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A second order free discontinuity model
for bituminous surfacing crack recovery and

analysis of a nonlocal version of it
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We consider a second order variational model dedicated to crack
detection on bituminous surfacing. It is based on a variant of the
weak formulation of the Blake-Zisserman functional that involves
the discontinuity set of the gradient of the unknown, set that en-
codes the geometrical thin structures we aim to recover, as sug-
gested by Drogoul et al. Following Ambrosio, Faina and March, an
approximation of this cost function by elliptic functionals is pro-
vided. Theoretical results including existence of minimizers, exis-
tence of a unique viscosity solution to the derived evolution prob-
lem, and a Γ-convergence result relating the elliptic functionals to
the initial weak formulation are given. Extending then the ideas
developed in the case of first order nonlocal regularization to higher
order derivatives, we provide and analyze a nonlocal version of the
model.
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1. Introduction

The scope of this paper is to propose a novel variational method to detect
thin structures, namely cracks on bituminous surfacing. If singularities re-
lated to edges are classically associated with a discontinuity of gray level
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Figure 1: A bituminous surfacing image and a crossplot going through the
crack.

intensities across edges (and are thus detected using spatial gradient infor-
mation carried by the image), this characterization proves to be unsuitable
when dealing with points, cracks, or filaments. Indeed, while for an edge the
singularity is associated with a jump of the intensity across this edge, for
filaments, such a jump does not occur (see [29, p. 2]). As an illustration,
on the crossplot of Fig. 1, the crack is represented by a very thin peak and
so the spatial gradient is unable to seize this singularity. In [29], Drogoul
provides a heuristic illustration of this fact by considering an approximation
of the 1D function defined by f(x) = 0 if x �= 0 and f(0) = 1 as follows:
fη(x) = 0 if |x| ≥ η and fη(x) = 2

η3 |x|3 − 3
η2 |x|2 + 1 if |x| ≤ η. It is not

difficult to see that f ′
η(0) = 0, showing that the differential operator of order

1 does not capture the singularity at 0. On the other hand, as f
′′

η (0) = − 6
η2 ,

f
′′

η clearly exhibits a singularity at 0 when η becomes small. This exem-
plifies the fact that in order to detect fine structures or filaments, higher
order differential operators should be considered. This intuitive illustration
is then mathematically formalized in 2D in [29] through Lemma 2.1, and
states in substance the following: assuming that a crack can be modelled
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by an indicator function supported by a smooth curve Γ, it can be approx-
imated by a sequence of smooth functions whose Hessian matrices blow up
in the perpendicular direction to Γ, while their gradient is null. Motivated
by these observations showing that a suitable model should involve higher
order derivatives, the crack recovery model we propose falls within second
order variational models. It is based on the Blake-Zisserman functional (see
[14]) (recalled in (1)) for computer vision problems that depends on free
discontinuities, free gradient discontinuities and second order derivatives,
and more precisely, on its approximation by elliptic functionals defined on
Sobolev spaces ([4]) —(note that the Blake-Zisserman functional was suc-
cessfully applied to segmentation as in [42] for the segmentation of a digital
model of a mixed urban-agricultural area, or image inpainting as in [21])—.
This approximation appears as the counterpart for the second order case
of the elliptic approximations designed by Ambrosio and Tortorelli ([2, 3])
to approximate Mumford-Shah functional ([34]), and takes place in a vari-
ational sense, namely, the De Giorgi Γ-convergence. The qualifying terms
“free discontinuities”, “free gradient discontinuities” mean that the func-
tional is minimized over three variables: two unknown sets K0, K1 with
K0 ∪K1 closed, and u, a smooth function on Ω\ (K0 ∪K1) as follows

F (u,K0,K1) =

∫
Ω\(K0∪K1)

(
|∇2u|2 +Φ(x, u)

)
dx

+αHn−1(K0 ∩ Ω) + βHn−1((K1\K0) ∩ Ω),(1)

α and β being two positive parameters. The set K0 represents the set of
jump points for u, and K1\K0 is the set of crease points of u, those points
where u is continuous but ∇u is not. Under certain conditions, the exis-
tence of minimizers for Blake-Zisserman functional is ensured over the space{
u : Ω ⊂ Rn → R |u ∈ L2(Ω), u ∈ GSBV (Ω), ∇u ∈ (GSBV (Ω))n

}
, based

on a weak formulation of the problem (GSBV (Ω) being the space of gen-
eralized special functions of bounded variation), see [20]. Ambrosio, Faina
and March ([4]) introduce a family of elliptic functionals defined on Sobolev
spaces, with in particular, a variable encoding the discontinuity set of ∇u
which is exactly the structure we aim to recover. This family of functionals
is defined by

Fε(u, s, σ) =

∫
Ω

(
σ2 + κε

)
|∇2u|2 dx+

∫
Ω
Φ(x, u) dx+ (α− β)Gε(s)

+β Gε(σ) + ξε

∫
Ω

(
s2 + ζε

)
|∇u|2 dx,(2)
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for suitable infinitesimals κε, ξε and ζε, and with Gε(l) =
∫
Ω [ε |∇l|2 +

(l−1)2

4ε ]dx.
Before depicting in depth the proposed model and its relation to (2),

we review some prior related works dedicated to thin pattern recovery. In
[9, 29], Aubert and Drogoul introduce a topological-gradient-based method
for the detection of fine structures in 2D. Given a PDE depending on a do-
main Ω, and uΩ the solution of this PDE, topological asymptotic methods
aim to study the variations of a cost function j(Ω) = j(Ω, uΩ) when a topo-
logical modification such as the creation of a small hole or a crack measured
by a parameter ε is applied to the domain Ω, resulting in Ωε. The expansion
of j(Ωε) with respect to ε shows that if one intends to minimize j(Ωε), it
is relevant to create holes or cracks at points x0 where the topological gra-
dient is the most negative. Aubert and Drogoul motivate the construction
of their cost function involving second order derivatives by showing that a
filament can be approximated by a sequence of smooth functions whose Hes-
sian matrices blow up in the perpendicular direction to the filament, while
their gradient is null as already mentioned. The proposed cost function is
inspired by the Kirchhoff thin static plate model subject to pure bending
with a Poisson ratio ν = 0. A major difference with our model lies in the
introduction of a variable that encodes the crack-type singularities. In [12],
Bergounioux and Vicente propose a variational model to perform the seg-
mentation of tube-like structures with small diameter in MRI images. It is
derived from the Mumford-Shah functional (more precisely, on its approx-
imation by elliptic functionals) and includes geometrical priors prescribing
the topology of the solution (tube-like structures defined by thickening a
parameterized curve to get a symmetric object of diameter α > 0). The
keypoint is that the 2D/3D problems involved are equivalent to 1D ones
formulated in a weighted Sobolev space where the weight is related to the
geometry of the tube. A limitation of this model is that it does not handle
junctions of tubes. For another method dedicated to the detection and com-
pletion of fine structures in an image and relying on tubular structures, we
refer to [35].

Other variational models have been investigated, dedicated to particu-
lar applications. In [37], Rochery et al. aim to track thin long objects, with
applications to the automatic extraction of road networks in remote sensing
images. They propose interesting nonlocal regularizers that enforce straight-
ness on the sought parameterized curve. In [10], Baudour et al. propose a
new algorithm for the detection and completion of thin filaments (defined
as structures of codimension n − 1 in an ambient space of dimension n) in
noisy blurred 2D or 3D images. To detect such structures, the authors build
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a 3D vector field lying in the orthogonal plane to the filament, while the
completion phase relies on the minimization of a Ginzburg-Landau energy.
In [6], Aubert et al. propose detecting image singularities of codimension
greater or equal to 2, inspired again by Ginzburg-Landau models.

The spectrum of the methods that address the issue of fine structure re-
covery is of course not limited to variational ones. Morphological approaches
can be found in [41] for automatic detection of vessel-like patterns, but prove
to be sensitive to the noise type and time-consuming, as well as wavelet
methods. In [39], stochastic methods are developed in which a thin net-
work is simulated by a point process penalizing disconnected segments and
favoring aligned pieces.

The next section is dedicated to the depiction of our modelling and
its numerical analysis, encompassing existence of minimizers, existence of a
unique viscosity solution to the resulting evolution equation, Γ-convergence
results and convergence analysis, as well as the derivation of a nonlocal
version of it (section 3).

2. Local mathematical modelling and analysis

2.1. Model

Let Ω be a connected bounded open subset of R2 of class C1. Let us denote
by f : Ω̄ → R the 2D image representing bituminous surfacing assumed to
be in L∞(Ω). Such an image naturally exhibits dense and highly oscillatory
texture, reflecting its intrinsic nonlocal nature. This oscillatory component,
although relevant in many applications since providing details and making
the image more realistic, proves to be unnecessary for the task to accomplish.
This observation motivates the introduction of a mixed decomposition/thin-
structure-recognition model in which the crack recovery process operates
only on that component of the image denoted by u that does not contain
these small features captured in v. A geometrical justification relies on the
notion of scale. Cracks on bituminous surfacing can be compared to long
and thin filaments displaying junctions. The scale of such structures (the
geometric scale of an object being basically the ratio of an area divided by a
perimeter) differs from the scale of small oscillatory patterns present in the
image: if the image domain is the n×n discretized unit square and if, for the
sake of simplicity and as an illustration, the crack is modelled as a rectangle
of 1× k pixels with k � 1, its scale behaves like 1

2n , while a small feature of
a pixel size will have a scale of 1

4n , so twice as less. By choosing accurately
the parameters involved in the modelling, these two features can be properly
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discriminated: small-scale features related to texture will be removed and
captured by component v, while larger-scale features such as cracks will be
kept in u. In [33], Meyer introduces the space G(R2) (he works on R2 to
remove the problem of boundary conditions) of distributions v that can be

written as v = div�g, where �g = (g1, g2) ∈
(
L∞(R2)

)2
, and equipped with

the norm defined by

‖v‖G(R2) = inf

{
‖
√

g21 + g22‖L∞(R2), | v = div�g

}
(3)

to capture the oscillatory nature of texture (highly oscillatory patterns have
a small G-norm). A further justification of the use of this space is the link
between the G-norm and the notion of scale provided by Strang ([40]): if v ∈
G, then ‖v‖G = sup

E⊂Ω

∫
E

v

P (E,Ω) , with Ω the image domain and P (E,Ω) denoting

the perimeter of E in Ω, showing that the stronger the penalization of ‖v‖G
is, the smaller the scale of the details kept in v is. Although mathematically
relevant (as it resembles the dual space of BV ), the G-space is hard to
handle from a numerical point of view. To approximate the G-norm, we
introduce an auxiliary variable that naturally stems from the Helmholtz-
Hodge decomposition as follows: �g = ∇Q + �P , with �P a divergence-free
vector that we disregard afterwards. The coupling between �g and ∇Q is
achieved through a quadratic penalization and the minimization of the L∞-
norm is now applied to ∇Q, yielding a problem related to the absolutely
minimizing Lipschitz extensions and to the infinity Laplacian.

