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Data recovery on a manifold is an important problem in many ap-
plications. Many such problems, e.g. compressive sensing, involve
solving a system of linear equations knowing that the unknowns lie
on a known manifold. The aim of this paper is to survey theoretical
results and numerical algorithms about the recovery of signals lying
on a manifold from linear measurements. Particularly, we focus on
the case where signals lying on an algebraic variety. We first intro-
duce the tools from algebraic geometry which plays an important
role in studying the minimal measurement number and also show
its applications. We finally introduce the numerical algorithms for
solving it.
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1. Introduction

Solving systems of linear equations Ax = b is ubiquitous in all areas of
science and engineering. This problem has been well studied even before
Gauss introduced the Gaussian elimination method. Thus one may even
wonder whether there is anything we don’t already know about solving a
system of linear equations.

Traditional systems of linear equations typically assume that the number
of equations is no less than the number of unknowns. Failing it we have an
under-determined system of linear equations where the solution will not
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be unique. Solving an under-determined system would require additional
regularization. However, in recent years there has been an explosion in the
study of compressive sensing where under the condition of sparsity one may
solve a significantly under-determined system of linear equations, see e.g.
[1, 2, 3] among the vast literature.

It turns out that there is a more general framework in which an under-
determined system of linear equations can be solved, namely we know a priori
that the solution to the system lies on certain subset of the Euclidean space.
For example, often the solution may lie on a lower dimensional manifold.
There are many applications under this general framework, and here we list
some of the best known ones.

Example 1: phase retrieval

The classical phase retrieval problem concerns the reconstruction of a func-
tion (typically the density or structure function of certain material) from the
magnitude of its Fourier transform (X-ray diffraction). In recent years this
problem has been broadened to encompass all problems involving the recov-
ery of a function or signal from the magnitude of its samples (usually linear
samples). Such problems arise in many important applications in imaging,
optics, communication, audio signal processing and more [4, 5, 6, 7, 8, 9, 10].

The precise statement of the phase retrieval problem in this setting is:

The Phase Retrieval Problem. Let {fj}Nj=1 be a set of vectors in Fd,

where F = C or R. Can we reconstruct any x ∈ Fd up to a unimodular scalar
from {|〈x, fj〉|2}, and if so, how?

We say that {fj}Nj=1 in Fd have the phase retrieval property, or are phase

retrievable, if any x ∈ Fd can be recovered up to a unimodular scalar from
{|〈x, fj〉|2}.

Note that in phase retrieval one cannot distinguish x from cx, where
c is a unimodular constant in F. This ambiguity can be removed by re-
formulating the phase retrieval problem as recovering the rank one Hermitian
matrix X = xx∗ ∈ Fd×d. Given the magnitude measurements |〈x, fj〉|2 = bj ,
j = 1, . . . , N , set Fj = fjf

∗
j . Then we have

(1.1) bj = |〈x, fj〉|2 = x∗fjf
∗
j x = tr(x∗Fjx) = tr(FjX), j = 1, . . . , N.

Thus the phase retrieval problem is an example of a system of linear equa-
tions L(X) = b where X ∈ Fd×d is a rank one Hermitian matrix.
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A more general version of the phase retrieval problem is to recover a
vector x ∈ Fd from a finite number of quadratic measurements {x∗Ajx}Nj=1

where each Aj is a Hermitian matrix in Fd×d. Again, we say a set of Her-
mitian matrices {Aj}Nj=1 in Fd×d have the phase retrieval property if any

x ∈ Fd can be recovered up to a unimodular scalar from the quadratic mea-
surements {x∗Ajx}Nj=1. This generalized version is studied in [11], and in

special cases such as for orthogonal projection matrices {Aj}Nj=1 in other
papers [8, 10, 12]. Let bj = x∗Ajx and X = xx∗. Then we have similarly

(1.2) bj = x∗Ajx = tr(x∗Ajx) = tr(AjX), j = 1, . . . , N.

Like the original phase retrieval problem, the generalized phase retrieval
problem also solves a system of linear equations where the unknown X is a
rank one Hermitian matrix.

Example 2: low rank matrix recovery

The matrix recovery problem is an active topic recently. The general formu-
lation of the problem is that there is a X ∈ Fp×q where F = R or C and we
are given some measurements (also called samples) of X. We would like to
recover the matrix X from those measurements or samples. Matrix recovery
is widely used in image processing, system identification and control, Eu-
clidean embedding, and recommender systems (see [15, 16, 17]). We state
the problem as follows: For 1 ≤ j ≤ N let Lj : F

p×q−→F be linear functions,
where F = R or C. Suppose that for an X ∈ Fp×q with rank(X) ≤ r we
are given the values Lj(X) for 1 ≤ j ≤ N . The question is: can we recover
X? This problem is another example of solving a system of linear equations
L(X) = b where X ∈ Fp×q, but with the a priori knowledge that X is in
the manifold consisting of rank r or less matrices. Note that we can always
represent the linear function Lj by Lj(X) = tr(AT

j X) for some Aj ∈ Fd×d.

Example 3: compressive sensing

In compressive sensing, we aim to solve a system of linear equations Ax = b,
where A ∈ FN×d and x ∈ FN ,b ∈ Fd with F = C or R, with the knowledge
that x being sparse with sparsity ‖x‖0 ≤ k � d. Here ‖x‖0 denotes the
number of nonzero entries of x (the sparsity). Let

F
d
k =

{
x ∈ F

d : ‖x‖0 ≤ k
}
.
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Clearly Fd
k is a finite union of k-dimensional subspaces in Fd. Thus compres-

sive sensing is equivalent to solving a system of linear equations where the
solution x is known to lie on Fd

k.

Example 4: the projection retrieval problem

Assume that we have a real or complex orthogonal projection matrix P ∈
Fd×d with rank r which means P satisfies P ∗ = P and P 2 = P . The Projec-
tion Retrieval Problem considers the following question: Let v1, . . . ,vN ∈ Fd

be sample points where we measure ‖Pvj‖ = aj for 1 ≤ j ≤ N . Can we
determine the projection matrix P from these measurements {aj}Nj=1?

This problem is related to both phase retrieval and low rank matrix
recovery (see [13, 14]). It is also an example of solving a system of linear
equations on a manifold. Let Aj = vjv

∗
j . Note that P 2 = P and P ∗ = P

from the orthogonal projection property. We have

a2j = ‖Pvj‖2 = v∗
jP

∗Pvj = tr(v∗
jPvj) = tr(FjP ) for all j.

The Projection Retrieval Problem is thus an example of solving a system of
linear equations where the unknown P lies on the set of all rank r orthogonal
projections.

Example 5: the missing distance problem

Consider a set of points S = {xj}Nj=0 in Fd and let aij := ‖xi − xj‖2 for
all 0 ≤ i, j ≤ N . It is well known and easy to show that the values {aij}
uniquely determine the point set S up to an Euclidean isometry. TheMissing
Distance Problem asks whether S can be uniquely determined up to an
Euclidean isometry from only a subset of {aij}.

