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Stochastic metamorphosis in imaging science
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In honour of David Mumford on his 80th birthday!

In the pattern matching approach to imaging science, the process
of metamorphosis in template matching with dynamical templates
was introduced in [31]. In [17] the metamorphosis equations of [31]
were recast into the Euler-Poincaré variational framework of [16]
and shown to contain the equations for a perfect complex fluid
[14]. This result related the data structure underlying the process
of metamorphosis in image matching to the physical concept of
order parameter in the theory of complex fluids [12]. In particu-
lar, it cast the concept of Lagrangian paths in imaging science as
deterministically evolving curves in the space of diffeomorphisms
acting on image data structure, expressed in Eulerian space. (In
contrast, the landmarks in the standard LDDMM approach are
Lagrangian.)

For the sake of introducing an Eulerian uncertainty quantifica-
tion approach in imaging science, we extend the method of meta-
morphosis to apply to image matching along stochastically evolving
time dependent curves on the space of diffeomorphisms. The ap-
proach will be guided by recent progress in developing stochastic
Lie transport models for uncertainty quantification in fluid dynam-
ics in [19, 8].
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2.2 Euler-Poincaré theorem for the deterministic case 314

2.3 Deterministic Euler-Lagrange equations 316

2.4 Deterministic Euler-Poincaré reduction 317
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1. Introduction

In recent work [1, 3], a new method of modelling variability of shapes has
been introduced. This method uses a theory of stochastic perturbations con-
sistent with the geometry of the diffeomorphism group corresponding to the
Large Deformation Diffeomorphic Metric Mapping framework (LDDMM,
see [35]). In particular, the method introduces stochastic Lie transport along
stochastic curves in the diffeomorphism group of smooth invertible transfor-
mations. It models the development of variability as observed, for example,
when human organs are influenced by disease processes, as analysed in com-
putational anatomy [36]. It also provides a framework including a Hamil-
tonian formulation for quantifying uncertainty in the development of shape
atlases in computational anatomy. Hamiltonian methods for deterministic
computational anatomy were recently reviewed in [27].

The theory developed in [1, 3] treats LDDMM as a flow and uses meth-
ods based on stochastic fluid dynamics introduced in [19]. It addresses the
problem of uncertainty quantification by introducing spatially correlated
noise which respects the geometric structure of the data. Thus, the method
provides a new way of characterising stochastic variability of shapes using
spatially correlated noise in the context of the standard LDDMM framework.
Numerical methods for addressing stochastic variability of shapes with land-
mark data structure have also been developed in [22, 21, 1, 3].

Although the examples were limited to landmark dynamics in the work
[1, 3], it was clear that Lie-transport noise can be applied to any of the
data structures used in the LDDMM framework, because it is compatible
with the transformation theory on which LDDMM is based. The LDDMM
theory was initiated by [32, 7, 9, 28, 5] building on the pattern theory of
[13]. The LDDMM approach models shape comparison (registration) as dy-
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namical transformations from one shape to another whose data structure
is defined as a tensor valued smooth embedding. These shape transforma-
tions are expressed in terms of the action of diffeomorphic flows, regarded
as time dependent curves of smooth transformations of shape spaces. This
provides a unified approach to shape modelling and shape analysis, valid for
a range of structures such as landmarks, curves, surfaces, images, densities
and tensor-valued images. For any such data structure, the optimal shape
deformations are described via the Euler-Poincaré equation of the diffeo-
morphism group, usually referred to as the EPDiff equation [23, 20, 36].
The work [1, 3] showed how to obtain a stochastic EPDiff equation valid
for any data structure, and in particular for the finite dimensional repre-
sentation of images based on landmarks. For this purpose, the work [1, 3]
followed the Euler-Poincaré derivation of LDDMM of [6] based on geometric
mechanics [25, 18] and the use of momentum maps to represent images and
shapes. The introduction of Lie-transport noise into the EPDiff equation
was implemented as cylindrical noise, obtained by pairing the determinis-
tic momentum map the sum over eigenvectors of the spatial covariance of
Stratonovich noise, each with its own Brownian motion.

The work [1, 3] was not the first to consider stochastic evolutions in LD-
DMM. Indeed, [33, 34] and more recently [26] had already investigated the
possibility of stochastic perturbations of landmark dynamics. In the earlier
works, the noise was introduced into the landmark momentum equations, as
though it were an external random force acting on each landmark indepen-
dently. In [26], an extra dissipative force was added to balance the energy
input from the noise and to make the dynamics correspond to a certain type
of heat bath used in statistical physics. In contrast, the work [1, 3] instead
introduced Eulerian Stratonovich noise into the reconstruction relation used
to find the deformation flows from the action of the velocity vector fields on
their corresponding momenta, which are solutions of the EPDiff equation
[20, 35].

As shown in [1, 3], this derivation of stochastic models is compatible
with the Euler-Poincaré constrained variational principle, it preserves the
momentum map structure and yields a stochastic EPDiff equation with a
novel type of multiplicative noise, depending on both the gradient and the
magnitude of the solution. The model in [1, 3] was based on the previous
works [19, 2], where, respectively, stochastic perturbations of infinite and
finite dimensional mechanical systems were considered. The Eulerian nature
of this type of noise implies that the noise correlation depends on the image
position and not, as for example in [33, 26], on the landmarks themselves.
This property explains why the noise is compatible with any data structure
while retaining the freedom in the choice of its spatial correlation.
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The present work extends the Euler-Poincaré variational framework for
the metamorphosis approach of [31, 17] from the deterministic setting to
the stochastic setting. Section 2 reviews the derivation of the determinis-
tic metamorphosis equations as cast by [17] into the Euler-Poincaré varia-
tional framework of [16], as well as several other developments, including
the Hamilton-Pontryagin principle and two different Hamiltonian formula-
tions of deterministic metamorphosis. Section 3 introduces metamorphosis
by stochastic Lie transport and traces out its preservation and modification
of the deterministic mathematical structures reviewed in Section 2. In Sec-
tion 4 we summarize our results, discuss future work and mention a few open
problems in mathematical analysis of stochastic partial differential equations
that have been raised by the present work.

