluated at 1), are bounded, where
T=(d—-2)/(2d+1).

A3. The log-MSPE function b(-) of (8) is four-times continuously differ-
entiable, and, for the same w in A1, ||A*b||,, is bounded.

A4 limsup,, o [{E(G)} 7| < oo, where g = m™! > j19j, evaluated
at the true 2.

AS. ﬁ,j,O < j < m are c.u. at rate m~? for the same d in A1.

A6. 377 Aj = O(m™) for some v > 0.

Recall the way that the Monte-Carlo samples are generated specified
above A1. Under this assumption, Hz(k), é§k), 1 <k < K, generated under 1;,
are functions of 1,5 and £. The additional assumptions below are regarding
the Monte-Carlo sampling.

A7. € is independent with the data, y.

A8. Let ¢ be the true parameter vector, and w be the same as in A1.
There are constants 0 < ¢; < ¢ such that ¢; < s(1p) < ¢ for [¢p — ¥ < w,
and random variables Gy, 1 < k < K, which do not depend on %, such that
\él(k) - 91@)| < Gy, and E(GY}) are bounded for some ¢ > 2{2+ (p VvV 1)}.

A9. m?/K — 0, as m — oo.
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Theorem 1. Suppose that A1-A9 hold. Let Z)T\lﬁ) denote (10) with b replaced
by b. Then, we have E{b(1)) —b(1))} = o(m™1), where 1) is the true 1 [hence
b(v) is the true log-MSPE], and E is with respect to both y and &.

The next result focuses on the special case of Fay-Herriot model.

Theorem 2. Suppose that the true A > 0, and there are positive constants
0 < c1 < g such that ey <|zg;| < ez, 1 < Dj < ¢2,1 <@ < m. Furthermore,
suppose that

1 m
(14) lim sup Apmin (E Z xf,ix%,i) > 0,
i=1

m—o0

and A9 holds. Then, the conclusion of Theorem 1 holds.

The proofs of Theorem 1 and Theorem 2 are given in Section 6.
3. Review of JLW, motivation of McJack, and discussion

In the context of resampling methods for SAE, JLW proposed a jackknife
method for estimating the MSPE of empirical best predictor (EBP) when
the parameters of interest are estimated by M-estimators. Let £ denote a
mixed effect, for example, a small area mean. Let 5 and { denote the best
predictor (BP), defined as conditional expectation of ¢ given the data, y,
and EBP of &, respectively. Then, one has the decomposition

(15) MSPE(§) = MSPE()+ E{(¢ - )},

where MSPE(£) is defined as E{(€ — £)?} and MSPE(£) is defined similarly.
The idea of JLW is to jackknife the two terms on the right side of (15)
separately. For the first term, the authors assume that it is a function of 1,
a vector of parameters, that is, MSPE({N) = b(¢), which can be computed
analytically. The parameter vector v is then estimated by an M-estimator,
defined as the solution, 1&, to a system of equations of the following form:

m

(16) " filW ) +a(®) = 0.

i=1

n (16), y; is the data vector from the ith cluster (e.g., small area), and the
clusters are assumed to be independent; f;(-,-) is a vector-valued function
that satisfies E{f;(¢,v:)} = 0,1 <i < m, if ¢ is the true parameter vector;
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and a(-) corresponds to a penalizer, which in some cases is the zero vector.
The delete-j estimator, 1_;, of v is defined as the solution to the following
system of equations:

(17) S fily) +a (@) = 0,
i#]

where a_;(-) has a similar interpretation. Given the M-estimators, b(1)) is
estimated by a plug-in estimator, minus a jackknife bias correction, that is,

(18) Z i) = b()}.

As for the second term on the right side of (15), it is estimated by a jackknife
variance-type estimator that has the following expression:

