
Annals of Mathematical Sciences and Applications

Volume 3, Number 2, 369–403, 2018

Algorithm for overcoming the curse of
dimensionality for certain non-convex

Hamilton-Jacobi equations, projections and
differential games

Yat Tin Chow
∗
, Jérôme Darbon

†
, Stanley Osher

∗
,

and Wotao Yin
∗

In this paper we develop a method for solving a large class of non-
convex Hamilton-Jacobi partial differential equations (HJ PDE).
The method yields decoupled subproblems, which can be solved in
an embarrassingly parallel fashion. The complexity of the result-
ing algorithm is polynomial in the problem dimension; hence, it
overcomes the curse of dimensionality [1, 2]. We extend previous
work in [6] and apply the Hopf formula to solve HJ PDE involving
nonconvex Hamiltonians. We propose an ADMM approach for find-
ing the minimizer associated with the Hopf formula. Some explicit
formulae of proximal maps, as well as newly-defined stretch oper-
ators, are used in the numerical solutions of ADMM subproblems.
Our approach is expected to have wide applications in continuous
dynamic games, control theory problems, and elsewhere.

AMS 2000 subject classifications: Primary 35F21, 46N10, 49N70,
49N90; secondary 90C90, 91A23, 93C95.
Keywords and phrases: Hamilton-Jacobi equations, viscosity solu-
tion, Hopf formula, nonconvex Hamiltonian, nonconvex ADMM, differ-
ential games, optimal control.

1. Introduction

It is well known that Hamilton-Jacobi-Isaacs partial differential equations
(HJ PDE) play a very important role in analyzing continuous/differential

∗Department of Mathematics, UCLA, Los Angeles, CA 90095-1555
(ytchow@math.ucla.edu, sjo@math.ucla.edu, wotaoyin@math.ucla.edu). Research
is supported by ONR N000141612157, DOE DE-SC00183838, NSF EAGER-
1462397 DMS-1317602 and ECCS-1462397.

†Division of Applied Mathematics, Brown University, Providence RI, 02912, USA
(jerome darbon@brown.edu).

369

http://intlpress.com/site/pub/pages/journals/items/amsa/_home/_main/index.html

370 Yat Tin Chow et al.

dynamic games, control theory problems, and dynamical systems coming
from the physical world, e.g. [11]. An important application is to compute
the evolution of geometric objects [26], which was first used for reachability
problems in [22, 23], to our knowledge.

Numerical solutions to HJ PDE have attracted a lot of attention. Most
of the methods involve the introduction of a grid and a finite difference
discretization of the Hamiltonian. Some of these well-known methods using
discretization include ENO/WENO-type methods [25] and Dijkstra-type [9]
methods such as fast marching [32] and fast sweeping [31]. However, owing to
the discretization nature, these numerical approaches of HJ PDE suffer from
poor scaling with respect to dimension, hence rendering them impossible to
be applied to problems in high dimensions.

Research has therefore been conducted by several groups in search of
possible algorithms that can scale reasonably with dimension. Some new
algorithms are introduced in e.g. [7, 17, 18]. In [6], the authors proposed a
causality-free method for solving convex HJ PDE based on the Hopf-Lax
formula. An HJ PDE is called convex if the Hamiltonian (in (2.1) below) is
convex with respect to the solution gradient. Using the Hopf-Lax formula,
the PDE becomes decoupled and the solution at each point can be effectively
calculated by very easy, d-dimensional minimization.

In this paper, we propose to extend the method in [6] and apply the
classical Hopf formula to solve nonconvex HJ PDE, where the Hamiltonian
is no longer convex. In our proposed method, the solution to the HJ PDE is
evaluated at each point by numerical minimization (in the same dimension
as the dimension of the HJ PDE) described by the Hopf formula at that
point. This way, evaluating the solution at different points is decoupled into
independent, easy subproblems.

Specifically, we propose to apply a nonconvex ADMM algorithm (c.f.
[19, 20] and for nonconvex problems [33]) to the minimization at each point,
and a proximal map is encountered as an ADMM subproblem. Some well-
known methods for evaluating proximal maps of convex functionals, as well
as some nonconvex ones, are discussed. We introduce modified proximal
maps which involve what we call the stretch operator, which help eliminate
possible instability when the original proximal maps are multi-valued. This
modification improves numerical stability of our ADMM iterations. We have
methods for fast evaluation of several proximal maps inside each ADMM
iteration.

Each minimization has a low complexity, growing polynomially in the
dimension of the HJ PDE. Moreover, the solution at each point does not
have any numerical error as is the case for finite difference approximations.

Overcoming the curse of dimensionality for non-convex HJ-PDE 371

The error in the solution can be arbitrarily small depending on when we
stop the ADMM iterations. Hence, the Hopf formula can be used for rapid
numerical solutions for a nonconvex Hamiltonian in high dimensions, and
this method is expected to have wide applications in optimal control and
differential games, where a nonconvex Hamiltonian arises naturally.

The rest of our paper is organized as follows: In Section 2, we briefly
review the HJ PDE with initial data, as well as the Hopf-Lax formula. Then
in Section 3, we provide a brief review of differential games, following [11]
and references therein, and explain its connection with nonconvex HJ PDE.
In Section 4, we present our optimization-based algorithm. Numerical ex-
periments in Section 5 illustrate the effectiveness of our algorithm in solving
the HJ PDE.

2. Hamilton-Jacobi equations and Hopf-Lax formulae

In this work, we are concerned with the numerical approximation scheme
for solving the following HJ PDE:

∂

∂t
ϕ(x, t) +H(∇xϕ(x, t)) = 0 in R

d × (0,∞) ,(2.1)

where H : R
d → R is a continuous Hamiltonian function bounded from

below by an affine function, ∂
∂tϕ and ∇xϕ respectively denote the partial

derivatives with respect to t and the gradient vector with respect to x of the
function ϕ : Rd × (0,∞) → R. We are also given the initial data

ϕ(x, 0) = J(x) in R
d .(2.2)

For the sake of simplicity, we only consider functions H and J that are
finite everywhere. Results presented in this paper can be generalized to
functions with the extended value +∞ under suitable assumptions. We wish
to compute the viscosity solution to (2.1)–(2.2) [3, 4] at a given point x ∈ R

d

and time t ∈ (0,∞).
The viscosity solution to (2.1)–(2.2) is explicitly given by the Hopf-Lax

formulae, which holds because the integral curves of the Hamiltonian vector
field (i.e., the bi-characteristics in the phase space) are straight lines when
projected to x-space.

In the case where J is convex and 1-coercive, the solution ϕ to the system
(2.1)–(2.2) is given by the following classical Hopf formula [16, 10]:

ϕ(x, t) := −min
v∈Rd

{J∗(v) + tH(v)− 〈x, v〉} ,(2.3)

372 Yat Tin Chow et al.

where J∗ : Rd → R ∪ {+∞} is the Fenchel-Legendre transform of a convex,
proper, lower semi-continuous function J : Rd → R ∪ {+∞} (cf. [28]):

J∗(v) := sup
x∈Rd

{〈v, x〉 − J(x)} .(2.4)

On the other hand, in the case whereH is convex and 1-coercive, the solution
ϕ to the system (2.1)–(2.2) is given by the following Hopf-Lax formula [10]:

ϕ(x, t) = min
y∈Rd

{
J(y) + tH∗

(
x− y

t

)}
.(2.5)

These two formulae extend to time dependent Hamiltonians as follows. Con-
sider the following HJ PDE:
(2.6)
∂

∂t
ϕ(x, t) +H(t,∇xϕ(x, t)) = 0 in R

d × (0,∞) , ϕ(x, 0) = J(x) in R
d .

Its viscosity solution ϕ is given explicitly by the generalized Hopf formula
[10, 16] as

ϕ(x, t) = −min
v∈Rd

{
J∗(v) +

∫ t

0
H(s, v)ds− 〈x, v〉

}
.(2.7)

Therefore, all the methods and algorithms that we discuss in this work
extend to the time-dependent case provided that the integral in the above
minimization problem can be efficiently evaluated.

3. Review of differential games and its connection with
non-convex Hamilton-Jacobi equations

In this section, we provide a brief review of differential games. We follow the
results, notation, and exposition in [11] and the references therein, in which
differential games are connected to viscosity solutions of possibly nonconvex
HJ PDE by explicit representation formulae.

We begin with a system of differential equations given as follows. Fix
0 ≤ t < T, x ∈ R

d. We consider{
dx
ds (s) = f(s, x(s), a(s), b(s)) t ≤ s ≤ T ,

x(t) = x ,

where the functions

Overcoming the curse of dimensionality for non-convex HJ-PDE 373

a : [t, T] → A

b : [t, T] → B

are given measurable functions that we call the controls employed by players
I and II, and A ⊂ R

k, B ⊂ R
l are given compact sets. In what follows, we

assume that the function

f : [0, T]× R
d ×A×B → R

m

is uniformly continuous and{
|f(t, x, a, b)| ≤ C1

|f(t, x, a, b)− f(t, y, a, b)| ≤ C1|x− y| ,

for some constant C1 and for all 0 ≤ t ≤ T , x, y ∈ R
m, a ∈ A, b ∈ B.