Thus, for the sake of potential applications in uncertainty quantification,
this paper extends the method of metamorphosis for image registration to
enable its application to image matching along stochastically time dependent
curves on the space of diffeomorphisms.

2. Review of metamorphosis using deterministic Lie
transport

Section summary. Before introducing stochasticity into Lie transport in
the next section, this section provides notation and definitions for the general
problem of metamorphoses in the deterministic case. Several formulations
of the problem are given from different perspectives. These formulations are
reviewed in detail, because the introduction of Lie transport stochasticity
in the following sections will preserve all of the mathematical structures
described in this section, although we will discuss only the last, Hamilton-
Pontryagin, formulation for the stochastic case.

2.1. Notation

In the pattern matching approach to imaging science, the process of “meta-
morphosis” in template matching with dynamical templates was introduced
in [31]. In [17] the metamorphosis equations of [31] were recast into the Euler-
Poincaré variational framework of [16] and shown to contain the equations
for a perfect complex fluid [14]. This result connected the data structure
underlying the process of metamorphosis in image matching to the physical
concept of order parameter in the theory of complex fluids. After develop-
ing the general theory in [17], various examples were reinterpreted, including
point set, image and density metamorphosis. Finally, the issue was discussed
of matching measures with metamorphosis, for which existence theorems for
the initial and boundary value problems were provided. For more recent de-
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velopments the the metamorphosis equations as well as numerical methods
especially designed for metamorphosis, see [29].

Let N be manifold, which is acted upon by a Lie group G. The manifold
N contains what we can refer to as “deformable objects” and G is the
group of deformations, which is the group of diffeomorphisms acting on
the manifold N in our applications. Several examples for the space N were
developed in the Euler-Poincaré context in [17].

Definition 1. A metamorphosis [31] is a pair of curves (gt, ηt) ∈ G×N
parameterized by time t, with g0 = id. Its image is the curve nt ∈ N defined
by the action nt = gt.ηt, where subscript t indicates explicit dependence on
time, t. The quantities gt and ηt are called, respectively, the deformation
part of the metamorphosis, and its template part. When ηt is constant,
the metamorphosis is said to be a pure deformation. In the general case,
the image is a combination of a deformation and template variation.

Following [31, 17], we will use either letters η or n to denote elements
of N , the former being associated to the template part of a metamorphosis,
and the latter to its image.

The variational problem we shall study optimizes over metamorphoses
(gt, ηt) by minimizing, for some Lagrangian L : TG × TN → R, the action
integral

(2.1) S =

∫ 1

0
L(gt, ġt, ηt, η̇t)dt ,

with fixed endpoint conditions for the initial and final images n0 and n1

(with nt = gtηt) and g0 = idG. That is, the images nt are constrained at the
end-points, with the initial condition g0 = id.

Let g denote the Lie algebra of the Lie group G. We will consider La-
grangians defined on TG× TN , that satisfy the following invariance condi-
tions: there exists a function � defined on g× TN such that

(2.2) L(g, Ug, η, ξη) = �(Ugg
−1, gη, gξη).

In other words, L is invariant under the right action of G on G×N defined
by (g, η)h = (gh, h−1η).

For a metamorphosis (gt, ηt), we therefore have a reduced Lagrangian,
upon defining ut = ġtg

−1
t , nt = gtηt and νt = gtη̇t, given by

(2.3) L(gt, ġt, ηt, η̇t) = �(ut, nt, νt).
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The Lie derivative with respect to a vector field X will be denoted LX .

The Lie algebra of G is identified with the set of right invariant vector fields

Ug = ug, u ∈ TidG = g, g ∈ G, and we will use the notation Lu = LU .

The Lie bracket [u, v] on the Lie algebra of smooth vector fields g is

defined by

(2.4) L[u,v] = −(LuLv − LvLu)

and the associated adjoint operator is aduv = [u, v]. Letting Ig(h) = ghg−1

and Advg = LvIg(id), we also have aduv = Lu(Adv)(id). When G is a group

of diffeomorphisms, this yields aduv = du v − dv u.

The pairing between a linear form μ and a vector field u will be denoted〈
μ , u

〉
. Duality with respect to this pairing will be denoted with an asterisk.

For example, N∗ is the dual space of the manifold N with respect to this

pairing.

When G acts on a manifold Ñ , the diamond operator (�) is defined on

Ñ∗×Ñ and takes values in the dual Lie algebra g∗. That is, � : Ñ∗×Ñ → g∗.
For ñ∗ ∈ Ñ∗ and ñ ∈ Ñ the diamond operation is defined by

(2.5)
〈
ñ∗ � ñ , u

〉
g
:= −

〈
ñ∗ , uñ

〉
TÑ

,

where the action of a vector field u ∈ g on ñ ∈ Ñ is denoted by simple

concatenation, uñ ∈ TÑ . For example, the Lie algebra action of the vector

field u ∈ g on ñ ∈ Ñ is denoted uñ = Luñ ∈ TÑ . Subscripts on the pairings

in the definition (2.5) indicate, as follows,
〈
· , ·

〉
g
: g∗×g → R and

〈
· , ·

〉
TÑ

:

T ∗Ñ × TÑ → R. In what follows, for brevity of notation we will often

suppress these subscripts t, except where we wish to emphasise the presence

or absence of explicit time dependence. Suppressing these subscripts when

explicit time dependence is understood should cause no confusion.

