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Hybrid Riemannian metrics for diffeomorphic shape
registration

Laurent Younes
∗,†

We consider the results of combining two approaches developed for
the design of Riemannian metrics on curves and surfaces, namely
parametrization-invariant metrics of the Sobolev type on spaces of
immersions, and metrics derived through Riemannian submersions
from right-invariant Sobolev metrics on groups of diffeomorphisms
(the latter leading to the “large deformation diffeomorphic metric
mapping” framework). We show that this quite simple approach in-
herits the advantages of both methods, both on the theoretical and
experimental levels, and provide additional flexibility and model-
ing power, especially when dealing with complex configurations of
shapes. Experimental results illustrating the method are provided
for curve and surface registration.
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1. Introduction

1.1. Shape registration: basic principles

We consider a “shape space” (denoted M) in which objects are subject to
free-form deformations, so that a group action (ϕ, q) ∈ Diff×M �→ ϕ ·q ∈ M

is defined on M (where Diff refers to the diffeomorphism group). This con-
cept usually comes with additional conditions on the structure of the space.
Here, following [1], we will assume that M is an open subset of a Banach
space Q. One also often considers M quotiented by other group actions (such
as Euclidean transformations, or reparametrization). Even though we will
not formally consider such quotient spaces, such invariance will often be a
direct consequence of the models we will discuss.

One can interpret registration methods within the following framework.
Given a “template” q0 ∈ M, a registration method can be seen as a trans-
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formation that takes a shape q as input and returns as output a diffeo-
morphism ϕ such that ϕ · q0 = (or � ) q, therefore providing a mapping,
Ψq0 : M → Diff, representing each shape by a diffeomorphism. One of the
main advantages of such constructions is that it is much easier to define char-
acteristic features of diffeomorphisms than of shapes, considered, for exam-
ple, as subsets of Rd. Voxel-based, or surface-based morphometric methods
have exploited this by introducing deformation markers, often deduced from
the Jacobian of the estimated diffeomorphism [4, 32].

When working with shape spaces of landmarks, images, curves or sur-
faces, there exist, for each given shape q, either zero or an infinity of trans-
formations such that ϕ · q0 = q. They can all be deduced from each other
via composition on the right by diffeomorphisms that leave q0 invariant, i.e.,
elements of the stabilizer Sq0 = {ψ ∈ Diff : ψ · q0 = q0}. “Good” registration
algorithms generally pick one such transformation that maximizes a regu-
larity or optimality criterion that the algorithm implements. Understanding
the structure of the space Ψq0(Q) has many advantages, because it may
lead to (locally) one-to-one shape representations. Among others methods
[16, 31, 17, 35, 34, 5, 19, 36, 25, 21, 6], the large deformation diffeomorphic
metric mapping framework (LDDMM) includes a family of registration al-
gorithms [22, 23, 7, 12, 13, 18, 14, 33], adapted to various shape modalities,
that rely on a sub-Riemannian setup of the diffeomorphism group and of
the shape space. This setup is a special case of the model used in this paper,
that we now describe.

We will assume a sub-Riemannian structure on Diff and consider condi-
tions under which it can be transferred into a sub-Riemannian structure on
M through the action. This framework will include the LDDMM construc-
tion as a special case, and the other metrics that will be used in this paper.
The following notation and assumptions will be used throughout this paper.

We will only consider diffeomorphisms that tend to the identity at infin-
ity, i.e., ϕ = id+u such that u and du tend to 0 at infinity. Diff will denote the
space of such diffeomorphisms, and u �→ id+u provides a trivial chart of Diff
as a Banach manifold, when defined over the space C1

0 (R
d,Rd) of u’s that

tend to 0 at infinity (with the supremum norm: ‖u‖1,∞ = ‖u‖∞ + ‖du‖∞).
We will assume that the action (ϕ, q) �→ ϕ · q is C1 from Diff×M → M. We
let πq(ϕ) = ϕ · q and ξq = dπq(id), so that the infinitesimal action is given
by v · q = ξqv.