The unique solution to (3.1) is referred to as the response of the controls
a(·), b(·). Next, we introduce the payoff functional for a given pair of (x, t):

P (a, b) := Pt,x(a(·), b(·)) :=
∫ T

t
h(s, x(s), a(s), b(s)) ds+ g(x(T)) ,

where g : Rd → R satisfies{
|g(x)| ≤ C2

|g(x)− g(y)| ≤ C2|x− y| ,

and h satisfies{
|h(t, x, a, b)| ≤ C3

|h(t, x, a, b)− h(t, y, a, b)| ≤ C3|x− y| ,

for some constants C2, C3 and all 0 ≤ t ≤ T , x, y ∈ R
m, a ∈ A, b ∈ B. Now

in a differential game, the goal of player I is to maximize the functional P
whereas that of player II is to minimize P .

Next, we define the lower and upper values of the differential game, based
on the notation introduced above. We first define the two sets containing
the respective controls of players I and II:

M(t) := {a : [t, T] → A : a is measurable.} ,
N(t) := {b : [t, T] → B : a is measurable.} .

Define a strategy for player I as the map

374 Yat Tin Chow et al.

α : N(t) → M(t)

for each t ≤ s ≤ T and b, b̂ ∈ B such that

b(τ) = b̂(τ) for a.e. t ≤ τ ≤ s ⇒ α[b](τ) = α[b̂](τ) for a.e. t ≤ τ ≤ s .

Likewise, define a strategy for player II as

β : M(t) → N(t)

for each t ≤ s ≤ T and a, â ∈ A such that

a(τ) = â(τ) for a.e. t ≤ τ ≤ s ⇒ β[a](τ) = β[â](τ) for a.e. t ≤ τ ≤ s .

Now let Γ(t) denote the set of all strategies for I and Δ(t) for II beginning

at time t. We are well equipped to define the upper and lower values of the

differential game. The lower value V (x, t) is defined as

V (x, t) := inf
β∈Δ(t)

sup
a∈M(t)

Pt,x(a, β[a])

:= inf
β∈Δ(t)

sup
a∈M(t)

{∫ T

t
h(s, x(s), a(s), β[a](s)) ds+ g(x(T))

}
,

where x(·) solves (3.1) for a given pair of (x, t). Likewise, the upper value

U(x, t) is defined as

U(x, t) := sup
α∈Γ(t)

inf
b∈N(t)

Pt,x(α[b], b)

:= sup
α∈Γ(t)

inf
b∈N(t)

{∫ T

t
h(s, x(s), α[b](s), b(s)) ds+ g(x(T))

}
,

where x(·) again solves (3.1) for a given pair of (x, t).

In fact, derived from the dynamic programming optimality conditions

in [11], the lower and upper values V and U are the viscosity solutions of

a certain possibly nonconvex HJ PDE. For the sake of this exposition, we

first define the following two Hamiltonians:

H+(t, x, p) = min
b∈B

max
a∈A

{〈f(t, x, a, b), p〉+ h(t, x, a, b)} ,

H−(t, x, p) = max
a∈A

min
b∈B

{〈f(t, x, a, b), p〉+ h(t, x, a, b)} .

Overcoming the curse of dimensionality for non-convex HJ-PDE 375

A very important case of this class of Hamiltonian is when H±(t, x, p) are
homogeneous of degree 1, which is the focus of this work. In fact, in the case
where f(t, x, a, b) = a − b and h(t, x, a, b) = 0, it holds that H+ and H−

coincide, as well as the following relationship:

H±(t, x, p) = min
b∈B

max
a∈A

{〈a, p〉 − 〈b, p〉}

= max
a∈A

{〈a, p〉} −max
b∈B

{〈b, p〉} = I∗
A(p)− I∗

B(p) .

where IA and IB are the indicator functions of the sets A and B, respective.
In this case, H±(t, x, p) can be written as a difference of two positively
homogeneous (of degree 1) Hamiltonians Φ1,Φ2, namely,

H±(t, x, p) = Φ1(p)− Φ2(p)

where Φ1 and Φ2 have their respective Wulff sets as A and B (see [12, 15, 27]
for more details of the Wulff set.)

Now, for a general pair of H±(t, x, p), we have the following well-known
theorem.

Theorem 3.1. [11] The function U is the viscosity solution to the HJ PDE:{
∂
∂tU +H+(t, x,∇xU) = 0 on R

d × [t, T] ,

U(x, T) = g(x) on R
d .

Similarly, the function V is the viscosity solution to the HJ PDE:{
∂
∂tV +H−(t, x,∇xV) = 0 on R

d × [t, T] ,

V (x, T) = g(x) on R
d .

It is worth mentioning again that, in a general setting where h is possi-
bly nonconvex, the two Hamiltonians H+(t, x, p) and H−(t, x, p) may not
coincide. But, when they do, there is the following corollary:

Corollary 3.2. [11] If

H+(t, x, p) = H−(t, x, p) on [t, T]× R
d × R

d ,

then it holds that U = V .

Hereafter, when U = V , we write ϕ(x, t) := U(x, T − t) = V (x, T − t). Note
that in general, the Hamiltonians H+ and H− can be nonconvex and/or
nonconcave, and this is one very important occasion that nonconvex HJ
PDE arises.

376 Yat Tin Chow et al.

We now solve the above two HJ PDE arising from differential games
with the nonconvex techniques that we discuss later in this work in the case,
where H+ and H− are independent of (x, t), by rewriting the above HJ PDE
backward in time (which results in a minus sign in the Hamiltonians after a
change of variables) to get to an equation of the form (2.1). As an example,
we consider in the case in R

2 where f(t, x, a, b) = (a2,−b1), h(t, x, a, b) = 0,
A = {a ∈ R : |a2| < 1} and B = {b ∈ R : |b1| < 1}. Following the same
argument as in the previous example, we obtain that H+ = H− and

H±(t, x, p) = min
b∈B

max
a∈A

{a2p2 − b1p1} = |p2| − |p1| .

Therefore, applying Theorem 3.1 and its corollary, we conclude that U = V
satisfies{

∂
∂tU(x, t) + |∂2U(x, t)| − |∂1U(x, t)| = 0 on R

2 × [t, T] ,

U(x, T) = g(x) on R
2 .

Writing ϕ(x, t) := U(x, T − t) = V (x, T − t), we arrive at{
∂
∂tϕ(x, t) + |∂1ϕ(x, t)| − |∂2ϕ(x, t)| = 0 on R

2 × [0, T] ,

ϕ(0, x) = g(x) on R
2 .

which is now an HJ PDE of the form (2.2)–(2.1). We will discuss more
complicated cases along these lines involving high dimensions in Example 4
of Section 5.

As mentioned earlier, since methods and algorithms discussed in this
work may be extended to time-dependent (and even possibly state-dependent
case) provided that we can efficiently evaluate the integral in the above mini-
mization problems, it is possible to apply the methods proposed here to more
general differential games where H+ and H− depend on t, and perhaps both
x and t. This will be an interesting future research topic.

4. Optimization methods

As in [6], we suggest to calculate the solution to the initial value problem for
the HJ equation with a possibly nonconvex Hamiltonian H but with convex
initial data J by solving the the minimization problem (2.3). To evaluate a
value of ϕ at the point (x, t), we solve the d-dimensional minimization prob-
lem in (2.3). This way, all the values ϕ at different points (x, t) are decoupled
and therefore they can be computed in parallel without any communication.

Overcoming the curse of dimensionality for non-convex HJ-PDE 377

The minimization problem of dimension d is of a low complexity (with com-
plexity growing polynomially in d.) Moreover, a very useful advantage of
this method is that this minimization of (2.3) not only provides the value
ϕ(x, t), but also the limiting sub-differential set ∂xϕ, since we have that (see
for instance [6]):

∂xϕ(x, t) = argminv∈Rd{J∗(v) + tH(v)− 〈x, v〉} ,

where argmin returns the set of minimizers. In the case the minimizer is
unique, we have a simple formula:

∇xϕ(x, t) = argminv∈Rd{J∗(v) + tH(v)− 〈x, v〉} .

However, in the multi-valued case, numerical instability might occur in our
nonconvex optimization (not necessarily, but possibly). We will discuss this
possible numerical instability as well as how we handle the problem. We
would like to remark that when we are solving the differential dynamic game
or the optimal control problem, the limiting sub-differential set ∂xϕ(x, t) is
actually extremely useful in choosing the parameters in the admissible sets
A and B that should be chosen at time t to optimize the controls.

4.1. ADMM splitting and our algorithm

We propose to minimize (2.3) using the following ADMM/split-Bregman
algorithm in the nonconvex case for a given parameter ρ > 0. (In numerical
examples in Section 5, ρ ranges from 1 to 10.)

Algorithm 1

For n = 1, 2,, do the following:

Step 1:

wk+1 ∈ argminw∈Rd

{
tH(w) +

ρ

2
‖λk − vk + w‖2

}
,

Step 2:

vk+1 = argminv∈Rd

{
J∗(v)− 〈x, v〉+ ρ

2
‖λk − v + wk+1‖2

}
,

Step 3:

λk+1 = λk − vk+1 + wk+1 .

