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Exemplar-based texture synthesis is the process of generating, from
an input sample, new texture images of arbitrary size and which are
perceptually equivalent to the sample. The two main approaches
are statistics-based methods and patch re-arrangement methods. In
the first class, a texture is characterized by a statistical signature;
then, a random sampling conditioned to this signature produces
genuinely different texture images. The second class boils down to
a clever “copy-paste” procedure, which stitches together large re-
gions of the sample. Hybrid methods try to combine ideas from
both approaches to avoid their hurdles. The recent approaches us-
ing convolutional neural networks fit to this classification, some
being statistical and others performing patch re-arrangement in
the feature space. They produce impressive synthesis on various
kinds of textures. Nevertheless, we found that most real textures
are organized at multiple scales, with global structures revealed
at coarse scales and highly varying details at finer ones. Thus,
when confronted with large natural images of textures the results
of state-of-the-art methods degrade rapidly, and the problem of
modeling them remains wide open.
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1. Introduction

This paper proposes a review of exemplar-based texture theory, a topic that

occupied David Mumford at the end of the last century [97, 98], and again

in his book on pattern theory [62]. Textures are ubiquitous in our visual en-

vironment. In the past fifty years their definition has occupied psychophysi-

cists, mathematicians and computer scientists who have built increasingly

sophisticated models. The main progress on the elusive topic of defining
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textures has come from computer graphics with the problem of reproduc-
ing other examples of the same texture given a sample. There is so far no
complete mathematical theory that would, first, give a formal axiomatic of
texture, and then prove that some texture synthesis algorithm matches this
definition. Rather, each exemplar-based texture method formulates its own
definition of texture and sometimes (but rarely) convergence or consistency
proofs. The method to work on texture modeling still relies on a visual ex-
ploration of synthesized textures, their defects and successes being linked
to some improvement or shortcoming of the mathematical model. All the
more, texture modeling remains a valid challenge for mathematicians, as
textures represent arguably the vaster and most common class of observable
functions. They indeed cover a majority of the area of most digital images.
This article accounts for the very rapid and impressive recent apparition of
new texture synthesis methods with striking results. We shall retrace their
theoretical roots. By performing objective experiments and not hiding the
failures of each method, this paper will uncover some flaws in the current
definition of exemplar-based texture modeling. This will lead us to propose a
slightly different definition of the problem that seems to address better its
challenges.

The Oxford Dictionary of English defines texture as the feel, appearance,
or consistency of a surface or a substance. Focusing on visual appearance,
texture is analog to color, a perceived quality of a surface, where the RGB
bands are replaced by the output of a specific bank of filters [62, p.215].
Julesz defined textures as classes of pictures that cannot be discriminated in
preattentive vision and advanced two statistical hypotheses to characterize
them [41, 38, 40]. Grenander proposed to use the term “texture” for strictly
stationary stochastic processes [31, p.398]. Giving a precise definition of
textures is a slippery task; in a sense, each model implicitly proposes one
and as we will see the jury is still out.

Exemplar-based texture synthesis is the process of generating, from an
input texture sample, new texture images of arbitrary size and which are
perceptually equivalent to the input. It is common to classify them under
the two classical statistical estimation categories: parametric methods and
non-parametric methods. The parametric methods aim at characterizing a
given texture sample by estimating a set of statistics which will define an
underlying stochastic process. The new images will then be samples of this
stochastic process, i.e. they will have the same statistics as the input sam-
ple. The question here is: what would be the appropriate set of statistics
to yield a correct synthesis for the wide variety of texture images? The re-
sults of these methods are satisfying but only on a small group of textures,
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and often fail when important structures are visible in the input. The non-

parametric methods reorganize local neighbourhoods from the input sample

in a consistent way to create new texture images. These methods return

impressive visual results. Nevertheless, they often yield verbatim copies of

large parts of the input sample. Furthermore, they can diverge, starting to

reproduce iteratively one part of the input sample and neglecting the rest

of it, thus growing what experts call “garbage”. Because “non-parametric”

methods are not completely parameter-free, and “parametric” methods can

have a reduced set of parameters, in this paper we will denote by patch re-

arrangement methods the former and by statistics-based methods the latter.

What constitutes a texture? The answer depends of course on human

perception. But a mathematical formulation can be used to characterize

patterns that are perceived as textures. The statistical characterization of

texture images was initiated by Béla Julesz [38, 42]. Julesz was the first to

point out that texture images could be reliably organized according to their

N-th order statistics into groups of textures that are preattentively indistin-

guishable by humans [38]. (Focusing on pre-attentive vision helps to reduce

the subjective impact of high level processing.) Julesz [42] demonstrated that

many texture pairs sharing the same second-order statistics would not be

discerned by human preattentive vision. This hypothesis constitutes the first

Julesz axiom for texture perception. One consequence of this axiom is that

two textures sharing the same Fourier modulus but with different phase

should be perceptually equivalent. Indeed, the square Fourier modulus of

an image corresponds to its spatial auto-correlation, thus the second-order

statistics. This motivates a class of algorithms (the random phase methods)

aiming at creating textures with a given second-order statistic. An exam-

ple of such algorithms is [87]. In a more recent extension [23], a texture is

generated by randomizing the Fourier phase while maintaining the Fourier

modulus. The Random Phase Noise method in [23] correctly synthesizes

textures with no salient details, namely microtexture, which adapt well to

a Gaussian distribution, but it fails for more structured ones, macrotex-

tures, as can be experimented in the executable paper [22]. Indeed, textures

may share the same second and even third order statistics while being vi-

sually different [43, 11]. This led Julesz [40, 39] to propose a second theory

to explain texture preattentive discrimination by introducing the notion of

textons. Textons are local conspicuous features like bars or corners. Giving

a mathematical definition for textons is far from trivial and was studied in

for example [95, 17]. Julesz’ second theory states that only the first order

statistics of these textons are relevant for texture perception: images having
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the same texton densities (thus, just a first order statistic) could not be dis-

criminated. Texton theory proposes the main axiom that texture perception

is invariant to random shifts of the textons [40]. This axiom is extensively

used in the stochastic dead leaves models [61, 77, 8].

Several models of the early visual processing in mammals are based on

a multiscale analysis with Gabor kernels, and are used in particular for

modeling the perception of texture [5, 82, 59]. Wavelet analysis provided a

natural frame for these models and resulted in effective methods for tex-

ture classification and segmentation [12, 48, 84, 60]. Heeger and Bergen [33]

extended Julesz’ approach to multiscale statistics. They characterized a tex-

ture sample by the histograms of its wavelet coefficients. By enforcing the

same histograms on a white noise image they obtained a new multiscale

exemplar-based texture synthesis method. Yet this method only measures

marginal statistics. It misses important correlations between pixels across

scales and orientations which are crucial to generate edges and conspicuous

patterns. We refer to the on-line execution of this method [9] where some

successes but many failures are evident, as is also the case for RPN [22].

Within a similar range of results, the De Bonet [14] method randomizes

the initial texture image and preserves only a few statistics, namely the de-

pendencies across scales of a multi-resolution filter bench response. Other

methods are also based on statistics of wavelet coefficients or more involved

multiscale image representations [69, 67, 72]. The Heeger-Bergen method

was extended by Portilla and Simoncelli [69] who proposed to evaluate on

the sample some 700 cross-correlations, autocorrelations and statistical mo-

ments of the wavelet coefficients. Enforcing the same statistics on synthetic

images, starting from white noise, achieves striking results for a wide range

of texture examples. This method, which for a decade represented the state-

of-the-art for psychophysically and statistically founded algorithms is nev-

ertheless computationally heavy, and its convergence is not guaranteed. Its

results, though generally indiscernible from the original samples in a pre-

attentive examination, often present blur and phantoms. Earlier, Zhu, Wu

and Mumford [98] proposed to model texture images by inferring a prob-

ability distribution on a set of images with the same texture appearances

and then to sample from it. To infer this probability distribution, the set of

images is filtered by a pre-selected set of filters (which capture the important

features of a given texture image) and their histograms are extracted. These

are estimates of the marginals of the probability distribution sought for.

Then the maximum entropy probability distribution is constructed match-

ing the previous marginals. To sample from this probability distribution the
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Gibbs sampler is adopted, thus generating new texture images. The result-
ing model is a Markov random field. The limitation of this method is its
practical aspect. Inferring the probability distribution and sampling from it
are complex tasks. More recent work by Zhu et al. [96, 92] advanced the
Julesz ensembles texture model based on a common set of statistics; they
proved that this model is equivalent to FRAME in the limit of an infinite
image grid. An efficient MCMC sampling method was also proposed. These
two texture generators have been recently revisited with neural networks.
Gatys’ texture generator [27] and DeepFrame [58] can be seen respectively
as extended versions of [69] and [98], and get significantly better results.
Some new neural network methods, based on generative neural networks,
also get notable results [36]. All these recent methods show that the Julesz
program of seeking the right statistics to characterize a texture is still well
alive.

It is worth mentioning that texture models can be used to complete
missing parts of an image or texture inpainting. These methods rely on
the definition of texture images as the realization of a random field. For
inpainting this boils down to the estimation of a random texture model on
the masked input image (a set of valid pixels of the image) from which a
new image is sampled conditioned to some of the known values of input
image. The method presented in [26, 25, 24] is particularly well adapted for
micro-textures. A Gaussian model is estimated on the masked input image;
then the result is generated by a conditional sampling from the estimated
model using the kriging estimation framework.

Patch re-arrangement methods constitute a totally different category of
texture synthesis algorithms. This category started by pixel re-arrangement
using square patches as context. The initial Efros and Leung [19] method
was inspired by Shannon’s Markov random field model for the English lan-
guage [78]. In analogy with Shannon’s algorithm for synthesizing sentences,
the texture is constructed pixel by pixel. For each new pixel in the recon-
structed image, a patch centered in the pixel is compared to all the patches
of the input sample. The patches in the sample that are similar help pre-
dict the pixel value in the synthetic image. Several optimizations have been
proposed to accelerate this algorithm. Among them Wei and Levoy [90]
managed to fix the shape and size of the learning patch, and Ashikhmin [3]
proposed to extend existing patches whenever possible instead of searching
in the entire sample texture. Yet, as already pointed out in the original pa-
per [19], an iterative procedure may fail by producing “garbage” when the
neighborhood’s size is too small. On the other hand, it can lead to a trivial
verbatim reproduction of big pieces of the sample when the neighborhood is
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too large. This can be experimented in the online executable paper [1]. Many
extensions of [19] have been proposed that manage to accelerate the proce-
dure and reduce the “garbage” problem by stitching entire patches instead
of pixels. Among the first methods proposing to re-arrange whole patches,
Xu et al. [32] proposed to synthesize a texture by picking random patches
from the sample texture and placing them randomly in the output texture
image. A blending step is applied across the overlapping blocks to avoid edge
artifacts. In [54] the authors proposed to synthesize the image by quilting
together patches that were taken from the input image among those who
best match the patch under construction. A blending step was also added
to overcome some edge artifacts. Efros and Freeman [20] proposed an ex-
tension of the latter introducing the quilting method (a blending step) that
computes a path with minimal contrast across overlapping patches, thus
mitigating the transition effect from patch to patch.