Let V be a Hilbert space continuously embedded in C1
0 (R

d,Rd). Consider
the sub-Riemannian structure on Diff associated with the distribution Vϕ =
{v ◦ ϕ : v ∈ V }. We assume that Vϕ is equipped with a Hilbert structure,
with norm ‖ · ‖ϕ such that, for all v ∈ V , ‖v ◦ ϕ‖ϕ ≥ c‖v‖V for some c > 0.
We will also denote ‖v‖V,ϕ = ‖v ◦ ϕ‖ϕ for v ∈ V . A path (ϕ(t), t ∈ [0, 1]) in
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Diff is admissible if ∂tϕ ∈ Vϕ for (almost all) t and

∫ 1

0
‖∂tϕ‖2ϕ(t) dt < ∞.

(Paths tangent to Vϕ(t) at all times are often called horizontal in the sub-
Riemannian literature. We will not use this term here because of the hori-
zontal spaces that we define just below.)

Let Diff0 be the subgroup of Diff containing all the elements that are
reachable from the identity with an admissible path. Fix q0 ∈ M and let
M0 = {πq0(ϕ) : ϕ ∈ Diff0}. For ϕ ∈ Diff0 and q = πq0(ϕ), consider the space
orthogonal to Null(ξq) for 〈· , ·〉V,ϕ, denoted Hϕ. Assume that the Hilbert
space isometry

(1) (Hϕ, ‖ · ‖V,ϕ) ∼ (Hψ, ‖ · ‖V,ψ)

holds whenever πq0(ϕ) = πq0(ψ). Then, for πq0(ϕ) = q, one can define the
space Hq = ξqHϕ = {ξqv : v ∈ Hϕ} with

‖ξqv‖q = ‖v‖V,ϕ

and this definition does not depend on which ϕ ∈ π−1
q0 (q) is chosen. The

distribution Hq then provides a sub-Riemannian structure on M0.
The space Hϕ = {v ◦ ϕ : v ∈ Hϕ} is the horizontal space at ϕ for the

mapping πq0 and the statement that these spaces are isometric adapts the
conditions for πq0 to be a Riemannian submersion to this sub-Riemannian
setting. In the LDDMM framework, (1) is ensured by defining ‖v ◦ ϕ‖ϕ =
‖v‖V for all ϕ and v ∈ V , so that the original metric is right-invariant. We
will below consider computationally feasible situations in which the latter
condition is relaxed with (1) still holding.

From a practical viewpoint, LDDMM can be expressed as an optimal
control problem. One can indeed describe the search for a geodesic between
the template q0 and a shape q1 ∈ M as the minimization, over all time-
dependent vector fields v : [0, 1] → V , of

(2)
1

2

∫ 1

0
‖v(t)‖2V dt,

subject to ∂tq(t) = v(t) · q(t), q(0) = q0, and q(1) = q1. LDDMM uses a
relaxation of the last constraint, minimizing

(3)
1

2

∫ 1

0
‖v(t)‖2V dt+D(q(1), q1)
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subject to ∂tq(t) = v(t) · q(t) and q(0) = q0, where D(q, q̃) is some properly
defined discrepancy measure between q and q̃. Invariance is often ensured
by considering functions such that D(q, q̃) = 0 if q and q̃ are related by a
transformation for which the invariance is searched.

Because of the embedding assumption, the norm on V is associated with
a reproducing kernel, which is a matrix-valued function:

K : R
d × R

d → Md(R
d)

(x, y) �→ K(x, y)

such that, for all x, a ∈ R
d, K(·, x)a : y �→ K(y, x)a belongs to V , and for

all v ∈ V ,

aT v(x) = 〈v , K(·, x)a〉V .
This kernel and the norm on V are generally chosen to be translation in-
variant, taking the form

(4) K(x, y) = Γ

(
x− y

a

)

where Γ is a positive definite (matrix-valued) function. The extra parameter,
a, can be interpreted as a scale parameter, that can be tuned to modulate the
locality of the deformations. It essentially modulates the long range effect of
the motion of a single particle in space. For example, the kernel associated
with

‖v‖2V =

∫
Rd

∣∣∣(Id− a2Δ)m/2v
∣∣∣2 dx,

where c := m− (d+ 1)/2 is a positive integer, is given by (4) with

(5) Γ(x) = Pc(|x|)e−|x|,

where Pc is a reverse Bessel polynomial of degree c (see [26]), normalized so
that P (0) = 1. The associated kernel K decays to 0 at infinity, at a speed
which is modulated by the scale constant a. The shape of the function Γ
for a = 1 and c = 0, 1, . . . , 4 is provided in Figure 1 (Γ has c continuous
derivatives at x = 0 and is C∞ everywhere else). We used c = 3 in our
experiments. For this kernel, the half-range (value of |x| for which Γ(x) =
1/2) is given by 2.85a.