2.2. Euler-Poincaré theorem for the deterministic case

Theorem 2 (Euler-Poincaré theorem). With the preceding notation, the

following four statements are equivalent for a metamorphosis Lagrangian L

that is invariant under the right action of G on G×N defined by (g, η)h =

(gh, h−1η), with fixed endpoint conditions for the initial and final images n0

and n1:
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i Hamilton’s variational principle

δS = δ

∫ 1

0
L(gt, ġt, ηt, η̇t)dt = 0 for

L(gt, ġt, ηt, η̇t) = �(ġtg
−1
t , gtηt, gtη̇t)

(2.6)

holds, for variations δgt of gt and δηt of ηt vanishing at the endpoints.
ii gt and ηt satisfy the Euler–Lagrange equations for L on TG× TN .
iii The constrained variational principle

(2.7) δS = δ

∫ 1

0
�(ut, nt, νt)dt = 0

holds for Lagrangian � defined on g × TN using variations of ut =
ġtg

−1
t , nt = gtηt and νt = gtη̇t of the form

(2.8) δu = ξ̇t−adut
ξt, δn = �t+ξtnt, and δν = �̇t+ξtνt−ut�t,

where ξt = δgtg
−1
t , �t = gtδηt and these variations vanish at the

endpoints.
iv The Euler–Poincaré equations hold on g× TN

∂

∂t

δ�

δu
+ ad∗ut

δ�

δu
+

δ�

δn
� nt +

δ�

δν
� νt = 0,

∂

∂t

δ�

δν
+ ut 	

δ�

δν
− δ�

δn
= 0,

(2.9)

with auxiliary equation

(2.10) ṅt = νt + utnt,

obtained from the definitions ut = ġtg
−1
t and nt = gtηt, with νt = gtη̇t,

provided the endpoint condition holds, that

(2.11)
δ�

δu
(1) +

δ�

δν
(1) � n1 = 0,

at time t = 1.

Corollary 3 (Coadjoint motion). Equations (2.9) and the auxiliary equa-
tion (2.10) for nt together imply the following coadjoint motion equation,

∂

∂t

( δ�

δu
+

δ�

δν
� n

)
+ ad∗ut

( δ�

δu
+

δ�

δν
� n

)
= 0.(2.12)
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The equivalence of statements i and ii in Theorem 2 is classical, and no
other proof will be offered here. The proofs of the other equivalences in Euler-
Poincaré Theorem 2 and its Corollary 3 for deterministic metamorphosis are
laid out in the sections below.

2.3. Deterministic Euler-Lagrange equations

We compute the Euler-Lagrange equations associated with the minimization
of the symmetry reduced action

S =

∫ 1

0
�(ut, nt, νt)dt

with fixed boundary conditions n0 and n1. We therefore consider variations
δu and ω = δn. The variation δν can be obtained from n = gη and ν = gη̇
yielding ṅ = ν + un and ω̇ = δν + uω + (δu)n. Here and in the following of
this paper, we assume that computations are performed in a local chart on
TN with respect to which we take partial derivatives.

We therefore have

δS = δ

∫ 1

0

(〈 δ�

δu
, δut

〉
+
〈 δ�

δn
, ωt

〉
+
〈 δ�

δν
, ω̇t − utωt − (δut)nt

〉)
dt = 0.

The δu term yields the equation

δ�

δu
+

δ�

δν
� nt = 0.

where, in a slight abuse of notation, δ�/δν ∈ T (TN)∗ has been considered
as a linear form on TN by

〈
δ�/δν , z

〉
:=

〈
δ�/δν , (0, z)

〉
. From the terms

involving ω, we find, after an integration by parts

(2.13)
∂

∂t

δ�

δν
+ ut 	

δ�

δν
− δ�

δn
= 0 .

Here, we have introduced notation for the star (	) operation,

(2.14)
〈 δ�

δν
, uω

〉
=

〈
u 	

δ�

δν
, ω

〉
=

〈
LT
u

δ�

δν
, ω

〉
.

That is, for uω = Luω, the star (	) operation denotes the dual of the Lie
derivative, u 	 ν∗ = LT

u ν
∗.
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We therefore obtain the system of equations

δ�

δu
+

δ�

δν
� nt = 0 ,

∂

∂t

δ�

δν
+ ut 	

δ�

δν
=

δ�

δn
,

ṅt = νt + utnt .

(2.15)

Note that the sum δ�
δu +

δ�
δν �n is the momentum map arising from Noether’s

theorem for the considered invariance of the Lagrangian. The special form
of the boundary conditions (fixed n0 and n1) ensures that this momentum
map vanishes.

2.4. Deterministic Euler-Poincaré reduction

As explained in [17], a system equivalent to that in (2.15) can be obtained
via Euler-Poincaré reduction [16]. In this setting, we make the variation in
the group element and in the template instead of the velocity and the image.
We denote ξt = δgtg

−1
t and �t = gtδηt. From these definitions, we obtain

the expressions of the variations, δu, δn and δν.
We first have δut = ξ̇t + [ξt, ut], which arises from the standard Euler-

Poincaré reduction theorem, as provided in [16, 25]. We also have δnt =
δ(gtηt) = �t + ξtnt. From νt = gtη̇t, we get δνt = gtδη̇t + ξtνt and from
�t = gtδηt we also have �̇t = ut�t+gtη̇t. This yields δνt = �̇t+ξtνt−ut�t.

We also compute the boundary conditions for ξ and �. At t = 0, we
have g0 = id and n0 = g0η0 = cst which implies ξ0 = 0 and �0 = 0. At
t = 1, the relation g1η1 = cst yields ξ1n1 + ω1 = 0.

Now, the first variation of is∫ 1

0

(〈 δ�

δu
, ξ̇t − adut

ξt

〉
+
〈 δ�

δnt
, �t + ξtnt

〉
+
〈 δ�

δν
, �̇t+ ξtνt−ut�t

〉)
dt=0.