mlm A

(19) — (6 —&)?
7j=1

where é_j is a delete-j version of é , the EBP, defined in a certain way, which
is not important for the current paper. JLW showed that, when the two
terms, (18) and (19), are put together, the combined jackknife estimator of
the MSPE of EBP is second-order unbiased. The work has had a significant
impact in SAE, especially in the literature of resampling methods in SAE
(e.g., Hall and Maiti 2006, Lohr and Rao 2009, Pfeffermann 2013, Rao and
Molina 2015). On the other hand, we note the following undesirable features
of JLW:
(a) JLW requires analytical computation of b(v)).
(b) JLW does not incorporate errors from model selection. In particular,
the proof for the second-order unbiased property of (19) fails if a model
selection procedure is involved prior to obtaining the EBP, such as in Datta
et al. (2011).
(¢) JLW does not guarantee a strictly positive MSPE estimator, in spite of its
second-order unbiasedness. See our discussion in Section 1 (7th paragraph).
As far as this paper is concerned, what is most important is not the full
JLW theory, but rather an intermediate result. In obtaining their theory,
JLW showed, in particular, that (18) is a second-order unbiased estimator
of b(1)), if the penalizers a,a—_;,1 < j < m in (16) and (17) satisfy certain
mild conditions. In particular, those conditions are satisfied if the penalizers
are zero (vectors), in which case the M-estimating equations are unbiased.
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Having given the proof of the result, we realize the following two facts, both
are critically important to the idea of the current paper.

(I) The fact that b(t) is an MSPE is not used anywhere in the proof.
In other words, as long as b(-) is a sufficiently smooth function, and ¥ is
estimated by the M-estimators, the second-order unbiased estimation of b(1))
by (18) holds. In particular, b(¢)) can be log(MSPE), which is of primary
interest here.

(IT) More importantly, b(¢)) does not have to have an analytic expression,
as long as one knows how to compute it. An analytic expression would be
nice, but, in the new era, the computation is typically implemented in some
code and executed with a high-speed computer. In particular, suppose that,
given 1), b(1)) can be approximated by a Monte-Carlo method to an arbitrary
degree of accuracy. Then, one can write programming codes, based on the
Monte-Carlo, to compute b(-) as a function. Given this “computer-powered”
function, all one needs to do is to plug the M-estimators, @13, d},j, 1 <5< m,
into this function to obtain the second-order unbiased estimator of b(1)).

The importance of the above observations is that they apply to virtu-
ally any kind of situation, not just the EBP. In particular, the predictor,
é , can be much more complicated than the EBP, such as an EBP obtained
following a model-selection procedure. Also, the decomposition (15), and
jackknifing of the second term in the decomposition, (19), are altogether
not needed to apply these observations. The McJack, proposed in the previ-
ous section, is based on these two important observations; it addresses all of
the undesirable features of JLW noted above. Other complicated situations,
to which our idea may apply, include (i) regression inference after variable
selection (e.g., Leeb 2009); (ii) mixed model prediction with non-normal ran-
dom effect distribution (e.g., Lahiri and Rao 1995); and (iii) shrinkage esti-
mation/selection with data-driven choice of regularization parameter (e.g.,
Pang, Lin and Jiang 2016).

In the context of resampling methods, a well-known method is jackknife-
after-bootstrap (JAB; Efron 1992). There are major differences between JAB
and McJack. First, the objectives are different. The main purpose of JAB
is to assess accuracy of the usual bootstrap estimates; while the objective
of McJack is to estimate quantities of interest, such as measures of uncer-
tainty for estimates based on the original data. Secondly, JAB works, for the
most part, under the standard nonparametric bootstrap setting, to achieve
efficient computation so that no additional bootstrap samples are needed;
in other words, the JAB estimates are obtained from the original bootstrap
samples. However, this is difficult to do under a parametric bootstrap set-
ting. For example, although Efron (1992) has discussed JAB with paramet-
ric bootstrap using the idea of importance sampling, the approach does not
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necessarily lead to a real gain in computation if the major computational
burden is not due to sampling. On the other hand, standard nonparametric
bootstrap procedures do not apply to SAE problems, in spite of some varia-
tions that have been developed. See, for example, Pfeffermann (2013), for a
review. Finally, McJack does not have to be associated with bootstrap—any
kind of Monte-Carlo method can be used to assist the computation. For
example, JLW discussed an example in which the Monte-Carlo method used
to compute the MSPE is not considered as bootstrapping.

4. More simulation studies

4.1. Testing the presence of random effects in a Fay-Herriot
model

Datta et al. (2011) proposed a method of model selection by testing for the
presence of the area-specific random effects, v; = V/A¢;, in the Fay-Herriot
model (2). This is equivalent to testlng the null hypothesis Ho : A = 0.
The test statistic, T = Y .~ D, Yy — o ﬁ) , where A is the same as in
Subsection 2.1, has a Xm—p dlstrlbutlon with p = rank(X), under Hy. If Hy
is rejected, the EBLUP is used to estimate the small area mean 6;, where in
this simulation A is estimated by the P-R estimator, and the corresponding
MSPE estimator is the P-R MSPE estimator; if Hg is accepted, the estimator
0, = ! ﬂ is used to estimate 6;, and the corresponding MSPE is given by
(1 ) Thus, if the level of significance is chosen as 0.05, the proposed MSPE
estimator, denoted by DHM, is the P-R MSPE estimator if T' > x2, ,(0.05),
and (12) if T <= x2,_ »(0.05).

