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Predicting eclipses, especially solar eclipses, was one of the im-
portant challenges in ancient and medieval astronomy. Using a
statistical approach, David Mumford tested the accuracy of the
Chinese algorithm for predicting solar eclipses as formulated in
the Shoushihli [1]. I carried out a similar analysis of the Indian
Tantrasaṅgraha [3] using his appoach. In this paper, I report on the
accuracy of Ptolemy’s algorithm and compare it with the Shoushihli
and the Tantrasaṅgraha.
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1. Introduction

One evening at a mathematics conference in 2012, David Mumford men-
tioned to me that it would be interesting to compare the accuracy of algo-
rithms used in ancient and medieval astronomy across cultures. In particu-
lar, he was interested in comparing the Chinese, the Indian and the Greek
traditions. Some time later, he implemented the Chinese method of predict-
ing solar eclipses as formulated in the Shoushihli (1280 C.E.) and compared
its predictions with the predictions computed using modern theory [1]. I
adapted his framework and computer code to carry out a similar analysis
of Nı̄lakan. t.ha’s Tantrasaṅgraha (c.1500 C.E.) which is mathematically the
most refined version of medieval Indian astronomy [3]. This paper is a report
on a similar analysis of Ptolemy’s Almagest [4].

Solar eclipses are one of the most spectacular heavenly phenomena. Ex-
planations of eclipses by ancient cultures range from their interpretation as
omens to the geometric models of the Greeks. Ptolemy’s Almagest (c.140
C.E.) represents the final version of ancient Greek astronomy which held
sway over Islamic and European astronomy until the advent of Copernicus
and Kepler.
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Geometric astronomy emerged in India in the early first millennium
C.E. Its geometric models are based on epicycles. It is not ptolemaic, but is
closely related to pre-ptolemaic Greek astronomy. Details of this contact and
its sources remain unknown. The basic framework of Indian astronomy was
single epicycle models for the Sun and the Moon, and two epicycle models
for the planets. A unique feature of Indian tradition is its use of a variable
epicycle radius. Also unique is the Indian use of iteration to solve for interde-
pendent variables. Except for the introduction of lunar evection by Mañjula
in the 10th century, this framework remained unchanged. Menalaus’ spheri-
cal trigonometry was apparently unknown in India. Indian astronomers de-
rived the necessary formulas for dealing with spherical geometry from a set of
basic planar right triangles aligned with the three coordinate systems (eclip-
tical, equatorial and horizontal). Its most mathematically accurate version
is Nı̄lakan. t.ha’s Tantrasaṅgraha

1.
Early Chinese astronomy relied on polynomial interpolations which were

later replaced by explicit algebraic formulas. Geometric models are conspic-
uously absent from Chinese astronomy. Simple algebraic models gradually
grew in their complexity over time as more and more phenomena were
taken into account2. Since predictions of celestial phenomena were solely
the emperor’s prerogative, the astronomical texts were compiled only by
royal astronomers. Failed predictions had the potential for undermining the
authority of the emperor and hence frequent revisions were made over time.
There were some 200 systems proposed through history and about a quar-
ter of them were officially adopted3. Chinese astronomers were aware of the
nonuniform lunar motion as early as the first century B.C.E. and astro-
nomical tables for the lunar inequality were formulated in the 3rd century
C.E. Nonuniform motion of the Sun was first noticed in the middle of the
6h century. The graph of first forward differences of the solar equation of
center based on these early observations consists of two segments spanning
the equinoxes. Each segment is an oscillating saw-tooth wave function. If we
ignore the small oscillations, the graph becomes a step-wise constant func-
tion. A century later, Yixing revised these values obtaining approximately
correct trend line for the solar equation of center. He also tabulated values
of lunar parallax when the Moon is at its highest point in the sky. A ma-

1K. Ramasubramanian and M. S. Sriram, Tantrasaṅgraha of Nı̄lakan. t.ha So-
mayājī, Hindustan Book Agency, New Delhi, 2011

2See for example Kiyoshi Yabuuti, “Astronomical Tables in China, from the Han
to the T’ang Dynasties’, in Chūgoku chūsei Kagaku gijutsushi no kenkyū (Studies
in the history of medieval Chinese science and technology), 1963, pp. 445–492.

3Nathan Sivin, Granting the Seasons, Springer, 2009.



Ancient eclipse prediction 9

jor improvement in computation of the parallax was made by Xuang in the
ninth century who provided a method for calculating the parallax for all
positions of the Moon. Lunar evection was not taken into account in China.
The culmination of the Chinese approach is the Shoushihli (13th century).
After the Shoushihli, elements of Islamic astronomy and later, western as-
tronomy were introduced into Chinese astronomy. The algebraic formulas in
the Shoushihli are specialized for Beijing.