In the integration by parts to eliminate ξ̇t and �̇t, the boundary term is〈
(δ�/δu)1 , ξ1

〉
+
〈
(δ�/δν)1 , ω1

〉
. Using the boundary condition, the last term

can be re-written

−
〈
(δ�/δν)1 , ξ1n1

〉
=

〈
(δ�/δν)1 � n1 , ξ1

〉
.

We therefore obtain the endpoint equation

δ�

δu
(1) +

δ�

δν
(1) � n1 = 0.
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The evolution equation for δ�/δu is

∂

∂t

δ�

δu
+ ad∗ut

δ�

δu
+

δ�

δn
� nt +

δ�

δν
� νt = 0,

and δ�/δν evolves by

∂

∂t

δ�

δν
+ ut 	

δ�

δν
− δ�

δn
= 0.

Consequently, we obtain the following system of equations,

∂

∂t

δ�

δu
+ ad∗ut

δ�

δu
+

δ�

δn
� nt +

δ�

δν
� νt = 0,

∂

∂t

δ�

δν
+ ut 	

δ�

δν
− δ�

δn
= 0,

(2.16)

as well as the auxiliary equation

(2.17)
∂

∂t
nt = νt + utnt,

obtained from the definitions ut = ġtg
−1
t and nt = gtηt. Moreover, the

endpoint condition holds, that

(2.18)
δ�

δu
(1) +

δ�

δν
(1) � n1 = 0,

at time t = 1.

As discussed in [17], the system (2.9) is equivalent to (2.15), since they
characterize the same critical points. Direct evidence of this fact may be
obtained from the proof of Corollary 3, that

∂

∂t

( δ�

δu
+

δ�

δν
� n

)
+ ad∗ut

( δ�

δu
+

δ�

δν
� n

)
= 0.(2.19)

Proof of Corollary 3. A solution of (2.9) satisfies the coadjoint motion equa-
tion,

∂

∂t

( δ�

δut
+

δ�

δν
� nt

)
=

∂

∂t

δ�

δu
+
( ∂

∂t

δ�

δν

)
� nt +

δ�

δν
� ṅt
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=
∂

∂t

δ�

δu
+
( δ�

δn
− ut 	

δ�

δν

)
� nt +

δ�

δν
� (νt + utnt)

=
∂

∂t

δ�

δu
+

δ�

δn
� nt +

δ�

δν
� νt −

(
ut 	

δ�

δν

)
� nt +

δ�

δν
� (utnt)

= −ad∗ut

δ�

δu
− ad∗ut

(
δ�

δν
� nt).

In the last equation, we have used the fact that, for any α ∈ g,〈 δ�

δν
� (un)−

(
u 	

δ�

δν

)
� n , α

〉
=

〈 δ�

δν
, α(un)− u(αn)

〉
= −

〈 δ�

δν
, [u, α]n

〉
= −

〈 δ�

δν
� n , [u, α]

〉
= −

〈
ad∗ut

(
δ�

δν
� nt) , α

〉
.

Remark 4. Corollary 3 combined with the relation (δ�/δu)1 + (δ�/δν)1 �
u1 = 0 implies the first equation in (2.15). Namely, the zero level set of the
momentum map is preserved by coadjoint motion.

2.5. Deterministic Hamiltonian formulation

The Euler-Poincaré formulation of metamorphosis in (2.9) and (2.10) in
Theorem 2 allows passage to its Hamiltonian formulation via the following
Legendre transformation of the reduced Lagrangian � in the velocities u
and ν, in the Eulerian fluid description,

(2.20) μ =
δ�

δu
, σ =

δ�

δν
, h(μ, σ, n) =

〈
μ , u

〉
+
〈
σ , ν

〉
− �(u, ν, n).

Accordingly, one computes the variational derivatives of h as

(2.21)
δh

δμ
= u ,

δh

δσ
= ν ,

δh

δn
= − δ�

δn
.

Consequently, the Euler-Poincaré equations (2.9) and the auxiliary kine-
matic equation (2.10) for metamorphosis imply the following equations, for
the Legendre-transformed variables, (μ, σ, n),

∂tμ+ ad∗δh/δμμ+ σ � δh

δσ
− δh

δn
� n = 0,

∂tσ + LT
δh/δμσ +

δh

δn
= 0,

(2.22)
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as well as the auxiliary equation

(2.23) ∂tn = Lδh/δμn+
δh

δσ
.

These equations are Hamiltonian. That is, they may be expressed in
the form

(2.24)
∂z

∂t
= {z, h} = b · δh

δz
,

where z ∈ (μ, σ, n) and the Hamiltonian matrix b defines the Poisson bracket

(2.25) {f, h} =

∫
dn x

δf

δz
· b · δh

δz
,

which is bilinear, skew symmetric and satisfies the Jacobi identity,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Assembling the metamorphosis equations (2.22) - (2.23) into the Hamilto-
nian form (2.24) gives,

(2.26)

⎡⎣∂tμ∂tσ
∂tn

⎤⎦ = −

⎡⎣ ad∗�μ σ �� −� � n
LT
�σ 0 1

−L�n −1 0

⎤⎦⎡⎣δh/δμ (= u)
δh/δσ (= ν)

δh/δn

⎤⎦
In this expression, the operators act to the right on all terms in a product
by the chain rule.

Remarks about the Hamiltonian matrix. The Hamiltonian matrix
in equation (2.26) was discovered some time ago in the context of complex
fluids in [15]. There, it was proven to be a valid Hamiltonian matrix by asso-
ciating its Poisson bracket as defined in equation (2.25) with the dual space
of a certain Lie algebra of semidirect-product type which has a canonical
two-cocycle on it. The mathematical discussion of Lie algebras with two-
cocycles is given in [15]. See also [14, 10, 11, 12] for further discussions of
semidirect-product Poisson brackets with cocycles for complex fluids.