We run a simulation study to compare the performance of McJack with
DHM. The simulation is under the full model considered in the previous
subsection (hence p = 3), and three different true values of A: A = 0,
A = 0.5, and A = 1. The boxplots of %RB for these three cases are presented
in Figure 3, with the detailed numbers for DHM and McJack given in Table
2. It is seen that DHM works better for the case A = 0, which is not
surprising because, under the null hypothesis, the DHM MSPE estimator
is “right” 95% of the times. On the other hand, McJack works significantly
better in those two cases of nonzero A. Simple simulations show that, in
the latter cases, the probability of rejecting the null hypothesis is about
0.26 when A = 0.5, and 0.44 when A = 1. The worst scenario seems to
be the case where A is not zero but closer to zero (A = 0.5). There are a
few “blown-up” cases under this scenario where the %RB exceeds 1000% for
DHM. It is also obvious that McJack improves bootstrap in every case.
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Figure 3: Boxplots of %RB. In each plot, from left to right: 1-DHM, 2—
bootstrap, 3-McJack. Scales are different due to the huge difference in range.
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Table 2: DHM vs McJack in %RB

Area A=0.0 A=0.5 A=1.0

DHM MecJack DHM McJack | DHM McJack
1 -13.6 26.2 | -216.8 -59.8 | -342.0 -99.5
2 0.3 26.0 | -131.0 -45.8 | -343.8 -72.9
3 -3.9 275 | -1074 -21.1 | -135.8 -30.3
4 1.1 28.2 -158.0 -37.7 | -362.9 -77.6
5 -8.1 249 | -178.9 -36.9 | -191.3 -59.6
6 -6.0 30.0 | -180.3 -50.5 | -375.4 -166.5
7 -3.1 24.1 -210.0 -51.5 | -395.5 -124.6
8 7.6 276 | -135.3 -33.1 | -464.9 -123.0
9 -10.9 274 | -1494 -43.0 | -357.2 -108.1
10 -3.8 28.6 -163.1 -31.4 | -362.8 -94.0
11 -26.5 20.2 -60.8 -21.8 | -220.3 -39.4
12 -10.7 33.3 | -2373.3 -486.1 | -210.4 -76.5
13 -13.9 27.5 | -504.8 -74.0 | -94.5 -18.4
14 -10.3 329 | -173.1 -35.3 | -188.2 -64.1
15 -17.5 25.7 | -1023.6 -329.5 | -163.0 -58.1
16 -4.4 38.1 -154.6 -46.6 | -211.9 -65.2
17 -12.1 28.4 | -335.8 -48.9 | -197.6 -72.8
18 -11.4 27.1 -171.2 -22.0 | -148.4 -59.9
19 -14.2 27.7 | -230.6 -69.6 | -56.7 -17.5
20 -18.4 28.3 | -1089.6 -308.1 | -104.1 -43.7

4.2. SAE after GIC

Now let us revisit the example of Subsection 2.2, but this time with A # 0.
The model selection is done by the same BIC procedure, which is a special
case of the generalized information criteria (GIC), whose consistency for
linear mixed model selection has been proved by Jiang and Rao (2003). We
consider the second scenario, in which Model 2 is the true underlying model.
Two settings were considered in Subsection 2.2: a = 4 and a = 16. Here, we
take a middle ground by considering a = 8. The true value of A is either 1 or
2. We compare McJack with the bootstrap and a method called PR, which
estimates the MSPE by the P-R MSPE estimator (Prasad and Rao 1990;
see Subsection 4.1) under the selected model, in estimating the area-specific
log-MSPEs.

An issue that was previously not considered is whether it makes a dif-
ference to use the same random seed in computing the Monte-Carlo MSPEs
based on 1& and all of the ﬁ,j, 1 < j < m. If the same random seed is used,
the Monte-Carlo log-MSPE, b(1)), is a function of ¢ only. In other words, the
only difference between b(¢)) and b(zﬂ_j), 1 < j < m is due to the difference
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between the M-estimators, @;,zﬂ_j, 1 < j < m. On the other hand, if dif-
ferent random seeds are used, for example, if one lets the computer choose
the seed, the difference between b(t)) and b(s)_;),1 < j < m is not only
due to the difference between the M-estimators, but also due to the random
seeds. In this particular simulation study, we also investigate this problem.
Throughout this simulation, the Monte-Carlo sample size for computing the
Monte-Carlo MSPE is chosen as K = 1000.