378 Yat Tin Chow et al.

Note that we use “∈” in Step 1 because the minimizer may not be unique.
The order of Steps 1 and 2 of our algorithm is opposite to that in [6] because
the order helps avoid any complications that may arise when the Hamilto-
nian H is nonconvex.

Although ADMM was designed to solve a convex optimization problem,
it works for our nonconvex problem for two reasons. Firstly, under conditions
such as the Lipschitz differentiability of J∗ and others, it is guaranteed that
ADMM converges to a stationary point. Secondly, the objective function
(2.3) appears to have very few stationary points, among which the global
minimizer has the largest “attraction zone.” Therefore, from most starting
points, our ADMM algorithm converges to the global minimizer. Below we
provide more details about the first reason, leaving the second one to the
examples and two-dimensional plots in Section 5. Specifically, we adapt the
analysis in [33] to our problem and ADMM algorithm and obtain the fol-
lowing results. (For space limitation and our focus, we skip the proofs and
refer the reader to [33].) The convergence to stationary points is established
in terms of the augmented Lagrangian:

L(w, v; λ̄) = tH(w) + J∗(v)− 〈x, v〉+ 〈λ̄, w − v〉+ ρ

2
‖w − v‖2,

where λ̄ = ρ−1λ is known as the Lagrange multiplier. (In Algorithm 1,
λ is the scaled Lagrange multiplier.) Under a set of conditions that we will
specify later in this paragraph, the sequence L(wk, vk; λ̄k) is monotonic and
lower bounded, thus converging, and the point sequence {wk, vk, λ̄k} is also
bounded. In addition, any two numbers in the former sequence sandwich the
point differences as follows:

L(wk, vk; λ̄k)− L(wk+1, vk+1; λ̄k+1) ≥ C1

(
‖wk − wk+1‖2 + ‖vk − vk+1‖2

)(4.1)

where C1 > 0 is a certain constant that depends on ρ and the properties
of H and J∗. It is worth noting that λ̄k, λ̄k+1 are absent on the right-hand
side of (4.1); if they were present, they would appear like −‖λ̄k − λ̄k+1‖2
with the negative sign since it is the dual variable. Indeed, it is an im-
portant consequence of Step 3 of Algorithm 1, as well as the Lipschitz-
differentiability of J∗. The inequality (4.1) immediately gives ‖wk−wk+1‖ →
0 and ‖vk − vk+1‖ → 0. Due to the minimization subproblems in Steps
1 and 2 of Algorithm 1, there exists the regular subgradient sequence
dk ∈ ∂L(wk, vk; λ̄k) such that

‖dk+1‖ ≤ C2

(
‖wk − wk+1‖+ ‖vk − vk+1‖

)
,

Overcoming the curse of dimensionality for non-convex HJ-PDE 379

and thus ‖dk‖ → 0. Recall that {wk, vk, λ̄k} is bounded, so any of its con-
verging subsequence converges to a stationary point. The convergence of the
entire sequence can be ensured if L has the so-called Kurdyka-Lojasiewicz
property [21]. Now let us specify the technical conditions needed to ob-
tain the above results: (i) the original objective function in (2.3) is coer-
cive, that is, its function value goes to ∞ whenever ‖(w, v)‖ → ∞; (ii) H
can be fit into the general form H(w) = g(w) +

∑t
i=1 fi(wi) where g is

Lipschitz-differentiable and each fi is either restricted prox-regular1 or con-
tinuously piecewise linear; (iii) J∗ is Lipschitz differentiable (which holds if
J is strongly convex); and (iv) ρ is sufficiently large following an explicit
formula. This set of conditions is considerably simpler than those in [33]
due to our use of simple constraint w = v. Once again, we have to leave the
technical details to [33].

Finally, we note that other optimization algorithms can also be used
to minimize (2.3), e.g. the Chambolle-Pock algorithm [5], and primal-dual
splitting or other forms of operator-splitting schemes [8].

4.2. Evaluation of proximal mappings

The ADMM splitting introduced in the previous subsection computes prox-
imal maps [24]:

(I + ∂f)−1(x) := argminy∈Rd

{
f(y) +

1

2
‖x− y‖22

}
,(4.2)

in Steps 1 and 2, and for many functions f , they can be calculated rapidly.

4.2.1. Shrink operators. We review the following shrink operators for
proximal maps of positively homogeneous of degree 1 convex functions Φ.
In fact, they can be characterized by the projection of a point x to a closed
convex set as discussed in [6, 7]. Consider the convex set

1A function is prox-regular or semi-convex if for some sufficiently large γ, it
holds that f(y) + γ

2 ‖x − y‖2 ≥ f(x) + 〈d, y − x〉, ∀x, y ∈ domf, d ∈ ∂f(x). That
is, f would be convex with a compensation of γ

2 ‖x− y‖2. However, functions such
as the
1/2 quasi-norm is not prox-regular because near 0, it is nonconvex and has
unbounded gradients and, hence, cannot be “compensated” for any finite γ > 0.
It turns out those points near 0 do not affect convergence, thus motivating the
following definition: a function f is restricted prox-regular if there exist some γ > 0,
M > 0, and the exclusion set SM = {x ∈ domf : ‖d‖ > M for all d ∈ ∂f} such that
for any bounded T ⊂ domf , it holds that f(y)+ γ

2 ‖x−y‖2 ≥ f(x)+〈d, y−x〉, ∀x, y ∈
T \ SM , d ∈ ∂f(x), ‖d‖ ≤ M . Many typically nonconvex functions are restricted
prox-regular.

380 Yat Tin Chow et al.

K = Φ−1([0, 1]) := {x : Φ(x) ∈ [0, 1]} .

The given functional Φ actually coincides with the Minkowski function
(a.k.a. Minkowski gauge) of K:

Φ(x) = ρK(x) := inf{τ > 0 : x ∈ τK} .

We now consider the gauge dual of Φ, Φo [12, 15], which can be given as

Φo(y) = max
x∈K

〈x, y〉 .

The Wulff set W (see for instance [27]) is given as

W = (Φo)−1([0, 1])

and therefore the gauge dual Φo can be given as the Minkowski functional
of W ,

Φo(y) = ρW (y) = inf{τ > 0 : y ∈ τW} .

By either the Fenchel-Legendre duality [28] or the gauge duality [12, 15], we
obtain that

Φ∗(y) = IW and Φ(x) = max
x∈W

〈x, y〉 ,

where IW is the indicator function of the set W . By the Moreau decompo-
sition [24] of a closed proper convex function f , we have, for any α > 0,

(I + α∂f)−1(x) + α(I + α−1∂f∗)−1(x/α) = x ,(4.3)

which gives us

(I + α∂Φ)−1(x) = x− ProjαW (x) .(4.4)

We define the shrink operator of a general positively homogeneous of degree
1 convex functional Φ as

shrinkΦ(x, α) := (I + α∂Φ)−1(x)

= argminy∈Rd

{
αΦ(y) +

1

2
‖x− y‖22

}
= x− ProjαW (x)

for any α > 0. In evaluating the shrink operator, one only needs to compute
the projection map of a point to a closed convex set. Following [6], the
projection to a closed convex set K for a point x outside K can be given by

Overcoming the curse of dimensionality for non-convex HJ-PDE 381

ProjK(x) = x− s̄
∇ψ(x, s̄)

‖∇ψ(x, s̄)‖2
,

where ψ is a function given as a solution to (again) the following Hamilton-
Jacobi equation:

∂sψ + ‖∇ψ‖2 = 0 and ψ(·, 0) = J(·)(4.5)

with the initial value J(x) being given a twice differentiable function such
that {J(x) = 0} = ∂K with J(x) < 0 inside K, J(x) > 0 outside K, and
s̄ is the value such that ψ(x, s̄) = 0. The function satisfies the property
ψ(x, d(x, ∂K)) = 0 where d(x, ∂W) is the signed distance function of x from
∂K. The function ψ can be viewed as a special case of (2.1), and therefore
(2.3) provides an explicit formula for ψ. The minimization process of (2.3)
can then be given again by an ADMM process introduced in the previous
sub-section, where only the shrink2 operator, which will be described clearly
below in this section, is used. The proximal map related to J can be done
explicitly by Newton’s method. Now, for a given x the equation ψ(x, s̄) = 0
can be solved by Newton’s method if ψ is differentiable:

sn+1 = sn − ψ(x, sn)

∂sψ(x, sn)
= sn +

ψ(x, sn)

‖∇ψ(x, sn)‖2
.(4.6)

Therefore the shrink operator shrinkΦ can be evaluated in a very computa-
tionally efficient manner.

In particular, a special family of shrink operator attracts particular at-
tention, which is the set of shrink operators of the p norm with p ∈ [1,∞).
From the well-known fact that the Wulff set of the p-norm is the q-norm
ball, where 1/p+ 1/q = 1, e.g. [27], we get that

shrinkp(x, α)(x) := shrink‖·‖p
(x, α) = x− Proj

B
‖·‖q
α (0)

(x) .

