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Hamilton’s Ricci flow (RF) equations were recently expressed in

terms of a sparsely-coupled system of autonomous first-order non-

linear differential equations for the edge lengths of a d-dimensional

piecewise linear (PL) simplicial geometry. More recently, this sys-

tem of discrete Ricci flow (DRF) equations was further simpli-

fied by explicitly constructing the Forman-Ricci tensor associated

to each edge, thereby diagonalizing the first-order differential op-

erator and avoiding the need to invert large sparse matrices at

each time step. We recently showed analytically and numerically

that these equations converge for axisymmetric 3-geometries to

the corresponding continuum RF equations. We demonstrate here

that these DRF equations yield an explicit numerical realization

of Thurston’s geometrization procedure for a discrete 3D axially-

symmetric neck pinch geometry by using surgery to explicitly in-

tegrate through its Type-1 neck pinch singularity. A cubic-spline-

based adaptive mesh was required to complete the evolution. Our

simulations yield the expected Thurston decomposition of the suf-

ficiently pinched axially symmetric geometry into its unique geo-

metric structure — a direct product of two lobes, each collapsing

toward a 3-sphere geometry. The structure of our curvature may be

used to better inform one of the vertex and edge weighting factors

that appear in Forman’s expression of Ricci curvature on graphs.
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1. Ricci flow in 3D and its applications

Hamilton’s Ricci flow (RF) yields new insights into a broad range of prob-
lems from Perelman’s proof of the Poincaré conjecture to greedy-routing
problems in cell phone networks [1, 2, 3, 4, 5]. Here the time evolution of
the metric ġ is proportional to the Ricci tensor Rc,

(1) ġ = −2Rc (g) .

The RF equation yields a forced diffusion equation for the curvature; i.e.,
the scalar curvature (R) evolves as

(2) Ṙ = �R+ 2R2,

here � is the Laplacian with respect to the metric g.

The majority of the engineering applications of RF have been limited to
the numerical evolution of piecewise linear surfaces [6, 7, 8, 9]. This is not
surprising since a geometry with complex topology is most naturally repre-
sented in a coordinate-free way by unstructured meshes, e.g. finite volume
[10], finite element [11]. The applicability of discrete RF in two dimensions
arises from its diffusive curvature properties and from the uniformization
theorem for surfaces: every simply connected Riemann surface evolves un-
der RF to one of three constant curvature surfaces — a sphere, a Euclidean
plane, or a hyperbolic plane. RF on surfaces is an accepted method for
engineering a metric for a surface given only its curvature [6, 7, 8, 9]. How-
ever, in three dimensions, it is significantly more complicated. In particular,
singularities can form during evolution under RF. In three dimensions, the
uniformization theorem yields the geometrization theorem of Thurston, that
shows that each closed 3-manifold has a decomposition into a connected sum
of one or more of eight prime 3-manifolds [12, 13, 14, 15]. The diffusive cur-
vature flow in three and higher dimensions together with this classification
provides a richer taxonomy than its 2-dimensional counterpart. We believe
this more refined taxonomy may prove useful in network classification. Diffu-
sive curvature flow may provide noise reduction in higher dimensional man-
ifolds, and in this direction we are currently exploring a coupling of RF with
persistent homology [16, 17]. Finally, the soliton solutions of RF are Ricci
flat and are therefore vacuum solutions of Einstein’s equations for gravita-
tion. This feature and its connection to the renormalization group make RF
with boundary an exciting topic for current research into AdS/CFT models
of quantum gravity [18, 19].
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2. Discrete Ricci flow in 3D

A discrete RF (DRF) approach for three and higher dimensions, referred to
as Simplicial Ricci Flow (SRF), has been introduced recently and is founded
on Regge calculus [20, 21, 22], as well as complementary work in this direc-
tion by [23, 24, 25, 26, 27]. The equations of SRF are similar to their contin-
uum counterpart and were shown for this model to convergent. Recently, the
Rce tensor was reconstructed on each edge e of a lattice geometry [29]. Here
they defined (Definition 5.3) a volume associated to edge e = v1v2 that was
capped at each of the two bounding endpoints v1 and v2. However, in this
work we extended the volume associated to the edge e to include the union
of the two Voronoi volumes associated to bounding vertices of the edge,

(3) Ve = Vv1
∪ Vv2

.