Equipped with this material, we propose, in a single variational frame-
work, a mixed decomposition/free discontinuity and free gradient discon-
tinuity model, first in its weak formulation, H1 denoting the Hausdorff 1-
dimensional measure

inf F̄ (u,�g,Q) = ‖f − u− div�g‖2L2(Ω) + μ ‖|∇Q|‖L∞(Ω) +
γ

2
‖|�g −∇Q|‖2L2(Ω)

+ ρ

∫
Ω
|∇2u|2 dx+ (α− β)H1(Su) + βH1(S∇u\Su),(4)

∇2u being the Hessian matrix, and with ∇u denoting the approximate dif-
ferential, Su, the discontinuity set of u, and S∇u, the discontinuity set of ∇u.
The three first penalizing terms are related to the decomposition of f into
u+ v with v belonging to G, while the last components are devoted to the
crack detection process. The component

∫
Ω |∇2u|2 dx enables us to control

the smoothness of u, while the remaining components monitor the size of the
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jump/crease sets. Second, phrased in terms of elliptic functionals inspired
by [4], with two new auxiliary variables v1 and v2 encoding respectively the
set of jumps of u and the set of jumps of ∇u, with Gε defined above, and
with suitable infinitesimals κε, ξε and ζε

inf Fε(u,�g,Q, v1, v2) = ‖f − u− div�g‖2L2(Ω) + μ ‖|∇Q|‖L∞(Ω)

+
γ

2
‖|�g −∇Q|‖2L2(Ω) + ρ

∫
Ω
(v22 + κε) |∇2u|2 dx

+ ξε

∫
Ω
(v21 + ζε) |∇u|2 dx+ (α− β)Gε(v1) + β Gε(v2).(5)

The different parameters are introduced in order to properly discriminate
small features (related to the intrinsic oscillatory nature of the image) from
larger scale features such as cracks, and to properly fit the characteristics of
the minimizers. The component ‖f−u−div�g‖2L2(Ω) forces the original image

to be close to u + div�g with appropriate smoothness on u, and v = div�g
lives in a suitable functional space. Indeed, if γ → +∞, we formally get
f � u+div�g with �g ∈ (L∞(Ω))2. The variable v1 (resp. v2) with range [0, 1]
is related to the set of jumps (resp. creases). A minimizing v1,ε (resp. v2,ε)
is in particular close to 0 in a neighborhood of the jump (resp. crease) set,
and far from it, is close to 1. Function u is thus a smooth approximation of
the observed f , this smoothing effect being localized only on homogeneous
parts. The representation of each auxiliary variable forms a partition of
the data. Now looking closer at the components

∫
Ω (v22 + κε) |∇2u|2 dx and

Gε(v2), letting ε become small induces that v2 should be 1 almost everywhere
on Ω, except where |∇2u|2 blows up. This observation supports the crack
characterization we gave, and ensures that v2 encodes the structures we aim
to recover.

We now provide several theoretical results.

2.2. Existence of minimizers

Theorem 1. With κε, ξε, ζε > 0, problem (5) admits minimizers (u =
uε, �g = �gε, Q = Qε, v1 = v1,ε, v2 = v2,ε) on

{
u ∈ W 2,2(Ω) |

∫
Ω u dx =∫

Ω f dx
}

×H(div) ×
{
Q ∈ W 1,∞(Ω) |

∫
Ω Qdx = 0

}
× W 1,2(Ω, [0, 1]) ×

W 1,2(Ω, [0, 1]), with H(div), the Hilbert space defined by H(div) =
{
σ ∈

(L2(Ω))2 | divσ ∈ L2(Ω)
}
endowed with the inner product

〈 �σ1, �σ2〉H(div) := 〈 �σ1, �σ2〉(L2(Ω))2 + 〈div �σ1, div �σ2〉L2(Ω),

∀( �σ1, �σ2) ∈ (H(div))2.
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Remark 1. Condition
∫
Ω Qdx = 0 is not restrictive. An argument to in-

clude the constraint
∫
Ω u dx =

∫
Ω f dx is that the space G(Ω) defined by

G(Ω) =
{
v ∈ L2(Ω) | v = div�g, �g ∈ L∞(Ω,R2), �g · �n = 0 on ∂Ω

}
coincides

with the space
{
v ∈ L2(Ω) |

∫
Ω v dx = 0

}
(see [7, Proposition 2.1]).

Proof. The proof is based on Poincaré-Wirtinger inequality as well as a result

by Berkovitz ([13, Theorem 1]) that states in substance that under suitable

conditions on h, the integral functional I(y, z) =
∫
Ω h(t, y(t), z(t)) dμ is

lower semicontinuous with respect to the joint strong convergence of yk → y

in Lp(Ω) and weak convergence of zk ⇀ z in Lq(Ω), 1 ≤ p, q ≤ ∞ (with

Ω ⊂ Rn bounded open set).

Remark 2. It is possible to set ξε = 0 in (5) (the existence theorem still

holds), but a suitable functional space for u becomes W 2,2

loc
(Ω)∩L∞(Ω). For

instance, with the condition ‖u‖L∞(Ω) ≤ ‖f‖L∞(Ω), which is reasonable in

virtue of the smoothing properties of the functional. Indeed, [4, Proposi-

tion 4.6] provides a uniform bound on ‖∇u‖L2(A) once a uniform bound

is extracted for ‖u‖L2(B) and ‖∇2u‖L2(B) with A,B ⊂ R2 open sets and

(A2r) � B.

Remark 3. The case κε = 0 can also be considered (an existence theorem

still holds) but requires more care and applies to a problem no longer phrased

in terms of a L2-penalization for ∇u, but with a Lγ-penalization, γ > 2.

The unknown u should be searched in the subspace of W 1,2(Ω) defined by{
u ∈ W 1,2(Ω) | v2∇u ∈ W 1,p(Ω,R2)

}
, with p = 2γ

γ+2 ∈]1, 2[. The boundedness
of v2 in W 1,2(Ω) as well as the boundedness of |∇u| in Lγ(Ω), and the

fact that ∇(v2∇u) = v2∇2u + ∇v2
⊗

∇u show that v2∇u is bounded in

W 1,p(Ω,R2) using Hölder’s inequality.

Remark 4. Functional Fε is convex in each variable (which yields a natural

alternating framework for the numerical resolution) but not in the joint vari-

able (u,�g,Q, v1, v2). Nevertheless, for v1, v2 fixed, if (u1, �g1, Q1) and (u2, �g2,

Q2) denote two minimizing elements, it can be proved that u1 = u2 a.e.,

div �g1 = div �g2 a.e., and �g1− �g2 = ∇Q1−∇Q2 a.e.. Consequently, div (∇Q1−
∇Q2) = Δ(Q1 −Q2) ∈ L2(Ω) = 0 a.e.. By the generalized Green’s formula

[28, Proposition 3.58],
∫
Ω |∇(Q1−Q2)|2 dx = 〈∇(Q1−Q2) ·�n, γ0(Q1−Q2)〉,

the linear functional ∇(Q1 −Q2) · �n belonging to the dual H−1/2(∂Ω) of the

space of traces H1/2(∂Ω). If we assume that ∇(Q1−Q2) ·�n = 0 on ∂Ω, then

Q1 = Q2 a.e..
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2.3. Existence of solutions for the Euler-Lagrange equations

We now focus on the elliptic functional, which is the one we solve in practice.
Note that, in the numerical simulations, we have dropped the constants
κε and ζε. We first derive the Euler-Lagrange equations according to each
unknown, with x = (x1, x2) and �n = (nx1

, nx2
), the unit outward normal to

the boundary. Making use of the absolutely minimizing Lipschitz extensions
([5]) for the equation in Q, we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 =
α−β
2ε + 2(α− β)εΔv1

2ξε|∇u|2 + α−β
2ε

, v2 =
β
2ε + 2βεΔv2

2ρ|∇2u|2 + β
2ε

,

g1 = ∂x1
Q− 2

γ ∂x1
(f − u− div�g) , g2 = ∂x2

Q− 2
γ ∂x2

(f − u− div�g) ,

u = (f − div�g)− ρ ∂2

∂x2
1

(
v22

∂2u
∂x2

1

)
− ρ ∂2

∂x2
2

(
v22

∂2u
∂x2

2

)
−2ρ ∂2

∂x1∂x2

(
v22

∂2u
∂x1∂x2

)
+ ξε div (v

2
1 ∇u),

−μΔ∞Q− γΔQ+ γdiv�g = 0,

combined with the boundary conditions ∇v1 · �n = 0, ∇v2 · �n = 0, (f −
u − div�g)nx1