Being dual to the semidirect-product Lie algebra g�T ∗N , our Hamil-
tonian matrix in equation (2.26) is in fact a Lie-Poisson Hamiltonian
matrix. See, e.g., [25] and references therein for more discussions of such
Hamiltonian matrices. For our present purposes, its rediscovery in the con-
text of metamorphosis links the physical and mathematical interpretations
of the variables in the theory of imaging science with earlier work in complex
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fluid dynamics and with the gauge theory approach to condensed matter,
see, e.g., [24].

2.6. Deterministic Hamilton-Pontryagin formulation

An alternative formulation to either the Euler-Lagrange equations, or the
Euler-Poincaré approach is obtained in the Hamilton–Pontryagin principle.
In this approach, the diffeomorphic paths appear explicitly.

Theorem 5 (Hamilton–Pontryagin principle). The Euler–Poincaré equa-
tions in Corollary 3 for coadjoint motion given by

∂

∂t

( δ�

δu
+

δ�

δν
� n

)
+ ad∗u

( δ�

δu
+

δ�

δν
� n

)
= 0,

∂

∂t

δ�

δν
+ u 	

δ�

δν
− δ�

δn
= 0,

(2.27)

as well as the auxiliary equation

(2.28) ṅ = ν + un,

on the space g∗ × T ∗N × TN are equivalent to the following implicit varia-
tional principle,

(2.29) δS(u, n, ṅ, ν, g, ġ) = 0,

for a constrained action

S(u, n, ṅ, ν, g, ġ)(2.30)

=

∫ 1

0

[
�(u, n, ν) + 〈M , (ġg−1 − u) 〉+ 〈σ , (ṅ− ν − un) 〉

]
dt .

Proof. The variations of S in formula (2.30) are given by

0 = δS =

∫ 1

0

〈 δ�

δu
−M + σ � n , δu

〉
−
〈
σ̇ + u 	 σ − δ�

δn
, δn

〉
+
〈 δ�

δν
− σ , δν

〉
+
〈
M , δ(g−1ġ)

〉
dt .

(2.31)

After a side calculation, one finds δ(ġg−1) = ξ̇−aduξ, with ξ = δgg−1 for the
last term in (2.30). Then, integrating by parts yields the familiar relation∫ 1

0

〈
M , δ(ġg−1)

〉
dt =

∫ 1

0

〈
M , (ξ̇ − aduξ)

〉
dt
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=

∫ 1

0

〈
− Ṁ − ad∗uM , η

〉
dt+

〈
M , ξ

〉∣∣∣1
0
,

where ξ = δgg−1 vanishes at the endpoints in time.

Thus, stationarity δS = 0 of the Hamilton–Pontryagin variational prin-
ciple with constrained action integral (2.30) yields the following set of equa-
tions:

(2.32) M =
δ�

δu
+σ�n , σ=

δ�

δν
,

∂σ

∂t
+u	σ− δ�

δn
=0 ,

∂M

∂t
+ad∗uM =0 ,

as well as the constraint equations

(2.33) ġg−1 − u = 0 and ṅ− ν − un = 0 .

This finishes the proof of the Hamilton–Pontryagin principle in Theorem
5.

Proposition 6 (Untangling the Lie-Poisson structure (2.26)).
By the change of variables

(2.34) h(μ, σ, n) = H(M,σ, n) ,

the Lie-Poisson structure (2.26) transforms into
(2.35)⎡⎣∂tM∂tσ

∂tn

⎤⎦ = −

⎡⎣ad∗�M 0 0
0 0 1
0 −1 0

⎤⎦⎡⎣ δH/δM (= u)
δH/δσ + LδH/δMn (= ν + Lun)

δH/δn+ LT
δH/δMσ (= δH/δn+ LT

uσ)

⎤⎦ ,

and thereby recovers equations (2.27) and (2.28) in Hamiltonian form.

Proof. The proof follows from the expanding out the change of variables
formula for variational derivatives,

δh(μ, σ, n) = δH(M,σ, n) ,

where (M,σ, n) := (μ+σ�n, σ, n). Namely, one substitutes the corresponding
terms,

δh(μ, σ, n) =
〈δh
δμ

, δμ
〉
+
〈δh
δσ

, δσ
〉
+
〈δh
δn

, δn
〉
,

δH(M,σ, n) =
〈 δH

δM
, δμ

〉
+
〈δH
δσ

+ L δH

δM
n , δσ

〉
−
〈δH
δn

+ LT
δH

δM

σ , δn
〉
,

into the transformed Hamiltonian structure.
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Remark 7. The Lie-Poisson Hamiltonian structure (2.35) is the variable
transformation (2.34) of the corresponding structure (2.26). The correspond-
ing Lie-Poisson bracket is defined on the dual Lie algebra of the vector
fields over the domain, D; namely, g = X(D) with canonical 2-cocycle
X(D)∗×T ∗F(D, N), where F(D, N) denotes smooth functions from the do-
main, D, to the data structure manifold, N . For more details about how the
untangling of Lie-Poisson structures is applied in geometric mechanics in
the theory of complex fluids and for further citations in this literature to
earlier work, see [11, 12].

3. Metamorphosis by stochastic Lie transport

Section summary. As we have seen in the previous review section, the
metamorphosis of images applies the Lie group of diffeomorphisms to deform
a template image that is undergoing its own internal dynamics as it deforms.
As we have discussed, this type of deformation allows considerable freedom
for image matching and has an analogy with complex fluids, in which the
template properties are regarded as order parameters (coset spaces of broken
symmetries) for the complex fluids.

In this section, we consider stochastic perturbations corresponding to
uncertainty due to random errors in the reconstruction of the deformation
map from its vector field. The paper [4] shows that one may compound
the uncertainty in the deformation map, treated here, by also introducing
uncertainty in the reconstruction of the template position from its velocity
field. The paper [4] also applies this more general geometric theory to several
classical examples, including landmarks, images, closed curves, as well as
discussing its use for functional data analysis.