In so doing, we avoided the need to artificially cap the ends of the volume.
The formulae for the Ricci curvature (Eq. 1.3) of the edge in [29] is identical
for this extended volume, it just includes more edges in the summation. Even
though both volumes gave essentially equivalent neck pinching dynamics,
we choose the extended volume as it adheres closely to the approach by
Forman [27]. These new DRF equations form a diagonalized set of first-order
autonomous nonlinear differential equations in time. There is one equation
per edge in the lattice geometry,

(4)
1

�e

d�e
dt

= −Rce = −Ke +
1

2
Re.

In this DRF equation [29] we use an alternative but equally valid vertex-
weighted expression:

1. Ke is the sectional curvature of edge �e = v1v2 and is given in terms of
the sum over all the edges, �ej that share a common vertex (v1 and/or
v2) with edge �e,

Ke =
1

Ve

∑
ev1 ,ev2∼e

(
cos2(θev1 )εev1

Aev1

Vev1
+

cos2(θev2 )εev2
Aev2

Vev2

)
.

The data structure for this sectional curvature is illustrated in (Fig. 1).
It is expressed in terms of the Voronoi areas Aj dual to the edges �j ,
the sum of the dual Voronoi 3-volumes of the vertices bounding edge
e,

Ve = Vv1
+ Vv2

,
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Figure 1: The data structure of an edge (e = v1v2) used in our definition
of the Forman-Ricci tensor. Included in this data structure are all the edges
that share either vertex v1 or v2 or both. This data structure is common for
both the discrete Ricci flow tensor Rc

DRF
used here as well as the Forman

graph Ricci curvature RcF for an edge e in a graph described in Sec. 5.

the deficit areas εj of these edges used in Regge calculus [30], as well
as the angle θj between edge �e and �j . Here, Vev1

is the fraction of the
dual Voronoi volume, Vv1 associated with edge ev1. These are explicitly
defined for this model in [31, 33, 34]. Additionally,

2. Re is the scalar curvature associated to edge �e, and it is expressed in
terms of the average of the scalar curvatures at each of the endpoints
of edge �e = v1v2,

Re =
1

2
(Rv1

+Rv2
) .

The vertex-based scalar curvatures were introduced earlier in Regge calculus,
and is a certain weighted sum of the curvatures of the edges meeting a given
vertex [31],

Rv =
1

Vv

∑
e∼v

�eεe.

Here Vv is the dual volume associated with vertex v, and �e is the length of
the edge emanating from vertex v.

It is the aim of this paper to explore the behavior of these new diago-
nalized DRF equations in 3-dimensions for a geometry with axial symmetry,
and to examine the development of a Type-1 neck pinch singularity through
the singularity using manifold surgery techniques. Thus providing the first
piecewise linear numerical realization of Thurston’s geometrization using
manifold surgery.
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3. The 3D neck pinch model

We use the analysis of Angenent and Knopf on the Type-1 singularity anal-

ysis of the continuum RF equations as a foundation of this work [32]. They

carefully analyzed a class of axisymmetric double-lobed shaped geometries

with mirror symmetry about the plane of the neck as illustrated in the top of

Fig. 2. The symmetry of this geometry allows us to suppress one of the three

dimensions for visualization purposes. In [32] RF was applied to a warped

product metric on I × S2 having the form,

g = ϕ(z)2dz2︸ ︷︷ ︸
da2

+ρ(z)2gcan(5)

= da2 + ρ(a)2gcan.(6)

Figure 2: A two dimensional representation of the 3D neck pinch geometry of
Angenent and Knopf (continuum on top, and discrete on bottom). In 3D the
continuum cross-sections are 3-spheres and not circles, and in our discrete
model the cross sections are icosahedrons and not hexagons. The 3D cells
are triangle-based frustum blocks as opposed to the trapezoids depicted in
the bottom of the figure. Here the variable ac measures the proper distance
from the equator, and s is the length of the icosahedron edges.
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Here, I ∈ R is an open interval,