= 0, (f − u − div�g)nx2
= 0, v21∇u · �n = 0, v22∂

2
x1x1

unx1

= 0, ∂x1

(
v22∂

2
x1x1

u
)
nx1

= 0, v22∂
2
x2x2

u nx2
= 0, ∂x2

(
v22∂

2
x2x2

u
)
nx2

= 0,
v22∂

2
x1x2

u nx1
= 0, ∂x1

(
v22∂

2
x1x2

u
)
nx2

= 0 and (�g − ∇Q) · �n = 0 on ∂Ω.
Let us now embed the last equation in a time-dependent setting. Let T > 0
be given. The evolution equation in the unknown Q is thus given by{

∂Q

∂t
= μΔ∞Q+ γΔQ− γdiv�g on R2 × (0, T ),

Q(x, 0) = Q0(x) on R2,
(EE)

with Q0 ∈ W 1,∞(R2) and B0 its Lipschitz constant. (To remove the prob-
lem of boundary conditions, we work on R2 for the spatial domain). We
now give an existence/uniqueness result for the PDE in Q in the viscosity
solution theory framework. To do so, we first need the additional following
assumption

div�g is bounded and is Lipschitz continuous uniformly in time

with κ	g its Lipschitz constant independant of time.(H)

For the sake of conciseness, the evolution equation is now written in the
form

∂Q

∂t
+G(x, t,∇Q,∇2Q) = 0,
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with G : R2× [0, T )×R2×S2 (S2 being the set of symmetric 2× 2 matrices
equipped with its natural partial order) defined by

G(x, t, �p,X) = −γtrace(X)− μtrace(
�p⊗ �p

|�p|2 X) + γdiv�g,

= E(X) + F (�p,X) + γdiv�g,

and with the following properties

1. The operatorsG, E : X �→ −γtrace(X) and F : (�p,X) �→ −μ trace
( 	p⊗	p
|	p|2

X
)
are independent of Q and are elliptic, i.e. ∀X,Y ∈ S2, ∀�p ∈ R2 \

{�0R2}, if X ≤ Y then F (�p,X) ≥ F (�p, Y ).
2. F is locally bounded on R2 × S2, continuous on R2 \ {�0R2} × S2, and

F ∗(0, 0) = F∗(0, 0) = 0, where F ∗ (resp. F∗) is the upper semicon-
tinuous (usc) envelope (resp. lower semicontinuous (lsc) envelope) of
F . Indeed, using Rayleigh quotient, it is not difficult to see that for

nonzero vector �p, λmin(X) ≤ trace
(
	p⊗	p
|	p|2 X

)
≤ λmax(X), λmin (resp.

λmax) denoting the smallest (resp. biggest) eigenvalue of X.

The first important result is a comparison principle, which states that if a
sub-solution and a super-solution are ordered at initial time then they are
ordered at any time.

Theorem 2 (Comparison principle). Assume (H) and let u : R2×[0, T ) → R
be a bounded upper semicontinuous sub-solution and v : R2× [0, T ) → R be a
bounded lower semicontinuous super-solution of (EE). Assume that u(x, 0) ≤
Q0(x) ≤ v(x, 0) in R2, then u ≤ v in R2 × [0, T ).

Proof. The proof is rather classical and we refer the reader to [30][Definition
4.1] for the definition of viscosity solutions and for additional material.

We now turn to the existence of a solution. To do so, we use the classical
Perron’s method and need to construct barriers.

Theorem 3 (Construction of barriers). Assume (H) and let Q0 ∈ W 1,∞(R2).
Then u+ = sup

x∈R2

Q0(x) + γ‖div�g‖L∞(R2×[0,T ))t and u− = inf
x∈R2

Q0(x) −

γ‖div�g‖L∞(R2×[0,T ))t are respectively super- and sub-solution of (EE).

The proof of this theorem is straightforward. A direct consequence of
the two previous results is the following existence theorem.

Theorem 4 (Existence and uniqueness of a solution). Assume (H) and
Q0 ∈ W 1,∞(R2). Then there exists a unique bounded continuous solution of
(EE) in R2 × [0, T ).
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Let us now focus on the regularity of the solution. Let us first consider
the regularity in space.

Theorem 5 (Lipschitz regularity in space). Assume (H) and that
‖∇Q0‖L∞(R2) ≤ B0 with B0 > 0. Then the solution of (EE) is Lipschitz
continuous and satisfies

‖∇Q(., t)‖L∞(R2) ≤ B(t),

with B(t) = γκ	gt+B0.

Besides, we can show that this solution is also uniformly continuous in
time.

Theorem 6. Assume (H), and that div�g is uniformly continuous in time
with ωdiv	g its modulus of continuity. Then the solution of (EE) is uniformly
continuous in time.

This concludes this section on the existence of a well-defined and smooth
solution of the evolution equation derived for Q. Let us now turn to a Γ-
convergence result.

2.4. Asymptotic results

In that purpose, an additional condition is set on u to get a uniform bound on
‖u‖L2(Ω). We assume that u ∈ L∞(Ω), which is rather a non-restrictive and
natural requirement in image processing since at every pixel the light inten-
sity has finite energy. For instance, we introduce the condition ‖u‖L∞(Ω) ≤
‖f‖L∞(Ω), which is reasonable in the context of image decomposition and in
virtue of the smoothing properties of the functional.

We first give a result of existence of minimizers for the non-elliptic prob-
lem (4).

Theorem 7 (Existence of minimizers). Let us set X(Ω)=
{
u ∈ GSBV 2(Ω)∩

L∞(Ω) with ‖u‖L∞(Ω) ≤ C2

}
×H(div)×

{
Q ∈ W 1,∞(Ω) |

∫
Ω Qdx = 0

}
, with

C2 a positive constant that depends only on ‖f‖L∞(Ω). Assuming β ≤ α ≤
2β, γ > 0, μ > 0 and β > 0, there exists a minimizer (ū, �̄g, Q̄) ∈ X(Ω) of
F̄ .

Proof. The proof is based on an adaptation of arguments provided in [20].

We now give a Γ-convergence result.
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Theorem 8 (Γ-convergence). Assume that α = β, κε > 0 with κε =
o(ε4), ξε = ζε = 0 and Ω is strictly star-shaped. Then the family (Fε)
Γ-converges to F̄ in the L1(Ω)×H(div)×W 1,∞(Ω)×L1(Ω)×L1(Ω) topol-
ogy (strong topology for L1(Ω) and weak/weak-∗ topology for H(div) and
W 1,∞(Ω)) as ε → 0+. Besides, the limit point of (ūε, �̄gε, Q̄ε, v̄1,ε, v̄2,ε), a pair
of minimizers of Fε, when ε tends to 0+ is of the form (ū, �̄g, Q̄, 1, 1) with
(ū, �̄g, Q̄) ∈ X(Ω) assuming ∀ε > 0, ‖ūε‖L∞(Ω) ≤ C2. It means in particular

that lim
ε→0+

(
Fε(ūε, �̄gε, Q̄ε, v̄1,ε, v̄2,ε)− F̄ (ū, �̄g, Q̄)

)
= 0.

Proof. We refer the reader to [4][Theorem 3.1, 3.2 and 3.3] for some of the
arguments that structure the proof.

3. A nonlocal version of the modelling and its theoretical
analysis

3.1. Motivations

Inspired by prior related works by Bourgain, Brezis and Mironescu [16]
(—first concerned with the study of the limiting behavior of the norms
of fractional Sobolev spaces W s,p, 0 < s < 1, 1 < p < ∞ as s → 1 and to
a new characterization of the Sobolev spaces W 1,p, 1 < p < ∞—), Aubert
and Kornprobst [8] (—they question whether this characterization can be
useful to solve variational problems—), Boulanger and co-authors [15] (—in
which the authors address the question of the calculus of variations for non-
local functionals—), Dávila [27], and Ponce [36] (—dedicated to expressing
the semi-norms of first order Sobolev spaces and the BV space thanks to a
nonlocal operator—), we introduce a sequence of radial mollifiers {ρn}n∈N

satisfying: ∀n ∈ N, ∀x ∈ R, ρn(x) = ρn(|x|); ∀n ∈ N, ρn ≥ 0; ∀n ∈ N,∫
R ρn(x) dx = 1; ∀δ > 0, limn→+∞

∫ +∞
δ ρn(r) dr = 0, and an associated

sequence of functionals Fε,n depending on n and such that the component∫
Ω(v

2
2 + κε) |∇2u|2 dx is approximated by an integral operator involving a

differential quotient and the radial mollifier depicted above. It is shown that
the approximated formulation admits minimizers for which regularity results
are provided in a fractional Sobolev space. This theoretical study will lead
to the derivation of a numerically tractable implementation, which is not
the scope of the proposed work that focuses on the theoretical analysis.

This part is thus motivated by the idea of extending the concept of
nonlocal gradients ([31]) to higher derivatives, of analyzing its theoretical
properties and in particular, its convergence to classical second-order regu-
larizers, and of deriving a nonlocal counterpart of the local model (5), with
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the underlying intention of devising a model numerically tractable and im-

proving the overall quality of the local algorithm (by explaining second-order

derivatives of u in terms of nonlocal quantities). Our model is also deeply in-

spired by [32] dedicated to a formulation of a nonlocal Hessian that combines

the ideas of higher-order and nonlocal regularization for image restoration,

and more largely to a novel characterization of higher Sobolev and BV -

spaces. In this paper, the authors connect in particular the finiteness of

lim infn→∞
∫
RN |Hn u(x)|p dx (—Hn u(x) :=

N(N+2)
2

∫
RN

u(x+h)−2u(x)+u(x−h)
|h|2

h
⊗

h− |h|2
N+2

IN

|h|2 ρn(h) dh—) with the inclusion of u ∈ Lp(RN ), 1 < p < ∞, in

W 2,p(RN ). They thus introduce a nonlocal Hessian that is derivative free,

only requiring the considered function u to belong to an Lp-space. As in [32],

our model is derivative free, involving a built-in symmetry that associates

triples of points; the main difference lies in the independent treatment of

the directional derivatives, yielding a nonlocal version not of
∫
R2 |∇2u|2 dx,

but of
∫
R2

(
∂2u
∂x2

1

)2
+

(
∂2u
∂x2

2

)2
dx (x = (x1, x2) ∈ R2), thus removing the con-

trol of the L2-norm of ∂2u
∂x1∂x2

. We will show nevertheless with the theory

of tempered distributions that if u, ∂2u
∂x2

1
, ∂2u
∂x2

2
∈ L2(R2), then u ∈ W 2,2(R2).