The Missing Distance Problem can also be formulated as solving a sys-
tem of linear equations on a manifold. First through a translation we can
normalize the set S by having x0 = 0. Under this normalization let

FS := [x1,x2, . . . ,xN ], and X = F ∗
SFS ,

i.e. FS ∈ Fd×N has xj as its j-th column. Then the missing distance problem
is equivalent to recovering the N by N matrix X from a subset of {aij}.

Now observe that aij = aji and we have

a0j = ‖xj − x0‖2 = ‖xj‖2 = xjj if j ≥ 1,
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aij = ‖xi − xj‖2 = x∗
ixi + x∗

jxj − x∗
ixj − x∗

jxi

= xii + xjj − xij − xji if i, j ≥ 1.

Thus each aij is a linear measurement of X, and the Missing Distance Prob-
lem is also a problem of solving a system of linear equations where the
unknown X ∈ FN×N is on the manifold of positive semi-definite Hermitian
matrices of rank at most d.

In this paper we examine the general problem of recovering an unknown
X on a manifold from a system of its linear measurements, from both the
theoretical and computational angle. We assume that X is in the Euclidean
space Fd where F = C or R, and it lies on a lower dimensional manifold M
in Fd. A main question we ask is whether we can recover X ∈ M from a sig-
nificantly under-determined system of linear measurements. This question,
putting in the context of phase retrieval and low rank matrix recovery, is
one of the fundamental questions still being actively studied today. Of course
with enough measurements, e.g. when the system is not under-determined
in Fd, we can always recover X. So the real question is: Can we still fully re-
cover X ∈ M with a significantly reduced number of linear measurements?
The answer is yes in many cases. We may also ask a weaker question: Can
we recover X for almost all X ∈ M (but not all) with even fewer linear
measurements? Both questions have been studied for phase retrieval and
matrix recovery.

Definition 1.1. Let M ⊂ Fd where F = C or R. Let L : Fd−→FN be a
linear map. We say L has the M-recovery property if L is injective on M. It
has the almost everywhere M-recovery property if for almost every X ∈ M,
we have L−1

(
L(X)

)
∩M = {X}.

In other words L has the M-recovery property if any X ∈ M is uniquely
determined by L(X), and L has the almost everywhereM-recovery property
if almost all X ∈ M is uniquely determined by L(X). Here the easiest way
to define “almost everywhere” and “almost all” is through the Hausdorff
measure on M. But since our study only focuses on M that are “nice” such
as manifolds or algebraic varieties there should be no ambiguity.

The theoretical part of this paper studies the following questions: Let
M ⊂ Fd where F = C or R. Let L : Fd−→FN be a linear map. How large
should N be so that L has the M-recovery property or the almost every-
where M-recovery property? For example, there is an extensive literature
in phase retrieval on choosing the measurement vectors {fj} to be i.i.d.
Gaussian. Here we will provide a framework for answering these questions.
For phase retrieval and matrix completion we have developed techniques to
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make substantial progresses recently [21, 11, 18]. Our goal for this paper is

more appropriately described as the combination of a survey and putting

past work into a more unified framework. We also include some new results,

such as for projection retrieval. On the computational part of this paper,
we present some new techniques developed in [29, 30]. We hope that this

paper will provide useful ideas and techniques to those researchers working

in these aforementioned areas.

2. The algebraic geometry connection

The manifold recovery problem essentially comes down to examining the
intersection of a set of hyperplanes defined by the system of linear equa-

tions with the manifold on which the unknown data lie. This is one of the

classical areas in algebraic geometry, provided that the manifold in question

is an algebraic variety. Fortunately this is precisely the case in most of the

applications we are interested in. For example, for low rank matrix recovery

we are studying recovery on the set M of all rank r or less matrices

(2.1) Mp×q,r(F) :=
{
Q ∈ F

p×q : rank(Q) ≤ r
}
, F = R or C,

which is known as a determinantal variety for F = C. In our study instead
of considering general manifolds, our manifolds will actually be projective

varieties. Before proceeding to the main results, we first introduce some basic

notations related to projective spaces and varieties.

An algebraic variety (affine variety) V ⊆ Cd is the locus of a finite

collection of polynomials in C[x]. In this paper we shall primarily consider

projective varieties. They lie in the projective space P(Cd), which is the

space of all one dimensional subspaces of Cd. Let σ : Cd\{0}−→P(Cd) be the

canonical map σ(x) = [x], where [x] ∈ P(Cd) denotes the line through x. We
shall also often consider the projectivization of a set S ⊂ Cd\{0}, to be [S] =

σ(S). A projective variety is the projectivization of an affine variety defined

by homogeneous polynomials. But for simplicity, in this paper we adopt a

looser terminology. Whenever there is no confusion, the phrase projective

variety in Cd means an affine variety in Cd that is the locus of a finite

collection of homogeneous polynomials. We shall use a projective variety in

P(Cd) to describe a true projective variety. A variety V is irreducible if it
cannot be decomposed into V =

⋃k
j=1 Vj where k > 1 and Vj are distinct

proper subvarieties. A reducible variety can be written as finite union of

distinct irreducible subvarieties (irreducible components). Throughout the
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paper, by a generic point x in an algebraic variety V we mean x ∈ V \ Z
where Z ⊂ V is a subvariety with dim(Z) < dim(V ).

A set U ⊂ Cd is a quasi-projective variety if there exist two projective
varieties V and Y with Y ⊂ V such that U = V \ Y . The concept of
dimension for a quasi-projective variety in Cd is very well defined (see [19]).

Note that a complex algebraic variety V may contain real points. We use
VR to denote the real points of V . The set VR is itself a real algebraic variety,
and its (real) dimension is well defined (see e.g. [20]). We use dimR(VR) to
denote the real dimension of VR. The following lemma is a key result in this
area of study.

Lemma 2.1. [8, 11] Let V be an algebraic variety in Cd. Then dimR(VR) ≤
dim(V ).

The following theorem, which concerns the intersection of a hyperplane
and a projective variety in Cd, is well known and plays an important role
in our study. Its proof can be found in any standard textbook in algebraic
geometry, see [19].

Theorem 2.2. Let V be a projective variety and P be a subspace in Cd with
dim(P ) = d − 1. Then dim(V ∩ P ) ≥ dim(V ) − 1. Furthermore, if P does
not contain an irreducible component of V then dim(V ∩ P ) = dim(V )− 1.

Note that the above theorem fails for real projective varieties. As a result,
it is often easier to prove results for data recovery on a complex projective
variety. We illustrate how the above results from algebraic geometry can
be applied to give a very simple proof to the following result for matrix
recovery, which was first proved in [21, 18]. The corresponding result does
not hold for real matrix recovery.