(7) gcan = dθ2 + sin2 θdφ2,

is the metric of the unit 2-sphere,

(8) a(z) =

∫ z

0
ϕ(z)dz,

is the geodesic axial distance away from the waist, and ρ(a) is the radial
profile of the mirror-symmetric geometry, i.e. s = ρ(a) is the radius of the
cross-sectional 2-sphere at axial distance a from the waist. Angenent and
Knopf proved that the RF evolution for such a geometry has the following
properties:

1. If the scalar curvature is everywhere positive, R ≥ 0, then the radius
of the waist (smin = ρ(0)) is bounded, (T − t) ≤ s2min ≤ 2(T − t),
where T is the finite time at which a neck pinch occurs.

2. As a consequence, the neck pinch singularity occurs at or before T =
s2min.

3. The heights of the two lobes are bounded from below and, under suit-
able conditions, the neck will pinch off before the lobes will collapse.

4. The neck approaches a cylindrical-type singularity.

We demonstrated in our earlier work that the SRF equations, for a suffi-
ciently pinched radial profile, reproduced the neck pinch singularity in finite
time, and that the SRF evolutions agree with a finite-difference solution
of the continuum RF equations for the same profile [33, 34]. However, in
our previous analysis we were unable to remove the singularity by manifold
surgery and so unable to integrate through the singularity and reproduce
the direct product of two collapsing 3-spheres. Furthermore the equations
used previously, though proven to converge to the continuum RF equations,
form a sparsely-coupled set of autonomous nonlinear first-order differential
equations that proved numerically difficult and time consuming to solve.

The discrete model reported here is a piecewise linear (PL) approxima-
tion to the double-lobed geometry (e.g. the S2 cross sections are modeled by
icosahedra, and adjacent faces of the icosahedra are connected to each other
via frustum blocks) as illustrated in Fig. 3 and described more fully in [20].
Our simulation used 80 cross-sectional icosahedra across the double-lobed
profile. We also relaxed the condition of mirror symmetry about the throat
and considered asymmetric geometries. This work represents the first non-
trivial numerical solution of the new DRF equations, and it is the first DRF
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Figure 3: An illustration of the icosahedron neck pinch geometry for nine
cross-sectional icosahedra (top), and its dual dodecahedral lattice (bottom).
The lattice is composed of triangle-based frustum blocks, and the dual lat-
tice is composed of pentagonal-based frustum blocks. The expressions for
the sectional, scalar, and Ricci curvature uses the dual lattice with its do-
decahedral cross sections.

integration through a Type-1 singularity via manifold surgery of which we
are aware. The results are illustrated in Fig. 4. The illustrative simulation
presented here involves the solution of a diagonal set of 159 autonomous non-
linear first-order differential equations. We evolved the left and right lobes
for 1682 and 2133 time steps, respectively. We used a time step Δt = 0.25.
There is no longer the need for matrix inversion at each evolution step.

In the next section we describe the initial profile used and the numerical
results obtained.

4. DRF with surgery: a numerical realization of Thurston’s
geometrization for a neck pinch geometry

We evolved a sufficiently pinched axisymmetric 3-geometry which was given
the initial (t = 0) radial profile,

si = 105.15

(
1− 0.2 e

( ξi+.4
0.4 )

2

− 0.05 e
( ξi+0.6

0.3 )
2

cos(ξi)− 0.7 cos(ξi)
4

)
,(9)

∀i ∈ {1, ..., n},

and axial segments,

(10) ai = 100 sin (Δξ) , ∀i ∈ {1, 2, ..., n− 1},
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Figure 4: The RF of a lopsided neck pinch geometry through the Type-1 sin-
gularity using surgery and yielding the geometry as a direct product of two
3-spheres. We use axial symmetry of our model to suppress one dimension
and the resulting two-lobed geometry can be visualized in Euclidean 3-space
(our evolution was fortunately isometrically embeddable in R3). The middle
third and fourth figure occur at the same time (t = 183.0) in the evolution.
They illustrate the explicit manifold surgery, where the spherical caps (two
icosahedrons) are placed on the ends of the left and right lobes. This is
the first numerical illustration of Thurston’s geometrization procedure that
we are aware of. This surface has 3438 edges, 1580 triangle-based frustum
blocks and 960 vertices, although symmetry reduces the number of edges to
80 icosahedral {si} edges and 79 axial {ai} edges.