This modelling inherits fine analytical properties, has the advantage of being

numerically more tractable compared to [32], particularly in the derivation

of the Euler-Lagrange equation satisfied by u, and is straightforwardly con-

nected to our imaging problem, which is not the case in [32].

At last, for the sake of completeness, we refer the interested reader to

other papers dealing with higher-order regularizations: [23] (—in which the

authors propose higher-order models by means of an infimal convolution of

two convex regularizers—), [24] (—in which a weighted version of the Lapla-

cian is provided—), [25] (—introducing the Euler-elastica functional), [17]

(—proposing the total generalized variation—), or [11] (—bounded Hessian

regularization—).

3.2. Notations and preliminary results

Let (e1, e2) be the canonical basis of R2. We use dx (x = (x1, x2)) for integra-

tion with respect to the Lebesgue measure on R2 and dt, ds, dh for various

integrations with respect to the Lebesgue measure on R. The differentia-

tion indices will be a pair α = (α1, α2), where αi is the order of the partial

derivative in the variable xi, and the total order of the derivative is denoted

by |α| = α1 + α2. We will use the shortened notation Dα u = ∂|α| u
∂x1

α1∂x2
α2
.
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Several functional spaces are required (see [28] for instance): C∞
c (R2) (or

D(R2)), the space of C∞(R2) functions with compact support in R2. Given
an integer j ≥ 0, we define the family of spaces Cj

b (R
2) ([28, Definition 2.2.1,

p. 69]) by setting

Cj
b (R

2) =
{
u ∈ Cj(R2) | ∀α ∈ N2, |α| ≤ j, ∃Kα, ‖Dαu‖∞ ≤ Kα

}
.

For a positive real number λ, the subspace Cj,λ
b (R2) consists of the functions

in Cj
b (R

2) such that if |α| ≤ j, then

∃Cα,λ, ∀x, y ∈ R2, |Dαu(x)−Dαu(y)| ≤ Cα,λ |x− y|λ.

For m ∈ N and 1 ≤ p ≤ ∞ and Ω being an open subset of R2, we define the
Sobolev space Wm,p(Ω) ([28, Definition 2.1, p. 57]) as

Wm,p(Ω) =
{
u ∈ Lp(Ω) | ∀α ∈ N2, |α| ≤ m ⇒ Dαu ∈ Lp(Ω)

}
.

We denote by S(R2) ([28, Definition 4.1, p. 179]) the set of rapidly decreasing
functions in R2: a function ϕ is said to be rapidly decreasing in R2 if ϕ ∈
C∞(R2) and if

∀j ∈ N2, ∀k ∈ N, |x|k Djϕ ∈ L∞(R2).

We let S ′(R2) denote the topological dual of S(R2), set of tempered distri-
butions.

Let now s > 0 be a real number. We let ([28, Definition 4.7, p. 181])

Hs(R2) =
{
u ∈ L2(R2) |

{
ξ �→ (1 + |ξ|2)s/2F(u)(ξ)

}
∈ L2(R2)

}
,

F , denoting the Fourier transform. If s = m ∈ N, then the space Hs(R2)
coincides with the classical Sobolev space Wm,2(R2). If s ∈ R\N with s ≥ 1,
then the space Hs(R2) coincides with the fractional Sobolev space W s,2(R2)
([28, Definition 4.56, p. 219]) defined by

W s,2(R2) =
{
u ∈ W [s],2(R2) |Dju ∈ W s−[s],p(R2), ∀�j, |�j| = [s]

}
,

[·] denoting the integer part, and when σ ∈ (0, 1) ([28, Definition 4.23, p.
192]),

W σ,2(R2) =

{
u ∈ L2(R2) |

∫
R2

∫
R2

|u(x)− u(y)|2
|x− y|2σ+2

dx dy < ∞
}
.
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At last, the properties of the considered kernel ρn are those depicted above,
and we will use several times the following generalized result of Spector ([38,
p. 58]):

Lemma 1. If E ⊂ R is bounded and measurable, then ∀p ∈ N∗,

lim
n→+∞

∫
E
|x|p ρn(x) dx = 0.(6)

Proof. Fixing δ > 0,

lim sup
n→+∞

∫
E
|x|p ρn(x) dx ≤lim sup

n→+∞

∫
{|x|>δ}∩E

|x|p ρn(x) dx

+ lim sup
n→+∞

∫
{|x|≤δ}

|x|p ρn(x) dx,

≤Cδ,E,p lim
n→+∞

∫
|x|>δ

ρn(x) dx+ δp.

The result follows from the properties of ρn and by sending δ to 0.

Equipped with this material, we now propose a derivative free nonlocal
formulation of the L2-norms

∫
R2 |D(2,0)u|2 dx and

∫
R2 |D(0,2)u|2 dx respec-

tively. We start off with the definition of such a nonlocal version for smooth
functions.

Theorem 9. Let u ∈ C4
c (R

2). Then∫
R2

∫
R

|u(x+ hei)− 2u(x) + u(x− hei)|2
|h|4 ρn(h) dh dx

−→
n→+∞

{ ∫
R2 |D(2,0)u|2 dx if i = 1∫
R2 |D(0,2)u|2 dx if i = 2

.

Proof. We deal with the case i = 1.

Let us defineH1u(x) :=
∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2
|h|4 ρn(h) dh.

Let R > 0 be fixed.

H1u(x) =

∫
{|h|≤R}

|u(x+ he1)− 2u(x) + u(x− he1)|2
|h|4 ρn(h) dh

+

∫
{|h|>R}

|u(x+ he1)− 2u(x) + u(x− he1)|2
|h|4 ρn(h) dh.
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But u(x+he1)−2u(x)+u(x−he1) = h2
∫ 1
0

∫ 1
0 D(2,0)u(x+h(s+t−1)e1) dt ds

and from Taylor’s expansion u(x+he1)−2u(x)+u(x−he1)
h2 = D(2,0)u(x)+ h2

12 D
(4,0)

u(ζx1,h, x2), so that

∫
{|h|>R}

[∫ 1

0

∫ 1

0
D(2,0)u(x+ h(s+ t− 1)e1) dt ds

]2
ρn(h) dh

≤ ‖D(2,0)u‖2L∞(R2)

∫
{|h|>R}

ρn(h) dh −→
n→+∞

0.

Using the previous Taylor’s expansion, the properties of ρn and lemma 1

yields∫
{|h|≤R}

|u(x+ he1)− 2u(x) + u(x− he1)|2
|h|4 ρn(h) dh −→

n→+∞
|D(2,0)u(x)|2

and therefore H1u(x) converges to |D(2,0)u(x)|2 everywhere. We now aim to

prove that
∫
R2 |H1u(x)− |D(2,0)u(x)|2| dx −→

n→+∞
0. We assume without loss

of generality that suppu ⊂ B(0, R). We first show that ∀ε > 0, ∃L = L(ε) >

1 such that

sup
n

∫
B(0,LR)c

|H1u(x)| dx ≤ ε.

One has, making a change of variable,∫
B(0,LR)c

|H1u(x)| dx

=

∫
B(0,LR)c

∫
R

|u(x+ he1) + u(x− he1)|2
|h|4 ρn(h) dh dx,

≤ 2

∫
B(0,LR)c

∫
R

|u(x+ he1)|2 + |u(x− he1)|2
|h|4 ρn(h) dh dx,

≤ 4

∫
B(0,LR)c

∫
{h |x+he1∈B(0,R)}

|u(x+ he1)|2
|h|4 ρn(h) dh dx,

≤ 4

(L− 1)4R4

∫
B(0,LR)c

∫
{h |x+he1∈B(0,R)}

|u(x+ he1)|2 ρn(h) dh dx,

≤ 4

(L− 1)4R4
‖u‖2L2(R2) ‖ρn‖L1(R) =

4

(L− 1)4R4
‖u‖2L2(R2).
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Thus ∀ε > 0, ∃L = L(ε) > 1, ∀n ∈ N,
∫
B(0,LR)c |H1u(x)| dx ≤ ε, which

means

sup
n∈N

∫
B(0,LR)c

|H1u(x)| dx ≤ ε.

As∫
R2

|H1u(x)− |D(2,0)u(x)|2| dx =

∫
B(0,LR)

|H1u(x)− |D(2,0)u(x)|2| dx

+

∫
B(0,LR)c

|H1u(x)| dx,

lim sup
n→+∞

∫
R2

|H1u(x)− |D(2,0)u(x)|2| dx

≤ lim sup
n→+∞

∫
B(0,LR)

|H1u(x)− |D(2,0)u(x)|2| dx+ ε.

Now, H1u converges pointwise to |D(2,0)u(x)|2 and on B(0, LR),

H1u(x) ≤ ‖D(2,0)u‖2L∞(R2), which is integrable on B(0, LR). It follows from

the dominated convergence theorem that∫
B(0,LR)

|H1u(x)− |D(2,0)u(x)|2| dx −→
n→+∞

0,

yielding

lim sup
n→+∞

∫
R2

|H1u(x)− |D(2,0)u(x)|2| dx ≤ ε,

and in the end,

lim
n→+∞

∫
R2

|H1u(x)− |D(2,0)u(x)|2| dx = 0.

In fact, we have an analogous convergence result for u ∈ W 2,2(R2) that

we establish with the following lemma.