Theorem 2.3. Assume that 1 ≤ r ≤ 1
2 min(p, q) and let A1, . . . , AN ∈ Cp×q.

Define L : Cp×q−→CN by L(X) = (tr(AT
1X), . . . , tr(AT

NX)).

(1) If N < 2r(p + q) − 4r2 then L does not have the Mp×q,r(C)-recovery
property.

(2) Let N ≥ 2r(p+q)−4r2 and {Aj}Nj=1 be independently randomly chosen
under an absolutely continuous probability distribution in Cq×p. Then
with probability one L does have the Mp×q,r(C)-recovery property.

Proof. First it is well known that dimMp×q,r(C) = r(p+ q)− r2 ([19, Prop.
12.2]). Note that L is injective on Mp×q,r(C) if and only if L(X − Y ) 
= 0
for any X 
= Y in Mp×q,r(C), which is equivalent to L(Z) = 0 for Z ∈
Mp×q,2r(C) if and only if Z = 0. Now the set

W =
{
Z ∈ Mp×q,2r(C) : L(Z) = 0

}



344 Jian-Feng Cai et al.

is the intersection of Mp×q,2r(C) with N subspaces of dimension pq− 1. By
Theorem 2.2 it has dimension at least

dimW ≥ dimMp×q,r(C)−N = 2r(p+ q)− 4r2 −N.

For (1) we have dimW > 0, and hence it contains a nonzero element. So L
cannot be injective on Mp×q,r(C).

For (2) by choosing {Aj} independently, with probability one for each
k the subspace defined by tr(AT

kZ) = 0 does not contain an irreducible
component of the projective variety

Wk−1 =
{
Z ∈ Mp×q,2r(C) : tr(AT

j Z) = 0 for j = 1, . . . , k − 1
}
.

In fact this holds for any given projective variety, not just for Wk−1. By
Theorem 2.2, with probability one we have dimW = 0, which implies that
W = {0} (see [19]). Hence L is injective on Mp×q,r(C) with probability
one.

Tying the recovery property with the dimension of varieties we easily
have

Theorem 2.4. Let M be a projective variety in Cd with dim(M) = K. Let
�1(x), . . . , �N (x) be linear functions on Fd where F = C or R. Set L(x) =
(�1(x), . . . , �N (x))T and

Y :=
{
(x,y) : x,y ∈ M, x 
= y, �j(x− y) = 0 for 1 ≤ j ≤ N

}
.

(A) For F = C, L has the M-recovery property if and only if Y = ∅. If
the (complex) quasi-projective variety Y has dim(Y ) < K then L has
the almost everywhere M-recovery property.

(B) For F = R let MR and YR be the set of real points in M and
Y , respectively. Then L has the MR-recovery property if and only if
YR = ∅. If dim(M) = dimR(MR) = K and dim(Y ) < K then L has
the almost everywhere MR-recovery property.

Proof. For both (A) and (B), the conclusions on M-recovery and MR-
recovery are rather clear. For the almost everywhere recovery in the complex
case, let Z denote the set of x ∈ M such that there exists a y 
= x in M
such that �j(y) = �j(x) for all 1 ≤ j ≤ N . Observe that the set Z is the
projection of Y onto the first coordinate. Since projections cannot increase
dimension (see [19, Cor.11.13]), it follows that dimZ < K = dimM. Hence
Z is a null set in M (with respect to the Hausdorff measure).
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For F = R, we already stated that the real dimension of YR is no larger
than the (complex) dimension of Y . Thus dimR(YR) < K = dimR(MR).
The same argument now applies to show that ZR is a null set in MR. The
theorem is proved.

In many of the data recovery problems the measurements are restricted
to special settings. Often the measurement vectors are on a projective variety
themselves. Such are the cases for phase retrieval, matrix recovery, and pro-
jection retrieval among the examples we listed. Techniques presented above
cannot be straightforwardly extended in these special settings. To extend the
techniques broadly we introduce the notion of an admissible algebraic vari-
ety with respect to a family of linear functions. This was first done in [11],
and it proves to be very useful for the study of data recovery on projective
varieties.

Definition 2.1 ([11]). Let V be the zero locus of a finite collection of
homogeneous polynomials in Cd with dimV > 0 and let {�α(x) : α ∈ I}
be a family of (homogeneous) linear functions. We say V is admissible with
respect to {�α(x)} if dim(V ∩ {�α(x) = 0}) < dimV for all α ∈ I.

It is well known in algebraic geometry that if V is irreducible in Cd then
dim(V ∩ Y ) = dim(V ) − 1 for any hyperplane Y that does not contain V .
Thus the above admissible condition is equivalent to the property that no ir-
reducible component of V of dimension dimV is contained in any hyperplane
�α(x) = 0. In general without the irreducibility condition, admissibility is
equivalent to that for a generic point x ∈ V , any small neighborhood U of x
has the property that U ∩ V is not completely contained in any hyperplane
�α(x) = 0. The following theorem plays a fundamental role in our study. It
was proved in [18]. For completeness we also present the original proof here.

Theorem 2.5 ([18]). For j = 1, . . . , N let Lj : Cn × Cm → C be bilinear
functions and Vj be projective varieties in Cn. Set V := V1 × · · · × VN ⊆
(Cn)N . Let W,Y ⊂ Cm be a projective varieties in Cm and consider the
quasi-projective variety W \Y . For each fixed j, assume that Vj is admissible
with respect to the linear functions {fw(·) = Lj(·,w) : w ∈ W \ Y }.

(A) Assume that N ≥ dimW . There exists an algebraic subvariety Z ⊆ V
with dim(Z) < dim(V ) such that for any x = (vj)

N
j=1 ∈ V \ Z, the

subvariety Xx given by

Xx :=
{
w ∈ W \ Y : Lj(vj ,w) = 0 for all 1 ≤ j ≤ N

}
is the empty set.
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(B) Assume that N < dimW . There exists an algebraic subvariety Z ⊂ V
with dimZ < dimV such that for any x = (vj)

N
j=1 ∈ V \ Z, the

subvariety Xx given by

Xx :=
{
w ∈ W \ Y : Lj(vj ,w) = 0 for all 1 ≤ j ≤ N

}
has dimXx = dimW −N .

Proof. We include the original proof from [18] for self-containment. First we
prove (A). For x = (vj)

N
j=1 ∈ V , define Φx : W \ Y → CN by Φx(w) =

(Lj(vj ,w))Nj=1. Let G be the subset of [V ] × [W \ Y ] ⊂ P((Cn)N ) × P(Cm)
such that ([X], [W ]) ∈ G if and only if Φx(w) = 0, i.e. Lj(vj ,w) = 0 for all
j. Note that G is a projective variety of P((Cn)N )× P(Cm). We consider its
dimension. Let π1 and π2 be projections from P((Cn)N ) × P(Cm) onto the
first and the second coordinates, respectively, namely

π1([x], [w]) = [v1, . . . ,vN ], π2([x], [w]) = [w].