Figure 4 presents two boxplots of the %RBs of PR, bootstrap (BT),
and McJack (MJ) for the case A = 1. To the left is the plots with the seed
fixed for b() and all of the b(lﬂ_j)’s (but the seeds are different between
different simulation runs). To the right is the plots with the seeds randomly
selected by the computer [so the seeds for b(¢)) and b(t)_ ;)’s are all different].
The results are based on Ny, = 1000 simulation runs. It is seen that the
overall patterns are very similar. The difference in the scales are likely due
to the fact that the covariate, xo;, were generated differently; but, once
generated, they were fixed throughout the simulations (i.e., the same x5 ;’s
were used for all of the simulation runs). Thus, we conclude that, at least
for this simulation study, the Monte-Carlo sample size, K, is large enough
that there is no essential difference between the fixed and random seeds.
One set of the detailed results, for the fixed seed case, are presented in
Table 3, where the Covariate column are the x5 ;’s for this simulation, and
log(MSPE) are the true (simulated) log-MSPEs. It is seen that the PR
method always over-estimate the true log-MSPE, sometimes substantially.
One explanation is that the P-R MSPE estimator depends not only on the
model for the covariates but also on the estimator of A, under the model.
Because, typically, a selected model provides the best fit to the data, as
a result, the estimated A, under the selected model, is smaller. A similar
finding was reported in Datta et al. (2011), who noted that, if more effective
covariates are added to the (Fay-Herriot) model, the estimated A is smaller;
as a result, the variance A becomes insignificant in hypothesis testing. Thus,
estimating A under a fixed model may over-estimate the MSPE. Also note
that, even if the P-R MSPE estimator is computed under the selected model,
it is derived under a fixed model, which happens to be the one selected. In
other words, although this fixed model is the selected model this time around
with the current data, it may not be the selected model when a new set of
data is generated.

More specifically, for the first 10 small areas the over-estimation by the
P-R method is of much higher order than for the last 10 small areas. Again,
there are some explanations. First of all, the PR method computes the MSPE
estimator based on the selected model, and the same model is used for all of



Monte-Carlo jackknife 425

9 | |
X o X
‘.o 1 O — 1
: © :
o :
o 1
o © X
O —
<
(@]
O —]
g
8 _
@]
(4] o
QA
: -t O _ —_— T
o — —_ _:_
X o X
L S ! !
a | !
| : _
9 i i
—_ 1 O 1
C\ll —_— o | —_—
<
| | | ' | | |
1 2 3 1 2 3
Fixed Seed Random Seed

Figure 4: Boxplots of %RB. A = 1. In each plot, from left to right: 1-PR, 2—
bootstrap, 3-McJack. Scales are different due to the values of the covariates
that were generated.

the small areas. It is possible that the seleted model is more effective or, in
some cases, less damaging, for some small areas than for the others. Recall
that the sampling variance, D;, is 1 for the first 10 small areas, and 8 for the
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Table 3: Comparison of PR, BT, and MJ: A = 1, Fixed Seed

Area | Covariate log(MSPE) %RB PR %RB BT %RB MJ
1 -0.302 -0.281 446.6 -143.2 -44.3
2 -0.180 -0.272 459.1 -147.4 -47.5
3 0.072 -0.283 445.1 -113.8 -29.6
4 -0.763 -0.233 519.5 -176.0 -67.2
5 0.025 -0.297 428.8 -108.1 -24.9
6 0.449 -0.242 505.7 -92.4 -29.9
7 -0.643 -0.276 453.8 -142.9 -46.0
8 -1.657 -0.207 575.8 -47.9 -17.8
9 -0.109 -0.256 481.5 -155.4 -53.4