Lemma 2. Suppose that u ∈ W 2,2(R2). Then
∫
R2

∫
R

|u(x+hei)−2u(x)+u(x−hei)|2
|h|4

ρn(h) dh dx is well-defined and∫
R2

∫
R

|u(x+ hei)− 2u(x) + u(x− hei)|2
|h|4 ρn(h) dh dx

≤
{

‖D(2,0)u‖2L2(R2) if i = 1

‖D(0,2)u‖2L2(R2) if i = 2
.
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Proof. We focus on the case i = 1.

Let us begin by estimates for a function u ∈ C∞(R2) ∩W 2,2(R2). Using

Fubini-Tonelli’s theorem and Jensen’s inequality,∫
R2

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2
|h|4 ρn(h) dh dx

≤
∫

R2

∫
R

[∫ 1

0

∫ 1

0
|D(2,0)u(x+ (t+ s− 1)he1)|2 ds dt

]
ρn(h) dh dx,

≤ ‖D(2,0)u‖2L2(R2).

Consider now a sequence (uk)k∈N in C∞(R2)∩W 2,2(R2) approximating u in

W 2,2(R2) (see [28, Proposition 2.12, p. 60] for a density result). From the

above,∫
R2

∫
R

|uk(x+ he1)− 2uk(x) + uk(x− he1)|2
|h|4 ρn(h) dh dx≤‖D(2,0)uk‖2L2(R2).

As (uk)k∈N converges to u in W 2,2(R2) � C0,λ
b (R2) for every λ < 1 ([28,

Theorem 2.31, p. 69]), (uk)k∈N uniformly converges to u, so pointwise ev-

erywhere. Fatou’s lemma allows us to conclude that∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2
|h|4 ρn(h) dh

≤ lim inf
k→+∞

∫
R

|uk(x+ he1)− 2uk(x) + uk(x− he1)|2
|h|4 ρn(h) dh,

and ∫
R2

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2
|h|4 ρn(h) dh dx

≤
∫

R2

lim inf
k→+∞

∫
R

|uk(x+ he1)− 2uk(x) + uk(x− he1)|2
|h|4 ρn(h) dh dx.

Setting Fk(x) :=
∫
R

|uk(x+he1)−2uk(x)+uk(x−he1)|2
|h|4 ρn(h) dh, (Fk)k∈N is a se-

quence of functions of L1(R2) such that supk
∫
R2 Fk < ∞, so applying Fa-

tou’s lemma a second time yields∫
R2

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2
|h|4 ρn(h) dh dx
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≤ lim inf
k→+∞

∫
R2

∫
R

|uk(x+ he1)− 2uk(x) + uk(x− he1)|2
|h|4 ρn(h) dh dx,

≤ lim inf
k→+∞

‖D(2,0)uk‖2L2(R2) = ‖D(2,0)u‖2L2(R2).

With this preliminary lemma, we now state the main result.

Theorem 10. Let u ∈ W 2,2(R2). Then∫
R2

∫
R

|u(x+ hei)− 2u(x) + u(x− hei)|2
|h|4 ρn(h) dh dx

−→
n→+∞

{
‖D(2,0)u‖2L2(R2) if i = 1,

‖D(0,2)u‖2L2(R2) if i = 2
.

Proof. We restrict ourselves to the case i = 1.
Let ε > 0. By density, there exists vε ∈ C∞

c (R2) such that

‖D(2,0)u−D(2,0)vε‖L2(R2) ≤ ε.

Let us set un(x, h) = u(x+he1)−2u(x)+u(x−he1)
h2 ρ

1

2
n(h). un ∈ L2(R2 × R) and

‖un‖L2(R2×R)≤‖D(2,0)u‖L2(R2). Denoting by vn,ε :=
vε(x+he1)−2vε(x)+vε(x−he1)

h2

ρ
1

2
n(h), we thus have

‖un − vn,ε‖L2(R2×R) ≤ ‖D(2,0)u−D(2,0)vε‖L2(R2) ≤ ε,

and from the second triangle inequality,

|‖un‖L2(R2×R) − ‖vn,ε‖L2(R2×R)| ≤ ε.

To conclude,∣∣∣‖un‖L2(R2×R) − ‖D(2,0)u‖L2(R2)

∣∣∣ ≤ ∣∣‖un‖L2(R2×R) − ‖vn,ε‖L2(R2×R)

∣∣
+
∣∣∣‖vn,ε‖L2(R2×R) − ‖D(2,0)vε‖L2(R2)

∣∣∣
+
∣∣∣‖D(2,0)vε‖L2(R2) − ‖D(2,0)u‖L2(R2)

∣∣∣ ,
≤ 2ε+

∣∣∣‖vn,ε‖L2(R2×R) − ‖D(2,0)vε‖L2(R2)

∣∣∣ .
It leads to lim supn→+∞

∣∣‖un‖L2(R2×R) − ‖D(2,0)u‖L2(R2)

∣∣ ≤ 2ε and then

‖un‖L2(R2×R) −→
n→+∞

‖D(2,0)u‖L2(R2).
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Equipped with these theoretical results and characterization, we refor-
mulate our local problem into a nonlocal form.

3.3. Connection to the local imaging problem

Due to the independent treatment of the directional derivatives in the pre-
vious nonlocal formulations, we slightly modify the local problem into

inf Fε(u,�g,Q, v1, v2) = ‖f − u− div�g‖2L2(Ω) + μ ‖|∇Q|‖L∞(Ω)

+
γ

2
‖|�g −∇Q|‖2L2(Ω)

+ ρ

∫
Ω
(v22 + κε)

(
|D(2,0)u|2 + |D(0,2)u|2

)
dx

+ ξε

∫
Ω
(v21 + ζε) |∇u|2 dx+ (α− β)Gε(v1) + β Gε(v2).(7)

While the functional spaces for Q, �g, and v1 are unchanged, the unknowns
u and v2 are now searched in the functional spaces W 1,2

0 (Ω) ∩W 2,2(Ω) and{
v2 ∈ W 1,2(Ω, [0, 1]) | γ0 v2 = 1

}
respectively, γ0 denoting the trace operator.

The reasons for such requirements will be made clearer in the following. Nev-
ertheless, these assumptions are reasonable and not restrictive if we assume
for instance that the observed image f is with compact support. Existence
of minimizers is still guaranteed as stated below.

Theorem 11. Let Ω be a regular bounded open subset of R2. With κε, ξε, ζε >
0, problem (7) admits minimizers (u = uε, �g = �gε, Q = Qε, v1 = v1,ε, v2 =

v2,ε) on W 1,2
0 (Ω) ∩ W 2,2(Ω) × H(div) ×

{
Q ∈ W 1,∞(Ω) |

∫
Ω Qdx = 0

}
×

W 1,2(Ω, [0, 1])×
{
v2 ∈ W 1,2(Ω, [0, 1]) | γ0v2 = 1

}
.

Proof. The proof rests upon two major facts: (i) the space W 1,2
0 (Ω) is a

strongly closed convex subspace of W 1,2(Ω) by continuity of the trace map,
so according to [18, Theorem III.7, p. 38], it is a weakly closed convex sub-

space. (ii) the mapping ‖̂ · ‖ : u �→
(
‖D(2,0)u‖2L2(Ω) + ‖D(0,2)u‖2L2(Ω)

) 1

2

is a

norm on W 1,2
0 (Ω) ∩W 2,2(Ω) equivalent to the usual norm on W 2,2(Ω) that

we denote by ‖·‖2,Ω. The homogeneity axiom as well as the triangle inequal-

ity are straightforwardly obtained. Let u ∈ W 1,2
0 (Ω)∩W 2,2(Ω) be such that

‖̂u‖ = 0. Then from Green’s formula,
∫
Ω |∇u|2 dx = 0 and from Poincaré’s

inequality, u = 0 almost everywhere on Ω.
Now let us denote by A the mapping A : W 1,2

0 (Ω) ∩W 2,2(Ω) → L2(Ω)

such that ∀u ∈ W 1,2
0 (Ω)∩W 2,2(Ω), A(u) = Δu. For every f ∈ L2(Ω), let us
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introduce the unique solution (Lax-Milgram theorem) u ∈ W 1,2
0 (Ω) of the

variational problem: ∀v ∈ W 1,2
0 (Ω),∫

Ω
〈∇u,∇v〉R2 dx = −

∫
Ω
f v dx.

As the boundary of Ω is sufficiently smooth, a regularity result (see [18, Sec-

tion IX.6, p. 181] for instance) gives that u ∈ W 2,2(Ω). As Δu = f , it follows

that A (which is a continuous mapping since ‖Δu‖L2(Ω) ≤
√
2 ‖u‖2,Ω) is a

bijection from W 1,2
0 (Ω) ∩W 2,2(Ω) to L2(Ω). The bounded inverse theorem

enables us to conclude that the inverse mapping is continuous as well, im-

plying the existence of a constant C > 0 such that ∀u ∈ W 1,2
0 (Ω)∩W 2,2(Ω),

‖u‖2,Ω ≤ C ‖Δu‖L2(Ω) ≤
√
2C ‖̂u‖.

Our mathematical material being formulated on R2 rather than Ω, in

our nonlocal model, we propose searching for u in a subspace of W 1,2
0 (Ω)

and for v2 in W 1,2(Ω, [0, 1]) such that γ0 v2 = 1.