where ξi = (n− 2i+1)/2, Δξ = π/(n+1), and there are n = 80 icosahedral
cross-sections. Fig. 4 shows the initial profile of the lobed geometry in the
rectangle to the left along with six other snapshots taken later during the
evolution. This initial double-lobed geometry is also illustrated in Fig. 5 and
is the outermost curve in the planar embedding. We evolve this surface by
numerically solving Eq. 4. This geometry evolved to a pinch (third geometry
from the left in Fig. 4) at t = 183.0. We evolved the equations using a fourth-
order Runge-Kutta code with Δt = 0.25. At every 50 steps in this evolution
we remesh the surface using a cubic spline interpolation. This remeshing was
necessary to keep the circumcenter inside each frustum block (as described
in [33]). Near the singularity t = 183 we removed the pinch by manifold
surgery yielding the two lobes exhibited in Fig. 5 using the following 4-step
procedure:

1. We remove the axial edge a45 where the geometry pinched yielding a
disconnected left and right lobed geometry each with R3 topology (the
right and left boundaries were removed, respectively).
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Figure 5: A 2-dimensional cross section of a lopsided neck pinch geome-
try evolving under RF through the Type-1 singularity. Surgery yields two
disconnected 3D ovoids and each becomes spherical under the RF evolu-
tion. The resulting geometry is a direct product of two 3-spheres. As the
lobed geometry collapses a pinch occurs at t= 183. At this point we remove
the axial edges at the pinch and cap each end of the left and right lobe
with a new icosahedra. These two surfaces (pre- and post-surgery) are the
third and fourth layers inside the initial surface. After surgery, we remesh
both the left and right 3-dimensional ovoids using cubic spline interpolation.
This is, to our knowledge, the first numerical realization for PL manifolds
of Thurston’s geometrization procedure. This particular surface has 3348
edges, 1580 triangle-based frustum blocks and 960 vertices, although sym-
metry reduces the number of edges to 80 icosahedral {si} edges and 79 axial
{ai} edges.

2. We capped the left and right lobes by gluing an icosahedra to these
open ends with edge length s45 and s46 thus forming two disconnected
3-dimensional ovoids.

3. We remeshed each of the 3-dimensional ovoids using a cubic spline.
4. Finally, we continued evolving using the DRF equations for both of

the 3-dimensional ovoids.

A more sophisticated surgery procedure that we illustrate in Fig. 6 was im-
plemented. Here we replace the last three s variables and two a variables with
their spherical cap values. Because we found that this more time-consuming
and sophisticated approach yields the same results, we chose to use the more
austere procedure enumerated above. We evolved these two lobes separately
using the Eq. 4. Under this flow the curvature uniformized and the lobes
each evolved toward a collapsing 3-sphere geometry as shown in the figure.
We reproduced expected results with the new DRF equations as shown in
Fig. 4 and Fig. 5. In other words, the initial geometry evolved toward a direct
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Figure 6: After the manifold surgery the lobe was closed using a spheri-
cal cap with proper matching conditions as illustrated in this figure. This
involved reassigning the values to two of the s variables and two of the a val-
ues. This procedure offers no essential advantage over the simpler procedure
consisting of just capping the surgery with an icosahedron and remeshing.

product of two constant curvature Thurston geometries, and in particular,

as a direct product of two 3-spheres.

This numerical example demonstrates our ability to integrate through a

singularity and realize the Thurston decomposition. Our current approach

is numerically more efficient than our earlier formulations.