10 -1.025 -0.179 647.9 -215.6 -100.5
11 0.615 0.602 35.7 4.2 42.1
12 0.783 0.596 38.1 12.7 48.0
13 -0.617 0.567 41.8 -5.1 40.9
14 -0.488 0.554 44.9 -5.9 41.8
15 -0.531 0.612 31.2 -14.0 29.7
16 1.316 0.771 10.4 10.9 30.8
17 0.042 0.576 39.2 -9.8 36.2
18 -0.506 0.627 28.0 -16.6 25.6
19 -1.754 0.805 5.7 6.5 26.7
20 -1.008 0.684 19.2 -9.8 24.0

last 10 small areas. The leading term of the true MSPE is AD;/(A+ D;) for
area i (e.g., Jiang 2010, p. 445), which is increasing with D;; on the other
hand, the part in the P-R MSPE estimator that is most model-dependent
is the go term, but this term is O(m™!), compared to the order O(1) of the
leading term. Thus, in a way, the P-R MSPE estimator is less affected by
the selected model for the last 10 small areas than for the first 10. Also,
note that the true log-MSPE goes to the denominator when computing the
%RB; when the denominator is smaller in absolute value, which is confirmed
by the log(MSPE) column of Table 3, the corresponding %RB tends to be
larger. As for the bootstrap MSPE estimator, it works very well for the
last 10 small areas but seems to significantly under-estimate for the first 10
small areas. In comparison, McJack has a (much) more robust performance
overall.

Figure 5 presents the comparison for the case A = 2. The pattern is
similar, except that magnitude of the differences for the first 10 small areas
is much amplified. On the other hand, the %RB performance for the last
10 small areas are better than the case A = 1 for all three methods. The
detailed results are omitted.
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Figure 5: Boxplots of %RB. A = 2 (Fixed Seed). From left to right: 1-PR,
2-bootstrap, 3-McJack.

5. A real data example

Morris and Christiansen (1995) presented a data set involving 23 hospitals
(out of a total of 219 hospitals) that had at least 50 kidney transplants
during a 27 month period (see Table 4). The y;’s are graft failure rates
for kidney transplant operations, that is, y; = number of graft failures/n;,
where n; is the number of kidney transplants at hospital ¢ during the period
of interest. The variance for the graft failure rate, D;, is approximated by
(0.2)(0.8)/n;, where 0.2 is the observed failure rate for all of the hospitals.
Thus, D; is assumed known. In addition, a severity index, s;, is available for
each hospital, which is the average fraction of females, blacks, children and
extremely ill kidney recipients at hospital i. Ganesh (2009) proposed a Fay-
Herriot model for the graft failure rates, which is (2) with z}3 = 8y + Sisi.
Jiang et al. (2010) suggests that, in a way, the optimal model for this data
is a cubic model, that is, (2) with zi8 = By + B18; + 25?7 + B3s3, which is
also used in Datta et al. (2011).

We analyze the data under the latter model for the mean function but
with selection of the random effect factor using the strategy of Datta et



428 Jiming Jiang et al.

Table 4: The Hospital Data, Estimates, and Measures of
Uncertainty

1 302 112 .055  .221  .015 .029 .038 .238 .034
140  .206 .053 .186 .013 .027 .019 .178 .019
203 104 .052 214 .014 .029 .038 .215 .036
333 168 052 .215  .011 .028 .044 .240 .040
347 337 047 349 .047 047 .047 349 .047
216 169 .046 .215 .011 .026 .030 .218 .024
156 211 .046 183 .015 .027 .026 .176 .021
143 195 046 195 .011  .026 .032 .184 .034
9 220 221 .044 177 018 .029 .040 .186 .040
10 205 .077 .044 .168 .015 .029 .048 .177 .049
11 209 195 042 195 .011  .026 .030 .199 .027
12 266 185 .041 .203 .010 .026 .029 .221 .026
13 240 202 .041 189 .012 .026 .030 .203 .030
14 262 .108 .036 .218 .014 .026 .021 .235 .018
15 144 204 .036 .188 .013 .025 .028 .174 .026
16 .116 .072 .035 .155 .017 .028 .038 .141 .042
17 201 142 .033 .228 .015 .025 .025 .221 .025
18 212 136 .032 229 .015 .025 .025 .226 .025
19 189 172 031 213 .010 .023 .017 .205 .019
20 .212 202 .029 .189 .012 .024 .038 .199 .034
21 .166 .087 .029 .189 .013 .024 .036 .180 .030
22 A73 0 A7t 027 209 .010  .023 .032 .194 .034
23 165 .072 025 155 017 .022 .022 .159 .019