The rather simple formulation (ignoring numerical issues) provides a
horizontal geodesic in Diff0, given by the flow associated with an optimal v,
i.e., the solution of ∂tϕ(t) = v(t) ◦ ϕ(t) with initial condition ϕ(0) = id .
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Figure 1: Shapes of the kernels given by (5) for various values of c.

2. Hybrid LDDMM

Starting with a right-invariant metric on Diff0 ensures that all tangent
spaces are isometric to the tangent space at the identity, through the right-
translation map v �→ v ◦ ϕ. This property is much stronger than what is
needed to ensure (1), which only requires that horizontal spaces within the
same fibers to be isometric. Obviously, right-invariance brings additional
properties to the Riemannian structure on Diff0, making it, in particular,
independent of the choice of the template, q0, and ensuring that its geodesics
satisfy strong conservation laws [20, 41, 30, 40]. On the other hand, it pre-
vents the metric from taking into account shape-dependent properties, re-
lated, for example to the geometry of the considered curves or surfaces.

Allowing for less restrictive invariance will allow us to characterize a
much larger variety of features compared to those associated with plain
LDDMM. This is done in the following examples over spaces of curves and
surfaces.

2.1. Curves

2.1.1. Hybrid norms. Consider the situation in which the objects of
interest are curves, in two or three dimensions. In this setting, we can take
advantage of the collection of metrics that have been introduced for shape
spaces of embedded curves q : M → R

2, where M is either the unit interval
or the unit disk. We let Q = Cr(M,Rd) (normed by the supremum norm
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over all derivatives of order r or less), for some r > 1, and M be the set of
Cr embeddings. The action being ϕ · q = ϕ ◦ q, we have ξqv = v ◦ q, and
we will assume that V is continuously embedded in Cp

0 (R
d,Rd) with p > r,

which ensures that (v, q) �→ ξqv ∈ Q is C1.
Several Riemannian metrics on such shape spaces have been introduced

and studied in the literature (see [39, 24, 37, 28, 29, 38, 9]), most of
the times defined via reparametrization-independent positive self-adjoint
differential operators, Lq, leading to norms taking the form �

�h
�
�

2
q =∫

M h(x)T (Lqh)(x)|q′(x)| dx. For example, one can use

(6) �
�h
�
�

2
q =

∫
M

(
α |h(x)|2|q′(x)|+ |h′(x)|2|q′(x)|−1

)
dx,

for which Lqh = αh−|q′|−1∂x(h
′|q′|−1) = αh−∂2

sh. Here and in the following,
we use either ∂xf or f ′ to denote the derivative of a function with respect
to x (assuming no ambiguity on the variable in the second case) and ∂s, the
arc-length derivative, denotes the operator |q′|−1∂x. Higher-order derivatives
have also been studied, together with the introduction of weights relying on
geometric properties like length or curvature. We will always assume that
there exists a function C defined on M such that ��h

�
�q ≤ C(q)‖h‖Q for all

h ∈ Q and q ∈ M and that q �→ ��h��
2
q is C1 from M to R.

Choosing one of these metrics, h �→ ��h��q, applied to vector fields along

q, we introduce the norm, applied to vector fields v defined over Rd:

(7) ‖v‖2q = λ‖v‖2V + ��v ◦ q��
2
q .