5. From piecewise linear curvature to graph curvature

While, in this manuscript, we have focused on the discrete Ricci flow of a

PL geometry and manifold surgery. Our formulation is based on Forman’s

curvature construction and can be applied to more general structures, e.g.

graphs. It would be interesting to explore the properties of graph curvature

flow and determine its utility in characterizing the graph structure, or in its

ability to identify and diffuse interesting curvature regions in the graph. To

this end, there is considerable interest and pioneering work in applying the

Ricci flow techniques to characterize and identify change in dynamic small-

world spatial networks [35, 36]. Positive curvature networks stabilize, while

negative hyperbolic curved networks expand. The key to these approaches

is a measure of the Ricci curvature introduced by Forman [27]. We have

identified a striking, but intuitive, relationship between the Forman Ricci

curvature RcF on graphs and our formulation of the discrete Ricci tensor
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Rc
DRF

[28, 29],

RcF =
1

2

(
ω(v1)

ω(e)
+

ω(v2)

ω(e)

)
−

∑
ev1 ,ev2∼e

1

2

(
ω(v1)√

ω(e)ω(ev1
)
+

ω(v2)√
ω(e)ω(ev2

)

)
,

(11)

Rc
DRF

=
1

2

(
Rv1

+Rv2

2

)
−

∑
ev1 ,ev2∼e

1

2

(
cos2(θev1

)εev1
Aev1

+
cos2(θev2

)εev2
Aev2

)(12)

Here, e is the edge under consideration between two nodes v1 and v2, the

edges sharing node v1 are denoted by evi
and are each weighted by an appro-

priate weighting function ω(evi
) ∈ [0, 1] (with i = {1, 2}), and ω(vi) ∈ [0, 1]

is the weighting function for node vi. The data structure as shown in Fig. 1

is identical for both the discrete Ricci tensor and the Forman curvature on

graphs. The comparison of these two curvatures for a given simplicial net-

work, e.g. the 600-cell polytope, could sharpen the definition of the vertex

and edge weighting function for the Forman curvature. This suggests the

following correspondence:

ω(vj) ←→ cos2
(
θej

)
εej(13) √

ω(ej)ω(e) ←→ Aej(14)

We believe this may lead to discoveries characterizing complex networks and

work in this direction is already underway [37].

It seems plausible that the set of DRF equations will have an equally

rich spectrum of application as does its 2-dimensional counterpart known

as combinatorial RF [38]. We therefore are motivated to explore the DRF

in higher dimensions so that it can be used in the analysis of topology and

geometry, both numerically and analytically, to bound Ricci curvature in

discrete geometries and to analyze and better handle higher–dimensional

RF singularities [39, 40]. The topological taxonomy afforded by RF is richer

in 3D than in 2D. In particular, the uniformization theorem says that any

2–geometry will evolve under RF to a constant curvature sphere, plane or

hyperboloid, while in 3–dimensions the curvature and surface will diffuse into

a connected sum of eight distinct prime manifolds [12]. We ask is there a

similar uniformization/geometrization theorem for 2D/3D spatial networks?



42 Paul M. Alsing et al.

Acknowledgements

We wish to thank Rory Conboye and Matthew Corne for stimulating discus-
sions and for their work. We thank Rory Conboye for his help in reformu-
lating the Forman-Ricci flow equations in their current form. PMA would
like to acknowledge support of the Air Force Office of Scientific Research.
We wish to thank the Information Directorate of the Air Force Research
Laboratory and the Griffiss Institute for providing us with an excellent en-
vironment for research. This work was supported in part through the VFRP
and SFFP program, as well as AFRL grant FA8750-15-2-0047 and AOARD
Grant FA2386-17-1-4070. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors and do not nec-
essarily reflect the views of AFRL.

References

[1] R. Hamilton, “Three-manifolds with positive Ricci curvature,” J. Diff.
Geom 17 (1982), 255–306.

[2] H.-D. Cao, B. Chow, S.-C. Chu & S.-T. Yau, eds., Collected Papers on
Ricci Flow in Series in Geometry and Topology, Volume 37 (Interna-
tional Press; Somerville, MA; 2003).

[3] B. Chow & D. Knopf, The Ricci Flow: An Introduction, Mathematical
Surveys and Monographs, Volume 110 (American Mathematical Soci-
ety; Providence, RI; 2004).

[4] B. Chow, P. Lu & L. Ni, Hamilton’s Ricci Flow, Graduate Studies in
Mathematics, Volume 77 (American Mathematical Society; Providence,
RI; 2006).