Kwatra et al. [47] extended [20] by using a graph-cut algorithm to define
the edges of the patch to quilt in the synthesis image. Another extension of
[19] was proposed by Kwatra et al. [46] where to synthesize a texture image
they improve the quality of the synthesis image sequentially by minimizing
a patch-based energy function. In the same spirit as [46], where texture op-
timization is performed, the authors in [50] proposed to synthesize textures
in a multiscale framework using the coordinate maps of the sample texture
at different scales. They introduced spatial randomness by applying a jit-
ter function to the coordinates at each level, combined to a correction step
inspired by [3]. One of the key strengths of the method is that it is a par-
allel synthesis algorithm which makes it extremely fast. These patch-based
approaches often present satisfactory visual results. In particular they have
the ability to reproduce highly structured textures (macrotextures). How-
ever, the risk remains of copying even several times verbatim large parts of
the input sample. For practical applications this may result in the appear-
ance of repeated patterns in the synthesized image. Furthermore, a fidelity
to the global statistics of the initial sample is not guaranteed, in particular
when the texture sample is not stationary. We refer to [89] for an extensive
overview of the different patch re-arrangement methods.

Recent research tries to revisit the use of previous methods. Using neural
networks has seen some success, as well as combining patch re-arrangement
and statistics-based methods to overcome the drawbacks mentioned previ-
ously [66, 81]. These approaches will be called hybrid methods. Peyré [66]
proposed to use a patch-based approach where all the patches of the synthe-
sized image are created from a sparse dictionary learnt on the input sample.
Tartavel et al. [81] extended [66] by minimizing an energy that involves a
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sparse dictionary of patches combined to constraints on the Fourier spectrum

of the input sample in a multiscale framework. Raad et al. [70] proposed to

model the self-similarities of a given input texture with conditional multi-

variate Gaussian distributions in the patch space in a multiscale framework.

A new image is generated patch by patch, where for each given patch a

multivariate Gaussian model is inferred from its nearest neighbours in the

patch space of the input sample, and hereafter sampled from this model.

The academic literature shows that current methods are able to produce

impressive texture synthesis on various kinds of textures. Our experiments

will illustrate this, and the opposite. Indeed, this literature is still working,

in a sense, on toy examples. Most textures are defined by texture samples of

relatively small size and the structures are present in a small range of scales.

When confronting the methods with more challenging data, the quality of

the results degrades rapidly. This can be seen for most natural images of

textures, which are non-stationary, due for example to the presence of il-

lumination changes and perspective. As a matter of fact large photographs

of textures are non-stationary because even homogeneous material always

shows an internal variation of structure. Thus the classic exemplar-based

texture synthesis problem can be seen in this light as an almost impossible

Fourier spectrum extrapolation, given a very small texture example. Hence

our exploration not only of the solutions, but of the problem itself will illus-

trate the limitations of the current question, and introduce a more general

question: how to emulate the real, non-stationary textures, for which we

dispose of large samples? Then the question is no longer to “extend” a small

patch into a larger texture of the same kind, but rather to be able to fab-

ricate other examples of a given large and complex texture, given only one

sample of it.

This survey concentrates on the problem of texture synthesis on flat 2D

domains. There are several interesting extensions and applications of the

basic problem which are not discussed here. These include surface texture

synthesis, in which a texture is to be placed onto a curved surface, dynamic

texture synthesis, when the goal is to generate textures whose appearance

evolves over time such as for videos of time-variant materials, or solid texture

synthesis, where the aim is to generate the color content of 3D blocks of

synthesized materials from which, for example, computer graphics objects

can be carved out. Other related problems include image completion and

resolution enhancement by texture synthesis. Also, the computational cost

in real-time applications (e.g. games) or when the data volume is large (e.g.

film production) impose further restrictions leading to particular algorithms.
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For a discussion of these topics, we refer the reader to Wei et al. [89] and

the references therein.

We now sketch our plan. We shall present the main trends in exemplar-
based texture synthesis by describing in detail several methods illustrat-

ing the three main families. In each case, the strength and limitations will
be commented as well as some relevant variations. Section 2 introduces

the statistics-based methods which perform statistical optimization and de-
scribes several algorithms. Then Section 3 focuses on patch re-arrangement

methods, presenting three works. The third main class of hybrid methods is
discussed in Section 4. The experimental Section 5 first compares the main

families of algorithms in a varied set of textures; then, the limitations of all
current methods are revealed with high-resolution and non-stationary exam-

ples. Finally, Section 6 concludes the paper. All the results displayed were

generated for this paper, with the original code published with the methods
[9, 22, 68, 28, 57, 37, 1, 71, 52] or with the modifications mentioned in this

paper.

2. Statistics-based methods

Statistics-based texture synthesis methods follow the general approach pro-
posed by Julesz, illustrated in Figure 1. The synthesis is performed in two

steps: first, a set of statistics is estimated from the sample texture; second, a
random image is generated, subject to these statistical constraints. Methods

in this class differ in the set of statistics considered and in the optimization
method used to impose them on a random image. We will describe several

algorithms of this class with increasing sophistication. It will appear that
the number of statistics enforced plays a key role in the success.

2.1. Micro-texture synthesis by phase randomization

The Random Phase Noise (RPN) method synthesizes a new texture from a
rectangular sample by simply randomizing the phase of the Fourier coeffi-

cients of the input sample. The results are very satisfying for textures that
are characterized by their Fourier modulus, a class called micro-texture by

some authors. This method is also able to create a random texture from any

input image, not necessarily a texture sample. It is in spirit quite close to
the noise generators from computer graphics [65, 87]. The rest of this section

describes the main ideas of this method and we refer the reader to [22] for
more details and a catalog of several synthesis examples.
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Figure 1: Statistics-based methods. A set of statistics is extracted from an
input sample (analysis step). Then, starting with a noise image, an opti-
mization procedure is applied to enforce these statistics on the output image
(synthesis step).

The RPN of an image u defined on a domain Ω is obtained by adding
a random phase θ to the Fourier phase of the input sample image. The
random phase is a white noise image uniformly distributed over (−π, π]
and is constrained to be symmetric. In the case of an RGB color image
u = (uR, uG, uB), the RPN image is obtained by adding the same random
phase to the Fourier transform of each color channel. Adding the same ran-
dom phase to the original phases of each color channel preserves the phase
displacements between channels. This is important as it permits to create
new textures without creating false colors [23].

More precisely, a uniform random phase is defined as a random image
θ ∈ R

M×N satisfying the following conditions:

• θ is odd: ∀m,n ∈ Ω, θ(−m,−n) = −θ(m,n);
• θ(m,n) is uniform on the interval (−π, π] for (m,n) �∈ {(0, 0), (M/2, 0),

(0, N/2), (M/2, N/2)};
• θ(m,n) is uniform on the set {0, π} for (m,n) ∈ {(0, 0), (M/2, 0),

(0, N/2), (M/2, N/2)};
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• for every subset S of the Fourier domain which does not contain dis-

tinct symmetric points, the family of random variables {θ(m,n)|(m,n)∈
S} is independent.

The RPN of an image u ∈ R
M×N is defined as the random image X where

there exists a uniform random phase θ such that

(1) X̂(ξ, η) = û(ξ, η)eiθ(ξ,η), (ξ, η) ∈ Ω,

where û denotes the Fourier transform of u. An equivalent definition is

(2) X̂(ξ, η) = |û(ξ, η)|eiθ(ξ,η),

where θ is a uniform random phase. Given the phase φ of a real-valued image

and a uniform random phase θ, the random image (θ+φ) mod 2π is also a

uniform random phase, which proves this equivalence. The first definition (1)

leads to a natural extension of RPN to color images [23], while the second

definition (2) highlights the fact that the RPN depends only on the Fourier

modulus of the sample image u.

Similarly, an Asymptotic Discrete Spot Noise (ADSN) associated with

an image u is defined as the convolution of a normalized zero-mean copy of

u with a Gaussian white noise. A Gaussian white noise image has a uniform

random phase and its Fourier modulus is a white Rayleigh noise; the phase

and modulus are independent. Thus, the phase of the ADSN is a uniform

random phase whereas its Fourier modulus is the pointwise multiplication of

the Fourier modulus of u by a Rayleigh noise [23]. Both ADSN and RPN have

uniform random phases, but the modulus distributions are different. RPN

keeps the Fourier modulus of the original image, while for ADSN the Fourier

modulus is degraded by a pointwise multiplication by a white Rayleigh noise.

Regardless of their theoretical differences, ADSN and RPN produce results

that are perceptually very similar [23].

The RPN method is the fastest method presented in this review since

it basically needs the computation of two FFTs. Nevertheless, this method

is limited to micro-textures and it will fail synthesizing structured textures,

namely macro-textures. In Figure 2 two synthesis examples are shown. The

first synthesis (left example in Figure 2) shows outstanding results. This

micro-texture is indeed well represented by its Fourier modulus. However

this is not at all the case for the second texture synthesis (right example in

Figure 2). Clearly, the knowledge of the modulus of the Fourier coefficients

of this texture is not sufficient to recover the strong contrast of the input.
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Figure 2: Synthesis results of the RPN method [87, 23]. This method works
extremely well for micro-textures including tissues and granular textures
with no geometric structures [22]. For more structured texture images it
fails. Two examples are shown: a successful synthesis on the left and a failure
case on the right.

2.2. The Heeger and Bergen pyramid based texture synthesis

Heeger and Bergen [33] proposed to characterize a texture by the first or-
der statistics of both its color and its responses to multiscale and multi-
orientation filters organized in a steerable pyramid [21]. This proposition,
motivated by the study of human texture perception, focuses on the synthe-
sis of microtextures defined as images that don’t have conspicuous patterns
(e.g., granite, bark, sand).

Let us describe the input texture image u and the synthesized texture v
using the Heeger and Bergen method. First the image u is filtered using a
steerable pyramid decomposition [21, 79] with S scales and Q orientations at
each scale. The steerable pyramid is a linear multiscale and multi-orientation
image decomposition. Given an input image, it is first filtered to provide a
high frequency image and a low frequency image. Band-pass oriented fil-
ters are then sequentially applied to the low frequency image which is also
down-sampled. These band-pass oriented filters are applied S times to the
corresponding low frequency image. This decomposition yields images of dif-
ferent sizes corresponding to the different scales and orientations on which
the gray level histograms are extracted as well as the gray level histogram
of u. These histograms define the set of statistics that characterize u.