It is easy to check that π2(G) = [W \ Y ], the projection of W \ Y . Thus
dim(π2(G)) = dim(W \ Y )− 1.

We next consider the dimension of the preimage of the π−1
2 ([w0]) ⊂

P((Cn)N ) for a fixed [w0] ∈ P(Cm). Let V ′
j := Vj∩Hj where Hj := {y ∈ Cn :

Lj(y,w0) = 0} is a hyperplane. The admissibility property of Vj implies that
dim(V ′

j ) = dim(Vj)−1. Hence after projectivization the preimage π−1
2 ([w0])

has dimension

dimπ−1
2 ([w0]) =

N∑
j=1

(dim(Vj)− 1)− 1 = dim(V )−N − 1.

According to Cor.11.13 in [19], we have

dim(G) = dim(π2(G)) + dim(π−1
2 ([w0]))

= (dim(W \ Y )− 1) + (dim(V )−N − 1)

= dim(V ) + dim(W \ Y )−N − 2

≤ dim(V ) + dim(W )−N − 2.

If N ≥ dimW then

dim(π1(G)) ≤ dim(G) = dim(V ) + dim(W )−N − 2 ≤ dim(V )− 2.

Note that π1(G) is itself a projective variety. Let Z be the lift of π1(G) into
the vector space (Cn)N . Then

dimZ ≤ dimV − 1.



Data recovery on a manifold from linear samples 347

The definition of Z implies that Xx is an empty set provided x ∈ V \ Z.
Next we prove (B). Let K = dim(W \ Y ). Noting K > N , we augment

{Vj}Nj=1 and {Lj(v,w)}Nj=1 to {Vj}Kj=1 and {Lj(v,w)}Kj=1 via Vj = V1 and

Lj(v,w) = L1(v,w) for all j > N . Set V̂ = V1 × · · · × VK ⊆ (Cn)K . By

(A) there exists a subvariety Ẑ of V̂ with dim Ẑ < dim V̂ such that for any
x̂ = (vj)

K
j=1 ∈ V̂ \ Ẑ and w ∈ W \ Y , we have Lj(v,w) 
= 0 for all j. Now

consider the sequence of nested varieties with Xx̂,0 = W and

Xx̂,k :=
{
w ∈ W \ Y : Lj(vj ,w) = 0 for all 1 ≤ j ≤ k

}
, k = 1, . . . ,K.

Thus the above is equivalent to Xx̂,K = ∅ provided x̂ ∈ V̂ \ Ẑ.
Since for each fixed vj the equation Lj(vj ,w) = 0 defines a hyperplane

H in Cm, it is well known that dim(U ∩H) ≥ dim(U)− 1 for any variety U
in Cm. Then we have a decreasing sequence of subvarieties of Cm

W \ Y = Xx̂,0 ⊇ Xx̂,1 ⊇ Xx̂,2 ⊇ · · · ⊇ Xx̂,K = ∅.

Now dim(Xx̂,0) = dimW \ Y = K. By Krull’s Principal Ideal Theorem,
at each step the dimension can only be reduced by at most 1, we must
thus have dim(Xx̂,k−1) − 1 = dim(XÂ,k) for 1 ≤ k ≤ K. It follows that

dim(Xx̂,N ) = dimW −N = K −N .
Thus for any x = (vj)

N
j=1 ∈ V , if there exists vj ∈ Vj forN < j ≤ K such

that x̂ = (vj)
K
j=1 ∈ V̂ \ Ẑ we must have dim(Xx̂,N ) = K −N . Since Xx̂,N =

Xx we then have dim(Xx) = K − N . Finally, let Z = {x = (vj)
N
j=1} ⊂ V

be those such that there exists no such extensions x̂ ∈ V̂ \ Ẑ. We have

Z =
{
x = (vj)

N
j=1 ∈ V : x̂ = (vj)

K
j=1 ∈ Ẑ for any vj ∈ Vj , j > N

}
.

Since Ẑ is variety in (Cn)K , Z is a variety. Clearly it has dim(Z) < dim(V ),
for otherwise we would have dim(Ẑ) = dim(V̂ ), which is a contradiction.

Remark. While the theorem may look abstract as far as the date recovery
problem goes, it actually provides a general framework for many applica-
tions. One should observe that with the exception of compressive sensing, in
all other examples the measurements are in the form of tr(ATX) for some
matrix A. One can view tr(ATX) as a bilinear function in A and X, so the
measurements of X are in fact from a bilinear function like tr(ATX) by
taking suitable samples of A. In the general setting, any linear function �(x)
on Fd, where F = C or R, can be expressed in the form of �(x) = L(v0,x)
for some bilinear function L and sample point v0. As we move on, this point
will become more and more clear.



348 Jian-Feng Cai et al.

3. Data recovery on a projective variety

Let M be a projective variety in Fd where F = C or R. Applying The-
orem 2.5 and other results in the previous section we can now prove re-
sults for M-recovery and almost everywhere M-recovery. First for any a =
(a1, . . . , ad)

T ∈ Fd we define φa : Fd−→F by

φa(x) :=

d∑
j=1

ajxj .

Any linear function L(x) on Fd can be written uniquely as L(x) = φa(x) for
some a ∈ Fd. Note that φa(x) is a bilinear function of a and x.

We now examine the M-recovery property from linear samples. We shall
first consider the following setup: each linear measurement of x ∈ M is in the
form of φa(x) for some a ∈ Fd. This offers complete generality. In different
problems, a may be chosen from various special sets. Here we assume they
are sampled from projective varieties. Our main results concern the recovery
property when the linear samples are generic. First we consider the complex
case. Our next two theorems are slightly more general versions of Theorems
4.3 and 4.4 in [18], and we provide proofs here for self-containment.

Theorem 3.1. Let M ⊆ Cd and Vj be projective varieties in Cd, j =
1, . . . , N . Assume that each Vj satisfies. For A = (aj)

N
j=1 with aj ∈ Vj

denote LA = (φa1
, φa2

, . . . , φaN
)T .

(A) If N < dim(M−M) then LA does not have the M-recovery property.
On the other hand, if N ≥ dim(M − M) then for a generic A ∈
V1 × · · · × VN the linear map LA has the M-recovery property.

(B) If N < dim(M) then LA does not have the almost everywhere M-
recovery property. On the other hand, if N > dim(M) then for a
generic A ∈ V1×· · ·×VN the linear map LA has the almost everywhere
M-recovery property.

Proof. Let K = dim(M). First we prove (B). If N < dim(M) then LA maps
smoothly the higher dimensional manifold M to the lower dimensional one
CN . If LA is almost everywhere injective, by looking at M locally we see
that there exists a smooth map Φ from a ball B in CK to CN that is almost
everywhere injective. But this is impossible by Lemma 4.2 of [18].