It is important to notice that ��·��q can be a semi-norm in this expression

(i.e., one can have ��h
�
�q = 0 and h �= 0), while still ensuring that ‖ · ‖q is a

norm. For example, one can take α = 0 in (6), which has the nice property
of making this semi-norm blind to translations (for which h is constant). In
our experiments, we use a version of this norm which is, in addition, blind
to rotations, given by (as a function of the arc length)

(8) �
�h
�
�

2
q =

∫ �(q)

0
|∂sh|2 ds−

1

	(q)

(∫ �(q)

0
∂sh

TN(s) ds

)2

where 	(q) =
∫
M |q̇|dx is the length of q and N(s) is the unit normal to q at

q(s). Another interesting norm [39, 38] is

�
�h
�
�

2
q =

1

	(q)

∫ �(q)

0
|∂sh|2 ds
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and its corresponding rotation/scale-invariant version

(9) ��h
�
�

2
q =

1

	(q)

∫ �(q)

0
|∂sh|2 ds

−
(

1

	(q)

∫ �(q)

0
∂sh

TT (s) ds

)2

−
(

1

	(q)

∫ �(q)

0
∂sh

TN(s) ds

)2

where T (s) is the unit tangent.

Given such a norm, we can consider what we refer to as an hybrid LD-
DMM problem minimizing

(10)

∫ 1

0
‖v(t)‖2q(t) dt+D(q(1), q1)

subject to q(0) = q0 and ∂tq(t) = v(t) ◦ q(t).
There are two ways to interpret this approach. The first one, following

our presentation, is that it modifies LDDMM by taking into account geo-
metric properties of the curve. Alternatively, one can interpret this norm as
a modification of one of the norms used on spaces of immersed curves, who
generally do not prevent self intersections along geodesic paths. From this
viewpoint, the first term (‖v‖2V ) is a global control ensuring the existence of
a diffeomorphism of Rd transforming the curve, therefore guaranteeing that
the curve remains embedded along any finite-energy trajectory.

One of the most interesting applications of this formulation is that it
is easy to generalize it to the comparison of multiple curves, say q1, . . . , qn,
using

(11) ‖v‖2q = λ‖v‖2V + ��v ◦ q1��
2
q1
+ · · ·+ ��v ◦ qn��

2
qn
.

Assuming that the curves do not overlap to start with, they will remain
apart along any trajectory. However, if one chooses a small scale for the
kernel of V , these curves will have almost no interaction unless they come
close to each other. The terms ��·��qi control the shape variations of each
curve separately, while ‖v‖V ensures global consistency via a diffeomorphic
transformation. With such a model, it becomes possible, by playing with
the permissiveness of the V -norm relative to the curve metrics, to transform
sets of curves while ensuring that each curve evolves in an almost rigid way
while their relative position in space may vary greatly. This is illustrated by
several examples in section 2.3.
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Note that multiple shape comparison using the LDDMM approach was
also the subject of [3]. The approach in that work differs from what we are
proposing here, because in [3], each curve was attributed its own vector field,
say vi, separately controlled by an RKHS norm, and global consistency was
ensured by an additional vector field (similar to the v that we are using
here) and by equality constraints for the curve displacement, ensuring that
v ◦ q = vi ◦ q. The approach in the present paper is significantly easier to
implement, avoiding, in particular, the need for constrained optimization
methods.

2.2. Maximum principle and optimization algorithm

Consider the Hamiltonian defined for (p, q) ∈ Q∗ × Q and v ∈ V , by

Hv(p, q) = (p | v ◦ q )− 1

2
‖v‖2q

where (· | ·) denotes the pairing between elements of a vector space and of
its dual space, i.e., the evaluation of the first variable on the second one. If
one adds the assumption that q �→ D(q, q1) is differentiable from M to R,
one can prove that the Pontryagin’s maximum principle (PMP) applies. This
principle states that solutions of (10) are such that there exists p : [0, 1] → Q∗

satisfying

(12)

⎧⎪⎨
⎪⎩

∂tq = ∂pHv(t)(p, q)

∂tp = −∂qHv(t)(p, q)

v(t) = argmaxwHw(p(t), q(t))

with the boundary conditions q(0) = q0 and p(1) = −∂qD(q, q1). The validity
of the principle can be derived from the differentiability of the equation
∂tq = v ◦ q with respect to the control (v) and several applications of the
chain rule. (We skip the proof.)