0 J O Ui Wi

al. (2011), that is, by testing for the presence of the random effects, v;. At
a = 0.05 level of significance, the test statistic (see Subsection 4.1) T = 24.3,
while the critical value of X%g is 30.1. Thus, the null hypothesis that A = 0 is
not rejected. As a result, 0, = :c;ﬁ is used as the estimate of 6;, according to
Datta et al. (2011). However, the main issue is how to assess the uncertainty.
We apply the three different methods investigated in Subsection 4.1 to this
data, and obtain the square roots of the estimated MSPEs, denoted by
DHM, BT, and MJ, respectively. Here the MSPE estimates are obtained
by taking the exponentials of the corresponding log-MSPE estimates. The
Monte-Carlo sample size for BT and MJ is K = 4000. The results are
presented in Table 4. It is seen that the measures of uncertainty by DHM
are always smaller than those by BT and MJ. This is not surprising because
DHM does not take into account the potential variation in model selection.
As for the comparison between BT and MJ, the latter measures are larger
in most cases.
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As another comparison, we also computed the standard EBLUPs (i.e.,
without testing the presence of the random effects) and their correspond-
ing McJack estimates of vVMSPE. The results are presented in the last two
columns of Table 4, where 6; represents the EBLUPs and MJ the corre-
sponding estimated v MSPEs. Note that the same data was also analyzed
by Datta et al. (2011), who stated that, because the estimated MSPEs for
DHM are much smaller than those for EBLUP, the DHM method is “sig-
nificantly more accurate”. The results of our analysis show that this is not
necessarily the case when additional variation in the model selection (by
testing) is taken into account, and estimated correctly: Out of the 23 small
areas, only 5 have smaller estimated vMSPE for DHM as compared to
EBLUP when comparing the MJs for both (column 8 vs column 10).

Finally, there is one area, #5, for which all of the uncertainty measures
give essentially the same results, 0.047 (although, to the fourth digit, the
DHM measure is still smaller than its BT and MJ counterparts). This case
corresponds to the “outlier” for this data, according to Jiang, Nguyen and
Rao (2011). As noted by the latter authors (also see Jiang et al. 2010),
without this case, a quadratic, instead of cubic, mean function would fit the
data well. However, there is an over-fitting problem for this particular area,
that is, the outlier causes the cubic fit to be “perfect” for this area. This
means that the fitted cubic function goes through exactly the data point; as
a result, the direct estimate, ys, is equal to the regression estimate, x% B LIt
follows that there is no difference between the EBLUP and the direct and
synthetic estimates, regardless of the value of D5 and how one estimates A.
Thus, in this case, every method essentially reduces to the direct estimate,
y5 = 0.347, and its measure of uncertainty, /D5 = 0.047.

Another real-data example on estimation of median income of four-
person families is also considered. The details are deferred to Supplemen-
tary Material (http://intlpress.com/site/pub/pages/journals/items/amsa/
content/vols/0003,/0002/s001).

Concluding remark. We have shown that the impact of model selec-
tion in accuracy measures may be complicated. If the accuracy measure only
focuses on the variance, model selection is likely to add additional variation
to the measure. This is shown, for example, in Subsection 2.2, where the
EBLUP is an unbiased estimator, hence the MSPE reduces to the variance.
On the other hand, if the accuracy measure is the MSPE, the overall impact
of model selection depends on the relative contributions of the bias and vari-
ance as in the identity MSPE = (prediction bias)? + prediction variance. As
further discussed in Supplementary Material, model selection helps to re-
duce the bias but this may be at the cost of adding more variation. Because,
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in practice, it is difficult to predict in which way, and how much, the overall
impact is, the best strategy is to obtain an accurate MSPE estimator. We
have shown that the latter can be done via McJack.

6. Proofs

6.1. Proof of Theorem 1
Throughout this proof, ¢ denotes the true parameter vector. Let b(Tp) denote
(10) with b(-) replaced by b(-). Also, ¢ denotes a positive, generic constant,
whose value may be different at different places. By Theorem 5.2 of Jiang
et al. (2002), we have

(20) Ey{b(y)) —b(y)} = o(m™'77),

where v = [(d—2)/(2d+1)]Av > 0, and E,, denotes expectation with respect
to y. Because the left side of (20) does not depend on &, the equation also
holds with E, replaced by E.