3.1. Notation and approach for the stochastic case

To derive the stochastic partial differential equations (SPDEs) for uncer-
tainty quantification in the metamorphosis approach to imaging science,
we combine the recent developments for uncertainty quantification in fluid
dynamics in [19] with the Hamilton-Pontryagin principle for metamorphosis
discussed in the previous section. The idea is to replace the deterministic evo-
lutionary constraints in equation (2.33) by the following stochastic processes,

dgg−1 −
(
ut(x) dt+

∑
i

ξi(x) ◦ dW i
t

)
= 0 and

dnt − νt dt−
(
ut dt+

∑
i

ξi ◦ dW i
t

)
n = 0 ,

(3.1)
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where d is brief notation for the stochastic evolution operator, which strictly
speaking is an integral operator. The first of these stochastic processes may
be written equivalently as a stochastic version of the Lagrange-to-Euler map
by using the notation g∗t for pullback by the stochastic diffeomorphism gt,

(3.2) dgt − g∗t

(
ut(X) dt+

∑
i

ξi(X) ◦ dW i
t

)
= 0 .

In this form, one sees that gt is a stochastic process with time dependent drift
term given by the pullback operation, ut(x) dt = g∗t ut(X) dt = ut(gtX) dt,
in which subscript t on gt and ut(X) indicates that both ut and gt depend
explicitly on time, t. Thus, the dynamical drift velocity ut(x) depends on
time explicitly and also through the Lagrange-to-Euler map x = gtX gov-
erned by (3.2) with initial value g0 = Id. The Lagrange-to-Euler map in
(3.2) also contains a Stratonovich stochastic term, comprising a finite sum
over time independent spatial functions ξi, i = 1, 2, . . . , N , each composed
in a Stratonovich sense (denoted by the symbol ◦) with its own Brownian
motion in time, dW i

t . This type of Stratonovich stochasticity, called “cylin-
drical noise”, was introduced in [30]. In the cylindrical noise term, the ξi(x),
i = 1, 2, . . . , N , are interpreted as describing the spatial correlations of the
noise in fixed Eulerian space, e.g., as eigenvectors of the correlation tensor,
or covariance, for a process which is assumed to be statistically stationary.

3.2. Stochastic Hamilton-Pontryagin approach

Theorem 8 (Stochastic Hamilton–Pontryagin principle). Stochastic meta-
morphosis is governed by coadjoint motion represented as SPDE given by

d
( δ�

δu
+

δ�

δν
� n

)
+ ad∗(ut(x) dt+

∑
i ξi(x)◦dW i

t )

( δ�

δu
+

δ�

δν
� n

)
= 0,

d
δ�

δν
+

(
ut(x) dt+

∑
i

ξi(x) ◦ dW i
t

)
	
δ�

δν
− δ�

δn
= 0,

(3.3)

as well as the auxiliary equation

(3.4) dn = ν +

(
ut(x) dt+

∑
i

ξi(x) ◦ dW i
t

)
n,

on the space g∗ × T ∗N × TN are equivalent to the following implicit varia-
tional principle,
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(3.5) δS(u, n,dn, ν, g,dg) = 0,

for a stochastically constrained action

S(u, n,dn, ν, g,dg)

=

∫ 1

0

[
�(ut, nt, νt) dt+

〈
M , dgtg

−1
t − ut(x) dt−

∑
i

ξi(x) ◦ dW i
t

〉
+
〈
σ , (dnt − νt dt−

(
ut(x) dt+

∑
i

ξi(x) ◦ dW i
t

)
nt)

〉]
.

(3.6)

Remark 9 (Stratonovich versus Itô representations). In dealing with the
stochastic variational principle, we will work in the Stratonovich represen-
tation, because it admits ordinary variational calculus. However, later, when
we consider expected values for the solutions, we will transform to the equiv-
alent Itô representation. In transforming to the Itô representation, we will
discover that the effective diffusion from the Itô contraction term is by no
means a Laplacian. Instead, the Itô contraction term turns out to produce a
double Lie derivative with respect to the sum of vector fields ξi(x).

After this remark, we return to the proof of Theorem 8 for the Stochastic
Hamilton–Pontryagin principle.

Proof. The variations of S in formula (3.6) are given by

0 = δS

=

∫ 1

0

〈 δ�

δu
−M + σ � n , δu

〉
dt

−
〈
dσ +

(
ut(x) dt+

∑
i

ξi(x) ◦ dW i
t

)
	 σ − δ�

δn
dt , δn

〉
+
〈 δ�

δν
− σ , δν

〉
dt+

〈
M , δ(dgg−1)

〉
dt .

(3.7)

In a side calculation, one finds

δ(dgg−1) = dξ − ad(ut(x) dt+
∑

i ξi(x)◦dW i
t )
ξ , with ξ = δgg−1 ,

for substitution into the last term. Then, integrating by parts yields the
relation∫ 1

0

〈
M , δ(dgg−1)

〉
dt
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=

∫ 1

0

〈
M , dξ − ad(ut(x) dt+

∑
i ξi(x)◦dW i

t )
ξ
〉
dt

=

∫ 1

0

〈
− dM − ad∗(ut(x) dt+

∑
i ξi(x)◦dW i

t )
M , η

〉
dt+

〈
M , ξ

〉∣∣∣1
0
,

where ξ = δgg−1 vanishes at the endpoints in time.

Thus, stationarity δS = 0 of the Hamilton–Pontryagin variational prin-
ciple with stochastically constrained action integral (3.7) yields the following
set of SPDEs:

dM + ad∗(ut(x) dt+
∑

i ξi(x)◦dW i
t )
M = 0 ,

dσ +
(
ut(x) dt+

∑
i

ξi(x) ◦ dW i
t

)
	 σ − δ�

δn
dt = 0 ,

(3.8)

for the quantities

M =
δ�

δu
+ σ � n , and σ =

δ�

δν
,(3.9)

as well as the stochastic constraint equations

dgg−1 −
(
ut(x) dt+

∑
i

ξi(x) ◦ dW i
t

)
= 0 ,

dn− ν −
(
ut(x) dt+

∑
i

ξi(x) ◦ dW i
t

)
n = 0 .