[5] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey,
D. Knopf, P. Lu, F. Luo & L. Ni, The Ricci Flow: Techniques and Appli-
cations, Part 1: Geometric Aspects, Mathematical Surveys and Mono-
graphs, Volume 135 (American Mathematical Society; Providence, RI;
2007).

[6] X. Yu, X. Yin, W. Han, J. Gao & X. Gu, “Scalable routing in 3D
high genus sensor networks using graph embedding,” INFOCOM 2012:
2681–2685.

[7] Y. Wang, J. Shi, X. Yin, X. Gu, T. F. Chan, S-T Yau, A. W. Toga &
P. M. Thompson, “Brain surface conformal parameterization with the
Ricci flow,” IEEE Trans. Med. Imaging 31(2) (2012) 251–264.



Discrete Ricci flow with surgery 43

[8] X. Gu, F. Luo & S-T Yau, “Fundamentals of computational conformal
geometry,” Mathematics in Computer Science 4(4) (2010) 389–429.

[9] B. Chow & F. Luo, “Combinatorial Ricci flows on surfaces,” J. Differ-
ential Geometry 63 (2003) 97–129.

[10] J. Peiro & S. Sherwin, Finite Difference, Finite Element and Finite
Volume Methods For Partial Differential Equations, in Handbook of
Materials Modeling, Volume 1, Methods and Models, Springer, 2005.

[11] S. Humphries, Jr., Finite-Element Methods for Electromagnetism, Field
Solutions on Computers (ISBN 0-8493-1668-5) (Taylor and Francis,
Boca Raton, 1997).

[12] W. Thurston, Three-dimensional geometry and topology, Vol. 1. Edited
by Silvio Levy, Princeton Mathematical Series, 35, (Princeton Univer-
sity Press, Princeton, NJ, 1997).

[13] G. Perelman, “The entropy formula for the Ricci flow and its geometric
applications,” preprint, math.DG/0211159.

[14] G. Perelman, “Ricci flow with surgery on three-manifolds,” preprint,
math.DG/0303109.

[15] G. Perelman, “Finite extinction time for the solutions to the Ricci flow
on certain three-manifolds,” preprint, math.DG/0307245.

[16] M. Hein and M. Maier, “Manifold Denoising,” in Advances in Neural
Information Processing Systems 19 (NIPS 2006). (Eds.) B. Schölkopf,
J.C. Platt and T. Hofmann (2007).

[17] P. M. Alsing, H. A. Blair, M. Corne, G. Jones, W. A. Miller, K. Mis-
chaikow & V. Nanda, “Topological Signals of Singularities in Ricci
Flow,” Axioms 6 (2017) 24.

[18] S. Jackson, R. Pourhasan & H. Verlinde, “Geometric RG flow,” (2013)
arXiv:1312.6914.

[19] M. Carfora & S. Romano, “Quantum fluctuations and geometry: from
graph counting to Ricci flow,” Reports on Math. Phys. 64 (2009) 185–
203; arXiv:0902.2061v3 [hep-th].

[20] W. A. Miller, J. R. McDonald, P. M. Alsing, D. Gu & S.-T. Yau, “Sim-
plicial Ricci Flow,” submitted Comm. Math. Phys. 329 (2014) 579–608;
arXiv:1302.0804v1 [math.DG].

[21] P. M. Alsing, J. R. McDonald & W. A. Miller, “The simplicial Ricci
tensor,” Class. Quantum Grav. 28 (2011) 155007 (17 pp).



44 Paul M. Alsing et al.

[22] J. R. McDonald, W. A. Miller, P. M Alsing, X. D. Gu, X. Wang & S.-T.

Yau, “On exterior calculus and curvature in piecewise-flat manifolds,”

paper submitted to J. Math. Phys. (2012) arxiv.org/abs/1212.0919.

[23] D. Glickenstein, D. Champion and A. Young, “Regge’s Einstein-Hilbert

functional on the double tetrahedron,” Differential Geom. Appl. 29

(2011) 109–124, doi:10.1016/jdifgeo.2010.10.001.