Now for N > dim(M) = K let X ⊂ Cd × Cd be the quasi-projective
variety

X :=
{
(v,u) ∈ M×M, v 
= u

}
.
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For each (v,u) ∈ X denote ψ(v,u)(a) = φv−u(a). As in Theorem 2.4 set

(3.1) YA :=
{
(v,u) ∈ X, φaj

(v − u) = 0 for 1 ≤ j ≤ N
}
.

Since each Vj is admissible with respect to the maps {ψ(v,u) : (v,u) ∈ X}.
By Theorem 2.5 for a generic A = (aj) ∈ V1 × V2 × · · · × VN we have
dim(YA) = dim(X)−N < 2K −K = dim(M). It follows from Theorem 2.4
that LA has the almost everywhere M-recovery property.

To prove (A), for N < dim(M − M) the dimension of the projective
variety YA given in 3.1 is no less than dim(M−M) −N > 0 by Theorem
2.2. Thus YA is not empty and LA does not have the M-recovery property.

In the case N ≥ dim(M−M), we apply Theorem 2.5 with W = X =
(M−M)\{0} and Lj(aj ,x) = φaj

(x) for all j. Let V = V1×V2×· · ·×VN .
Then for a generic A = (aj) ∈ V we have YA = ∅. Hence LA has the
M-recovery property.

For the real case, the above theorem can be extended. Suppose that
V ⊆ Rd is a real variety. We next introduce a natural extension of V to a
variety in Cd. The ideal IR(V ) defining V generates an ideal IC(V ) in Cd,
and the variety corresponding to IC(V ) will be our extension, and we denote
it by V̄ . A simple observation is that V is clearly the restriction of V̄ to Rd,
namely V = V̄R using the terminology in this paper.

Theorem 3.2. Let M and Vj be projective varieties in Rd, j = 1, . . . , N .
Assume that each V̄j is admissible with respect to the maps {φv : v ∈ M̄−
M̄,v 
= 0}. For A = (aj)

N
j=1 with aj ∈ Vj denote LA = (φa1

, φa2
, . . . , φaN

)T .

Assume further that dimR(M) = dim(M̄) and dimR(Vj) = dim(V̄j) for
all j.

(A) If N < dimR(M) then LA does not have the almost everywhere M-
recovery property. On the other hand, if N > dimR(M) then a generic
A = (aj) in V1×V2 × · · · ×VN has the almost everywhere M-recovery
property.

(B) Assume additionally that dimR(M − M) = dim(M̄ − M̄) = L. If
N ≥ L then a generic a generic A = (aj)

N
j=1 in V1×V2×· · ·×VN has

the M-recovery property.

Proof. Let V = V1 × V2 × · · · × VN . For (A), if N < dim(M) then the map
LA cannot be almost everywhere injective from the same argument as in the
complex case. If N > dim(M) we consider M̄ and V̄j . Let YA be the same
as in Theorem 3.1, but in Rd, and let
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X̄ :=
{
(v,u) ∈ M̄ × M̄, v 
= u

}
,

ȲA :=
{
(v,u) ∈ X̄, LA(x− y) = 0

}
.

By the argument from Theorem 3.1, and use Theorem 2.5 there exists a
subvariety Z̄ ⊂ V̄ with dim Z̄ < dim V̄ such that for any A = (aj) ∈ V̄ \ Z̄
we have dim(ȲA) = dim(X) − N < 2K − K = dim(M̄). By assumption
we have dimR V = dim V̄ so the restriction Z = ZR of Z̄ to the reals must
have dimZ < dimV . Furthermore, dimR(YA) ≤ dim(ȲA) < K. It follows
from Theorem 2.4 that any A = (aj) ∈ V \ Z has the almost everywhere
M-recovery property. In other words, a generic A = (aj) in V gives LA the
M-recovery property. This proves (A).

For (B) we follow the same strategy. Let V, V̄ be as in part (A). Since
N ≥ dim(M̄ − M̄) it follows from Theorem 3.1 and 2.5 that there exists
a variety Z̄ ⊂ V̄ with dim Z̄ < dim V̄ such that for any A = (aj) ∈ V̄ \ Z̄
the map LA has the M̄-recovery property. Thus LA has the M-recovery
property for any A = (aj) ∈ V \ Z. Since

dimR(Z) ≤ dim(Z̄) < dim(V̄ ) = dimR(V ),

it follows that a generic A = (aj) ∈ V has the M-recovery property.

Given that the admissibility condition plays a key role in our theorem,
one may ask whether this condition can be checked rather easily. Indeed,
the condition is rather easy to check, and for almost all situations that we
encounter, the condition holds. We list some examples. Note that many of
the applications of interest involve matrices, so we focus on admissibility in
Cp×q. The lemma below is proved in [18], Proposition 4.1.

Lemma 3.3. Let V be one of the following projective varieties in Cp×q.
Then V is admissible with respect to any set of nontrivial linear functions
on Cp×q:

(A) V = Mp×q,s(C), the set of all p × q complex matrices of rank s or
less, where 1 ≤ s ≤ min(p, q).

(B) q ≥ p and V is the set of all scalar multiples of matrices P satisfying
PP T = I.

(C) p = q and V is the set of all scalar multiples of projection matrices
P , i.e. P 2 = P .

We can now apply Theorems 3.1 and 3.2 to various problems, some listed
earlier in the introduction, to answer questions concerning the number of
measurements needed for data recovery.



Data recovery on a manifold from linear samples 351

Matrix recovery

We have already shown how basic algebraic geometry can be applied to ma-
trix recovery in Theorem 2.3. We can extend it to the more general setting.
Recall that Mp×q,r(F) denotes the set of all matrices in Fp×q having rank
no greater than r, where F = C or R.

Theorem 3.4. Assume that 1 ≤ r ≤ 1
2 min(p, q) and let V be a projective va-

riety in Cp×q that is admissible with respect to all nontrivial linear functions
on Cp×q. For A1, . . . , AN ∈ Fp×q, where F = C or R, define L : Fp×q−→FN

by L(X) = (tr(AT
1X), . . . , tr(AT

NX)).

(A) If N < r(p + q) − r2 then L does not have the almost everywhere
Mp×q,r(F)-recovery property.

(B) For F = C, if N < 2r(p+q)−4r2 then L does not have the Mp×q,r(C)-
recovery property. This result fails for F = R.

(C) For F = C and generic Aj ∈ V , L has the Mp×q,r(C)-recovery property
if N ≥ 2r(p+ q)− 4r2, and L has the almost everywhere Mp×q,r(C)-
recovery property if N ≥ r(p+ q)− r2.

(D) For F = R and assuming that dimV = dimR VR. For generic Aj ∈ VR,
L has the Mp×q,r(R)-recovery property if N ≥ 2r(p+ q)− 4r2, and L
has the almost everywhere Mp×q,r(R)-recovery property if N ≥ r(p +
q)− r2.