The second step consists in generating the output image v, which is
initialized with a noise image. Its pixel values are iteratively modified to
match the histograms of u and of its steerable decomposition. These his-
togram matchings are performed on v alternately in the image domain and
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in the multiscale transform domain, until all the output histograms match
the ones of u. A third parameter is introduced here and it is the number of
iterations used to achieve a stabilization of the histogram matching.

To the best of our knowledge, no theorem guarantees that this iteration
will end with an image respecting all statistics; there is of course one solution
to it, namely the example image. But the goal is to create an image different
from the example. Hence the random initialization, which is supposed to
lead always to different samples of the same texture. This remark applies to
all texture synthesis methods we will consider: their success will mainly be
judged visually and experimentally.

To treat RGB color images, instead of applying the method to each color
channel of the input image which are highly correlated, the authors proposed
to change the color space RGB to a more adapted color space. This new color
space is obtained by principal component analysis of the RGB values of the
input image u. In [9] a detailed explanation of the original method of Heeger
and Bergen [33] is provided with a complete analysis of the steerable pyramid
decomposition and the histogram matching step. The authors also provide
in [9] a minor improvement in the edge handling of the convolutions as
well as an experimental section illustrating the influence of the parameters,
namely the number of iterations, the number of scales and the number of
orientations. As we said, there is no theoretical proof of convergence of the
method but an experimental study shows that the results tend to stabilize
after five to ten iterations [9]. Increasing the number of orientations changes
the results slightly, but four orientations are enough in general. The number
of scales is very important. Taking the highest number permits to take into
account all the scales of the texture. When the input texture has no evident
structure then this parameter has less influence in the result.

As our experiments here will show, the results yielded by this approach
are convincing for some stochastic textures, but the method fails for most
complex texture images. In particular it generally fails (visually) for quasi-
periodic textures, random mosaic textures, textures having more than one
dominant orientation, and textures having correlations of high frequency
content over large distances. This demonstrates experimentally that all the
spatial information characterizing a texture is not captured by the first order
statistics of a set of linear filter outputs. In Figure 3 two synthesis examples
are shown: a successful synthesis and a failure case.

2.3. FRAME: a mathematical model for textures

FRAME, which stands for Filters, Random fields And Maximum Entropy,
is a mathematical model of textures developed by Zhu, Wu and Mumford
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Figure 3: Synthesis results of the Heeger and Bergen method [33]. This
method works for microtextures. For more structured texture images it fails.
Two examples are shown: a successful synthesis on the left and a failure case
on the right.

in [97] and [98]. It is the most mathematical solid work among the stream of
work on texture modeling during that period. It puts the graphics method of
Heeger and Bergen [33] in a mathematical sound setting, i.e., it has a formal
statistical model, and it can match the marginal statistics. It also answers
the Julesz quest by pursuing the minimum statistical constraint that are

necessary.

The FRAME model is based on the maximum entropy principle. It starts
with a set of filters that are selected from a general filter bank to capture
features of the texture. These filters are applied to observed texture images,

and the histograms of the filtered images are extracted. Then, the maxi-
mum entropy principle is employed to derive a distribution f , which has in
expectation the same filter responses as the original image, while being of
maximum entropy. More precisely, let u be an observed texture image and
let F k, k = 1, . . . ,K be a set of filters. Let Hk

u be the (discrete) histograms
of the filter responses F k ∗u, and for any image v, let Hk

v be the histograms
of the filter responses F k ∗ v. Zhu, Wu and Mumford seek for a distribution
f(v) on images v such that

(3) Ef (H
k
v ) = Hk

u ,

while being of maximum entropy (i.e. while being “as random as possible”).
By Lagrange Multipliers (maximization under constraints), the solution has
the form

f(v;λ) =
1

Z(λ)
exp

(
−

L∑
i=1

K∑
k=1

λk
iH

k
u(i)

)
,
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where L is the number of bins of the discrete histograms. To find the value
of the parameters λ satisfying Equation (3), Zhu, Wu and Mumford use a
gradient descent to find the right λ and the Gibbs sampler algorithm to
sample random images v from a distribution f(·;λ). The distribution f(·;λ)
defines a Markov Random Field (MRF).

Finally, a stepwise algorithm is proposed to choose the filters from a gen-
eral filter bank. This “filter pursuit” step is achieved thanks to the minimax
entropy principle: find the set of filters such that the associated distribution
f is of minimum entropy, since it is equivalent to be of minimal Kullback-
Leibler divergence from the “true” underlying distribution. A detailed ex-
planation of this fact can be found in [98].

The FRAME model was later extended, in particular with non linear
filters, using the output of some layers of a neural network. It is then called
DeepFrame [58], and we will talk again about it in Section 2.5.

2.4. The Portilla and Simoncelli algorithm

The key issue in FRAME and in the method of Heeger and Bergen is to
choose the “right” filters and the statistics that will be matched. In [69],
Portilla and Simoncelli proposed an important improvement on Heeger and
Bergen’s method [33]. The texture is again synthesized starting from a noise
image and coercing it to have the same statistics as the input image. As we
have seen, marginal statistics are not enough to capture the relations across
scales and orientations. Portilla and Simoncelli proposed to match a set of
joint statistics measurements of the coefficients of the steerable pyramid
decomposition of the input texture. The statistics used to characterize the
input texture are the autocorrelation and cross-correlation coefficients (inner
and intra scales), as well as the statistical moments of order one, two, three
and four of the input sample’s values. To enforce these statistics on the result,
the image under construction is projected iteratively into the subspace of
constraints using a gradient projection approach until stabilization. The
final output image may not have exactly the same statistics as the input
sample. It merely represents a local minimum. Again there is no proof of a
convergence of the method anyway.

Portilla and Simoncelli’s technique is based on the theories of human
visual perception, in particular Julesz’ hypothesis stating that two images
are perceptually equivalent if and only if they agree on a set of statistic
measurements. The goal is to establish the minimal set of measurements in
a way that all types of textures are correctly synthesized using that set of
measurements. In the same way as Heeger and Bergen’s method, the input
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texture sample is decomposed with a multiscale oriented linear basis: the
steerable pyramid [21, 79]. For each pair of coefficients at nearby positions,
orientations and scales, the average value of their product, of their mag-
nitude product and their relative phase is measured. In addition to these
parameters, some marginal statistics on the input image pixels distribution
are kept: the mean, the variance, the skewness, the kurtosis and the range.
The number of parameters will depend on the number of sub-band images
and on the size of the neighbourhood considered to estimate the statistical
constraints of the example texture.

The second part of the algorithm is the synthesis step coercing to a ran-
dom noise image, the measurements previously computed. The synthesized
image is initialized with a Gaussian white noise image and then iteratively
the algorithm alternates between: 1) constructing the steerable pyramid and
enforcing the sample statistics of each sub-band image matching those of the
corresponding sub-bands of the target image; 2) reconstructing an image
from the pyramid and then forcing it to have the same marginal statistics
as the input texture.

A texture is defined as a two-dimensional stationary random fieldX(m,n)
on a finite lattice (m,n) ∈ Ω ⊂ Z

2. Julesz’ hypothesis is the basis to connect
this statistical definition to perception: there exists a set of constraint func-
tions {φk, k = 1, . . . ,K} such as if two random fields, X and Y , are identical
in expectation over this set of functions then any two samples drawn from
X and Y will be perceptually equivalent under some fixed comparison con-
ditions. The importance of human perception as a fundamental criterion of
equivalence between textures can be seen through this hypothesis, as well
as the existence of such a set of statistical measurements capable of captur-
ing this equivalence. To choose the set of constraint functions Portilla and
Simoncelli proceeded as follows:

1. Set an initial set of constraints and synthesize a large library of texture
examples;

2. Group the synthesis failures classifying them according to visual fea-
tures that distinguish them from their original texture examples and
keep the group with the poorest results;

3. Add a new statistical constraint to the set capturing the missing fea-
ture of the failure group;

4. Re-synthesize the failure group and verify the wanted feature is cap-
tured; otherwise go back to the previous point;

5. Verify that the original constraints are still needed; for each constraint,
find a texture example that fails when the constraint is removed from
the set;
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6. Delete the unnecessary constraint, re-synthesize the library and go
back to the second point.

Following this strategy, the constraint set is adapted to a reference set of
textures and not just to one texture, and it is driven by perceptual criteria.
The set of constraints is composed of:

1. Marginal statistics formed by: skewness and kurtosis of the low-pass
images of each level of the pyramid, variance of the high-pass image
of the pyramid, skewness, kurtosis, variance, mean and range of the
image. The marginal statistics set the general degree of pixel intensity
and their distribution. This is why they cannot be discarded from the
statistics set [69].

2. Autocorrelation of the low-band coefficients. This allows to capture the
periodic structures of a texture as well as long-range correlation. Omit-
ting this constraint from the original set yields unsatisfying results for
textures having periodic or long-range correlation patterns [69].

3. Autocorrelation and cross-correlation of the magnitude of the sub-
bands. These statistics appear to be relevant because observation re-
veals that oriented bands have a particular behaviour concerning cer-
tain pattern and their periodicity whatever the orientation [69]. The
cross-correlations kept are of each sub-band image with others of the
same scale (inner cross-correlation) and of each sub-band with sub-
bands at the coarser scale (intra cross-correlation).

4. Cross-correlation of the real part of the sub-bands with the real and
imaginary parts of the coefficients’ phase of the coarser scale. This
statistic is important to capture the strong illumination effects present
in some texture images. In particular, the synthesized image looses
its three-dimensional effect and the shadows structure if they are not
considered [69].