[24] D. Glickenstein, “Discrete conformal variations and scalar curvature on

piecewise flat two- and three-dimensional manifolds,” J. Diff. Geom.

87 (2011) 201–238.

[25] D. Glickenstein, “Geometric triangulations and discrete Laplacians on

manifolds,” arXiv:math/0508188 [math.MG].

[26] H. Ge, “Discrete Quasi-Einstein Metrics and Combinatorial Curvature

Flows in 3-Dimension,” arXiv:1301.3398 [math.DG].

[27] R. Forman, “Bochner’s method for cell complexes and combinatorial

Ricci curvature,” Discrete Comput. Geom. 29 (2003) 323–374.

[28] R. P. Sreejith, K. Mohanraj, J. Jost, E. Saucan, and A. Samal, “For-

man curvature for complex networks,” J. Stat. Mech. (2016) 063206,

arXiv:1603.00386v1.

[29] R. Conboye and W. A. Miller, “Piecewise Flat Curvature and Ricci

Flow in Three Dimensions,” Asian. J. Math. 21 no. 6 (2017) 1063–

1098, arXiv:1603.03113.

[30] T. Regge, “General relativity without coordinates,” Il Nuovo Cimento

19 (1961) 558–571.

[31] J. McDonald and W. A. Miller, “A geometric construction of the Rie-

mann scalar curvature in Regge Calculus,” Class. Quantum Gravity 25

(2008) 195017.

[32] S. Angenent & D. Knopf, “An example of neckpinching for Ricci flow

on Sn+1”. Math. Res. Lett. 11 (2004) 493–518.

[33] P. M. Alsing, M. Corne, D. X. Gu, S. Lloyd, W. A. Miller, S. Ray and

S.-T. Yau, “Simplicial Ricci flow: an example of a neck pinch singularity

in 3D,” Geom. Imaging Computing 1(3) (2014) 303–331.

[34] P. M. Alsing, M. Corne, W. A. Miller and S. Ray, “Equivalence of

simplicial Ricci flow for 3D neck pinch geometries,” Geom. Imaging

Computing 1(3) (2014) 333–366.



Discrete Ricci flow with surgery 45

[35] M. Weber, J. Jost and E. Saucan,“Forman-Ricci flow for change
detection in large dynamic data sets,” Axioms 5(4) (2016) 26
arXiv:1604.06634v2.

[36] M. Weber, J. Jost and E. Saucan, “Characterizing Complex Net-
works with Forman-Ricci Curvature and Associated Geometric Flows,”
arXiv:1607.08654.

[37] R. P Sreejith, J. Jost, E. Saucan & A. Samal, “Systematic evaluation of
a new combinatorial curvature for complex networks,” Chaos, Solitons
& Fractals, 101:50–67 (2017).

[38] B. Chow and F. Luo, “Combinatorial Ricci Flows on Surfaces,” J. Dif-
ferential Geom. 63, no. 1 (2003) 97–129.

[39] Y. Lin and S.-T. Yau, “Ricci curvature and eigenvalue estimate on
locally finite graphs,” Math. Res. Lett. 17 (2010) 343–356.

[40] D. Knopf, “Estimating the trace-free Ricci tensor in Ricci flow,” Jour-
nal: Proc. Amer. Math. Soc. 137 (2009), 3099–3103.

Paul M. Alsing

Air Force Research Laboratory

Information Directorate

Rome, NY 13441

USA

E-mail address: paul.alsing@us.af.mil

Warner A. Miller

Department of Physics

Florida Atlantic University

Boca Raton, FL 33431

USA

E-mail address: wam@fau.edu

Shing-Tung Yau

Department of Mathematics

Harvard University

Cambridge, MA 02138

USA

E-mail address: yau@math.harvard.edu

Received July 12, 2017

mailto:paul.alsing@us.af.mil
mailto:wam@fau.edu
mailto:yau@math.harvard.edu

	Ricci flow in 3D and its applications
	Discrete Ricci flow in 3D
	The 3D neck pinch model
	DRF with surgery: a numerical realization of Thurston's geometrization for a neck pinch geometry
	From piecewise linear curvature to graph curvature
	Acknowledgements
	References