Theorem 12. Let Ω be a regular bounded open subset of R2 with boundary

of class C2. Let us assume that the functions t �→ ρn(t), t �→ tqρn(t) are non-

increasing for t ≥ 0 and q ∈]0, 1[. (Such a function ρn exists: for instance,

with q ∈]0, 1[, ρ(t) = e−|t|

|t|q and ρn(t) = C nρ(nt) with C = 1∫
R ρ(t) dt

). With

κε, ξε, ζε > 0, for any n ∈ N∗, problem

inf Fε,n(u,�g,Q, v1, v2) = ‖f − u− div�g‖2L2(Ω) + μ ‖|∇Q|‖L∞(Ω)

+ ρ

∫
R2

(v22,e(x) + κε)

2∑
i=1

∫
R

|ue(x+ hei)− 2ue(x) + ue(x− hei)|2
|h|4 ρn(h) dh

+
γ

2
‖|�g −∇Q|‖2L2(Ω) + ξε

∫
Ω
(v21 + ζε) |∇u|2 dx+ (α− β)Gε(v1) + β Gε(v2),

(8)

where v2,e and ue are respectively the extensions of v2 according to [18,

Theorem IX.7, p. 158] —by construction, 0 ≤ v2,e ≤ 1 a.e.—and of u on R2

by 0 (—with the regularity assumed on Ω, v2,e and u2,e are in W 1,2(R2)—),

admits minimizers (un = uε,n, �gn = �gε,n, Qn = Qε,n, v1,n = v1,ε,n, v2,n =

v2,ε,n) on W 1,2
0 (Ω) ∩ W s,2(Ω) × H(div) ×

{
Q ∈ W 1,∞(Ω) |

∫
Ω Qdx = 0

}
×

W 1,2(Ω, [0, 1])×
{
v2 ∈ W 1,2(Ω, [0, 1]) | γ0v2 = 1

}
, with s ∈

[
3

2
, 2

[
.
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Proof. The functional is proper, take v1 ≡ 1, v2 ≡ 1, �g ≡ �0, Q ≡ 0,

and u ≡ 0, since f is assumed to be sufficiently smooth (i.e. at least

L2(Ω)) on Ω which is bounded. Let us now consider a minimizing sequence

(uln, �gn
l, Ql

n, v
l
1,n, v

l
2,n) onW 1,2

0 (Ω)×H(div)×
{
Q ∈ W 1,∞(Ω) |

∫
Ω Qdx = 0

}
×W 1,2(Ω, [0, 1]) ×

{
v2 ∈ W 1,2(Ω, [0, 1]) | γ0 v2 = 1

}
(the dependency on ε is

not explicitly mentionned here for compactness). We will show that in fact,

uln ∈ W 1,2
0 (Ω) ∩W s,2(Ω).

1. Extraction of convergent subsequences:

• Fε,n(u
l
n, �gn

l, Ql
n, v

l
1,n, v

l
2,n) ≥ μ ‖|∇Ql

n|‖L∞(Ω). As
∫
ΩQl

n dx = 0

for all l ∈ N, we can use Poincaré-Wirtinger inequality, which

leads us to the existence of a subsequence of Ql
n still denoted by

Ql
n weakly-∗ converging to Qn inW 1,∞(Ω). As the weak-∗ conver-

gence in W 1,∞(Ω) implies uniform convergence,
∫
ΩQn(x) dx = 0.

• Fε,n(u
l
n, �gn

l, Ql
n, v

l
1,n, v

l
2,n) ≥ (α − β)ε‖∇vl1,n‖2L2(Ω). By noticing

that vl1,n ∈ L∞(Ω) with 0 ≤ vl1,n ≤ 1 a.e.,
∫
Ω vl1,n dx ≤ 1 and

Poincaré-Wirtinger inequality gives us the existence of a subse-

quence of vl1,n still denoted by vl1,n weakly converging to v1,n in

W 1,2(Ω). Since W 1,2(Ω) �
c
L2(Ω), vl1,n strongly converges to v1,n

in L2(Ω) and so pointwise almost everywhere up to a subsequence.

We deduce that v1,n ∈ W 1,2(Ω, [0, 1]).

• In the same way, we have vl2,n weakly converging to v2,n inW 1,2(Ω)

with v2,n ∈ W 1,2(Ω, [0, 1]) and γ0 v2,n = 1 by continuity of the

trace operator.

• Fε,n(u
l
n, �gn

l, Ql
n, v

l
1,n, v

l
2,n) ≥ ξεζε‖∇uln‖2L2(Ω). By Poincaré

inequality and the continuity of the trace operator, we get the

existence of a subsequence of uln still denoted by uln weakly con-

verging to un ∈ W 1,2
0 (Ω) in W 1,2(Ω).

Let us set El
n(h) =

∫
R2 |uln,e(x+he1)−2uln,e(x)+un,e(x−he1)|2 dx

where uln,e denotes the extension by 0 of uln on R2. Here again,

due to the assumption on Ω, uln,e belongs to W 1,2(R2). One can

prove that El
n(2h) ≤ 16El

n(h). By using Fubini-Tonelli theo-

rem, we have
∫
R2

∫
R

|ul
n,e(x+he1)−2ul

n,e(x)+ul
n,e(x−he1)|2

|h|4 ρn(h) dh dx =∫
R

El
n(h)
|h|4 ρn(h) dh = 2

∫∞
0

El
n(h)
|h|4 ρn(h) dh ≤ Fε,n(u

l
n, �g

l
n, Q

l
n, v

l
1,n,

vl2,n). We then apply [8, Lemma 3.2] by taking M = δ = 1,
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g(t) =
El

n(t)

tq+1
, k(t) = tq−3ρn(t) and we get:

∫ 1

0

El
n(h)

|h|4 ρn(h) dh ≥ C(1)

∫ 1

0

El
n(t)

|t|q+1
dt

∫ 1

0
tq−3ρn(t) dt.

(We will see further that the condition of monotonicity on k is
fulfilled). We now need g to verify the assumption of this lemma,

that is to say, g( t2) ≥ g(t). We know that g( t2) =
El

n(
t
2)2

q+1

tq+1
≥

2q−3g(t). Thus if q ≥ 3, this condition is fulfilled. By using the

properties of ρn, we deduce first that
∫ 1
0

El
n(t)

|t|q+1
dt ≤ C with C

independant of l. Then
∫∞
1

El
n(t)

|t|q+1
dt ≤ C ′ ‖uln,e‖2L2(R2)

∫∞
1

dt
|t|q+1 ,

C ′ being a constant and the last integral being convergent since

q ≥ 3, resulting in the uniform boundedness of
∫∞
0

El
n(t)

|t|q+1
dt. Be-

sides,
∫
R

El
n(t)

|t|q+1
dt =

∫
R

1
|h|q+1

∫
R2 |uln,e(x+he1)−2uln,e(x)+uln,e(x−

he1)|2 dx dh =
∫
R

1
|h|q+1 ‖τhe1uln,e − 2uln,e + τ−he1u

l
n,e‖2L2(R2) dh =∫

R
1

|h|q+1

∫
R2 |e2iπhξ1−2+e−2iπhξ1 |2|F(uln,e)(ξ)|2 dξ dh by Plancherel

theorem (τ· denoting the usual translation operator). Then one

can prove that
∫
R

El
n(t)

|t|q+1
dt = C

′′ ∫
R2 |F(uln,e)(ξ)|2|ξ1|q

∫
R

sin4(u)
|u|q+1

du dξ ≤ C, (the constant C may change line to line). The gen-
eralized integral in u converges if and only if q ∈ [3, 4[. By us-
ing the same arguments in the other direction (e2), we get that
|ξ| q2F(uln,e) ∈ L2(R2) and so uln,e ∈ H

q

2 (R2) (being a Hilbert
space) and is uniformly bounded for the associated norm with
q ∈ [3, 4[. There exists a subsequence still denoted by uln,e weakly
converging to ũn in Hs(R2) with s = q

2 . Besides, we know that

uln,e = uln on Ω and D(1,0)uln,e = (D(1,0)uln)e = D(1,0)uln on Ω,

and D(0,1)uln,e = (D(0,1)uln)e = D(0,1)uln on Ω. Thus,

‖uln‖2W s,2(Ω) = ‖uln‖2W 1,2(Ω) +

∫
Ω

∫
Ω

|∇uln(x)−∇uln(y)|2
|x− y|2s dx dy

≤ C +

∫
R2

∫
R2

|∇uln,e(x)−∇uln,e(y)|2

|x− y|2s dx dy,



72 Noémie Debroux et al.

with C independant of l. From [28, Lemma 4.33, p. 200], we know

that ∫
R2

∫
R2

|∇uln,e(x)−∇uln,e(y)|2

|x− y|2s dx dy < ∞

⇔
∫

R

∫
R2

|∇uln,e(x)−∇uln,e(x+ he1)|2

|h|2s−1
dx dh < ∞

and
∫
R

∫
R2

|∇ul
n,e(x)−∇ul

n,e(x+he2)|2
|h|2s−1 dx dh < ∞. Let us now prove

that
∫
R

∫
R2

|∇ul
n,e(x)−∇ul

n,e(x+he1)|2
|h|2s−1 dx dh < ∞ and

∫
R

∫
R2

|∇uln,e(x)−∇uln,e(x+ he2)|2

|h|2s−1
dx dh < ∞

independently of l.

We have∫
R

1

|h|2s−1
‖τhe1∇uln,e −∇uln,e‖2L2(R2) dh

= C̄

∫
R

sin2(u)

|u|2s−1

∫
R2

|ξ1|2s−2 (|ξ1|2 + |ξ2|2)|F(uln,e)(ξ)|2 dξ du

≤ C‖uln,e‖2Hs(R2),

by using Plancherel theorem and with C independant of l. By

doing the same computations in the other direction, we prove that

‖uln‖W s,2(Ω) is uniformly bounded and so up to a subsequence,

uln ⇀
l→+∞

un in W s,2(Ω) ⊂ W 1,2(Ω). As W s,2(Ω) �
c
C0,λ
b (Ω) with

λ < s − 1, then uln strongly converges to un in C0,λ
b (Ω) and so

pointwise everywhere on Ω.

Then ũn = un on Ω and un = 0 on ∂Ω, by uniqueness of the weak

limit.