The proof is clearly a straightforward application of Theorems 3.1 and
3.2, and we omit it here.

We are also interested in the cases where the matrix recovery is on
subsets of Mp×q,r(F). For example, the Projection Retrieval problem is a
special case of matrix recovery problem, where the measurements are rank
one matrices. Similarly we may consider the recovery of a Hermitian matrix
X from quadratic measurements v∗

jXvj , j = 1, . . . , N . This, like the Projec-
tion Retrieval, is in fact recovery from linear measurements on a manifold,
as

bj := v∗
jXvj = tr(v∗

jXvj) = tr(vjv
∗
jX).

The measurement matrices are rank one Hermitian matrices here. Such prob-
lems can be handled similarly. One complication is that although Hermitian
matrices are complex, they do not form a complex variety. Thus the theo-
rems we have here on complex recovery cannot be applied directly to the
recovery of Hermitian matrices. However, they can be formulated as the
affine image of a real projective variety, and from which our theorems can
be applied.
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Theorem 3.5. For A = (a1,a2, . . . ,aN ) where aj ∈ Cp for all j let LA :
Cp×p−→CN be define by LA(X) = (a∗1Xa1, . . . ,a

∗
NXaN )T .

(A) Let M ⊂ Rp×p be the set of all real symmetric matrices of rank at
most r where r ≤ p/2. For a generic A = (a1, . . . ,aN ) with aj ∈ Rp,
if N ≥ 2pr − 2r2 + r then LA has the M-recovery property. If N ≥
pr − r(r − 1)/2 + 1 then LA has the almost everywhere M-recovery
property.

(B) Let M ⊂ Cp×p be the set of all Hermitian matrices of rank at most
r where r ≤ p/2. For a generic A = (a1, . . . ,aN ) with aj ∈ Cp, if
N ≥ 4pr−4r2 then LA has the M-recovery property. If N ≥ 2pr−r2+1
then LA has the almost everywhere M-recovery property.

Proof. Part (A) follows from Theorem 3.2 and the fact that the projective
variety of all rank s complex symmetric matrices in Cp×p has dimension
ps− s(s− 1)/2, which is also the real dimension of M.

Part (B) is a bit more complicated because M is not a projective variety.
However, we use a technique that works also for other problems involving
Hermitian matrices. This technique is first used in [11]. Consider the map
ϕ : Cp×p → Cp×p defined by

ϕ(A) =
1

2
(A+AT ) +

i

2
(A−AT ).

Then ϕ is a isomorphism on Cp×p that maps Rp×p one-to-one to the set of
all Hermitian matrices in Cp×p. Let

N̄ =
{
A ∈ C

p×p : rank(ϕ(A)) ≤ r
}

N =
{
A ∈ R

p×p : rank(ϕ(A)) ≤ r
}
.

Then N = N̄R. Observe that M = ϕ(N ). Define L̃A(X) := LA(ϕ(X)). We
only need to show that L̃A has the N -recovery property if N ≥ 4pr − 4r2,
and almost everywhere N -recovery property if N ≥ 2pr−r2+1. It is known
that dimR(M) = 2pr−r2 and dimR(M−M) = 4pr−4r2. Thus dimR(N ) =
2pr − r2 and dimR(N −N ) = 4pr − 4r2. Furthermore, dim(N̄ ) = dimR(N )
and dim(N̄ − N̄ ) = dimR(N −N ), see [18]. Because the projective variety
of rank one or less is admissible with respect to all linear functions on Cp×p,
Theorems 3.1 and 3.2 now imply that for generic A, L̃A has the N -recovery
property if N ≥ 4pr − 4r2 and it has the almost everywhere N -recovery
property if N ≥ 2pr − r2 + 1. The theorem follows.
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The above theorem can be applied immediately to phase retrieval to
yield the following

Corollary 3.6. Let {fj}Nj=1 be a generic set of vectors in Fd, where F = C

or R. Then {fj}Nj=1 have the phase retrieval property in Fd if N ≥ 2d − 1
for F = R, or if N ≥ 4d− 4 for F = C.

The proof is a straightforward conclusion from Theorem 3.5 with r = 1.
These results are well known. While for F = R it is a rather straightforward
to prove using basic linear algebra [4], the case F = C is in fact quite
nontrivial and was first proved recently in [7]. The above results also extend
to generalized phase retrieval under the admissibility conditions [11], and in
particular for fusion frame phase retrieval [8, 11].

Projection retrieval

Projection Retrieval is a special case of the matrix recovery problem in
which the matrix we try to recover is an orthogonal projection. This has
been studied in recent years in e.g. [14]. Here we consider a slightly more
general setting where we try to recover a matrix Q from the measurements
‖Paj‖2, j = 1, . . . , N , knowing that Q = aP where a > 0 and P is an
orthogonal projection matrix, namely P = P ∗ and P 2 = P . In other words,
we try to recover a scalar multiple of an orthogonal projection instead of just
an orthogonal projection as in the original Projection Retrieval problem. We
shall focus on the real case. The complex case is slightly more tedious, but
can be handled with the same techniques used to prove the complex case of
Theorem 3.5.

Theorem 3.7. Let a1,a2, . . . ,aN be generic vectors in Rd. If N ≥ 2r(d−r)+
2 then every Q = aP where a > 0 and P is an orthogonal projection matrix
of rank 1 ≤ r < d can be recovered from {‖Qaj‖}Nj=1. If N ≥ r(d − r) + 2

then almost every such Q = aP can be recovered from {‖Qaj‖}Nj=1.

Proof. We first observe that ‖Qaj‖2 = aTj Q
TQaj = tr(AT

j X), where Aj =

aja
T
j and X = a2P . Thus proving the theorem is equivalent to proving that

X = a2P is uniquely determined by tr(AT
j X), j = 1, . . . , N . Denote

M := {aP ∈ C
d×d : a ∈ C, P T = P, P 2 = P, rank(P ) = r, 1 ≤ r < d}.

Note that MR is precisely the set of all scalar multiples of real orthogonal
projections of rank r. Furthermore, M is a projective variety. One can easily
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see that M consists of all matrices Q in Cd×d satisfying

QT = Q, Q2 =
1

r
tr(Q)Q.

We know that dim(M) = r(d−r)+1, which is evident from counting degree
of freedoms. Furthermore, we also have dimR(MR) = r(d− r) + 1. As with
Theorem 3.5 the required admissibility condition is also met for us to apply
Theorem 3.2. It follows that for N ≥ dim(M−M) we can recover X = a2P
from {‖Qaj‖2}Nj=1. But dim(M − M) ≤ 2 dim(M) = 2r(d − r) + 2. Of
course we can now recover Q = aP from X (since a > 0). The first part of
the theorem now follows. The second part follows immediately from the fact
that dim(M) = r(d− r) + 1.