The set of statistics is summarized in Table 1. As mentioned previ-
ously, the number of parameters used depends on the number of scales S
and orientations Q of the steerable decomposition as well as the size of the
neighbourhood Na used to compute the auto-correlations. The total number
of parameters is 6 + 1 + 2(S + 1) + (S + 1)(N2

a + 1)/2 + SQ(N2
a + 1)/2 +

SQ(Q− 1)/2 + (S − 1)Q2 + 2(S − 1)Q2, where the terms correspond (from
left to right) to: the marginal statistics of u, the variance of high pass image,
the skewness and kurtosis of the low band images, the auto-correlation of
the low band images, the auto-correlation of the sub band images, the inner
cross-correlation of the sub band images, the intra cross-correlation of the
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Table 1: Summary of the set of statistical constraints for the Portilla-
Simoncelli method

range of u max(u) and min(u)

mean of u μ1(u)

variance of u μ2(u)

skewness of u μ3(u)/(μ2(u))
1.5

kurtosis of u μ4(u)/(μ2(u))
2

lowband’s skewness μ3(ls)/(μ2(ls))
1.5, 1 ≤ s ≤ S + 1

lowband’s kurtosis μ4(ls)/(μ2(ls))
2, 1 ≤ s ≤ S + 1

highband’s variance μ2(h)

�{ls} auto-correlation Γ�{ls} (m,n) , 1 ≤ s ≤ S + 1

|us,q| auto-correlation Γ|us,q| (m,n) , 1 ≤ s ≤ S, 0 ≤ q ≤ Q− 1

inner cross-correlation C
(
|us,q| ,

∣∣∣us,q′
∣∣∣) , 1 ≤ s ≤ S, 0 ≤ q, q′ ≤ Q− 1

intra cross-correlation C
(
|us,q| ,

∣∣∣us+1,q′
∣∣∣) , 1 ≤ s ≤ S − 1, 0 ≤ q, q′ ≤ Q− 1

cross-correlation with
the real part of the phase

C
(
�{us,q},

�
{
us+1,q′ }

|us+1,q′ |

)
, 1≤ s≤S− 1, 0≤ q, q′ ≤Q− 1

cross-correlation with
the imaginary part of the
phase

C
(
�{us,q},

�
{
us+1,q′ }

|us+1,q′ |

)
, 1≤ s≤S− 1, 0≤ q, q′ ≤Q− 1

Central sample moment μn(u)=

{
1

MN

∑M−1
i=0

∑N−1
j=0 u(i, j) ifn=1

1
MN

∑M−1
i=0

∑N−1
j=0 (u(i, j)− μ1 (u))

n
ifn> 1

Translation operator τx,y (u) : u(m,n) 	→ u(�m− x�M , �n− y�N )
0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1, (x, y) ∈ Ω

Correlation C(u, v) =
1

MN

∑M−1
i=0

∑N−1
j=0 (u(i, j)−m(u)) (v(i, j)−m(v))

∗

Auto-correlation Γu (x, y) = C (u, τx,y (u))

low band images and the cross correlation of the real part of the sub band

images with the real and imaginary part of the phase sub band images.

In general S = 4, Q = 4 and Na = 7 are used, leading to a total of 710

parameters.

After setting the set of statistical constraints, a sample verifying them

has to be generated. Let ck be the corresponding estimated values of the con-

straint functions for a particular texture image. Portilla and Simoncelli [69]

“samples” an image from the set of images that yield the same estimated

constraints values A�φ,�c
= {u : φk(u) = ck, ∀k}. To pick at random from
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this set the authors proposed to select at random a sample u0 from R
|Ω|

and then project it sequentially onto subsets of A�φ,�c
. To emulate this the

authors proposed a gradient projection. That is moving in the direction of
the gradient of the constraint φk(v):

v′ = v + λk
−→∇φk(v)

choosing λk such that

(4) φk(v
′) = ck.

Computing
−→∇φk(v) is usually simple, and it remains to find the λk that

solves (4). When there are multiple solutions for λk, the one with smaller
amplitude is chosen, modifying as little as possible the image. In that way,
we stay as close as possible to the already projected set. When there is no
solution, the λk is the one that comes closest to satisfying (4). Finally this
method can be extended to the adjustment of a subset of constraints. Once
the set of statistical measurements is defined and a method to sample from
the Julesz’ ensemble of textures, the synthesis can be performed as explained
previously.

In a pre-attentive examination, the results are in general indistinct from
the original texture samples. Nevertheless, on attentive examination the syn-
thesis of structured textures often present blurry and jammed results. Long
range structures are missed and the method tends to homogenize the output
texture. Figure 4 shows two synthesis results. The first example (left in Fig-
ure 4) represents a quasi-periodic image where the method yields excellent
results although it contains some global structures. In the second example
(right in Figure 4), even though we recognize the nature of the input sam-
ple, one can observe that strong structures are missing. It is impossible to
recover the lined up tiles.

Increasing the number of orientations Q will improve the results since
more information is captured. However for Q > 4 the improvement is hardly
noticeable. The number of levels S of the steerable pyramid is the most
influential parameter. Depending on the nature of the texture, it will need to
be increased to capture the details at all scales. Once again, for microtextures
this parameter is less influential. Finally, the size of the neighborhood Na

used to compute the autocorrelation is important whenever the texture has
periodic information.

As we will see in Section 5, even though imperfect, the results are very
impressive, as they succeed modeling most textures using a moderately large
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Figure 4: Synthesis results of the Portilla and Simoncelli method [69]. It is
satisfactory for many small grain textures (left) but may miss the global
structure (right).

set of global statistics. This brings us to the following two questions. Is the
set of statistics considered enough to describe any kind of textures? Is the
optimization step enough to enforce these statistics? Fifteen years later,
Gatys et al. [27] proposed a texture synthesis method based on Convolu-
tional Neural Networks (CNN) which can be seen as an extension of Portilla
and Simoncelli’s work, where the set of statistics used is much larger and un-
known; also, the optimization is performed by the backpropagation method.

2.5. Texture synthesis using CNN

It is hard to define metrics to determine if two textures are similar or not ac-
cording to human taste. Julesz’ conjecture that humans cannot distinguish
two textures with same second order statistics was invalidated. Yet this
does not rule out a more general hypothesis, according to which there is a
set of low-level filters such that if two textures respect the same statistics for
these filters, they are indistinguishable. Portilla and Simoncelli’s approach
[69] and Zhu, Wu, and Mumford’s FRAME (Filters, Random field, And
Maximum Entropy) [97, 98] can be seen as fixing a set of hand-picked fil-
ters and synthesing new textures by enforcing the response to the filters to
have similar statistics. The set of filters is chosen to match human expecta-
tions about textures. However determining the exact set of filters equivalent
to human vision is very hard, and both approaches use only a subset of
them. Portilla and Simoncelli achieve similar statistics by iterating specific
projections, starting from white noise, while FRAME achieves that with a
Gibbs Sampler and some simplifications (quantizing the image intensities,
etc). Recently, Convolutional Neural Networks (CNNs) have given a breath
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of fresh air to these approaches. CNNs are compositions of layers of convo-
lutions, non-linearities and pooling. In the past few years, CNNs have been
successfully applied in a wide variety of domains, in particular in image re-
lated tasks. Arguably, the win by a large margin of CNNs [45] in the 2012
ILSVRC challenge [75], an image classification challenge, helped spark in-
terest of the global community to these methods. We refer the reader to the
corresponding literature for more details on the working of CNNs.

By taking a fully trained CNN on some visual classification task, and
restricting to lower layers, one gets a set of low level filters which can directly
be used for synthesizing texture, as shown in several works. The topic is quite
active recently, and the question “how to best synthesize a texture with the
help of neural networks” is far from being solved. In the following, we will
focus on two different approaches: Gatys’ texture generator [27] and Deep-
Frame [58]. Gatys’ approach is to minimize the distance between the Gram
matrices defined by the local filter responses of the network layers, while
DeepFrame generates textures by sampling from an exponential model. The
use of CNNs by these new approaches solves the issues of their ancestors:
first the filters do not need to be handpicked anymore, they are encoded
directly by the CNN. A pre-trained CNN successful on some image-related
tasks can be selected for the texture generation. The choice of the CNN and
whether it is pre-trained or the weights are random, affect the result. Sec-
ond, the architecture of Neural Networks eases the generation process. The
statistics of all the filters can be handled at the same time, via backpropaga-
tion for example. DeepFrame needs no quantization, unlike its predecessor,
and synthesizes textures at a faster speed. Because the filter responses at a
given Neural Network layer also encode the image content, texture transfer –
also named style transfer – can be achieved by applying the statistics of the
filter responses of a source image to a target image while keeping overall the
filter responses similar [29]. While initially both Gatys’ texture generator
and DeepFrame used the VGG network [80] trained on ImageNet [15], more
recent work obtained good results with networks with random weights [85]
or by integrating the network training with the generation process [93]. The
success of VGG for texture generation seems to stem from its training on
an object classification task. This implies that its trained features are valu-
able “textons” able to discriminate shape and object features. One could
imagine using a network trained to distinguish textures directly, instead of
VGG. But, to the best of our knowledge, no network has been trained on
an ImageNet equivalent to textures.

We now take a closer look at Gatys’ texture generator and at DeepFrame.
Gatys’ texture model is a generalization of Julesz’ model. It postulates that
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textures are described by the correlations between the neural network acti-
vations (features). Thus, by starting from random noise and imposing the
correlations between the features to be the same as for a given input texture,
one should get a new sample of this texture.

More precisely, Gatys’s texture generator seeks to minimize the cost

E =
∑
l

wl||Gl − T l||2F

where ||.||F is the Frobenius norm, wl are weights and Gl, T l are the Gram
matrices, respectively for the image and the target texture, of the feature
maps of a pretrained neural network at a layer l. In [27], a custom 19-layer
VGG network was used where max pooling was replaced by average pooling
and the network weights were rescaled. Let Nl be the number of feature
maps at layer l (this usually corresponds to the number of “channels”), and
Ml the size of each feature map at layer l (Ml×Nl is the number of outputs
of layer l). If we denote by F l

ij , i ∈ {1 · · · , Nl}, j ∈ {1 · · · ,Ml}, the j-th
output with the i-th feature map at layer l, then

(
Gl

)
ij
=

1

Ml

Ml∑
k=0

F l
ikF

l
jk.

The texture generator minimizes the cost via backpropagation in the net-
work, and thus falls into a local minimum. Starting from white noise, several
thousand iterations can be needed to reach visual convergence. While in [27]
the features were extracted from VGG [80], a Deep Convolutional Neural
Network trained on image classification tasks, in [85] it is noted that taking
a pre-trained network is not necessary and a network with random weights
can give satisfying results. The minimization of E is done with L-BFGS-B
[94] and the bounds are set to the minima and maxima of the source texture.
After convergence, the histogram of the source is enforced.

To generate the results in this article, we made a few changes compared
to [27]. The 19-layer VGG network used in [27] pads the outputs at every
convolution layer with zeros on each layer (to have the layer outputs be the
same size as the layer inputs). That, plus the fact that pixels on the border
are “seen” by fewer features than the pixels in the center, means that all
pixels on the image are not imposed the same distribution. If we take the
same layers than in [27] (conv1_1, pool1, pool2, pool3, pool4) the top
layer’s outputs (pool4) depend each on a 124×124 area of the source. Thus
123 pixels should be removed on each border in order to have all remaining
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pixels seen by the same number of features. Removing 123 pixels on each
border is not sufficient however to get the same constraints on the border
and the center since the neighbouring pixels affect the features, and those
neighbouring pixels are not affected by the same features. Thus to gener-
ate the results in this article, we decided to both remove the padding and
generate bigger images – 256 pixels more on each border – which we then
crop. The impact of this change can be seen on Figure 5. Other than that,
we took the same parameters. In [2] the method solves the same problem
by removing the network padding and enforcing periodicity. With the de-
fault network and parameters of Gatys’ texture generator, except for the
boundaries, a pixel is seen by 37504 filters. In Gatys’ method, textures are
only described by the Gram matrices. The number of elements in the Gram
matrices totals 352256, 176640 if we remove the redundant values (the ma-
trices are symmetric). This number of parameters doesn’t depend on the
image size, and once the Gram matrices of the source computed, the output
texture can be any size.