Some of them are well-known shrink operators for some p as described below,
for any i = 1, ..., d::

[shrink1(x, α)]i = sgn(xi)max{|xi| − α, 0} ,

shrink2(x, α) =

{
x

‖x‖2
max{‖x‖2 − α, 0} if x �= 0 ,

0 if x = 0

where we adopt the convention 0/0 = 0. Note that shrink1(x, α) is often
used in compressed sensing algorithms, e.g. in [37]. Since the shrink opera-
tors shrinkp(x, α)(x) and shrinkq(x, α)(x) are related to each other by (4.3)

382 Yat Tin Chow et al.

and (4.4), we can switch to the shrink operator that is easier to evaluate.
Therefore to evaluate shrinkp(x, α), one might only need to evaluate either
the projection to a ‖ ·‖p closed ball or a ‖ ·‖q closed ball. As described in [6],
the projection to a ‖·‖p closed ball can be solved by the aforementioned pro-
cess by using the HJ PDE (4.5) with initial value J(x) = 1

2m(‖x‖2mp −α2m),
where m ≥ 2 if 2 ≤ p < ∞ and 1/2 < m ≤ 1 if 1 < p ≤ 2. The power m is
chosen such that either J or J∗ is a twice differentiable function.

4.2.2. Stretch operators. For nonconvex HJ PDE, a splitting method
for solving (2.3) gives rise to proximal maps of nonconvex Hamiltonians.
In this subsection, we focus on the proximal maps of −Φ, where Φ is a
positively homogeneous (of degree 1) convex function as mentioned in the
previous subsection.

For the sake of notational convenience, before we discuss the stretch
operators, let us define, for a given non-empty compact set C, the furthest
points of a point x to C as the following set-valued function

FurC(x) := argmaxy∈C{‖x− y‖2} ,(4.7)

where argmax returns the set of maximizers. Note that FurC(x) is a convex
set, even if C is not convex, though we will not use this property. For any
given smooth monotone decreasing function V : [0,∞) → R ∪ {+∞}, we
have

argmaxy∈C{‖x− y‖2} = argminy∈C

{
1

2
V (‖x− y‖2)

}
.

Therefore FurC(x) can also be interpreted as the argument y attaining the
minimum of the “potential” V (‖ · ‖2) between a point x and the compact
convex C. This interpretation of the map FurC(x) leads us to a very efficient
algorithm for evaluating the function values, which will be further elaborated
in the end of this subsection. We would like to remark that the above equality
holds for all such monotone functions V , and is independent of the function
V chosen.

In order to have a better understanding of the function FurC , we shall
plot in Figure 1 the set FurC for some specific values of x and choices of C.
For better illustrative purpose, contour curves of the function ‖x− (·)‖ and
boundary of the set C are also plotted for references. The point x is marked
as black stars and the set FurC(x) is marked as red stars in each case. We
include cases for both single and multi-valued FurC(x).

Now with the definition of the map FurC(x), we are ready to evaluate
the “proximal map” of the nonconvex functional −αΦ, which, by definition,

Overcoming the curse of dimensionality for non-convex HJ-PDE 383

Figure 1: Plot of x, the set FurC(x), contour curves of the function ‖x− ·‖
and boundary of the set C. Top-left: C = {x : 〈x,Ax〉 ≤ 1} where A =
diag(1, 25/4), x = (1.5, 0.5); top-right: same C as top-left, x = (1.5, 0).
Bottom-left: C is a regular 3-gon, x = (0,−1); Bottom-right: C is a regular
8-gon, x = (0, 0). The point x is marked as black stars and the set FurC(x)
is marked as red stars in each case.

is given by:

(I − α∂Φ)−1(x) := argminy∈Rd

{
−αΦ(y) +

1

2
‖x− y‖22

}
,

where argmin returns the set of minimizers. Now, suppose the Wulff set of
Φ is given by W , i.e.,

Φ(y) = max
c∈W

〈y, c〉 .

In fact, by a direct substitution of the above expression of Φ into the defini-
tion of the ‘proximal map’, we can directly get that the set [(I−α∂Φ)−1(x)] is
actually the y-projection of the following set-valued function for any α > 0,

argminy∈Rd, c∈αW

{
1

2
‖y − (x+ c)‖22 −

1

2
‖x+ c‖22

}
.

384 Yat Tin Chow et al.

By directly evaluating the above minimization problem, we arrive at

(I − α∂Φ)−1(x) = x+ c(x) ,

where c(x) is the set-valued function given by

c(x) := argminc∈αW

{
−1

2
‖x+ c‖2

}
.

With the definition of the FurC operator in (4.7) for any compact set C, we
can rewrite the above expression of ‘proximal map’ by the following formula:

(I − α∂Φ)−1(x) = x+ FurαW (−x) .(4.8)

Since this proximal map is usually multi-valued at the origin (e.g. when W
is balanced, i.e. W = −W), this map may introduce numerical instability,
because it is not clear which maximum to choose.

In order to solve the aforementioned problem, inspired by the definitions
of the shrink operators, we introduce the following stretch operators for
proximal maps of a positively homogeneous of degree 1 convex functional Φ:

stretchΦ(x, α) := x+

∫
FurαW (−x)

v dHFurαW (−x)(v)

where HC is the Hausdoff measure of the set C. Notice that, according to
our new definition, the stretch operators are NOT the ‘proximal’ maps as
stated in (4.8); rather, they are the weighted average of the ‘proximal map’ in
(4.8). However, if the cardinality of

[
(I − α∂Φ)−1(0)

]
is 1, there is a unique

element of Rd which attains the maximal value of (4.7), and we get back
the situation of a single-valued function, and therefore

(I − α∂Φ)−1(x) = stretchΦ(x, α) .

Three other examples are given as comparison between the stretch operator
and the proximal map. In particular, with this definition, we notice that if
W is balanced, i.e. W = −W , then for any α > 0, we have[
(I − α∂Φ)−1(0)

]
= argmaxc∈αW

{
‖c‖22

}
and stretchΦ(0, α) = 0 .

Whereas, if
[
(I − α∂Φ)−1(0)

]
= {vi : 1 ≤ i ≤ n} is a finite set of points,

then

stretchΦ(x, α) =

n∑
i=1

vi .

Overcoming the curse of dimensionality for non-convex HJ-PDE 385

Moreover, we notice that if
[
(I − α∂Φ)−1(0)

]
= γ is a curve, then

stretchΦ(x, α) =

∫
γ
v dσ

where σ is the surface measure of γ.
The use of the stretch operator (especially the averaging of the set in

the definition) is to provide numerical stability, which is reasonable in the
middle of an ADMM procedure. This is because the ADMM iteration will
continue and the next iterate will be likely to leave the pathological region
(i.e. the set of points where the function is multi-valued), and thereby get
to a unique minimum in the next iteration (considering the fact that the
pathological region is usually of at most co-dimension 1).

Nonetheless it will not be appropriate if the last iteration arrives at the
multi-valued point (i.e. where the pathological behaviour arises), because the
stretch operator does not output any minimum argument in the set. On the
PDE side, these locations are exactly when ‘the gradient of the solution has
a discontinuity’ (to be more exact, when the solution is not differentiable.)
Since our method relies on a exact representation formula, we may avoid
that problem by moving the pathological grid point to a neighboring point
(xε, t) in the ε neighborhood of (x, t) where the pathological situation does
not occur, e.g. xε = x + εv where ‖v‖2 < 1, with an ε small enough. This
is again possible considering the fact that the pathological set is usually of
co-dimension at most 1.

In order to have an efficient implementation of Algorithm 1, it is nec-
essary for the stretch operators to be evaluated in high speed. In fact, some
stretch operators can be easily evaluated and given explicitly below, for any
i = 1, ..., d:

[stretch1(x, α)]i = sgn(xi)(|xi|+ α)

stretch2(x, α) =

{
x

‖x‖2
(‖x‖2 + α) if x �= 0

0 if x = 0

where we now write, for 1 ≤ p < ∞,

stretchp(x, α)(x) := stretch‖·‖p
(x, α) .

We remark that we have adopted the convention sgn(0) = 0. We note the
amusing fact that stretch1 and stretch2 are monotone operators applied to x.
Figure 2 shows the vector fields representing the differences stretchp(x, α)−x
on [−1, 1]2 for p = 1, 2 and with α = 0.05.

386 Yat Tin Chow et al.

Figure 2: Vector fields representing stretchp(x, α) − x on [−1, 1]2 with α =
0.05; left: p = 1; right: p = 2.