When ‖v‖q takes the form in (7), the Hamiltonian, considered as a func-
tion of v takes the form λ‖v‖2V + Fp,q(ξqv) for a C1 function Fp,q : Q → R.
As a consequence, the optimal v in the third equation of (12) is such that
λ〈v , h〉V + (dFp,q | ξqh) = 0 for all h ∈ V , and writing

(dFp,q | ξqh) =
(
ξ∗qdFp,q

∣∣h) = 〈
Kξ∗qdFp,q , h

〉
V

we see that v should take the form v = Kξ∗qα for some α ∈ Q∗. One can
therefore apply the same reduction as the one which is typically used with
standard LDDMM [2], using α as a new control and minimizing
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(13)
1

2

∫ 1

0
‖α(t)‖2q(t) dt+D(q(1), q1)

subject to q(0) = q0 and ∂tq(t) = Kq(t)α(t), with Kq = ξqKξ∗q and

‖α‖2q = λ(α |Kqα) + ��Kqα��
2
q .

The PMP can then be rewritten starting from the Hamiltonian

Hα(p, q) = (p |Kqα)− 1

2
‖α‖2q .

In the case we are considering in this paragraph, for which ξqv = v ◦ q, Kq

is given by

(Kqα)(x) = (α |K(q(x), q(·))).
In our numerical implementations, in which q is represented as poly-

gon with vertexes (x1, . . . , xN ), ��h
�
�

2
q is approximated using finite differ-

ences, so that the approximation is a function of (h(xi), i = 1, . . . N) and of
(x1, . . . , xN ). As a result, the optimal control problem is reduced to a prob-
lem where state and controls are in (Rd)N (and the metric is Riemannian).
The numerical results that we provide are based on this approximation (and
a time approximation using a standard Euler scheme). We also recall that
the computation of the gradient of the objective function (considered as a
function of the control) can be based on the PMP, using the adjoint algo-
rithm that first computes q(·) by solving the first equation in (12) starting
with q0 and using the control at which the gradient is computed; then sets
p(1) = −∂qD(q, q1) before solving the second equation backward in time to
obtain p(·); and finally computes the differential of the objective function,
which is given by ∂vHv(p, q) (or ∂αHα(p, q)). The gradient itself is defined
by K−1

q ∂αHα(p, q), which requires no operator inversion, because

K−1
q ∂αHα(p, q) = p− α− GqKqα

where Gq : Q → Q∗ is the operator defined by 〈h1 , h2〉q = (Gqh1 |h2 ).

2.3. Experiments

Cost function. The end-point cost we used for our experiments is a ver-
sion of the varifold metric introduced in [15]. More precisely, we let

(14) D(q, q1) = ‖q‖2χ − 2〈q , q1〉χ + ‖q1‖2χ
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Figure 2: Smoothed Cardioids: Estimated deformations. (a) Template (red)
and target (blue); (b) Standard LDDMM; (c) Hybrid LDDMM.

where
(15)

〈q , q1〉2χ =

∫
M

∫
M

χ(q(u), q1(u1))(1 + c(ν(u)T ν1(u1))
2)|q′(u)| |q′1(u1)| du du1,

where ν and ν1 denote the unit normals to q and q1, χ is a Gaussian kernel

χ(x, y) = exp(−|x− y|2/2τ2),

τ and c being fixed parameters (we used τ = 2 and c = 1 in our experiments).
Because this cost function is bi-invariant by reparametrization (D(q, q◦β) =
0 if β is a diffeomorphism of M) and ��·��q is invariant too (��h ◦ β��q◦β =
�
�h
�
�q), the problem is reparametrization-invariant (replacing q1 by q1 ◦ β

does not change the solution).