To fix some of the shortcomings of Gatys’ texture generator [27], sev-
eral works complete the objective function. The method in [55] incorporates
spectrum constraints to significantly improve the generation of textures with
low frequency patterns. In [6] the proposed method considers spatial co-
occurences of features to help handling long-range consistency constraints.
In [91] it is noticed that the Gram matrices have several particularities that
decrease the quality of the texture obtained in several cases with instabili-
ties, particularly visible when generating a texture with a size different from
the source. In our experiments we didn’t notice such an instability prob-
lem, although we observed some instabilities (see for example the fourth
column of Figure 20 and the first column of Figure 22). It is possible that
the instabilities are affected by the parameter choice. To solve the instabil-
ity problem, the authors added to the objective function a term to force the
feature maps histograms to be the same as for the source. The authors of
[63] also discussed some insufficiencies of Gram matrices in the case of style
transfer, and in particular proposed to shift the activations to avoid sparsity.
To accelerate the speed of the texture generation, the method of [83] trains
for a given texture a new CNN, which outputs new samples of the texture.
The CNN is trained with the same objective function as for Gatys’ texture
generator. Once the CNN is trained, generation is fast.

DeepFrame’s texture generator samples from an exponential model. The
model is defined by the probability density function

f(u;w) =
1

Z(w)
exp

[
K∑
k=1

∑
x∈Ω

wkFk(u)(x)

]
g(u),
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Figure 5: This figure shows the impact of the padding in the neural network.
The second image shows the result of a 1024×1024 generated texture without
the network padding, cropped to 512 × 512, while the figures on the right
show 512× 512 sized generated results without or with padding. The same
random initialization was used for all three results (and cropped for the last
two results). The differences are particularly visible on the border of the
pictures, since it is where each variant imposes different statistics.

where Fk corresponds to a filter map extracted from a CNN, Ω is the image
domain of u the image, Z(w) is a normalizing constant and g(u) is a reference
distribution, like

g(u) =
1

(2πσ2)|Ω|/2 exp

[
− 1

2σ2
||u||2

]
.

In contrast, the FRAME model defined the probability density function

f(u;λ) =
1

Z(λ)
exp

[
K∑
k=1

∑
x∈Ω

λk[Fk ∗ u(x)]
]

where the (Fk)k=1..K were kernels, such as Gabor filters, or Difference of
Gaussian filters, and λk was a discretization function with finite number of
possible outputs.

In a first phase, the DeepFrame parameters w = (wk) are tuned for
the source texture, then in a second phase new samples of the texture are
generated via Langevin dynamics. While in [58] a pre-trained network is
used, in the method of [93] its own network is trained on the source.

While both Gatys’ texture generator and DeepFrame have a fixed tex-
ture model used to generate new samples, for which they learn parameters, a
third successful CNN method to synthesize texture learns directly its model:
in [36] a generative CNN is trained to synthesize new images from one or
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several samples of a source. The training is based on the adversarial model:

a discriminator tries to distinguish the fake generated samples from true

ones, while a generator creates new samples. Spatial invariance assump-

tions are encoded in the networks, but else, the texture model is in some

sense learned by the two networks. This method can still be considered as a

statistics-based method, because in some sense the discriminator checks the

statistics of the texture are correct. To generate samples with this method

(“SGAN” for Spatial Generative Adversarial Networks), we took the default

network parameters, and applied the source histogram. We stopped after a

few hundred epochs. The outputs suffer from a sort of noise pattern, which

changes after every epoch. When the noise pattern was too important, we

decided to select among the last twenty epochs the generator’s result with

the less noise. SGAN is a recent method, and there are certainly ways to

better select the parameters and reduce this noise, but this goes beyond our

goals here. Recently a new extension called PSGAN (for Periodic Spatial

Generative Adversarial Networks) [7] was introduced to fix some shortcom-

ings of SGAN, in particular to improve the generation result for textures

with periodic patterns.

CNNs are also successful in the synthesis of images more general than

textures [64, 86, 76, 18], in particular with methods relying on Generative

Adversarial Networks (GAN) [30, 16, 73, 35, 88], but these methods are

out of the scope of this study, which focuses on synthesizing new texture

samples based on a single reference sample. These methods generally need

a database of images.

3. Patch re-arrangement methods

In contrast to the statistics-based methods, the patch re-arrangement meth-

ods do not attempt to characterize textures by a statistical model. Span-

ning from the groundbreaking work by Efros and Leung [19], this fam-

ily of algorithms consists of clever heuristics to re-arrange parts of the

sample texture in a random way in order to create a new texture. By

copying directly from the sample image, these methods often are able to

keep complex structures from the input. By the same token, the process

is frequently limited to copying and the results show little innovation rela-

tive to the sample. We will illustrate the family here by the original Efros

and Leung [19] algorithm, a further extension by Efros and Freeman [20]

which incorporate more recent techniques, and a more recent CNN based

method [53].
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Figure 6: Comparison between Gatys’ texture generator [27], DeepFrame
[58] and SGAN [36]. For all three methods, we used the default parameters,
except that in the case of Gatys we used the method we described above
where we remove the network padding and crop the result and in case of
DeepFrame and SGAN, we specified the result’s histogram on the source
histogram. Overall, SGAN looks the best when looking from far, but when
zoomed in, Gatys seems to respect the best the local structures.

3.1. The Efros and Leung algorithm

In his foundational paper of information theory [78], Claude E. Shannon
proposed to approximate the information contents of natural languages by
the entropy of generative stochastic processes. He used a Markov chain to
generate English text sequentially, letter by letter. Given a piece of already
generated text, the next letter is sampled from the probability distribution
of English text conditioned to the previous n letters. The following sequence
was generated by Shannon using a third-order model:

in no ist lat whey cratict froure birs grocid pondenome of demonstures of the
reptagin is regoactiona of cre

Although very few words are real English words, this simple model produces
surprisingly good English “textures”. Inspired by Shannon’s method, Efros
and Leung [19] proposed to adapt the same ideas for image texture synthesis.

Efros and Leung in [19] synthesize a new texture image by considering
that a pixel value depends on the values of its neighbouring pixels. The
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Figure 7: Overview of the Efros and Leung algorithm [19]. Given a texture
image (left) a new image (right) is being synthesized a pixel at a time. For a
pixel (m,n) (red point in the output) being synthesized the method finds all
neighbourhoods in the left image that match the neighbourhood of (m,n)
(dashed squares) and then chooses randomly one of the neighbourhoods
(yellow square) and assigns its central pixel value to (m,n).

method is illustrated in Figure 7 and works as follows. For a given input
texture, a new image is synthesized sequentially, pixel by pixel. For a pixel
(m,n) being synthesized, the algorithm finds all the neighbourhoods in the
input image that are similar to the neighbourhood of (m,n) up to a patch
distance tolerance. Then one of these neighbourhoods is randomly chosen
and its central pixel value is affected to the pixel (m,n). The neighbourhood
of (m,n) is a square patch but only the known pixels (coming from the seed
or already synthetized) of this patch are considered when comparing to the
neighbourhoods of the input. Denoting p1 and p2 two patches of size P ×P ,
the comparison is made using a Gaussian-weighted distance defined as

(5) d
(
p1, p2

)
=

1∑
i,j Gσ(i, j)

∑
i,j

(
p1(i, j)− p2(i, j)

)2
Gσ(i, j),

where Gσ is a Gaussian kernel with standard deviation σ.

Levina and Bickel in [51] provided a theoretical justification of Efros and
Leung’s work. The Efros and Leung algorithm is based on resampling from
the random field directly, without constructing an explicit model for the
distribution. The authors of [51] formalized this algorithm in the framework
of resampling from random fields and proved that it provides consistent
estimates of the joint distribution of pixels in a window of specified size.
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Figure 8: Synthesis results of the Efros and Leung method [19]. Left: the
example shows the garbage growing effect. Right: the example shows the
strength of this method to synthesize macrotextures. The patch size used
for both synthesis is P = 40.

In general the visual results are very impressive, especially for structured
textures. Nevertheless this algorithm suffers from two important drawbacks:
verbatim copies of the input and garbage growing (the algorithm starts re-
producing iteratively one part of the example and neglects the rest). Figure 8
shows two synthesis examples. The first synthesis result illustrates a failure
case. In particular one can observe the effect of garbage growing, which
reproduces incoherently the right side of the wood sample texture. The sec-
ond example shows the strength of this method when it comes to synthesize
textures with conspicuous patterns as in this case the brick patterns. To
illustrate the verbatim-copy regions, position and synthesis maps are used
to visualize from which regions of the input texture each synthetized pixel
comes from. A synthesis and the corresponding map are shown in Figure 9
(obtained with the online demo [1]). Large continuous zones are identified
in the synthesis maps which corresponds to the verbatim copies produced
by the method. This representation also shows that the synthesized image
is indeed a re-arrangement of pieces of the input sample.

Increasing the patch size P results in increasing the verbatim copied re-
gions. However if the patch size is too small the local aspect of this method
fails in recovering the global configuration of the input texture in particu-
lar for macrotextures. A second parameter of the method is the tolerance
parameter ε which is used to select the most similar patches in the input
image. Large tolerance values increase the garbage growing effect.

The Efros and Leung method also suffers from its high computational
complexity. Several optimizations have been proposed to accelerate this al-
gorithm. Among them Wei and Levoy [90] managed to fix the shape and
size of the learning patch and Ashikhmin [3] proposed to extend existing
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Figure 9: From left to right: texture sample, position map, synthesized image
and synthesis map. The synthesis map shows for each synthesized patch
its initial position in the texture sample. It allows then to identify exactly
the verbatim copy regions (they correspond to continuous color areas of the
map). This method reveals the verbatim copies of the input in the generated
texture and the repetitions (garbage).

patches whenever possible instead of searching in the entire sample texture.
The following section describes a particularly important extension of the
method.

3.2. The Efros and Freeman algorithm

Efros and Freeman’s method [20] is an extension of Efros and Leung’s. It is
based on the same principle where the pixel values are conditioned to their
neighbourhood values. Efros and Freeman proposed to generate a new image
sequentially, patch by patch (instead of pixel by pixel) in a raster scan order
as illustrated in Figure 10. At each step a patch that is only partially defined
on a region called overlap region is completed. This overlap region is of width
wo. This is the patch under construction. To do so a patch of the input
image among those who match the patch under construction on its overlap
region is randomly selected (patch selection step). An optimal boundary cut
between the chosen patch (pin) and the one under construction (pold) is then
computed across the overlap region (stitching step). This optimal boundary
cut is used to construct a new patch (pnew) by blending the (pin) and (pold)
along the cut. There are three possible overlap regions: vertical overlap for
the first row, horizontal overlap for the first column, and L-shaped overlap
everywhere else (Figure 10).