For a more general compact convex set C, in evaluating the stretch
operator, one needs to efficiently compute the furthest point FurC(x) of a
point to C:

FurC(x) = argminy∈C

{
1

2
V (‖x− y‖2)

}
,(4.9)

where V : [0,∞) → R ∪ {+∞} is a smooth monotone decreasing function.
We again propose to minimize (4.9), for a fixed point x and compact convex
set C, by an ADMM/split-Bregman algorithm in the nonconvex case. In
order to have the algorithm implemented efficiently, we shall focus on the
evaluation of the following specific proximal map for a given v and α > 0:

(
I +

α

2
∂V (‖ · ‖2)

)−1
(v) := argminp∈Rd

{
α

2
V (‖p‖2) + 1

2
‖p− v‖2

}

where ∂V (‖ · ‖2) is the limiting sub-differential of V (‖ · ‖2). In what follows,
we consider only the case when the function V is V (r) := − log(r). The
computation with a general V is similar. In fact, a direct computation shows

that p ∈
[(
I + α

2 ∂V (‖ · ‖2)
)−1

(v)
]
satisfies the following equation:

(
1− α‖p‖−2

)
p = v ,

which in turn provides us with the following explicit expression:

[(
I +

α

2
∂V (‖ · ‖2)

)−1
(v)

]
=

⎧⎨
⎩

1+
√

1+4α‖v‖−2

2 v if v �= 0 ,

∂
(
B

‖·‖2√
α
(0)

)
if v = 0 ,

Overcoming the curse of dimensionality for non-convex HJ-PDE 387

where ∂V (‖·‖2) is the limiting sub-differential of V (‖·‖2) and ∂C denotes the
boundary of the set C. Again, for reasons discussed earlier in this subsection,
when v = 0, we replace the multi-valued proximal map by a weighted average
of the set, which is zero in this special case.

Now we are ready to minimize (4.9), for a fixed point x and compact
convex set C, using the following ADMM/split-Bregman algorithm in the
nonconvex case for a given parameter σ > 0:

Algorithm 2

For n = 1, 2,, we compute the following:

Step 1:

pk+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1+
√

1+4σ−1‖qk−ηk+x‖−2

2

)
(qk − ηk + x) + x

if qk − ηk − x �= 0 ,

0

if qk − ηk − x = 0 ,

Step 2:

qk+1 = ProjC(η
k + pk+1) ,

Step 3:

ηk+1 = ηk − qk+1 + pk+1 .

Again we intentionally arrange the ADMM such that a convex functional
is minimized in a Step 2. Readers may refer to section 4.1 for a discussion
of the advantage for this arrangement as well as the convergence of the
nonconvex ADMM. The projection of an arbitrary compact convex C is
discussed in subsection 4.2.1. With the above algorithm, together with very
effective technique to compute the projection operator, we believe that the
stretch operator for a large class of Φ can be computed. For instance, if
we wish to evaluate stretchp(x, α)(x) for 1 < p < ∞, we propose to rely
on the formula (4.8), where the map Fur

αB
‖·‖q
α (0)

with q = p/(p − 1) and

α > 0 can be computed by Algorithm 2, and Step 2 in the algorithm can
be evaluated as discussed in subsection 4.2.1, i.e. by obtaining the solution
to (4.11) with initial function J(x) = 1

2(‖x‖2mq − α2m) where m ≥ 2 if
2 ≤ q < ∞ and 1/2 < m ≤ 1 if 1 < q ≤ 2. Figure 3 shows the set FurC for
some specific values of x and choices of C using Algorithm 2 with ρ = 1

388 Yat Tin Chow et al.

Figure 3: Plot of x, the set FurC(x) computed by Algorithm 2 with σ = 5,
contour curves of the function ‖x− ·‖ and boundary of the set C. Top: C is
3/2-norm ball of radius 0.5; bottom: C is 5/2-norm ball of radius 0.5; left:
x = (1.1, 1.2); right: x = (1.1, 0.1). The point x is marked as black stars and
the set FurC(x) is marked as red stars in each case.

and η0, q0, p0 = 0. For illustrative purposes, contour curves of the function
‖x − (·)‖ and boundary of the set C are also plotted for references. The
point x is marked as black stars and the set FurC(x) is marked as red stars
in each case. However, we notice that we sometimes encounter difficulties
with computing stretchp(x, α)(x) using Algorithm 2 for some particular
choices of p and x, and in these cases, the runtime is very slow. A more
efficient algorithm to evaluate the stretch operators in full generality will be
a very interesting and important topic and will be subject to future research.
Algorithm 2 which calculates the FurC(x) can now be used to compute the
stretch operators, e.g. stretchp(x, α)(x) when p �= 1, 2,∞ and therefore these
stretch operators have no closed form. Figure 4 shows the stretch operator
stretchp(x, α)(x) with α = 0.05 and p = 3/2. In here, we use the following
method to modify σ in Algorithm 2 as the iteration goes: we take the new
σ+ = 4σ in case the ADMM does not converge (i.e. it does not produce
sequence that satisfies the error being bound by ε) and then re-initialize the

Overcoming the curse of dimensionality for non-convex HJ-PDE 389

Figure 4: Vector fields representing stretchp(x, α) − x on [−1, 1]2 with α =
0.05 and p = 3/2.

algorithm. The initial σ is chosen as σ = 2. The choice of ρ in the ADMM

splitting for the projection operator in Step 2 of Algorithm 2 is also done

with this same method.

4.2.3. Projection of a point from the inside of a convex set. Closely

related to stretch and FurC operators, the projection map of a point x to a

closed (nonconvex) set C is defined as the following set-valued function

ProjC(x) := argminy∈C{‖x− y‖2} .(4.10)

Now, we consider a special case when C := ∂K, where K is a closed convex

set. In general, the projection to the convex set ∂K from the inside of a

convex set can be given by

Proj∂K(x) = x− s̄
∇ψ(x, s̄)

‖∇ψ(x, s̄)‖2
,

where ψ is a function given as a solution to (again) the following Hamilton-

Jacobi equation

∂sψ − ‖∇ψ‖2 = 0 and ψ(·, 0) = J(·)(4.11)

where the initial value J(x) is given a twice differentiable function such that

{J(x) = 0} = ∂K, and s̄ is the value such that ψ(x, s̄) = 0. This function ψ,

again, can be viewed as a special case of (2.1), and therefore (2.3) provides

a representation of ψ. The solution ψ shall now be calculated with the same

strategy that is described in the previous section. The value of s̄ can now be

390 Yat Tin Chow et al.

solved from the equation ψ(x, s̄) = 0 by a Newton’s method similar to (4.6)
when ψ is differentiable:

sn+1 = sn − ψ(x, sn)

∂sψ(x, sn)
= sn − ψ(x, sn)

‖∇ψ(x, sn)‖2
.(4.12)

The two formulae (4.6) and (4.12) are the same except that it has a flip of
the sign, which comes from the fact that (4.5) and (4.11) also have the same
flip of the sign.

For the projection to the boundary of a p norm ball from the inside of
the ball, the calculation process is again routine using a projection operator,
which can be explicitly calculated by obtaining the solution to (4.11) with
initial function J(x) = 1

2m(‖x‖2mp − α2m), where α > 0,and m ≥ 2 if 2 ≤
p < ∞ and 1/2 < m ≤ 1 if 1 < p ≤ 2. Again, recall that details of this
procedure are described in subsection 4.2.1.

4.2.4. Other proximal maps. The following remark is useful. There are
some other proximal maps that are known explicitly, e,g.. for quadratic func-
tions f = 1

2〈Ax, x〉+〈b, x〉+c, the proximal map is given by (I+∂f)−1(x) =
(I+A)−1(x−b) when −1 is not an eigenvalue of A. Also, it is handy to note
that the logarithmic barrier functions f(xi) = −

∑n
i=1 log(xi) has its proxi-

mal map given by
[
(I + ∂f)−1(x)

]
i
=

xi+
√

x2
i+4

2 . Some other proximal maps
of differentiable functions can be explicitly computed by Newton’s Method.
Using the well-known Moreau decomposition [24], we have a large dictionary
of fast methods for calculating the proximal gradients, thereby simplifying
and accelerating the optimization procedure.

5. Numerical experiments

In this section, we shall apply our newly proposed numerical algorithm to
compute the viscosity solution to an HJ PDE with a nonconvex Hamiltonian.
For a given set of points (x, t), we use Algorithm 1 to compute (2.3). We
evaluate (x, t) in a given set of grid points over [−3, 3]2 × {0}d−2, i.e. the
2 dimensional cross-section. We choose our error tolerance in the ADMM
iteration as δ = 0.5×10−8, which acts as our stopping criterion. The penalty
parameter ρ in Algorithm 1 is chosen specifically for different examples. In
all our examples, we set all the initial values w0, v0, λ0 as 0. As previously
mentioned, for iterations where the minimizer is multi-valued, i.e. where
the pathological behaviour arises, the minimization problem is solved at a
neighboring point (xε, t) in an ε-neighborhood of (x, t), e.g. xε = x + εv
where ‖v‖2 < 1. In our numerical experiments, we always let ε = 0.5×10−8.

Overcoming the curse of dimensionality for non-convex HJ-PDE 391

Figure 5: Contour curves of objective function (2.3) in Example 1 with
x = (0.2, 0.5) and t = 0.7 when d = 2. Local minima are marked as black
stars.

Our algorithm is implemented in C++ on an 1.7 GHz Intel Core i7-4650U
CPU. Linear algebra packages BLAS [38] and LAPACK [39] are used to
perform matrix inversions.