Remark. Right now we do not have a precise result for dim(M−M), and
as a result the first conclusion in the theorem may not be sharp. We can
prove, however, that dim(M−M) = 2r(d− r)+ δ with δ = 1 or 2 (we omit
the details in this paper). Also, the original Projection Retrieval problem
poses an additional challenge that the set of orthogonal projections is not a
projective variety. We leave these questions as open problems for interested
researchers.

4. Computational aspect of data recovery on a manifold

For some special manifolds, the data recovery problem can be solved suc-
cessfully by convex programmings using very few linear measurements. For
examples, the low-rank matrix recovery and phase retrieval can be done by
nuclear norm minimization [22, 23], and compressed sensing uses �1 norm
minimization to reconstruct the sparse signal [24]. From convex geometry
and sparse representation points of view, [25] gives a unified convex op-
timization, called atomic norm minimization. However, the atomic norm
minimization is sometimes computationally intractable, as it is NP-hard for
many data recovery problems on manifold (e.g. [26]). Moreover, the convex
optimization framework does not utilize the structure of the low-dimensional
manifold.

Here we provide a more general computational framework, by consid-
ering the fact that the data are on a low-dimensional manifold. Since X
satisfies L(X) = b and X ∈ M, it is natural to recast the recover of X into
the following constrained least squares problem

(4.1) min
Z∈Fd

1

2
‖L(Z)− b‖22, s.t. Z ∈ M.
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In other words, we minimize the least square error of the linear measure-

ments on the manifold. Obviously, the underlying true data X is a global

minimizer of (4.1), and any global minimizer of (4.1) is a solution of the

linear equation on M. Therefore, in the case that L(X) = b has a unique

solution on M, the recovery of X is equivalent to finding the unique global

minimizer of (4.1).

To better exploit the structure of the manifold, we employ numerical

optimization algorithms on manifold [27, 28] to solve (4.1). For this purpose,

we assume the manifold M is smooth, so that the tangent of M is well

defined. For any Z ∈ M, denote TZ the tangent of M at Z. We endow

the tangent space a Riemannian metric the standard Euclidean metric. We

consider the gradient descent algorithm on the Riemannian manifold.

Let f(Z) be the objective function in (4.1), i.e.,

f(Z) =
1

2
‖L(Z)− b‖2

Due to the Euclidean embedding, the gradient of f at Z on M is given by

∇Mf(Z) = PTZ
L∗(L(Z)− b),

where PTZ
is the projection onto the tangent space TZ . With this, the Rie-

mannian gradient descent (RGrad) applied to (4.1) is

(4.2)

{
Gl = PTZl

L∗(L(Zl)− b),

Zl+1 = RM(Zl − αlGl),

where RM is the retraction onto the manifold M and αl is a step size.

Since f is quadratic, we may choose αk the steepest descent step size. More

precisely, we may define αl = argminα f(Zl−αGl), which has a closed form

(4.3) αl =
〈L(Zl)− b,L(Gl)〉

‖L(Gl)‖2
=

‖Gl‖22
‖L(Gl)‖2

.

The RGrad algorithm can be accelerated by conjugate gradient (CG)

algorithms on the Riemannian manifold. Instead of the gradient direction,

the Riemannian CG algorithm uses a linear combination of the gradient and

the previous updating direction, projected onto the tangent space, to update

the current iteration. We omit the details here and interested readers may

consult [27, 29, 30].
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To apply Riemannian optimization algorithms to get practical data re-
covery algorithms on manifold, there are still several issues unsolved and we
need to tune the algorithms. The problem (4.1) is a non-convex optimiza-
tion. The convergence of a non-convex numerical solver to a global minimum
is generally not guaranteed. How to find a good initialization for RGrad to
achieve a global minimum? How many linear measurements are sufficient to
find the correct solution X on the manifold?

In the rest of this section, we will apply Riemannian optimization al-
gorithms to some example problems of data recovery on manifold. We will
discuss how to tune them to get efficient algorithms, and we will also ad-
dress how many linear measurements are sufficient for the successful recovery
of X.

Example 1: matrix recovery

The unknown data X ∈ Fp×q lies on Mp×q,r, the manifold of all matrices
with rank not larger than r. The linear measurements L is defined by

Lj(X) = tr(AT
j X), j = 1, . . . , N,

where Aj ∈ Fp×q are measurement matrices. However, the manifold Mp×q,r

is not smooth at matrices whose rank is strictly smaller than r. To apply
the Riemannian optimization algorithms, instead of the manifold Mp×q,r,
we find X on the manifold of matrices with rank exactly r, i.e.,

ME
p×q,r :=

{
Q ∈ F

q×p : rank(Q) = r
}
.

Note that the dimension of Mp×q,r \ME
p×q,r is strictly smaller than that of

Mp×q,r. Therefore, Mp×q,r \ME
p×q,r is measure 0 on Mp×q,r and therefore

neglectable.
The rank-r manifold ME

p×q,r is smooth and has a very nice structure

embedded in Fp×q. Its tangent space at Z ∈ ME
p×q,r is given by

TZ = {UA∗ +BV ∗ : A ∈ F
q×r, B ∈ F

p×r},

where U ∈ Fp×r and V ∈ Fq×r are left and right singular vector matrices
respectively in the compact singular value decomposition (SVD) Z = UΣV .
It is easy to check that the orthogonal projection onto the tangent space is
given by,

PTZ
Y = UU∗Y + Y V V ∗ − UU∗Y V V ∗, ∀ Y ∈ F

p×q.
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We need to find a retraction operator RM, whose role is to retract a matrix

back to the rank-r manifold. There are several choices of such an operator.

We choose Hr, the projection onto ME
p×q,r or the r-truncated SVD, as the

retraction RM. More precisely, for any W ∈ Fp×q,

Hr(W ) =

r∑
i=1

σiuiv
∗
i , where Y =

min{p,q}∑
i=1

σiuiv
∗
i is the SVD.

For the initial guess, we use the standard spectral method. In particular,

we assume the measurement matrices Aj , j = 1, . . . , N , have i.i.d. random

entries with mean 0 and variance 1/N , and a straightforward calculation

implies

(4.4) Exp(L∗(b)) = Exp

⎛
⎝ N∑

j=1

tr(AT
j X)Aj

⎞
⎠ = X,

where Exp(·) denotes the expectation. Therefore, it is reasonable to choose

(4.5) Z0 = Hr(L
∗(b)).

The purpose of Hr is to set rank(X0) = r while not escaping too far away

from L∗(b), so that Z0 will be close to the under truth solution X if L∗(b)
has a good concentration around its expectation.

The full RGrad algorithm for low-rank matrix recovery is shown in Al-

gorithm 1. To the efficient implementation of Algorithm 1, the structure of

the tangent space TZl
can be further exploited. In particular, by using the

fact that the matrices in TZl
have rank at most 2r, the SVD of size p× q in

the evaluation of Hr can be reduced to two QR decompositions of size p× r

and q× r respectively and one SVD of size 2r× 2r, which significantly save

Algorithm 1 Riemannian Gradient Descent (RGrad) for Low-Rank Matrix
Recovery

1: Initialize Z0 = Hr(L
∗(b)).