Let E¢ and P¢ denote expectation and probability with respect to &.
Consider

@) = b)) —b@) — TS () — b(dy) + () — b))

Let 1) be a fixed parameter vector such that |1/~) — 1| < w. Then, we have

8(1/1) —by) = {B(@Z)) - b(qﬁz)}l(cl/2§§(d;)§262)

H{B(D) = bW 55y <er 2y + D) = DD M 515y 200
(22) = h+h+Is

First note that, by A8, we have P¢{3(¢)) < ¢1/2} < Pe{|3(¥) — s(¢)| >
c/2} < (01/2)_‘1/2E§{]§(1/~1) — s(zﬂ)\qm}. Next, write u, = {él(k) — ng)}ﬂ and

note that E¢(u1) = s(1). By Marcinkiewicz-Zygmund inequality (e.g., Jiang
2010, p. 150), we have

q/2
. . 1
Ee{|5(¢) — s(4)|?} = Teaz e

Z{Uk — BEe(u1)}
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K q/4

C
< oo [;{Uk—EE(Ul)}ZI

c 1 &

2

S A X E;Esﬂuk — Be(u)|"?]
< &
= Kad®

using Jensen’s inequality for the second-to-last step, and A8 for the last
step. It follows, by A8 and the definition of b(-), b(-) that

(23) [Be(l)] < emPK~94
By essentially the same argument, we also have

(24) [Be(I3)] < emPK~94

Now suppose that ¢1/2 < 5() < 2¢o. We also know that ¢; < s(¥) < e
by A8. Thus, for sufficiently large m, we have b(¢) = b(¢)). By Taylor series
expansion, we have

b)) = B -bD)
— log{5(9)} — log{s(9))

W) —s(@)  {3) —s)}?* | {3(d) —s(¥)}?

25 - i k + :
) s(¥) 25(1)” 30’
where 7 lies between s(¢)) and §(1); hence, we have 1 > ¢1/2. Tt follows that

o[ sy

3 33 (e1/2<5(1)<2c2)
8 () ANE;
< 3EAIS(W) = s()°}
3¢y

(26) < eK732,

using an earlier inequality. Similarly, we have

EgFﬁ&%—diﬂg

b —1
25())? <Cl/2S§(w>g2c2>] <cK .

(27)

Furthermore, note that Eg{é(@ﬁ) - 3(1;)} = 0, thus, we have
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Ee | 22— -
‘ 5[ s(1)) (Cl/QSS(w)SQCz)]

1 o~ ~
= s(—v,Z )Eg[{sw) - 3(1/’)}1(5(1;)@1/2 or §('¢~J)>202)]

_ Eg[{S( ) (}} w)<01/2)]
Ee[{3(4) + () H (55526,
s(9) '

By Holder and Jensen’s inequalities, A8 and an earlier result, we have

Ee[{3() + s(0)} 50y <er /)]
< [Eel8(9) + s() PP {3() < e1/2}]' 7%

2/q
1 2 2 _ _
< C{EzEﬁ(ui/ )+c§/ } K—(a/9(1-2/q)

< K @/4

Similarly, we have E¢[{3(¢) +s(4)}1 5 < ¢K~(@=2)/4 Tt follows that

>2cz ]

< K-/t

(28)

5(¢) — s(¥)

Combining (24)—(28), and the fact that (¢ —2)/4 > 1 by A8, we conclude
that

(29) Be(l)] < K7L
Thus, combining (22)—(24), and (29), we have

(30)  [Be{b(d) = b(d)} < e [mo K0+ K|, it [ — o] <w,

where ¢ does not depend on 1;
Now, for any 0 < j < m, we have

E{b(¢_j) — b(¥—;)} = By [Ee{b(v—;) — b(—)|¥—;}] = By {A(d—))},
where A(Y) = Ee{b(¥—;) — b(th_j)[—; = ¥} = Ee{b(¥) — b(¥))} by AT.

Therefore, we have
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B-) 00 -)) A
(31) = B AW, )t FEAAC) 15 s}

By (30), the first term on the right side of (31) is bounded in absolute value
by ¢[mPK~9*+ K~1]. As for the second term, by the definition of b(-), b(-),
and A5, it is bounded in absolute value by em?~¢. Thus, in conclusion, we
have

[E{b(d—;) — b(¥—;)}|
(32) < ¢ mpK_Q/4—|—K_1—|—mp_d], 0<j<m.

Combining (21), (32), we have

—

|E{b(¢) - I;(T/;)}’ < ¢ <m1+pK*q/4 + % + m1+p*d)
(33) = o(m™),

by A9 and the conditions on d, q.
The result then follows by (20) (with E, replaced by E) and (33).