Example 1. In this example, we consider the 2-norm distance function from
the boundary of a convex set to a point inside the set itself. We notice that
the distance function ϕ satisfies (2.1) where the Hamiltonian H(p) = −‖p‖2
is now nonconvex. We consider the convex set as an ellipse enclosed by
the equation 〈x,Ax〉 = 1 where A = diag(1, 25/4, 1, 1....). Therefore we
choose our initial condition for the HJ PDE as J(x) = 1

2(〈x,Ax〉 − 1).
In this example, we choose ρ = 1 in Algorithm 1. Figure 5 shows the
contours of the objective function (2.3) in this example when x = (0.2, 0.5),
t = 0.7 and d = 2 with local minima marked as black stars. From the figure,
we can infer that, in general, it is not very easy for Algorithm 1 to be
trapped in a stationary point other than the global minimum. Figure 6 shows
the zero set contours of the solutions ϕ(x, t) = 0 along the 2 dimensional
cross-section computed using our new algorithm where t = 0.1, 0.2...0.9 in
dimensions d = 2 and 128 respectively. Table 1 shows the computational time
per point in dimensions d = 2n where n ranges from 1 to 12, over the grid
points (x, t) where x ∈ {(−3 + 0.1p,−3 + 0.1q, 0, ..., 0) : p, q = 0, ..., 60} ⊂
[−3, 3]2×{0}d−2 and t ∈ {0.1, 0.2...0.9}. We can see that the computational
effort of the viscosity solution grows very slowly w.r.t. dimension (and it
seems to grow almost linearly.)

Example 2. Now we consider the 1-norm distance function from the bound-
ary of a convex set to a point inside the set. The distance function ϕ now
satisfies (2.1) with a nonconvex Hamiltonian H(p) = −‖p‖1. We again

392 Yat Tin Chow et al.

Figure 6: Distance functions of ellipses in its interior, i.e. zero set contours of
ϕ(x, t) = 0 with t = 0.1, 0.2, ..., 0.9 (from red to blue); left: in 2 dimensions;
right: in 128 dimensions.

Table 1: Computational time per each point for viscosity solution over
the grid points (x, t) where x ∈ {(−3 + 0.1p,−3 + 0.1q, 0, ..., 0) : p, q =
0, ..., 60} ⊂ [−3, 3]2 × {0}d−2 and t ∈ {0.1, 0.2...0.9}

Dimension Average computational time per point
d = 2 6.7092e-07 (sec)
d = 4 8.0650e-07 (sec)
d = 8 1.1528e-06 (sec)
d = 16 1.4601e-06 (sec)
d = 32 2.1011e-06 (sec)
d = 64 3.1948e-06 (sec)
d = 128 5.0498e-06 (sec)
d = 256 1.0219e-05 (sec)
d = 512 2.0365e-05 (sec)
d = 1024 3.6164e-05 (sec)
d = 2048 7.1937e-05 (sec)
d = 4096 1.3929e-04 (sec)

consider the convex set enclosed by the level curve 〈x,Ax〉 = 1 where
A = diag(1, 25/4, 1, 1....), i.e. we set the initial condition for the HJ PDE
as J(x) = 1

2(〈x,Ax〉 − 1). We now use ρ = 10 in Algorithm 1. Figure 7
shows the contours of the objective function (2.3) in this example when
x = (0.2, 0.5), t = 0.7 and d = 2 with local minima marked as black
stars. Now the objective function is much more nonconvex and it has 4
local minima which are close to each other. Figure 8 provides the zero set
contours of ϕ(x, t) = 0 along the 2 dimensional cross-section computed with
our new algorithm where t = 0.1, 0.2...0.8 in dimensions d = 2 and 1024
respectively. Table 2 shows the computational time per point in dimen-

Overcoming the curse of dimensionality for non-convex HJ-PDE 393

Figure 7: Contour curves of objective function (2.3) in Example 2 with
x = (0.2, 0.5) and t = 0.7 when d = 2. Local minima are marked as black
stars.

Figure 8: Distance functions of ellipses in its interior, i.e. zero set contours of
ϕ(x, t) = 0 with t = 0.1, 0.2, ..., 0.8 (from red to blue); left: in 2 dimenions;
right: in 1024 dimensions.

sions d = 2n where n ranges from 1 to 12, over the grid points (x, t) where
x ∈ {(−3 + 0.1p,−3 + 0.1q, 0, ..., 0) : p, q = 0, ..., 60} ⊂ [−3, 3]2 × {0}d−2

and t ∈ {0.1, 0.2...0.8}. We can again see that the computational effort of
the viscosity solution is minimal and grows very slowly with respect to di-
mension.

Example 3. In this example, we compute the 2-norm projection to the
boundary of a convex set from a point inside the set itself. Our procedure
is the same as described in Subsection 4.2. During our evaluation of the
projection, we shall calculate the same distance function from the boundary
of a convex set inside the set itself, with the same setting as in our previous
example. In this example, we choose ρ = 5 in Algorithm 1. We also set
the error tolerance of the level set function ψ(x, s) as |ψ(x, s)| < 0.5× 10−8.
We always set the initial guess of the distance as s = 0.

394 Yat Tin Chow et al.

Table 2: Computational time per each point for viscosity solution over
the grid points (x, t) where x ∈ {(−3 + 0.1p,−3 + 0.1q, 0, ..., 0) : p, q =
0, ..., 60} ⊂ [−3, 3]2 × {0}d−2 and t ∈ {0.1, 0.2...0.8}

Dimension Average computational time per point
d = 2 8.6898e-07 (sec)
d = 4 9.9677e-07 (sec)
d = 8 8.8148e-07 (sec)
d = 16 1.1595e-06 (sec)
d = 32 1.9954e-06 (sec)
d = 64 3.0177e-06 (sec)
d = 128 5.0603e-06 (sec)
d = 256 9.8860e-06 (sec)
d = 512 2.0628e-05 (sec)
d = 1024 3.8714e-05 (sec)
d = 2048 7.3550e-05 (sec)
d = 4096 1.4662e-04 (sec)

Table 3: Average computational effort to evaluate the projection of 10000
realizations of a given point p = (1, 0.5)×{di}d−2

i=2 (where di are some random
numbers in (0, 1)) to the boundary of the ellipse

Dimension Average Number of Newton Steps Average Time per (Outer) Iteration
d = 2 26.0000 1.5506e-05 (sec)
d = 4 28.9191 2.0678e-05 (sec)
d = 8 32.4473 3.4144e-05 (sec)
d = 16 33.5961 5.9824e-05 (sec)
d = 32 34.9619 1.1218e-04 (sec)
d = 64 36.0000 2.2064e-04 (sec)
d = 128 37.0000 4.3750e-04 (sec)

We first consider the convex set again as an ellipse enclosed by the equa-
tion 〈x,Ax〉 = 1, x ∈ R

d where A = diag(1, 25/4, 1, 1....), and our initial
value is chosen again as J(x) = 1

2(〈x,Ax〉 − 1). The objective function (2.3)
in here is the same as that in Example 1 for a given x and t. Figure 9 shows
the projection of the points when d = 2. Table 3 shows the average compu-
tational effort for computing the projection to the boundary of the ellipse
from 10000 realizations of a random point p = (1, 0.5) × {di}d−2

i=2 (where di
are some random numbers in (0, 1)) using Newton’s Method in dimensions
d = 2n, where n ranges from 1 to 7. We can see that computational effort is
minimal even when d = 128.

Next, we consider a more interesting case, when the convex set is set
as {‖x‖p ≤ 1}, where we choose p = 3/2 and 3. We choose initial value

Overcoming the curse of dimensionality for non-convex HJ-PDE 395

Figure 9: Projections of the points p where; top-left: p = (1, 0.1); top-right:
p = (1, 0.5); bottom: p = (1, 2).

Figure 10: Contour curves of objective functions (2.3) in Example 3 with
x = (0.2, 0.5) and t = 0.7. when; left: p = 3/2 and m = 3/4; right: p = 3
and m = 3. Local minima are marked as black stars.

as J(x) = 1
2(‖x‖2mp − 1), where m = 3/4 if p = 3/2 and m = 2 if p = 3.

As described in section 4.2 we use a Newton method as an inner iteration
to evaluate the proximal map of J(x). Figure 10 give the contours of the
objective functions (2.3) in this example when x = (0.2, 0.5), t = 0.7 for

396 Yat Tin Chow et al.

Figure 11: Projections of the point (0.1, 0.5) from interior to the boundary
of a, left: a 3/2-norm ball; and, right: 3-norm ball.