In the patch selection step, to select a patch pin of an input image u
one computes the square distance between the overlap region of the patch
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Figure 10: Three different iterations of the synthesis process are shown. At
each iteration a patch is being synthesized. This patch is represented by
the pink square in the three iterations shown. From left to right the three
overlap cases are represented: vertical, horizontal and L-shape.

pold and the corresponding regions of all the patches of u. The minimal
distance Dmin is determined and pin is randomly picked among all patches
whose distance to pold is lower than (1 + ε)Dmin where ε is the tolerance
parameter. The squared distance image d contains at each position (m,n)
the distance between pold and the patch from u according to some binary
weight t that equals one in the overlap region and zero otherwise. More
precisely, one has

(6) d(m,n) =
∑
i,j

t(i, j)(pold(i, j)− u(m+ i, n+ j))2.

The patch pin of u having coordinates (m,n) is similar to the partially
defined patch pold on their overlap region. To get the final patch pnew one
must combine the patches pold and pin. Denoting t the binary weight for the
overlap regions as in (6), then, for any binary image r such that 0 ≤ r(i, j) ≤
t(i, j), (i, j) ∈ {1, . . . , P}2, P can be defined as the combination

pnew = t pold + (1− t) pin.

The main contribution of Efros and Freeman [20] is to look for a binary
shape M where the transition between pold and pnew along the boundary of
the shape is minimal. For simplicity, and to be able to use linear program-
ming, the authors do not allow for any shape, but only for the ones whose
boundaries are simple forward paths from one end to the other of the overlap
region. This results in two pieces of image being sewn together along some
general boundary path, hence the algorithm’s name “quilting”.
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Figure 11: Synthesis results of the Efros and Freeman method [20]. It works
for microtextures but risks losing the example’s global statistics. It works
for macrotextures too, but risks verbatim copies. Two examples are shown:
a success (left) and a failure (right). The parameters used for are P = 80
and O = P/4.

This method yields very impressive visual results, in particular for highly

structured textures. In terms of speed the gain is truly significant with re-
spect to the methods which synthesize an image pixel by pixel. The patch
size being larger, the risk of garbage growing is reduced compared to the

Efros-Leung algorithm. Nevertheless the risk of verbatim copies remains
and is even amplified. Moreover, the respect of the global statistics of the
input is not guaranteed and this is quite visible when the input texture is

not stationary (for example if there is a change of illumination across the
image). Figure 11 shows two synthesis examples. The first one (left) shows
an excellent synthesis result where the strong structures of the input are

perfectly recovered. The second one (right) puts in evidence the verbatim
copy of parts of the input and the garbage growing effect. To illustrate this
the synthesis map of the second example is shown in Figure 12.

The parameters P and ε play the same role as in Efros and Leung’s
method. A third parameter, the overlap size O is used. Increasing this value
tends to increase the verbatim copies of large regions. However if this value is

too small then garbage growing increases. The value O = 0.25P is generally
satisfactory.

3.3. High level patch re-arrangement with Convolutional Neural
Networks

The CNNs texture synthesis methods presented in Section 2.5 typically gen-
erated new texture samples by enforcing similar statistics on the feature
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Figure 12: From left to right: texture sample, position map, synthesized im-
age and synthesis map. The synthesis map shows for each synthesized patch
its initial position in the texture sample. It puts in evidence the verbatim
copy regions (they correspond to continuous color areas of the map) and
the repetitions (corresponding to repeated continuous patches of the same
color).

maps of a pre-trained CNN. At the crossroad of patch re-arrangement meth-
ods and CNNs, lies CNNMRF [53]. What distinguishes this method to those
of Section 2.5 is that the texture samples are generated by enforcing similar
patches of feature maps on selected upper layers of a pre-trained CNN. The
image is then obtained with backpropagation and a smoothness constraint.

More precisely, starting from random noise, an image is generated by
minimizing the energy:

E =
∑
l

∑
i

||ψi(F
l)− ψNN(i)(F

l
s)||2 +R

where l goes among the selected layers (relu3_1 and relu4_1 of the VGG
network [80]), i goes among all the positions in the layer, ψi(F

l) represents
the patch at the i-th position and ψNN(i)(F

l
s) is its best matching patch in

the source according to the normalized cross-correlation. The default patch
size is 3× 3 times the number of feature maps (often referred as the number
of “channels” of the layer). R is a regularizer term to impose smoothness
of the resulting image. In [53], the energy also contains a term to enforce
the content of the source if doing texture transfer. This term isn’t used for
texture synthesis.

As noted by the author, a natural seamless patch blending is obtained
by performing a patch re-arrangement on the levels of the CNN instead of
doing it directly on the image, like in the other methods of this section.

Similarly to what was done in Section 2.5, we removed the padding
of the VGG network to generate the results of this method. Indeed if the
padding is kept, the spatial invariance assumption is violated. Moreover



120 Lara Raad et al.

Figure 13: This figure shows the impact of the padding in the neural network
when generating images with CNNMRF [53]. The second image shows the
result of a 1024 × 1024 generated texture without the network padding,
cropped to 512 × 512, while the figures on the right show 512 × 512 sized
generated results without or with padding. The same random initialization
was used for all three results (and cropped for the last two results).

pixels on the border of the generated images are seen by fewer features,
which reinforces the violation of the spatial invariance. Thus in addition
to removing the network padding, we generated bigger images and then
cropped the result. On Figure 13, the generated texture with the network
padding and no border crop kept tends to reproduce exactly significant parts
of the input on the borders. This problem doesn’t appear on the image with
the padding removed and the border cropped. To generate the figures in
Section 5 which features images of size 1024 × 1024, we couldn’t add 256
pixels more on each border, as was done in Section 2.5, due to memory
constraints. Instead we generated images of size 1280 × 1280, which were
then cropped.

4. Hybrid methods

The two main approaches to texture synthesis are the statistics-based meth-
ods and the patch re-arrangement methods. In the first class, a texture is
characterized by a statistical signature; then, a random sampling conditioned
to this signature produces genuinely different texture images. Nevertheless,
these methods often fail for macrotextures. The second class boils down to
a clever “copy-paste” procedure, which stitches together verbatim copies of
large regions of the example. A third kind of hybrid methods combines ideas
from both approaches, leading to synthesized textures that are everywhere
different from the original but with better quality than the purely statistics-
based methods. We will describe one such method, its multiscale extension
and the explicit combination of complementary algorithms.
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4.1. Local Gaussian models for texture synthesis

Raad et al.’s method [70] uses locally Gaussian (LG) texture model in the
patch space. Each texture patch is modeled by a multivariate Gaussian
distribution learned from its similar patches. Inspired by [20], the idea of
searching for patches to stitch together in the original sample is maintained.
However, instead of using the exact patch taken in the input texture, the
stitched patch is sampled from its Gaussian model. Locally Gaussian patch
models have been proved very useful in image denoising [10]. This approach
permits to maintain the coherence between patches with respect to the input
sample, while creating new patches that do not exist in the sample texture
but are still perceptually equivalent to it.

The multivariate Gaussian models involved are defined by their mean
vector μ and their covariance matrix Σ. For a given patch p, of size P × P
pixels, these parameters are estimated from the set of the R nearest patches
Uu
p (nearest neighbours of p taken in u) as defined

(7)

μ = 1
R

∑
p∈Uu

p
p,

Σ = 1
R−1

∑
p∈Uu

p
(p− μ) (p− μ)t .

The sampled vector p′ is defined as

(8) p′ =
1√

R− 1

∑
ρ∈Uu

p

aρ(ρ− μ) + μ, aρ ∼ N (0, 1),

where aρ are scalar random variables associated to each patch and following
a normal distribution. Note that p′ follows the distribution N (μ,Σ). These
models have reasonable variances, confirming that effectively the patches
simulated have an acceptable degree of innovation [70].

The new texture image is synthesized by stitching together patches sam-
pled from multivariate Gaussian distributions (8) in the input sample patch
space. The method is iterative: the patches are synthesized in a raster-scan
order (top to bottom and left to right). The goal of each iteration is to
generate a new patch pm,n

v (patch in v placed at (m,n)) that is partially
defined on a region called the overlap area (see Figure 10). The known part
of the patch defines the set of patches Uu

pm,n
v

from which its Gaussian model

is inferred. The generated patch pm,n
v is then sampled as defined in (8). The

last step consists in stitching the patch into the output texture using the
quilting method of [20].
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Figure 14: Synthesis results of the locally Gaussian method [70]. It works
well for macrotextures. As one can observe in both examples the result is
slightly blurry, a characteristics of the Gaussian model. The parameters used
for are P = 40, R = 30 and O = P/2.

This synthesis algorithm generates a texture that is perceptually equiva-
lent to the sample texture yet not composed of patches existing in the input
texture. Thus, this method reduces some of the drawbacks of the statistics-
based and the patch-based methods. Indeed the method yields satisfying
results for micro- and macro-textures, and reduces the verbatim copies of
the input. However, this method remains local and is (like all patch based
approaches) not forced to respect the global statistics of the texture sample.

Figure 14 shows two results of the method. The algorithm remains de-
pendent on the choice of the patch size P and of the number of nearest
neighbours R as illustrated in Figure 15. These values may have to be ad-
justed for each texture sample. As for the overlap size a convenient value
is O = P/2. If this value is too small then the region used to infer the
Gaussian models is not enough. The patches used to infer the model can
be very different on a high portion of the patch. The algorithm has a low
computational complexity, compared for instance with classic patch-based
denoising algorithms [49, 13]. An alternative to reduce the dependency of
the method to the patch size is to work in a multiscale approach.

4.2. Multiscale texture synthesis methods

Most real textures are organized at multiple scales: the global structure is
revealed at coarse scales but important detail are present at finer ones. As
we have seen, the results of patch-based methods depend strongly on the
patch size. Small patch sizes may capture the finer details of the input but
the resulting texture will lack global coherence. On the other hand, using
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Figure 15: Texture synthesis result for the left top corner texture image. We
show the results obtained for different values of R (the number of similar
patches) and P (the side patch size). From left to right P = 10, 20, 30. From
top to bottom, the number of nearest neighbours is R = 10, 20, 30. All the
results are obtained for an overlap of a half patch size O = P/2.

large patches will maintain the global structures at the risk of a “copy-paste”

effect. Furthermore, with large patches it becomes impossible to model the

patch variability due to the lack of sufficient samples. This is apparent in

the examples of Figure 14, where modeling patches as multivariate Gaussian

vectors leads to a slightly blurry texture. A natural solution is to use a

multiscale approach [46, 81, 50, 34, 70] using several patch sizes for a single

texture synthesis, capturing different levels of details.