2.3.1. Smoothed cardioids. We first illustrate the impact of the addi-
tional energy term with a simple example in which two smoothed curves are
registered (see right panel in Figure 2). We used standard LDDMM with a
kernel size a = .2 (the size of the long axis of the large cardiod being d = 10)
and hybrid LDDMM with the same kernel and ��·��q given by (9). Both ap-
proaches perfectly align the template to the target, but their solutions differ.
The LDDMM trajectories exhibit a typical behavior in which points tend
to space out during motion; this behavior is not observed in the hybrid LD-
DMM trajectories, because (9) penalizes changes of parametrization. This
can be seen in Figure 3, in which the deforming template is plotted in red
along a geodesic path, with green dots marking the discretized points (the
same color code being used in subsequent figures). The difference between
the estimated registrations can also be appreciated in the last two panels of
Figure 2. Here, and in the following experiments, we used λ = 1 in ‖v‖q, and
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Figure 3: Smoothed Cardioids: geodesics. First row: LDDMM. Second row:
Hybrid LDDMM. The initial discretization of the template is uniform. It
remains close to uniform along the hybrid LDDMM geodesic path, while
point are spacing out in the left side and accumulating on the right side
along LDDMM geodesics.

added a multiplicative factor (between 200 and 500) in front of ��·��q when
running the hybrid version.

2.3.2. Nested ellipses. Our second example is more challenging and in-
volves multiple curves. Both template and target are composed with two
small ellipses included in a large one (see Figure 4). For registration, the
large ellipses are paired with each other, while the small ellipses are switched,
i.e., the one on the left in the template is paired with the one on the right
in the target and vice versa. This is achieved by defining an end-point term
as

D(qlarge, qlarge1 ) +D(qleft, qright1 ) +D(qright, qleft1 )

where D is given by (14).

The geodesics estimated with each method differ significantly and show
interesting features. With standard LDDMM, we keep observing large
reparametrization of each of the three curves, similar to what we observed
in the previous example. The small ellipses avoid each other when chang-
ing places by flattening their shapes. We ran Hybrid LDDMM with ��·��q
given by (9) and (8). In both cases, the reparametrization is uniform along
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Figure 4: Nested Ellipses: Estimated deformations. (a) Template (red) and
target (blue); (b) Standard LDDMM; (c) Hybrid LDDMM with (9). (d)
Hybrid LDDMM with (8) Note that grid lines in the latter case are crossing
over in this last panel. This is due to the resolution of the discretization
used for this illustration compared to the size of the estimated deformation,
which is nonetheless diffeomorphic, as implied by the curves remaining non-
intersecting in the geodesic path.

each curve. With (9), which is scale and rotation invariant, the small ellipses
shrink when crossing each other, before growing back to match the target.
When using (8) (which is only rotation invariant), shrinking is not free any-
more, and the curves make a wide berth to avoid each other. The kernel
width was the same in all three experiments, in which we took a = 0.2.

2.3.3. Rays. We now compare configurations of m = 10 line segments
stemming from a common origin (Figure 6). The segments’ orientations are
sampled uniformly over [0, 2π] (θk = 2kπ/m, k = 0, . . . ,m− 1) in the tem-
plate, but not in the target (θk = 2π

√
k/m, k = 0, . . . ,m − 1). The target

is moreover slightly translated. Here, and for the examples that follow, the
cost function considers the curves as unlabeled (no correspondence informa-
tion is used). Formally, this corresponds to considering that the curves are
parametrized over the unions of m copies of M , M (m) =

⋃m
k=1({k} × M)

and using M (m) in place of M in (15). This choice makes the matching prob-
lem significantly harder, creating possible local minima in the cost function.
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Figure 5: Ellipses: geodesics. First row: LDDMM. Second row: Hybrid LD-
DMM. The initial discretization of the template is uniform.

Such local minima actually trap the LDDMM algorithm when using small

kernel sizes, and the solution provided in our experiments use a rather large

kernel size, a = L/5, where L is the common lengths of the segments. The

hybrid model uses a = L/25 combined with (8), the H1 norm corrected for

rotations.

As a result of the use of a large kernel in the LDDMM case, the ob-

tained solution does not achieve a perfect transformation of the first seg-

ment (the one requiring the largest rotation) which is curved at the end-

point of the geodesic (see Figure 7). The segments remain perfectly straight

along the geodesic estimated with the hybrid norm (visually at least: an

exact transformation of the rays would not be diffeomorphic, but the devi-

ation from a straight line happens below the discretization level chosen for

the curves). The effect of the kernel size is also apparent in the estimated

transformations, depicted in Figure 6. Similar to the previous examples,



202 Laurent Younes

Figure 6: Rays: Estimated deformations. (a) Template (red) and target
(blue); (b) Standard LDDMM; (c) Hybrid LDDMM.