Table 4: Average computational effort to evaluate the projection of 10000
realizations of a given point p = (1, 0.5)×{di}d−2

i=2 (where di are some random
numbers in (0, 1)) to the boundary of the a 3/2-norm ball

Dimension Average Number of
(Outer) Newton Steps

Average Time per
(Outer) Iteration

d = 2 5.0000 2.2546 e-04 (sec)
d = 4 4.2190 5.2942 e-04 (sec)
d = 8 5.0000 1.6013e-03 (sec)
d = 16 5.8914 5.7806e-03 (sec)
d = 32 6.0000 2.2575e-02 (sec)

either p = 3/2,m = 3/4 or p = 3 and m = 3. We can see from these
figures that,in general, it is not very easy for Algorithm 1 to be trapped
in a stationary point other than the global minimum. Figure 11 show the
projections of the point (0.1, 0.5) to the respective p-norm balls when d = 2.
Table 4 and Table 5 shows the average computational effort for computing
the projection to the boundary of the respective p-norm balls from 10000
realizations of a random point p = (1, 0.5) × {di}d−2

i=2 (where di are some
random numbers in (0, 1)) using Newton’s Method in dimensions d = 2n,
where n ranges 1 to 5. Because of the fact that we have a Newton outer loop
(to solve for the distance function), an ADMM middle loop (to evaluate the
function value of the HJ PDE) and a Newton inner loop which requires the
inversion of a dense matrix (to calculate the proximal map of J(x)), the
algorithm has a slower run-time per outer iteration than in the previous
case when point is projected to an ellipse. Owing to the complex shape (as
well as the nonconvex nature of the problem), this problem is rather difficult
to solve numerically, and therefore we do not expect an instantaneous run-
time as in the previous cases. Especially when p grows large, we observe that

Overcoming the curse of dimensionality for non-convex HJ-PDE 397

Table 5: Average computational effort to evaluate the projection of 10000
realizations of a given point p = (1, 0.5)×{di}d−2

i=2 (where di are some random
numbers in (0, 1)) to the boundary of the a 3-norm ball

Dimension Average Number of
(Outer) Newton Steps

Average Time per
(Outer) Iteration

d = 2 9.0000 1.04758e-03 (sec)
d = 4 4.9931 5.8386e-04 (sec)
d = 8 4.9304 2.0457e-03 (sec)
d = 16 6.1698 8.6849e-03 (sec)
d = 32 7.1514 3.5360e-02 (sec)

iteration time seems to slow down; see Table 4 and Table 5 for a comparison.
However, overall, it is still very impressive that a projection of a point to
the boundary of a complex shape can be done within a second even when d

is at large as 32.

Example 4. Our final example gives a very interesting solution to (2.1) with

the Hamiltonian H(p) = ‖p1,2,...,l‖2 − ‖pl+1,2,...,d‖2, where p1,...,l denotes the
vector with first l coordinates of p, and likewise for pl+1,2,...,d. Our Hamilto-
nian is now neither convex nor concave. This example can be regarded as a
case when a differential game is considered. The solution ϕ is expected to

provide contours stretching out in one direction and shrinking in another
direction. We again consider the initial value as J(x) = 1

2(〈x,Ax〉−1). As in
Example 1, we choose ρ = 1 in Algorithm 1. Figure 12 shows the contours
of the objective function (2.3) in this example when x = (0.2, 0.5), t = 0.7

and d = 2. The local minima are again marked as black stars. From the
figure, again we can expect that it is not very easy for Algorithm 1 to be
trapped in a stationary point other than the global minimum in general.
Figure 13 (top-left) show the zero set contours of the solutions φ(x, t) = 0

computed using our new algorithm where t = 0.1, 0.2...0.7 in dimensions
d = 2. In this example, a clear comparison is performed with our solution
to the solution to Lax-Friedrichs scheme. A first order Lax-Friedrichs mono-
tone scheme [25] is implemented with Δt = 0.001 and Δx = 0.005. Figure 13

(top-right) show the zero set contours of the solutions φ(x, t) = 0 computed
using Lax-Friedrichs where t = 0.1, 0.2...0.7 in dimensions d = 2. We can
see the two solutions almost coincide. However differences emerge when we
compare in detail the two solutions. Figure 13 (bottom) shows an enlarged

figure of the zero set contours of the two computed solutions φ(x, t) = 0. We
can see that the solution shown in the left, i.e. from our new algorithm, has
sharp corners and edges in the places where a jump in gradient is established,

398 Yat Tin Chow et al.

Figure 12: Contour curves of objective function (2.3) in Example 4 with
x = (0.2, 0.5) and t = 0.7 when d = 2, l = 1. Local minima are marked as
black stars.

ie. along the line y = 0; whereas that in the right, i.e. from Lax-Friedrichs,
has smooth edges. The smoothing of solution from Lax-Friedrichs is well-
known and is because of the numerical diffusion introduced in the scheme to
keep the scheme monotone. This example shows clearly a very strong advan-
tage of our method: being able to effortlessly capture sharp discontinuities
in derivative. This is thanks to the fact that the Hopf formula provides
the exact solution, and no finite-difference approximation is present in our
algorithm. Table 6 shows the computational time per point in different di-
mensions d and l specified in the table over the grid points (x, t) where
x ∈ {(−3 + 0.1p,−3 + 0.1q, 0, ..., 0) : p, q = 0, ..., 60} ⊂ [−3, 3]2 × {0}d−2

and t ∈ {0.1, 0.2...0.7}. We can see that computational effort of the viscos-
ity solution grows very slowly w.r.t. dimension for all cases of l, and it is
very efficient considering the fact that a solution in 1024 dimensions can be
computed nearly effortlessly as 4 × 10−5 second per point. All in all, our
numerical examples show very low run-time to compute viscosity solution in
very high dimensions, and therefore our new algorithm can be considered as
a competitive candidate in overcoming the curse of dimensionality in solving
nonconvex high-dimensional HJ PDE.

6. Concluding remarks

In this work, we have developed a new algorithm to solve a vast class of
possibly nonconvex and time dependent HJ-PDE that can overcome the
curse of dimensionality. Thanks to the Hopf formula, our method is ‘exact’

Overcoming the curse of dimensionality for non-convex HJ-PDE 399

Figure 13: Zero set contours of ϕ(x, t) = 0 to the differential game when
d = 2, with t = 0.1, 0.2, ..., 0.7 (from red to blue); left: Hopf-Lax; right:
Lax–Friedrichs.

Table 6: Computational time per each point for viscosity solution in different
cases of d and l over the grid points (x, t) where x ∈ {(−3 + 0.1p,−3 +
0.1q, 0, ..., 0) : p, q = 0, ..., 60} ⊂ [−3, 3]2 × {0}d−2 and t ∈ {0.1, 0.2...0.7}

Dimension l Average computational time per point
d = 2 1 8.9667e-07 (sec)
d = 4 1 1.0558e-06 (sec)
d = 4 2 9.5982e-07 (sec)
d = 8 1 9.2515e-07 (sec)
d = 8 2 9.2824e-07 (sec)
d = 8 3 1.2158e-06 (sec)
d = 8 4 9.2408e-07 (sec)

d = 128 64 5.1779e-06 (sec)
d = 1024 512 3.5934e-05 (sec)

400 Yat Tin Chow et al.

in a sense that no finite difference approximation is involved. Moreover, it
can be implemented in an embarrassingly parallel fashion, since the values of
the solution between neighboring points are fully decoupled. This provides
a very promising direction for the search of an algorithm which shall solve a
general HJ-PDE (i.e. t and possibly also x dependent) in a totally parallel
way, and in the end lead us to a method which can overcome the curse of
dimensionality in solving an HJ-PDE in full generality.

References

[1] R. Bellman, Adaptive Control Processes, a Guided Tour, Princeton U.
Press, (1961). MR0134403

[2] R. Bellman, Dynamic Programming, Princeton U. Press, (1957).
MR0090477

[3] M.G. Crandall, P.-L. Lions, Some Properties of Viscosity Solutions
of Hamilton-Jacobi Equations, Trans. AMS 282 (2) (1984), 487–502.
MR0732102

[4] M.G. Crandall, P.-L. Lions, Viscosity Solutions of Hamilton-Jacobi
Equations, Trans. AMS 277 (1) (1983), 1–42. MR0690039

[5] A. Chambolle, T. Pock, A First-Order Primal-Dual Algorithm for Con-
vex Problems with Applications to Imaging, J Math. Imag. and Vision
41 (1) (2011), 120–145. MR2782122

[6] J. Darbon, S. Osher, Algorithms for Overcoming the Curse of Dimen-
sionality for Certain Hamilton-Jacobi Equations Arising in Control
Theory and Elsewhere, preprint, UCLA CAM report 15-50 (2015).
MR3543239

[7] J. Darbon, On Convex Finite-Dimensional Variational Methods in
Imaging Sciences, and Hamilton-Jacobi Equations, SIAM Journal on
Imaging Sciences 8 (4) (2015), 2268–2293. MR3413587

[8] D. Davis, W. Yin, A Three-Operator Splitting Scheme and its Op-
timization Applications, preprint, UCLA CAM report 15-13 (2015).
MR3358252

[9] E.W. Dijkstra, A Note on Two Problems in Connexion with Graphs,
Num. Math. 1 (1959), 269–271. MR0107609

[10] L.C. Evans, Partial Differential Equations, Grad. Studies in Math. 19,
AMS, (2010). MR2597943

http://www.ams.org/mathscinet-getitem?mr=0134403
http://www.ams.org/mathscinet-getitem?mr=0090477
http://www.ams.org/mathscinet-getitem?mr=0732102
http://www.ams.org/mathscinet-getitem?mr=0690039
http://www.ams.org/mathscinet-getitem?mr=2782122
http://www.ams.org/mathscinet-getitem?mr=3543239
http://www.ams.org/mathscinet-getitem?mr=3413587
http://www.ams.org/mathscinet-getitem?mr=3358252
http://www.ams.org/mathscinet-getitem?mr=0107609
http://www.ams.org/mathscinet-getitem?mr=2597943

Overcoming the curse of dimensionality for non-convex HJ-PDE 401

[11] L.C. Evans, P.E. Souganidis, Differential Games and Representation
Formulas for Solutions of Hamilton-Jacobi Isaacs Equations, Indiana
U. Math. J. 38 (1984), 773–797. MR0756158

[12] M.P. Friedlander, I. Macedo, T.K. Pong, Gauge Optimization and
Duality, SIAM Journal on Optimization 24 (4) (2014), 1999–2022.
MR3284579

[13] D. Gabay, B. Mercier, A Dual Algorithm for the Solution of Nonlinear
Variational Problems via Finite Element Approximation, Computers &
Mathematics with Applications 2 (1) (1976), 17–40.