This section illustrates the ideas and difficulties of a multiscale extension

using as example the local Gaussian models for texture synthesis presented in
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the previous Section [70]. The Multi-Scale Locally Gaussian (MSLG) method
works at S scales and can be summarized in a few sentences. The synthesis
begins at the coarsest scale (s = S − 1) using the local Gaussian method
where the quilting step is replaced by a simple average of the overlapping
patches. For the remaining scales (s = S−2, . . . , 0), a synthesis is performed
by using the result of the previous scale (s+1) and the sample image at the
corresponding resolution. At each scale the synthesis is done patch by patch
in a raster-scan order. Each new patch, added to the synthesized image,
overlaps part of the previously synthesized patch and it is the combination of
a low resolution patch and a high resolution one sampled from a multivariate
Gaussian distribution. The Gaussian distribution of the high frequencies
of a given patch is estimated from the high frequencies of its m nearest
neighbours in the corresponding scale input image. The synthesis result of
the finer scale is the desired output image.

Let us denote the sample texture by u and us, s = 1, . . . , S − 1 are
the zoomed out versions by a factor 2s, s = 1, . . . , S − 1. The synthesis
result at each scale is denoted by vs, s = 1, . . . , S − 1 and v is the synthesis
result returned by the multiscale algorithm. An additional image ṽs is needed
at each scale, corresponding to a low resolution version of vs obtained by
interpolating vs+1. To estimate the parameters of the Gaussian distribution
of the patch pm

′,n′

vs being processed, the set Uus

pm′,n′
vs

of R nearest patches in

us is considered. The R nearest neighbours in us to the current patch are
those minimizing the L2 distance restricted to the overlap area:

d(pm,n
us

, pm
′,n′

vs
)2 =

1

|O|
∑

(i,j)∈O
(us(m+ i, n+ j)− vs(m

′ + i, n′ + j))2

+
1

P 2

P−1∑
i,j=0

(ũs(m+ i, n+ j)− ṽs(m
′ + i, n′ + j))2,(9)

where ũs denotes the low resolution of the image us, ũs = us ∗ Gσ and
ṽS−1 = uS−1 ∗ Gσ. In (9), the overlap area is denoted as O and the size
of patch overlap is fixed to P/2. On the set Uus

pm′,n′
vs

only the high frequency

of the patches pi,jus − pi,jũs
is considered to infer the multivariate Gaussian

distribution N (μH ,ΣH). The patch pm,n
vs is synthesized as the combination

of a low resolution patch pm,n
ṽs

yield from the previous scale with a high
resolution one p ∼ N (μH ,ΣH), thus pm,n

vs = pm,n
ṽs

+ p. For more details
please refer to [70].

Figure 16 shows two synthesis examples. In both cases the result is sat-
isfyingly recovering the details of the different scales for reasonable values
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Figure 16: Synthesis results of the multiscale locally Gaussian method [70].
Both examples show that the details of different scales are correctly syn-
thesized when using a patch size P = 20. However the results are slightly
blurred with respect to the input. The number of scales is S = 3 for the first
example (left) and S = 2 for the second example (right).

of the patch size P = 20. However one can notice that the results are blurry
with respect to the input and this effect is increased with respect to the
single scale approach.

4.3. Combination of methods

A smart combination of complementary methods may keep the advantages
of each one. We will illustrate the methodology by combining a multiscale
approach with three other methods:

MSLG+EF The Multi-Scale Locally Gaussian method combined with the
Efros and Freeman method.

MSLG+PS The Multi-Scale Locally Gaussian method combined with the
Portilla and Simoncelli method.

MSLG+Gatys The Multi-Scale Locally Gaussian method combined with
the Gatys et al. method.

The combination of the Multi-Scale Locally Gaussian method with the
Efros and Freeman method (MSLG+EF) consists of two steps. The first
step synthesizes the given input u with the Multi-Scale Locally Gaussian
method generating a new texture image that we denote umslg. The second
step consists in applying the Efros and Freeman algorithm to the given input
sample, initializing the output image that we denote uef with the image umslg.
The method is basically the same as the one described in Section 3.2. The
only step of the algorithm that is modified is the patch selection step. In the
method described in [20] at each iteration the added patch was chosen among
those (in the input sample) whose overlap region was similar to the one of
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Figure 17: Synthesis results of the combination of the Multi-Scale Locally
Gaussian method with the Efros and Freeman (MSLG+EF).

the patch under construction. When combining the methods, instead of only
comparing the overlap areas, the entire patches are compared. Initializing the
output with a first synthesis umslg enables the method to use the whole patch
under construction to find a candidate in the input sample u. The candidate
patch taken from u is then quilted in uef at the corresponding position with
the same stitching step as in [20]. This combination allows to recover the lost
resolution of the MSLG synthesis as illustrated in Figure 17. However it is
not capable of masking the garbage growing effects as effectively MSLG+PS
combination does.

The combination of the Multi-Scale Locally Gaussian method with the
Portilla and Simoncelli method (MSLG+PS) consists of two steps. In the
first step, given the input image u, a new texture umslg is generated using
MSLG. The second step uses PS where the initialization “noise image” is
replaced by umslg generating the output image that we denote ups. As ex-
plained in Section 2.4, the statistics to impose are learnt on the input u.
What follows is a synthesis step where the output image is projected on the
subspaces of constraints. There exist several local solutions to this projection
step. When initializing PS with the result of MSLG, the initialization image
is generally quite close to the images living in the sub-space of the whole set
of constraints. Thus the result obtained is improved compared to PS images
starting from a random noise image. Naturally fixing the initialization of the
PS algorithm removes the randomness of the generated texture. But this is
not the case since the initialization is itself random as it is generated from
another random process. This combination is illustrated in Figure 18.

The combination of the Multi-Scale Locally Gaussian method with Gatys’
texture generator (MSLG+Gatys) is very similar to its combination with the
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Figure 18: Synthesis results of the combination of the Multi-Scale Locally
Gaussian method with the Portilla and Simoncelli methods (MSLG+PS).

Figure 19: Synthesis results of the combination of the Multi-Scale Locally
Gaussian method with Gatys’ texture generator (MSLG+Gatys).

Portilla and Simoncelli method. The texture generator is initialized with the
result of MSLG umslg, and the statistics of the target image are enforced via
several iterations of backpropagation generating the output image denoted
as ugatys. This combination is illustrated in Figure 19.

5. Experiments

The first part of this section compares the exemplar-based texture synthe-
sis methods described before on a set of standard textures. These results
illustrate the advantages and limitations of each one. Then, the second part
attempts at the synthesis of real life and more complex textured images,
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Figure 20: Comparison of texture synthesis methods. From top to bottom: in-
put sample, Random Phase Noise (RPN) [23], Heeger and Bergen (HB) [33],
Portilla and Simoncelli (PS) [69], Gatys (Gatys) [27] and SGAN [36].

revealing the shortcomings still present in all the methods when confronted
with such a demanding task.

5.1. Comparative evaluation

We will compare the results of the following texture synthesis methods:
Random Phase Noise (RPN) [87, 23], Heeger and Bergen (HB) [33], Portilla
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Figure 21: Comparison of texture synthesis methods. From top to bottom:
input sample, Efros and Leung (EL) [19], Efros and Freeman (EF) [20],
CNNMRF [53] and MSLG [70].

and Simoncelli (PS) [69], Gatys (Gatys) [27], SGAN [36], Efros and Leung

(EL) [19], Efros and Freeman (EF) [20], CNNMRF [53] and MSLG [70].

Figures 20 to 23 show results for various texture samples, one per column;

in each figure, the first row shows the sample image and the following rows

correspond, as indicated, to one of the algorithms. We focus on these orig-

inal texture synthesis algorithms, and do not show the numerous variants.

For several of our sample textures, these variants could get better results,

but we think that showing the results of the original algorithms better un-

derlines their intrinsic strengths and weaknesses. Similarly we won’t present

the results of all the combinations of the different methods.

The second to sixth rows correspond to statistics-based methods de-

scribed in Section 2, namely Random Phase Noise, Heeger-Bergen, Portilla-
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Figure 22: Comparison of texture synthesis methods. From top to bottom: in-
put sample, Random Phase Noise (RPN) [23], Heeger and Bergen (HB) [33],
Portilla and Simoncelli (PS) [69], Gatys (Gatys) [27] and SGAN [36].

Simoncellli, Gatys and SGAN. Early statistics-based methods: Heeger and
Bergen (1995), Portilla and Simoncelli (2000) and Random Phase Noise
(1991) yield good results for microtextures, i.e. textures with no conspic-
uous structures, as can be seen in the first texture example of Figure 20
and to a lesser extent for the second and third example. The Heeger and
Bergen’s method is inspired on a model of the early visual cortex; it pro-
vides satisfying results in some cases but there is no theoretical proof of
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Figure 23: Comparison of texture synthesis methods. From top to bottom:
input sample Efros and Leung (EL) [19], Efros and Freeman (EF) [20],
CNNMRF [53] and MSLG [70].

the convergence of the method. On the other hand, the RPN method yields

a simple and elegant theory with no convergence issue. The visual results

yield by both methods are in general satisfying for microtextures. How-

ever, for textures with local structures, the results are blurry and unsat-

isfying. Among these three methods, the results obtained by Portilla and

Simoncelli are by far the most remarkable. These results contain recog-

nizable configurations from the sample. This can be observed for the last

texture example in Figure 20 and the first two examples in Figure 22. No-

tice that the Heeger and Bergen and RPN methods yield unsatisfying re-

sults for these three examples. Clearly the global statistics considered by

these methods are not enough to characterize these highly structured tex-

tures.
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The second and third rows of the Figures 21 and 23 correspond to
the patch re-arrangement methods Efros-Leung (1999) and Efros-Freeman
(2001) described in Sections 3. The first three textures in Figure 21 have no
conspicuous structures but are not stationary (for example, there are small
changes of illumination). The Efros and Leung method, being too local,
fails to recover the global characteristics of these textures. A similar and at-
tenuated behavior is observed in Efros-Freeman’s results. The methods are
significantly better than their predecessors in the presence of local structure,
but have their specific problems. Efros and Leung’s results for the third and
fourth texture in Figure 21 show two clear examples of garbage growing.
The method has repeated a very small part of the input in an inconsistent
way creating “garbage”. In general this phenomenon is more evident in Efros
and Leung’s results, compared to those of Efros and Freeman. The results
of Efros-Leung and Efros-Freeman for the first texture in Figure 23 show
that the global organization is sometimes missed, mostly due to the fact
that these methods work at a single scale. The second texture example in
Figure 23 yields impressive results in the case of Efros-Freeman’s method.
Nevertheless, looking carefully one can notice the verbatim copies of the
piece of chalks in the input image. The hybrid method MSLG (2016) de-
scribed in Section 4, whose results are on the fifth row of Figures 21 and 23,
faces the same issues for the three first examples in Figure 21. This is less
visible though, since the Gaussian models tend to smooth slightly the result.
However, the original granularity of the input sample is lost in MSLG. As
mentioned in Section 3, Efros and Leung’s and Efros and Freeman’s results
depend on the patch size, while the multiscale approach (MSLG) is more
robust to that parameter. When the former two methods fail to preserve
global organization, MSLG, working at multiple scales, manages to preserve
this organization. In the second texture example in Figure 23, MSLG avoids
the verbatim copy since the patches are being sampled from their Gaussian
model and therefore are different from their original patches. Nevertheless,
the Gaussian model strongly smooths the output. The synthesis of the flower
texture (Figure 23 third row) is very satisfying for the three methods. Finally,
the pumpkin texture shows a clear example of the verbatim copy effect in the
Efros-Leung and Efros-Freeman methods. The fourth row of the Figures 21
and 23 corresponds to the CNN patch re-arrangement method CNNMRF
(2016) described in Section 3. By bringing the patch re-arrangement to CNN
features, the blending between the patches is improved. For example on the
fourth texture of Figure 23, the separation between the patches are visible
on the results of Efros-Freeman, which is not the case for CNNMRF. How-
ever CNNMRF suffers particularly from verbatim copies and fails to recover
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the global statistics of the image. Efros-Leung and Efros-Freeman do suffer
less from these problems because the patch selection step for these methods
picks randomly among a selection of patches, whereas CNNMRF takes the
most likely patch.