6.2. Proof of Theorem 2

First, by (i)—(iv) of Jiang et al. (2002, p. 1803), it is easy to see that as-
sumptions A1-A6 are satisfied. Assumption A7 is satisfied by the statement
above A1. Thus, all we need is to verify assumption A8. Once again, in the
arguments below, ¢ denotes a positive constant whose value may be different
at different places.

Suppose that the data is generated under the parameter vector 1. Let
0; denote the BP of 6;. Then, we have s(1)) = MSPE(6;) = MSPE(6;) +
E@{(él — 51)2} > MSPEJ)(@NZ) = ADZ/(A + Dz) Thus, if 0 < A/2 < A < 2A,
where A is the A component of 1, and A is the true A, s(zﬂ) is clearly
bounded away from O.

On the other hand, we have 5(1)) = Ezz(éf) — 2E¢(éi9i) +E¢(93)- By (3),
we have E(0?) < 2(|z1.4]%|5)? + A%) < ¢, if, say |fr — 3] < 1 and A < 24.
Also, by (6), and Jensen’s inequality, we have

LA D :
34 07 < — P ——— 2Bl <7+ |weal?|Bel?
( ) 7 Af‘l‘Diy’L Af+DZ| g | y’L | ﬂ| ‘ |
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and, by (2), E;(y2) = {E(y:) Y2 +var (i) = (20807 +A+Di < |wg?|Be*+
A+D; < c. Define Py = Iy~ D12 X¢ (XD X)X/ D~/2. By Lemma 1 of
Jiang (2000), with V = AI,,+D, D = diag(D;,1 < i <m), Xp = D12,
Z=D712 T = Al,, and ¢ =y — X¢f3, we have

A~

B = (X{VTIX) XV Ty
Be + (X{V 1 Xp) T XV I¢
Be + {Xp(Im + 202 " Xp}y ' X (I + 2T 2") D 1/%¢
Bs + (X Xp) ' X {l, — AD"'P(I,,, + APD™'P) "y D~ Y2%¢
= Br+ (X{D'Xp) ' X{D¢
—(X{D7 X)) X[ DY ADV2 Py(1,, + ARDT P DV %¢
(35) = B+ I — I

Note that E;(¢(¢') = Al,, + D < ¢D under the assumptions. Thus, we have

Ej(IL?) = By [{(X{D7'Xy) ' XiD™ (D X (X{D ™ Xp) 1Y)
_ tr{(XgD_le)_ngD_lEd;(g(’)D‘le(XfD_le)_}

ctr{(X{D71X;)1}
c
mAmin(m_leXf) .

A

(36)

IA

Furthermore, we have

L < ([(XtD™'Xe) ' X{D7Y| - |AD" V2P (I,, + ARD ' P)
x|D712¢].

By a similar argument as above, we have

X!D7IX) "L XIDY? < € .
H( f f) f || _mAmin(milXéXf)

Next, let Ay > -+ > )\, > 0 be the eigenvalues PrD ™' P. Then, we have

|AD=Y2P:(I,, + APD7'P;) 7|2 = max

If AX; = 0, then A2)\;/(14 A)N;)? = 0; and A2);/(14+ AN)? < A%);/A%)2 =
1/); otherwise. It follows that
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A2\ 1
max ———— < —,
1<i<m (1 4 AN)2 Ar

where 7 = rank(P:D~!P;). Because P;D~!Pu = 0 if and only if Pru = 0,
we have r = rank(F;), and P is a projection matrix, whose eigenvalues are
0 or 1. Also, because

P? P

PD7'P > . = :
maxi<;<m D,L maxi<i<m Dz

by a well-known eigenvalue inequality (e.g., DasGupta 2008, p. 669), we have

P ) oA 1

maXlgigm DZ

MZN(

InaXlgigm Dl maxlgigm Dl
Thus, in conclusion, we have

|AD=Y2Py(I,, + APD™'P)7Y? < max Dj.
1<i<m

Finally, it is easy to show that E@(\D‘UQCP) < ¢m. Thus, combining the
results, we have

C
37 E-(|L]%) < )
(37) D)= )

The upper bound for s(¢)) follows from (34)—(37).
The last part of A8 follows from the above arguments by noting that

ok = :1;§7i,6~’f+14~11/2§§k), yi = 9§k)+\/ﬁmi(k), and §§k), ngk) are N (0,1) random

(A
variables.
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