2: for l = 0, 1, . . .. do
3: Gl = PTZl

L∗(L(Zl)− b).
4: Choose αl.
5: Zl+1 = Hr(Zl − αlGl).
6: end for
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the computational cost per step. We omit the details, and interested readers
are referred to [29, 30].

The following theorem is an immediate corollary of [29, Theorem 2.1],
and it shows that Algorithm 1 converges linearly to the true solution X with
dominant probability, if N ≥ O((p+ q)r log(κ

√
r)), where κ is the condition

number of X. Compared to the bound in Theorem 3.4, the minimum mea-
surement for RGrad to work is the same order as the least measurement for
M-recovery up to a logarithmic factor.

Theorem 4.1 (A corollary of [29, Theorem 2.1]). Consider the real case.
Assume the entries of Aj, j = 1, . . . , N , are i.i.d. Gaussian with mean 0 and
variance 1/N . For any ρ ∈ (0, 1), there exist positive universal constants
c0, c1, c2, such that: for any X ∈ Rp×q with rank r and condition number κ,
the sequence Zl generated by Algorithm 1 with αl as in (4.3) satisfies

‖Zl −X‖F ≤ ρl‖Z0 −X‖F

with probability at least 1− c1e
−c2N , provided

N ≥ c0(p+ q)r log(κ
√
r).

A numerical experiment is performed. We choose N to be 2, 3, and 4
times of the dimension of the manifold respectively. The convergence curves
of Algorithm 1 with stepsize (4.3) is shown in Figure 1(a). We see that, the
more measurements, the faster convergence of the algorithm.

Example 2: phase retrieval

By introducing X = xx∗, the recovery of x ∈ Fp from phaseless measure-
ments |〈x, fj〉|2 = bj for j = 1, . . . , N as in (1.1) can be reformulated as
a problem of finding a real symmetric or a Hermitian rank-1 solution of
L(X) = b with Lj(X) = tr(fjf

∗
j X) for j = 1, . . . , N . By a simple calcula-

tion, if we start with a symmetric/Hermitian initial guess, the Riemannian
gradient descent on the symmetric/Hermitian rank-1 manifold is exactly the
same as the one on the standard rank-1 manifold. Therefore, the RGrad al-
gorithm for low-rank matrix recovery can be applied equally to the phase
retrieval problem, where p = q and r = 1.

However, all the measurement matrices in L are of rank 1, and the direct
application of RGrad algorithm may need a large number of measurements
theoretically. To overcome this, we shall slightly modify the RGrad algo-
rithm. For simplicity, we discuss only the complex case. We assume that
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Figure 1: Convergence of the RGrad algorithm.

fj , j = 1, . . . , N , follow a complex Gaussian model, i.e., the real and com-
plex parts of fj are all real random Gaussian vectors with expectation 0
and variance I/2. With this random model, the measurement matrices fjf

∗
j ,

j = 1, . . . , N , are outer products of Gaussian random vectors, which have
a heavier tail distribution. This makes the phase retrieval problem more
difficult to solve than the standard low-rank matrix recovery problems. To
eliminate the effects caused by the heavy tail, our idea is to drop out those
ill-posed measurements in the initialization and each iteration.

For the initialization, we cannot choose the initial guess (4.5), because
(4.4) does not hold true due to the rank-1 measurement matrices. We use
the initialization presented in [31]. The expectation of bj = |〈x, fj〉|2 is ‖x‖22,
which can be approximated well by ‖b‖1/N . Therefore, we use only those
measurements in the set

(4.6) Ω0 =
{
j :

√
bj ≤ β0

√
‖b‖1/N

}
for a predefined constant β0 > 0. In other words, we use only those mea-
surements that do not deviate too much from their expectations. Define
Y =

∑
j∈Ω bjfjf

∗
j , and let u be its leading unit eigenvector. Following [31],

the leading eigenvector of the expectation of Y is parallel to x. This, together
with ‖x‖22 ≈ ‖b‖1/N , gives us the initialization

Z0 = z0z
∗
0,

where z0 =
√

‖b‖1/N · u and u is the unit leading eigenvector of Y .

By induction, the positive defniteness of Zl is preserved. At each iteration
l, given Zl = zlz

∗
l , we use again only those well-posed measurements adapted
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to zl and x. We set

(4.7) Ωl = Ωl1 ∩ Ωl2 ∩ Ω0,

where

Ωl1 = {j : |〈zl, fj〉| ≤ β1‖zl‖}
and

Ωl2 =

{
j :

∣∣bj − |〈zl, fj〉|2
∣∣ ≤ β2

N
‖b− L(Zl)‖1

|〈zl, fj〉|+
√

bj

‖zl‖

}
.

The set Ωl1 is to enforce |〈zl, fj〉|2 not too far away from its expectation,
and Ωl2 is to remove the tail of |〈zl − x, fj〉|2. The new iterate is produced
by using only those measurements on Ωl. The complete algorithm is shown
in Algorithm 2.

Algorithm 2 Riemannian Gradient Descent (RGrad) for Phase Retrieval

1: Define Ω0 by (4.6)
2: Initialize z0 =

√
‖b‖1/N · u and Z0 = z0z

∗
0, where u is the leading unit eigen-

vector of Y =
∑

j∈Ω0
bjfjf

∗
j .

3: for l = 0, 1, . . .. do
4: Zl is given in the form of Zl = zlz

∗
l .

5: Define Ωl by (4.7).

6: Gl = PTZl

(∑
j∈Ωj

(|〈zl, fj〉|2 − bj)fjf
∗
j

)
.

7: Choose αl.
8: Zl+1 = H1(Zl − αlGl).
9: end for

The following theorem is the main theorem in the forthcoming paper
[32]. It shows that Algorithm 2 converges linearly to the true solution as
long as N is larger than O(p). This bound is the same order as the the
minimum number of measurements required in Theorem 3.5 with r = 1 for
M-recovery, hence it is in the optimal order.

Theorem 4.2 ([32]). Assume the entries of fj, j = 1, . . . , N , are i.i.d.
complex Gaussian with mean 0 and variance 1. For any x ∈ Cp, there exist
positive constants β0, β1, β2, c0, c1, and c2 such that: if N ≥ c0p, then Zl

generated by the Algorithm 2 step size αl =
1
2N satisfies

‖Zl − xx∗‖F ≤
(
1

2

)l

‖Z0 − xx∗‖F

with probability at least 1− c1e
−c2N .
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In Figure 1(b), we demonstrate the convergence of Algorithm 2. We
choose N = 4.5p, N = 6p, and N = 7.5p respectively. Again we see that
increasing the number of measurements accelerate the convergence of the
algorithm.
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