Now, Hs(R2) � L2(R2) � S ′(R2) � D′(R2) with continuous

imbeddings. ∀ϕ ∈ D(R2),∫
R2

(uln,e − ũn)ϕdx︸ ︷︷ ︸
−→0
l→+∞

=

∫
Ω
(uln − un)ϕdx︸ ︷︷ ︸

−→0
l→+∞

+

∫
R2\Ω

(uln,e − ũn)ϕdx.
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Consequently, ∀ϕ ∈ D(R2),
∫
R2\Ω ũn ϕdx =

∫
R2\Ω̄ ũn ϕdx = 0,

since ũn ∈ Hs(R2) � C0(R2). In particular, ∀ϕ ∈ D(R2 \ Ω̄),∫
R2\Ω̄ ũn ϕdx = 0, meaning that ũn = 0 on R2 \ Ω̄ in the sense
of distributions. Due to the continuity of ũn, we deduce that
ũn = 0 everywhere on R2 \ Ω and so ũn = (un)e. By combining
the previous results, we can say that uln,e converges pointwise
everywhere to (un)e on R2.

• Classical arguments enable us to conclude that there exists a sub-
sequence still denoted by �gn

l weakly converging to �gn in H(div).

2. Lower semi-continuity of the functional:

• Since ∇Ql
n

∗
⇀ ∇Qn in L∞(Ω) then

‖∇Qn‖L∞(Ω) ≤ lim inf
l→+∞

‖∇Ql
n‖L∞(Ω).

• Weak-∗ convergence in L∞(Ω) implying weak convergence in
L2(Ω), ‖∇Qn − �gn‖2L2(Ω) ≤ lim inf

l→+∞
‖∇Ql

n − �gn
l‖2L2(Ω).

• Gε is convex and strongly lower semi-continuous in H1(Ω) and so
weakly lower semi-continuous in H1(Ω).

• ‖f − un − div �gn‖2L2(Ω) ≤ lim inf
l→+∞

‖f − uln − div �gn
l‖2L2(Ω).

• Let us consider h : Ω×R×R2 → R, (x, v, w) �→ (v(x)2+λε)|w(x)|2.
Since vl1,n −→

l→+∞
v1,n in L2(Ω), ∇uln ⇀

l→+∞
∇un in L2(Ω,R2),

since h is continuous with respect to (v, w) and measurable on
Ω for almost every (v, w) ∈ R × R2, for each (x, v), h is convex
with respect to w, ∀(v, w) ∈ R × R2, ∀x ∈ Ω a.e., h(x, v, w) ≥
0 ∈ L1(Ω) and lim inf

l→+∞

∫
Ω((v

l
1,n(x))

2 + λε)|∇uln|2 dx < +∞, then∫
Ω(v1,n

2 + λε)|∇un|2 dx ≤ lim inf
l→+∞

∫
Ω((v

l
1,n)

2 + λε)|∇uln|2 dx (see

[13]).

• vl2,n −→
l→+∞

v2,n in L2(Ω), therefore vl2,n,e −→
l→+∞

(v2,n)e in L2(R2)

(since from [18, Theorem IX.7, (ii), p. 158], ‖vl2,n,e−(v2,n)e‖L2(R2)≤
C̃ ‖vl2,n − v2,n‖L2(Ω), C̃ depending only on Ω) and so pointwise

almost everywhere in R2 (up to a subsequence). We deduce that

((vl2,n,e(x))
2 + κε)

|ul
n,e(x+hei)−2ul

n,e(x)+ul
n,e(x−hei)|2

|h|4 ρn(h) −→
l→+∞

((v2,n)e(x)
2 + κε)

|(un)e(x+hei)−2(un)e(x)+(un)e(x−hei)|2
|h|4 ρn(h), i ∈ {1,

2}, for all h ∈ R and almost all x ∈ R2.
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Using Fatou’s lemma twice, we deduce that
∫
R2

∫
R((v2,n)e(x)

2 +

κε)
|(un)e(x+hei)−2(un)e(x)+(un)e(x−hei)|2

|h|4 ρn(h) dh dx ≤ lim inf
l→+∞

∫
R2

∫
R

((vl2,n,e(x))
2 + κε)

|ul
n,e(x+he1)−2ul

n,e(x)+ul
n,e(x−he1)|2

|h|4 ρn(h) dh dx, i ∈
{1, 2}.

This concludes the proof.

We now turn to the part dedicated to numerical experiments related to
the local problem. The numerical analysis of the algorithm related to the
nonlocal model will be the core of a future paper.

4. Numerical experiments

4.1. Sketch of the algorithm

In this section, we briefly describe the main steps of our algorithm for the
sake of reproducibility, and make qualitative comments. We recall that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v1 =
α−β
2ε + 2(α− β)εΔv1

2ξε|∇u|2 + α−β
2ε

, v2 =
β
2ε + 2βεΔv2

2ρ|∇2u|2 + β
2ε

,

u = (f − div�g)− ρ ∂2

∂x2
1

(
v22

∂2u
∂x2

1

)
− ρ ∂2

∂x2
2

(
v22

∂2u
∂x2

2

)
−2ρ ∂2

∂x1∂x2

(
v22

∂2u
∂x1∂x2

)
+ ξε div (v

2
1 ∇u).

These equations can be interpreted as follows: when v1 (respectively v2) is
close to 0 at some point, the role of the diffusion term div (v21 ∇u) (resp.

∂2

∂xi∂xj

(
v22

∂2u
∂xi∂xj

)
, i, j ∈ {1, 2}) is cut, yielding not oversmoothed regions

along edges or fine structures. If on the contrary v1 or v2 is close to 1 at some
point, there is diffusion in u at that point to obtain a smooth approximation.
If |∇u| is close to 0 at some point (resp. |∇2u|2), then v1 (resp. v2) is close
to 1, enhancing the regularization process. If on the contrary |∇2u| is large,
v2 is close to 0 with a very small diffusion coefficient (� β ε

ρ |∇2u|2 ).

The algorithm consists in alternatively solving the Euler-Lagrange equa-
tions related to each unknown and presented in Section 2. We use a time-
dependent scheme in u = u(x1, x2, t) and Q = Q(x1, x2, t) (nonlinear over-
relaxation method, see [22, Section 4]), and a stationary semi-implicit fixed-
point scheme in v1 = v1(x1, x2), v2 = v2(x1, x2) and �g = �g(x1, x2). At
the boundary, we extend u by reflection outside the domain, and a simple
boundary condition for �g, v1 − 1, and v2 − 1 would be Dirichlet boundary
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conditions (and so Neumann boundary condition for Q), which appears to

work well in practice.

Let Δx1 = Δx2 = h = 1 be the space step, let Δt be the time step, and

let fi,j , u
n
i,j , Q

n
i,j , v

n
1,i,j , v

n
2,i,j , �g

n
i,j = (gn1,i,j , g

n
2,i,j)

t be the discrete versions of

f , u, Q, v1, v2 and �g at iteration n ≥ 0, for 1 ≤ i ≤ M , 1 ≤ j ≤ N .

Initialization: u0 = f , �g0 = �0, Q0 = 0, v01 = 1 and v02 = 1.

Algorithm: For n ≥ 1, compute and repeat to steady state:

|∇un|2i,j = (uni+1,j − uni,j)
2 + (uni,j+1 − uni,j)

2,

vn+1
1,i,j =

(α−β)
2ε + 2(α− β)ε (vn1,i+1,j + vn1,i−1,j + vn1,i,j+1 + vn1,i,j−1 − 4vn+1

1,i,j )

2ξε |∇un|2i,j +
(α−β)
2ε

,

|∇2un|2i,j = (uni+1,j − 2uni,j + uni−1,j)
2 + 2 (uni+1,j+1 − uni+1,j − uni,j+1 + uni,j)

2

+ (uni,j+1 − 2uni,j + uni,j−1)
2,

vn+1
2,i,j =

β
2ε + 2βε (vn2,i+1,j + vn2,i−1,j + vn2,i,j+1 + vn2,i,j−1 − 4vn+1

2,i,j )

2ρ |∇2un|2i,j +
β
2ε

,

un+1
i,j − uni,j

Δt
= (fi,j − uni,j −

gn1,i,j+1 − gn1,i,j−1

2
−

gn2,i+1,j − gn2,i−1,j

2
)

+ ξε

[
(vn+1

1,i,j )
2 (uni,j+1 − uni,j)− (vn+1

1,i,j−1)
2 (uni,j − uni,j−1)

]
+ ξε

[
(vn+1

1,i,j )
2 (uni+1,j − uni,j)− (vn+1

1,i−1,j)
2 (uni,j − uni−1,j)

]
− ρ

[
(vn+1

2,i,j+1)
2 (uni,j+2 − 2uni,j+1 + uni,j)− 2 (vn+1

2,i,j )
2 (uni,j+1 − 2uni,j + uni,j−1)

+ (vn+1
2,i,j−1)

2 (uni,j − 2uni,j−1 + uni,j−2)
]
− ρ

[
(vn+1

2,i+1,j)
2 (uni+2,j − 2uni+1,j + uni,j)

−2 (vn+1
2,i,j )

2 (uni+1,j − 2uni,j + uni−1,j) + (vn+1
2,i−1,j)

2 (uni,j − 2uni−1,j + uni−2,j)
]

− 2 ρ
[
(vn+1

2,i+1,j+1)
2 (uni+2,j+2 − uni+1,j+2 − uni+2,j+1 + uni+1,j+1)

− (vn+1
2,i,j+1)

2 (uni+1,j+2 − uni,j+2 − uni+1,j+1 + uni,j+1)

− (vn+1
2,i+1,j)

2 (uni+2,j+1 − uni+1,j+1 − uni+2,j + uni+1,j)

+(vn+1
2,i,j )

2 (uni+1,j+1 − uni,j+1 − uni+1,j + uni,j)
]
,

and equations derived in the same way for gn1 , g
n
2 and Qn.