(3.10)

This finishes the proof of the Hamilton–Pontryagin principle for stochastic
metamorphosis formulated in Theorem 8.

3.3. Stochastic Hamiltonian formulation

By Corollary 3, the stochastic equations (3.8) through (3.10) above imply
the corresponding stochastic versions of in (2.9) and (2.10) in Theorem 2.
Namely,

d
δ�

δu
+ ad∗ũ

δ�

δu
+

δ�

δn
� ndt+

δ�

δν
� ν dt = 0,

d
δ�

δν
+ LT

ũ

δ�

δν
− δ�

δn
dt = 0,

dn = Lũnt + ν dt

(3.11)

with Stratonovich stochastic transport velocity ũ given by
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(3.12) ũ := ut(x) dt+
∑
i

ξi(x) ◦ dW i
t .

At this point the Hamiltonian structure of the deterministic metamor-
phosis equations reveals how we can write the stochastic metamorphosis
equations in Hamiltonian form. Namely, we deform the deterministic Hamil-
tonian by adding the stochastic part to it as being linear in the momentum
μ and paired with the Stratonovich noise perturbation,

(3.13) h̃ := h(μ, σ, n) dt+
〈
μ ,

∑
i

ξi(x) ◦ dW i
t

〉
.

We then Legendre transform to the Hamiltonian side.
Assembling the metamorphosis equations (3.11) into the Hamiltonian

form (2.24) gives,⎡⎣dμdσ
dn

⎤⎦ = −

⎡⎣ ad∗�μ σ �� −� � n
LT
�σ 0 1

−L�n −1 0

⎤⎦
×

⎡⎣δh̃/δμ (= ũ := ut(x) dt+
∑

i ξi(x) ◦ dW i
t )

δh̃/δσ = (δh/δσ)dt (= ν dt)

δh̃/δn = (δh/δn)dt

⎤⎦
=

⎡⎣− ad∗ũ(μ+ σ � n)− σ � ν dt+ (δh/δn) � ndt
−LT

ũσ − (δh/δn) dt
Lũn+ ν dt

⎤⎦ .

(3.14)

As before, the operators in the Hamiltonian matrix (3.14) act to the right on
all terms in a product by the chain rule. We see that the Hamiltonian formu-
lation of the stochastic metamorphosis equations has summoned the same
Lie-Poisson Hamiltonian structure as in the deterministic case in (2.26).

By the change of variables corresponding to (2.34) for this stochastic
case,

(3.15) h̃(μ, σ, n) = H̃(M,σ, n) = H(M,σ, n) dt+
〈
M ,

∑
i

ξi(x) ◦ dW i
t

〉
,

one finds that the Lie-Poisson structure in (3.14) transforms into
(3.16)⎡⎣dMdσ

dn

⎤⎦= −

⎡⎣ad∗�M 0 0
0 0 1
0 −1 0

⎤⎦
⎡⎢⎣ δH̃/δM (= ũ)

δH̃/δσ + LδH̃/δMn (= ν dt+ Lũn)

δH̃/δn+ LT
δH̃/δM

σ (= (δH/δn)dt+ LT
ũσ)

⎤⎥⎦ ,
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and thereby recovers equations (3.8) – (3.10) in Hamiltonian form, in which

σ and n are canonically conjugate variables.

Remark 10. The advantage of writing equations (3.16) in terms of the

total momentum 1-form density M := M ·dx⊗d3x may be seen by recalling

that ad∗ũM = LũM for 1-form densities. Consequently, the first equation in

(3.16) implies (d+ Lũ)M = 0, which in turn implies that

(3.17) d(g∗M) = g∗
(
(d+ Lũ)M

)
= 0 .

This means the total momentum 1-form density M := M · dx ⊗ d3x is

preserved by the stochastic flow given by the pullback of the stochastic dif-

feomorphism gt in (3.2), which is the flow of the stochastic vector field ũ.

That is, the stochastic Lagrange-to-Euler flow gt, which is the solution of

dgg−1 = ũ in (3.1),

(3.18) dgt − g∗t ũ = dgt − g∗t

(
ut(X) dt+

∑
i

ξi(X) ◦ dW i
t

)
= 0 ,

preserves the quantity M along its flow. Hence, we say that the total mo-

mentum 1-form density M := M · dx⊗ d3x is stochastically advected.

3.4. Itô representation

In preparation for writing the Itô representation, we first substitute ad∗uμ =

Luμ to show in the more familiar Lie derivative notation the action of the

vector field u on its dual momentum, the 1-form density μ = δ�/δu. The

equivalent Itô representations of equations (3.11) are then given by

d
δ�

δu
+ Lu

δ�

δu
dt+

∑
i

Lξi(x)
δ�

δu
dW i

t −
1

2

∑
i

Lξi(x)

(
Lξi(x)

δ�

δu

)
dt+

δ�

δn
� ndt

+
δ�

δν
� ν dt = 0,

d
δ�

δν
+ LT

u

δ�

δν
dt+

∑
i

LT
ξi(x)

δ�

δν
dW i

t −
1

2

∑
i

LT
ξi(x)

(
LT
ξi(x)

δ�

δν

)
dt− δ�

δn
dt = 0,

dn = Lunt dt+
∑
i

Lξi(x)nt dW
i
t −

1

2

∑
i

Lξi(x)

(
Lξi(x)nt

)
dt+ ν dt,

(3.19)
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with stochastic transport velocity û given in Itô form by