[14] R. Glowinski, A. Marroco, On the Approximation by Finite Elements of
Order One, and Resolution, Penalisation-Duality for a Class of Nonlin-
ear Dirichlet Problems, ESAIM: Mathematical Modelling and Numeri-
cal Analysis – Mathematical Modelling and Numerical Analysis 9 (R2)
(1975), 41–76. MR0388811

[15] J.-B. Hiriart-Urruty, C. Lemaréchal, Fundamentals of Convex Analysis,
Grundlehren Text Editions, Springer, (2001). MR1865628

[16] E. Hopf, Generalized Solutions of Nonlinear Equations of the First Or-
der, J. Math. Mech. 14 (1965), 951–973. MR0182790

[17] M.B. Horowitz, A. Damle, J.W. Burdick, Linear Hamilton Jacobi
Bellman Equations in High Dimensions, preprint, arXiv (2014),
arXiv:1404.1089.

[18] W. Kang, L.C. Wilcox, Mitigating the Curse of Dimensionality: Sparse
Grid Characteristics Method for Optimal Feedback Control and HJB
Equations, preprint, arXiv (2015), arXiv:1507.04769.

[19] R. Glowinski, A. Marroco, Sur l’approximation, par éléments finis
d’ordre un, et la résolution, par pénalisation-dualité d’une classe de
problèmes de Dirichlet non linéaires, ESAIM: Mathematical Modelling
and Numerical Analysis 9 (R2) (1975), 41–76. MR0388811

[20] D. Gabay, B. Mercier, A Dual Algorithm for the Solution of Nonlinear
Variational Problems via Finite Element Approximation, Computers &
Mathematics with Applications 2 (1) (1976), 17–40.

[21] S. �Lojasiewicz, Sur la géométrie semi-et sous-analytique, Ann. Inst.
Fourier (Grenoble) 43 (5) (1993), 1575–1595. MR1275210

[22] I.M. Mitchell, A.M. Bayen, C.J. Tomlin, A Time-Dependent Hamilton-
Jacobi Formulation of Reachable Sets for Continuous Dynamic Games.

http://www.ams.org/mathscinet-getitem?mr=0756158
http://www.ams.org/mathscinet-getitem?mr=3284579
http://www.ams.org/mathscinet-getitem?mr=0388811
http://www.ams.org/mathscinet-getitem?mr=1865628
http://www.ams.org/mathscinet-getitem?mr=0182790
http://www.ams.org/mathscinet-getitem?mr=0388811
http://www.ams.org/mathscinet-getitem?mr=1275210

402 Yat Tin Chow et al.

Automatic Control, IEEE Trans. on Auto. Control 50 (7) (2005), 947–
957. MR2151560

[23] I.M. Mitchell, C.J. Tomlin, Overapproximating Reachable Sets by
Hamilton-Jacobi Projections, J. Sci. Comp. 19 (1–3) (2003), 323–346.
MR2028848

[24] J.J. Moreau, Proximité et dualité dans un espace hilbertien, Bulletin
Spc. Math. France 93 (1965), 273–299. MR0201952

[25] S. Osher, C.-W. Shu, High Order Essentially Non-oscillatory Schemes
for Hamilton-Jacobi Equations, SIAM J. Num. Anal. 28 (4) (1991),
907–922. MR1111446

[26] S. Osher, J.A. Sethian, Fronts Propagating with Curvature Dependent
Speed: Algorithms Based on Hamilton-Jacobi Formulations, J. Comput.
Phys. 79 (1) (1988), 12–49. MR0965860

[27] S. Osher, B. Merriman, The Wulff Shape as the Asymptotic Limit of a
Growing Crystalline Interface, Asian J. Math. 1 (3) (1997), 560–571.
MR1604922

[28] R.T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathemat-
ics, Princton University Press, (1997). MR1451876

[29] Y. Shen, Z. Wen, Y. Zhang, Augmented Lagrangian Alternating Direc-
tion Method for Matrix Separation Based on Low-Rank Factorization,
Optimization Methods Software 29 (2) (2014), 239–263. MR3175484

[30] D.L. Sun, C. Fevotte, Alternating Direction Method of Multipliers
for Non-Negative Matrix Factorization with the Beta-Divergence, 2014
IEEE ICASSP (2014), 6201–6205.

[31] Y.H.R. Tsai, L.T. Cheng, S. Osher, H.K. Zhao, Fast Sweeping Algo-
rithms for a Class of Hamilton–Jacobi Equations, SIAM J. Num. Anal.
41 (2) (2003), 673–694. MR2004194

[32] J.N. Tsitsiklis, Efficient Algorithms for Globally Optimal Trajectories,
IEEE Transactions on Automatic Control 40 (9) (1995), 1528–1538.
MR1347833

[33] Y. Wang, W. Yin, J. Zeng, Global Convergence of ADMM in Nonconvex
Nonsmooth Optimization, preprint, UCLA CAM report 15-62 (2015).

[34] Z. Wen, C. Yang, X. Liu, S. Marchesini, Alternating Direction Methods
for Classical and Ptychographic Phase Retrieval, Inv. Prob. 28 (11)
(2012), 115010. MR2992965

http://www.ams.org/mathscinet-getitem?mr=2151560
http://www.ams.org/mathscinet-getitem?mr=2028848
http://www.ams.org/mathscinet-getitem?mr=0201952
http://www.ams.org/mathscinet-getitem?mr=1111446
http://www.ams.org/mathscinet-getitem?mr=0965860
http://www.ams.org/mathscinet-getitem?mr=1604922
http://www.ams.org/mathscinet-getitem?mr=1451876
http://www.ams.org/mathscinet-getitem?mr=3175484
http://www.ams.org/mathscinet-getitem?mr=2004194
http://www.ams.org/mathscinet-getitem?mr=1347833
http://www.ams.org/mathscinet-getitem?mr=2992965

Overcoming the curse of dimensionality for non-convex HJ-PDE 403

[35] Y. Xu, W. Yin, Z. Wen, Y. Zhang, An Alternating Direction Algo-
rithm for Matrix Completion with Nonnegative Factors, Frontiers of
Mathematics in China 7 (2) (2012), 365–384. MR2897709

[36] L. Yang, T.K. Pong, X. Chen, Alternating direction method of multi-
pliers for nonconvex background/foreground extraction, preprint, arXiv
(2015), arXiv:1506.07029.

[37] W. Yin, S. Osher, D. Goldfarb, J. Darbon, Bregman Iterative Algo-
rithms for l1 Minimization with Applications to Compressed Sensing,
SIAM J. Imag. Sci. 1 (1) (2008), 143–168. MR2475828

[38] http://www.netlib.org/blas.

[39] http://www.netlib.org/lapack.

Yat Tin Chow

Department of Mathematics

UCLA

Los Angeles CA, 90095-1555

USA

E-mail address: ytchow@math.ucla.edu

Jérôme Darbon

Division of Applied Mathematics

Brown University

Providence RI, 02912

USA

E-mail address: jerome darbon@brown.edu

Stanley Osher

Department of Mathematics

UCLA

Los Angeles, CA 90095-1555

USA

E-mail address: sjo@math.ucla.edu

Wotao Yin

Department of Mathematics

UCLA

Los Angeles, CA 90095-1555

USA

E-mail address: wotaoyin@math.ucla.edu

Received May 18, 2016

http://www.ams.org/mathscinet-getitem?mr=2897709
http://www.ams.org/mathscinet-getitem?mr=2475828
http://www.netlib.org/blas
http://www.netlib.org/lapack
mailto:ytchow@math.ucla.edu
mailto:jerome_darbon@brown.edu
mailto:sjo@math.ucla.edu
mailto:wotaoyin@math.ucla.edu

	Introduction
	Hamilton-Jacobi equations and Hopf-Lax formulae
	Review of differential games and its connection with non-convex Hamilton-Jacobi equations
	Optimization methods
	ADMM splitting and our algorithm
	Evaluation of proximal mappings
	Shrink operators
	Stretch operators
	Projection of a point from the inside of a convex set
	Other proximal maps

	Numerical experiments
	Concluding remarks
	References