An alternating minimization procedure is thus performed (see [19]),

yielding convergence properties. More precisely, starting with initial guess

v01 ∈ S ⊂ RM×N , v02 ∈ S ⊂ RM×N , u0 ∈ X ⊂ RM×N , �g0 ∈ Z ⊂ (RM×N )2
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and Q0 ∈ Y ⊂ RM×N , we successively obtain the sequence of conditional
minimizers by solving

v
(k+1)
1 ∈ argmin

v1∈S
Fε(u

(k), �g(k), Q(k), v1, v
(k)
2 ),

v
(k+1)
2 ∈ argmin

v2∈S
Fε(u

(k), �g(k), Q(k), v
(k+1)
1 , v2),

u(k+1) ∈ argmin
u∈X

Fε(u,�g
(k), Q(k), v

(k+1)
1 , v

(k+1)
2 ),

�g(k+1) ∈ argmin
	g∈Z

Fε(u
(k+1), �g,Q(k), v

(k+1)
1 , v

(k+1)
2 ),

Q(k+1) ∈ argmin
Q∈Y

Fε(u
(k+1), �g(k+1), Q, v

(k+1)
1 , v

(k+1)
2 ),

for k ≥ 0. We consecutively prove:

(i) The monotonicity property

Fε(u
(k+1), �g(k+1), Q(k+1), v

(k+1)
1 , v

(k+1)
2 ) ≤ Fε(u

(k), �g(k), Q(k), v
(k)
1 , v

(k)
2 ),

∀k ∈ N, ensuring that the sequence
{
Fε(u

(k), �g(k), Q(k), v
(k)
1 , v

(k)
2 )

}
converges.

(ii) For any converging subsequence (u(Ψ(k)), �g(Ψ(k)), Q(Ψ(k)), v
(Ψ(k))
1 ,

v
(Ψ(k))
2 ) of (u(k), �g(k), Q(k), v

(k)
1 , v

(k)
2 ) generated by the algorithm with

(u(Ψ(k)), �g(Ψ(k)), Q(Ψ(k)), v
(Ψ(k))
1 , v

(Ψ(k))
2 ) −→

k→+∞
(u∗, �g∗, Q∗, v∗1, v

∗
2),

the following holds:

∀u ∈ X, Fε(u
∗, �g∗, Q∗, v∗1, v

∗
2) ≤ Fε(u,�g

∗, Q∗, v∗1, v
∗
2),

∀Q ∈ Y, Fε(u
∗, �g∗, Q∗, v∗1, v

∗
2) ≤ Fε(u

∗, �g∗, Q, v∗1, v
∗
2),

∀�g ∈ Z, Fε(u
∗, �g∗, Q∗, v∗1, v

∗
2) ≤ Fε(u

∗, �g,Q∗, v∗1, v
∗
2),

∀v1 ∈ S, Fε(u
∗, �g∗, Q∗, v∗1, v

∗
2) ≤ Fε(u

∗, �g∗, Q∗, v1, v
∗
2),

∀v2 ∈ S, Fε(u
∗, �g∗, Q∗, v∗1, v

∗
2) ≤ Fε(u

∗, �g∗, Q∗, v∗1, v2),

making (u∗, �g∗, Q∗, v∗1, v
∗
2) a partial minimizer.

(iii) If (u(k), �g(k), Q(k), v
(k)
1 , v

k)
2 ) −→

k→+∞
(u∗, �g∗, Q∗, v∗1, v

∗
2), then (u∗, �g∗, Q∗,

v∗1, v
∗
2) belongs to the set of all partial minimizers of the problem.

If (u(k), �g(k), Q(k), v
(k)
1 , v

k)
2 ) does not converge, there exists a subse-

quence that converges to a partial minimizer of the problem.
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Figure 2: Road network extraction on an aerial scene: μ = 8, ξε = 0, α =
β = 0.5, ρ = 5, ε = 0.5, γ = 0.5, 10 iterations.

4.2. Numerical simulations

Experimental results on real datasets are now provided, resulting from the
application of the above algorithm. The values of the parameters in the
functional are chosen on the basis of the results of a number of experiments.
We can nevertheless infer the behavior of some of them: less regularization
(smaller α, β, ρ and ξε) induces more edges/creases in v1 and v2 respectively.
Also, a higher parameter μ balancing the L∞-norm of |∇Q| will lead to
smaller scale features in the v = div�g component. The fine structures appear
as contours along which the auxiliary variable v2 is close to zero, while jumps
appear as contours with larger thickness.

We start off with an application dedicated to road network detection on
urban scenes. An aerial urban scene is depicted in Fig. 2 (A. Drogoul’s cour-
tesy, size of the image 652×892), together with its smooth approximation u
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Figure 3: Road network extraction on an aerial scene: effect of the parameters
on the component v2.
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Figure 4: Road network extraction on an aerial scene with Aubert and Dro-
goul’s topological gradient method.

in which small scale features have been removed (more precisely, u should be
piecewise linear since the model involves second order penalization) and the
auxiliary function v2 that maps the fine structures of u. Function v2 discrim-
inates properly edges (i.e. discontinuities in the image function) that appear
in light gray, from creases and filaments (i.e. road network here) that ap-
pear in dark gray. Small scale features are assimilated to oscillatory patterns
having small G-norm and are thus well-captured in the v = div�g compo-
nent (e.g., the rows in the fields are clearly extracted). The road network is
clearly detected, while noise and texture are left in the v = div�g component.
The most sensitive parameters are those related to regularization, namely
ρ, α and β. The smaller parameters α and β are, the more edges/creases are
present in the auxiliary function v2. Parameter ρ acts on the thickness of the
contours and on the range of function v2: the higher ρ is, the closer to the
value one contours representing fine structures are. Parameter ε also plays
on the thickness and intensity of the contours, and is always set between
0.5 and 1. These elements are exemplified in Fig. 3 where various sets of
parameters have been tested. We compare our results with those obtained
by Aubert and Drogoul [9, 29] with the topological gradient (Fig. 4). We
first observe that the topological gradient has the tendency to oversmooth
the contours. Second, it does not properly discriminate the edges from the
filaments and creases in terms of intensity for instance. At last, even if we
tuned the algorithm adequately (in particular, a weighting parameter in their
model influences the size of the detected structures), our algorithm detects
more accurately the center of the road network. Another illustration devoted
to filament/vessel-like structure detection is provided on Fig. 5 (size 338 ×
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Figure 5: Dendrite and axon extraction: μ = 1, ξε = 0, α = β = 0.1, ρ = 3.5,
ε = 0.5, γ = 5, 20 iterations.
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Figure 6: Crack detection: μ = 0.001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5,
ε = 1, γ = 0.5, 50 iterations.

436) and focuses on dendrite and axon detection (courtesy of A. Draugoul,
https://sites.google.com/site/drogoulaudric/recherche). The skeleton of the
dendrite network is well recovered, with in particular strong intensity in the
middle of the dendrites. Also, to emphasize the role of the decomposition,
we display the v2 component when �g and Q are removed from the model: we
observe that spurious details (not related to filament structures) spoil this
constituent. We now apply the proposed algorithm to crack detection, both
on Fig. 6 (size 501 × 501) and 7 (size 285 × 429), courtesy of A. Drogoul.
We depict the three main components of the decomposition/segmentation,

https://sites.google.com/site/drogoulaudric/recherche
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Figure 7: Crack detection: μ = 0.001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5,
ε = 1, γ = 0.5, 50 iterations.

i.e., u, v = div�g, v2, as well as the results obtained with Aubert and Dro-
goul’s topological gradient method. The cracks are correctly enhanced, the
oscillatory patterns are well captured by the v = div�g component. Again,
the role of the decomposition part of the algorithm is highlighted (Fig. 6) by
depicting the obtained v2 component when decomposition is turned off (spu-
rious details are visible on the top of the image). Also, the linear piecewise
nature of the component u in Fig. 7 is properly returned.

We conclude the paper with two applications dedicated to crack detec-
tion on bituminous surfacing Fig. 8 (size 231 × 650) and 9 (size 201 × 640),
courtesy of CEREMA, France. The two considered slices of bitumen, in ad-
dition to long and thin cracks, exhibit high oscillatory patterns and white
spots of varying sizes, which makes the straight application of our algorithm
difficult. Indeed, in terms of scale, the crack and some of these spots could
be comparable and could not be properly discriminated, resulting in super-
fluous information in the v2 component. Think for instance of a white spot
assimilated to a ball of radius 2 pixels (—if the image domain is the n × n
discretized unit square, then the scale behaves like 1

n—), and of a long thin
crack of width 2 pixels and length k pixels (k � 1) leading to a similar scale.
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Figure 8: Crack detection: μ = 0.0001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5,
ε = 1, γ = 0.9, 270 iterations.

To circumvent this issue, a pre-processing step is applied. It consists in ap-
prehending the problem first as an inpainting one ([1]), and by considering
these white spots as missing parts of the image that need to be filled. This is
achieved with the MATLAB R© function imfill (https://fr.mathworks.com/
help/images/ref/imfill.html —to fill holes in a grayscale image) applied to
the inverse image, yielding an image that serves as input of our algorithm. In
both cases, the cracks are well recovered in the v2 component which does not
include superfluous information. The edge detector v1 also recovers parts of
the crack but contains spurious information regarding the problem we ad-
dress, such as asphalt defect boundaries. It thus justifies the use of a second
order method.

Besides, Fig. 8-(g)-(h)-(i) and 9-(g)-(h)-(i) are the results obtained by
minimizing the elliptic approximation of the Blake-Zisserman functional that
is to say without considering the decomposition part. Thanks to Fig. 8-(j)-
(k)-(l) and 9-(j)-(k)-(l) showing the absolute difference between both results,

https://fr.mathworks.com/help/images/ref/imfill.html
https://fr.mathworks.com/help/images/ref/imfill.html
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Figure 9: Crack detection: μ = 0.001, ξε = 2.5, α = 0.1, β = 0.05, ρ = 2.5,
ε = 1, γ = 0.9, 270 iterations.

we observe that u is less noisy with our method, v1 and v2 also exhibit better
constrast with less superfluous information.
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