(3.20) û := ut(x) dt+
∑
i

ξi(x)dW
i
t ,

plus the Itô contraction drift terms. Likewise, the stochastic advection of the
total momentum 1-form density M = μ + σ � n = M · dx ⊗ d3x, expressed
in Stratonovich form as (d+ Lũ)M = 0, is expressed in Itô form as

(3.21) dM + LuM dt+
∑
i

Lξi(x)MdW i
t −

1

2

∑
i

Lξi(x)

(
Lξi(x)M

)
dt = 0 ,

in which the last sum is the Itô contraction term.
In Itô form, the expectation of the noise terms vanish. The noise interacts

multiplicatively with both the solution M and the gradient of the solution
∇M, through the Lie derivative, as

∑
i

Lξi(x)MdW i
t

(3.22)

=
∑
i

{[(
ξi(x) · ∇

)
M+

(
∇ξi(x)

)T ·M+M divξi(x)
]
dW i

t

}
· dx⊗ d3x.

Likewise, the Itô contraction drift terms are not Laplacians, as would have
been the case for additive noise with constant amplitude. Instead, in (3.21)
they are sums over double Lie derivatives with respect to the vector fields
ξi(x) associated with the spatial correlations of the stochastic perturbation.
This double Lie derivative combination was called the Lie Laplacian in [19].
As an operator, it has many properties of potential interest in the math-
ematical analysis of these equations. See [8] for an example of its use in
developing analytical estimates, with an application to three-dimensional
stochastic incompressible fluid dynamics, for which local-in-time existence,
uniqueness and a regularity condition for well-posedness of the equations
are proven using these analytical estimates.

4. Conclusions

Summary. The preservation of the Hamiltonian structure achieved in (3.14)
for the present formulation of the stochastic metamorphosis equations pro-
vides the interpretation of the stochastic part of the flow. The Hamiltonian
flow of the momentum 〈μ ,

∑
i ξi(x) ◦ dW i

t 〉 produces stochastic translation
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in Eulerian space with velocity
∑

i ξi(x) ◦ dW i
t . Thus, adding the stochastic

part, linear in the momentum, to the metamorphosis Hamiltonian h(μ, ν, n)
adds a stochastic transport to the deterministic flow. This is consistent with
our intention of modelling stochastic metamorphosis as motion generated
by a temporally stochastic flow on the diffeomorphisms, with spatial corre-
lations given by the prescribed, time-independent correlation eigenvectors
determined from data assimilation.

As we have seen, metamorphosis is a combination of diffeomorphic action
and template variation. In the present paper only the diffeomorphic dynam-
ics has been made stochastic, so far. In fact, the template dynamics may
easily be made stochastic, if a proper rationale can be made for the choice
in modifying the stochastic part of the Hamiltonian to include effects of tem-
plate noise. The example Hamiltonian we consider for this modification is

(4.1) k̃ := h(μ, σ, n) dt+
〈
μ+ σ � n ,

∑
i

ξi(x) ◦ dW i
t

〉
,

cf. equations (3.13) and (3.15), noting the difference between k̃ in (4.1) and
h̃ in (3.15).

As in (3.14), we again use the same Lie-Poisson Hamiltonian structure
(2.26) as in the deterministic case, to find the stochastic metamorphosis
equations with template noise,

⎡⎣dμdσ
dn

⎤⎦ = −

⎡⎣ ad∗�μ σ �� −� � n
LT
�σ 0 1

−L�n −1 0

⎤⎦
×

⎡⎢⎣δk̃/δμ (= ũ := ut(x) dt+
∑

i ξi(x) ◦ dW i
t )

δk̃/δσ = ν dt− L(
∑

i ξi(x)◦dW i
t )
n

δk̃/δn = (δh/δn) dt− LT
(
∑

i ξi(x)◦dW i
t )
σ

⎤⎥⎦

= −

⎡⎢⎢⎢⎢⎣
ad∗ũμ+ ad∗(

∑
i ξi(x)◦dW i

t )
(σ � n) + σ � ν dt− (δh/δn) � ndt

LT
u dtσ + (δh/δn) dt

−Lu dtn− ν dt

⎤⎥⎥⎥⎥⎦ .

(4.2)

Consequently,

(4.3) d(σ�n) = (dσ)�n+σ�(dn) = −
[
Lu dt(σ�n)−σ�ν dt+(δh/δn)�ndt

]
,
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and we find from (4.2) that
(4.4)

d(μ+σ�n) = −Lũ(μ+σ�n) , dσ = −
(
LT
uσ+

δh

δn

)
dt , dn =

(
Lun+ν

)
dt .

Upon comparing the equations in (4.2) with those in (3.14) and equations
in (4.4) with those in (3.16), we see that in this case adding stochasticity
to the template variables via the stochastic Hamiltonian in (4.1) has can-
celled out some of the effects of the pure stochastic diffeomorphic transport,
since ũ := ut(x) dt +

∑
i ξi(x) ◦ dW i

t in the σ and n equations in (3.14),
has been replaced by ut(x) dt in (4.2). Thus, the interaction between the
two types of stochasticity for the diffeomorphic transport and the template
evolution in some cases can be quite significant, and is easily calculable in
the Hamiltonian formulation.

See [4] for further discussions of this more general geometric theory of
stochastic metamorphosis, with stochasticity in both the diffeomorphic and
template evolutions, and applications to several classical examples, including
landmarks, images, closed curves, as well as a discussion its use for functional
data analysis.

The present paper has not provided any results about the well-posedness
of solutions for this new class of stochastic partial differential equations
(SPDEs), and in particular nothing has been said about the existence of
their solutions, even locally in time. We are not aware of any analytical
results in the literature about this class of SPDEs, except to remark that
the double Lie derivative in their Itô forms suggests that some analytical
estimates may be available by following the methods of [8]. Thus, the present
paper leaves open the question of the well-posedness of this class of SPDEs
for future mathematical work.
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