The recent statistics-based CNN methods, discussed in Section 2.5, show
significant improvement over their predecessors. Gatys (2015) is the best
statistics-based method at respecting the fine details for all the textures of
Figures 20 and 22, which can be well noticed with a zoom-in. However, some
low frequencies or structure organizations are missed, as seen on the fourth
texture of Figure 20, and some contrast instabilities can be noticed, for
example on the first texture of Figure 22. As discussed in Section 2.5, some
variants were proposed to fix these problems. SGAN (2016), on the other
hand, better respects the low frequencies, and the results often look better
than Gatys when zoomed-out. However on the fine scale, the results are
incomplete and noisy, as seen on all the textures of the Figures 20 and 22.
SGAN fails to generate correctly the first texture of Figure 20, possibly
because this texture has no structure and is a microtexture. It is likely that
better results can be obtained by tuning the parameters, but as said in
Section 2.5, the default parameters were used.

Among all these methods, the CNN based methods are the most ex-
pensive in computational time. Pixel based methods, like Efros-Leung, are
more expensive than patch based methods like Efros-Freeman or MSLG.
The speed of statistics-based methods depends on how global the optimiza-
tion is, and on the number of iterations needed. Portilla-Simoncelli’s and
Heeger-Bergen’s speeds are comparable to patch based methods, while Ran-
dom Phase Noise is the cheapest of the methods reviewed here.

These comparative evaluations show the strengths and weaknesses of
the different original methods described in this survey. As said previously,
some variants of these methods can get better results on some pictures.
For example, a better result for the fourth texture of the Figure 20 can
be seen on Figure 19. For this texture, first generating with MSLG, then
refining with Gatys’ texture generator, enables to combine the best of both
algorithms: The fabric elements are well aligned, and look good at a fine
scale. Overall, over the last three decades, tremendous progress was made to
generate convincing new texture samples from a small and stationary texture
sample. However one could argue that the samples used in this comparison
are toy examples. Indeed, except for the third texture of Figure 20, and
fourth texture of Figure 22, the samples do not suffer much of illumination
changes or perspective, and are essentially stationary. Nevertheless, most
textures are not stationary. Think for example of a wood texture. This leads
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Figure 24: Two crops of different parts of a larger wood texture. The cropped
images are of size 500 × 500 pixels. Each one represents a different texture
belonging to a single “big texture”.

us to wonder whether the presented algorithms get acceptable results on
these complex scenarios.

5.2. Getting out of toy examples

The previous examples present some quite impressive texture synthesis re-
sults by several algorithms. The texture synthesis problem seems to be al-
most solved for “academic” textures. Still, those results were obtained for
pictures of relatively small size and taken in almost ideal conditions, in order
to get almost stationary textures. In this section, we discuss the situation
for more complex textures: When the same methods are applied to sample
images of real and non-stationary textures, where long-range structure is
present as well as varying detail at every scale. Figures 24 and 25 show some
realistic examples of real world images that nobody would hesitate calling
textures. Nevertheless on second thoughts they do have a complex, non-
stationary structures, because every large enough image has it. But these
are precisely the examples that need being emulated! In this endeavor, we
can relax the requirement that the synthesis must make a larger image. Let’s
just ask if a method is able to reproduce a perceptually similar texture at
the very same size.

Each of textures in Figures 24 and 25 show different salient sub-textures
within the same image. Since the methods in Section 5.1 usually assume that
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Figure 25: Two crops of different parts of a larger stone texture. The cropped
images are of size 512 × 512 pixels. Each one represents a different texture
belonging to a single “big texture”.

the texture is stationary, it is not completely fair to use these methods on
these samples. Several works have investigated ways to handle these complex
cases [74, 4, 44, 56]. In this section we show the results of the state of the art
algorithms presented in this paper, and will show that they are still far from
emulating to real world textures, even without the requirement of building
a larger texture patch from the sample.

Figures 26 and 27 show the results of the presented statistics-based,
patch re-arrangement and hybrid methods on some of these more complex
examples. The best results are Gatys’ texture generator on the second tex-
ture and MSLG+PS and MSLG+Gatys on the first texture and fourth tex-
ture. When applying RPN or PS to them the results obtained are often too
blurry. Gatys’ texture generator fails to catch the low frequency structures
for the last two textures. EF, CNNMRF and MSLG suffer from garbage
growing and verbatim copies on the first three textures. This is true espe-
cially when the input is not stationary. SGAN fails to generate properly on
the first two textures, and while the global organization of the third and
fourth pictures is good, it suffers from the noise at small scale mentioned
previously. As noticed in the previous section, the MSLG results are slightly
blurry.

These results show that while some methods can get good results on some
of these challenging texture samples, no method manages to get satisfying
results for all four textures.
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Figure 26: Synthesis results for statistical based and patch re-arrangement
methods on complex texture. They show the current limitations of all best
methods. RPN scrambles the textures. PS loses long range coherence of the
wood veins. EF and CNNMRF’s copy paste is quite visible for all textures
and incurs in garbage growing. PS and Gatys have satisfying results on the
left hand two textures, but miss to emulate long range interactions on the
wood textures. SGAN grows periodic noise patterns.



A survey of exemplar-based texture synthesis 137

Figure 27: Synthesis results for the hybrid methods. In columns 2) and 3),
MSLG has repetitions and garbage growing; thus all the generated results
based on the MSLG outputs keep this defect. In columns 1) and 4), MSLG
respects well the global statistics of the textures, and the combination with
other methods indeed improves the result. MSLG+PS and MSLG+Gatys
perform better on these examples than MSLG+EF.

6. Conclusion

With the multiplication of applications in computer graphics to the enter-
tainment industry, the interest in the generation of synthetic objects with
realistic texture has grown rapidly. High budget film sets, computer games,
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and in some cases digital art, spend intensive human efforts to imitate the
appearance and feel of real world items. For this reason, exemplar-based tex-
ture synthesis has been the focus of intensive work for three decades. And
as the available computational power increased, so has the sophistication of
these methods.

In the end of the last millennium, statistics-based methods, such as RPN,
Heeger-Bergen and Portilla-Simoncelli focused on a reduced set of statistics.
The results were quite satisfactory on micro-textures, but could be blurry
and far from the originals for more complex structures. Patch re-arrangement
methods, such as Efros-Leung and Efros-Freeman, managed to respect sig-
nificantly better the feel and the low level structures of these textures, but
could have issues, such as discontinuities, verbatim copy, garbage growing
or simply not respecting some essential statistics of the textures, such as
the average intensity. Hybrid methods, such as MSLG, fix some of the is-
sues of patch re-arrangement methods, but still share some of their issues.
Very recently, statistics-based methods have been revisited with Convolu-
tional Neural Networks (CNNs). CNN based methods significantly increase
the number of texture statistics involved in their model, for example by a
factor of 25 approximately in the case of Gatys’ texture generator compared
to Portilla-Simoncelli. The results show a spectacular progress over their
predecessors, but no method is perfect yet. Patch re-arrangement methods
were revisited as well by CNNs. CNNMRF improves the blending between
the image patches, but the results still suffer from the problems mentioned
above for patch re-arrangement methods. In this review, we presented three
statistics-based neural methods with different models: Gatys’ texture gener-
ator, DeepFrame and SGAN.When zoomed-in, the outputs of Gatys’ texture
generator are the best among the statistics-based methods, but miss some
important low frequency constraints of the texture when zoomed-out. Some
variants aim at fixing this shortcoming. SGAN succeeds better on several
examples to respect the global structure of the texture, but the details of
the texture are poor. While all the other statistics-based methods have an
explicit texture model, the SGAN model is more implicit.

Our experimental results look no doubt sometimes worse than in the
original papers, but precisely we did not select the best examples. Our ex-
amination of the history of the method leads to the following conclusions.

- The exemplar-based texture synthesis problem is implicitly ill-posed, as it
requires to extrapolate a Fourier spectrum by enlarging the image given a
very small sample of it. Having very small samples may have been histor-
ically interesting in computer graphics, but is no longer a technical issue,
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given the available memories and computational power in all computers.
- By working on small texture examples the literature has somehow unre-
alistically restricted the problem. Indeed it is simply not true that textures
are as stationary as those examples suggest.
- When trying to work on larger examples, we have seen that no texture
sample is really stationary. A realistically large texture sample in fact con-
tains smaller patches of very different textures.
- This explains first why patch based copy-paste methods are doomed in spite
of some apparent success in some quasi-periodic texture with no conspicuous
detail. On more involved samples, they cannot but reproduce recognizable
details.
- This also explains why progress in this topic is linked to the design of
methods enforcing more and more statistical parameters. The number of
statistics enforced by statistical models is growing fast: 710 for Portilla-
Simoncelli, 176640 for the default model in Gatys’ texture generator. With
some results showing that the filters can be chosen with random weights
[85], one can wonder if the solution is not to just use the highest number
of statistics possible to emulate a texture. One may also wonder where to
draw a reasonable limit between synthesizing complex textures and render-
ing scenes containing textured objects.
- Thus, the Portilla-Simoncelli method, of enforcing a high number of statis-
tics, wins, but it is somewhat a Pyrrhic victory. Indeed, the more random
statistics we pile up, the better the exemplar-based results. But it remains
to find numerical tools applying automatically an Occam’s razor as Portilla
and Simoncelli did manually. This is still needed to realize the goal of Julesz’
program, which was to find the minimal sufficient set of statistics rendering
two textures indistinguishable.
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