Figure 7: Rays: geodesics. First row: LDDMM. Second row: Hybrid LD-
DMM. The initial discretization of the template is uniform.

the reparametrization of the segments is more pronounced with standard
LDDMM.

2.3.4. Half circles. Our last 2D example is similar to the previous one,
using half circles, with various radii, instead of straight lines. We used the
rotation- and scale-invariant norm (9) in the hybrid case, and the kernel sizes
were L/5 and L/25 for standard and hybrid LDDMM, L being the radius of
the largest circle. Both methods do a good job in registering the target to
the template, but find different solutions as seen in Figure 8. The LDDMM
solution tends to compress the space in the middle of the estimated pattern,
while hybrid LDDMM estimates a motion closer to a rotation (which is
cheap with the considered norm).
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Figure 8: Arcs of circle: Estimated deformations. (a) Template (red) and
target (blue); (b) Standard LDDMM; (c) Hybrid LDDMM.

Figure 9: Arcs of circle: geodesics. First row: LDDMM. Second row: Hybrid
LDDMM. The initial discretization of the template is uniform.

3. Surfaces

The same approach can also be used with surfaces. At high level, not much

needs to be modified formally from the curve case, simply letting M be the

unit disc, or the unit sphere, or any other manifold sharing the topology of

the considered surfaces. One can find a large collection of possible choices

for ��·��q in [11, 8, 27, 10]. In the experiment that follows, we used one of the

simplest options, letting
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Figure 10: (a) Template and (b) target, each of them the union of three
surfaces (left: entorhinal cortex, center: hippocampus, right: amygdala).

(16) �
�h
�
�

2
q =

∫
S
|∇Sh|2dσS

where S = q(M) with volume measure σS and Riemannian gradient ∇S .
(For this to be well defined, it is important that q remains an embedding at
all times along finite energy paths.)

Our example uses the same data as the one presented in Figures 8 and
9 of [3]. It includes three shapes (see Figure 10) who are relatively close to
each other (the hippocampus and the amygdala are actually slightly over-
lapping in the target). If one uses standard LDDMM with a small kernel
(a � d/45, where d is the height of the hippocampus), as illustrated in
the first row of Figure 11, the diffeomorphism has undesirable properties,
crunching parts of the surfaces (such as the front of the hippocampus, the
bottom of the entorhinal cortex —which even has a residual spike— and
the top of the amygdala) to match the target. With a larger kernel width
(a � d/6) the three shapes are transformed as if they formed one single
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Figure 11: Surfaces: geodesics. First row: LDDMM (small kernel size). Sec-
ond row: LDDMM (large kernel size). Third row: Hybrid LDDMM (small
kernel size).
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object, resulting in large reparametrization of the surfaces when they move
along each other, because points that were nearby, initially tend to have
similar motions. This is illustrated in the second row of Figure 11. The third

row provides the geodesic obtained with the hybrid norm, with the same
small kernel width as in the first row, but with (16) penalizing large defor-
mations on the surfaces. In this case, the surfaces move nicely along each
other, without requiring large reparametrization, except those required by
the change in their respective shapes.

4. Conclusion

Our results illustrate several advantages of combining the standard LD-
DMM approach with geometrically inspired norms on spaces of curves and
surfaces. This very simple concept allows for much more modeling accuracy

and flexibility, with a moderate computational impact. This is especially
useful when dealing with complex configurations of shapes, as we saw in our
examples.

There is clearly still room for future work and development, including
the use of higher-order norms for curves and surfaces, and guidelines on

which norm to use in specific applications. A version of the method for
image matching is another important direction to be explored in the future.
Formally, this requires defining ��h

�
�q, where both q and h are scalar functions

in R
d and using the extra term

�
�
�
vT∇q

�
�
�q

in the Riemannian norm. One

option worth exploring is

�
�h
�
�

2
q =

∫
Rd

|∇h(x)|2wq(x) dx

where wq is a “weight function” that depends on q, making, for example,

deformations more costly in gray/white matter regions than within cerebro-
spinal fluid in brain mapping. This will be addressed in future work.
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