The problem in assessing accuracy of ancient algorithms is that the ac-
tual eclipses are too few to properly analyze prediction errors. Mumford’s
solution is to statistically generate synthetic solar eclipses to assess the accu-
racy of predictions. He randomly chooses longitudes of mean conjunctions,
lunar perigee and a lunar node (ascending or descending) within 20 degrees
of the conjunction. The clock is set to start at local noon on the vernal
equinox in a given year, 140 C.E. for the Almagest and 1280 C.E. for the
Shoushihli and 1500 C.E. for the Tantrasaṅgraha. The locations are Alexan-
dria for the Almagest, Beijing for the Shoushihli and Kochi in Kerala, India
for the Tantrasaṅgraha.

The next step after choosing the time and the longitude of a mean con-
junction is to determine the time and the longitude of the true conjunction
as it would be seen from the Earth’s center. Since the actual Sun and the
Moon move with variable speed, it is necessary to correct their mean longi-
tudes to obtain their true longitudes. This correction is called the “equation
of center”. Unless the Moon happens to be directly overhead, the apparent
longitude and the latitude of the Moon observed from a point on the surface
of the Earth are different from their geocentrically observed values due to
lunar parallax. The same is true for the Sun, but the effect is very small.
Consequently, the next step is to determine the time and the longitude of
the apparent conjunction for a given location on the surface of the Earth.
The final step is the computation of the angular distance between centers of
the apparent Sun and the apparent Moon. A solar eclipse is locally observed
if this distance is less than the sum of the angular radii of the Sun and
the Moon. In ancient times, the most difficult step was the computation of
parallax. From the modern point of view, it is the lunar motion which is the
most difficult (see [1]).

Ptolemy illustrates each algorithm by a numerical example and then
proceeds to construct numerical tables. All a calendar maker would need
are these tables and he would not have to know the algorithms that cre-
ated them. Of course this introduces an additional source of error, namely
the interpolation error. This could be significant especially when interpo-
lating functions of two or more variables. Ptolemy’s algorithms relevant to
prediction of solar eclipses are contained in the first six chapters of the Al-
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magest. I have put these together in the form of modern formulas in Sections
3 and 4. The formulas are mostly from Pedersen’s book [2]. The numbers
quoted from the Almagest are in sexagecimal notation. Ptolemy’s algorithm
for predicting solar eclipses is described in Section 5. Mumford’s statistical
framework is described in Section 6. The three traditions are compared in
Section 7. The accuracy of eclipse prediction depends on the algorithm as
well as the values of the parameters. In the case of the Greek and Indian
traditions, I have evaluated their accuracy before and after correcting the
values of the critical parameters. The Chinese algebraic formulas without
explicit geometric parameters are not amenable to similar analysis.

2. Notation

am, av: mean and true anomaly respectively
c: double elongation
e: eccentricity of the lunar deferent
h: hour angle
k: equation of center
R: radius of the deferent
r: radius of the epicycle
Y : length of a tropical year
α, δ: equatorial coordinates, right ascension and declination
λ, β: ecliptical coordinates, longitude and latitude
λ̇: instantaneous velocity
Δ: distance of a celestial body from the Earth’s center
ε: obliquity of the ecliptic
γ: angle between the ecliptic and a local vertical circle
ζ: angular zenith distance
θ: local rising time of an arc measured from the vernal equinox
ι: inclination of the lunar orbit
ν: angular radius of a celestial body as seen from the Earth
Π: parallax in altitude
Πλ,Πβ: parallax in longitude and in latitude
ΠH : horizontal parallax
ρ: radius of the Sun, the Moon or the Earth
σ: σ = +1 if the nearest node is an ascending node, −1 otherwise
ϕ: terrestrial latitude
Ω: distance from the nearest lunar node
ω: mean angular velocity
ωa, ωt: anomalistic and tropical mean angular lunar velocity
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The following subscripts have specific meaning
S: the Sun
M : the Moon
Z: zenith
P : the Sun or the Moon or a point on the ecliptic
ah: aphelion
ph: perihelion
ag: apogee
pg: perigee
asc: ascendant
mh: midheaven
ac: apparent conjunction (observed from the surface of the Earth)
tc: true conjunction (geocentrically observed)
mc: mean conjunction
ap: apparent (observed locally from the surface of the Earth)

3. Motion of the Sun and the Moon

3.1. Solar equation of center

The mean solar longitude λm,S at time t is given by the equation

λm,S(t) = λm,S(t0) + ωS(t− t0)

where ωS is Sun’s mean tropical velocity along the ecliptic. The length of
Ptolemy’s tropical year, Y , is 365;14,48 days ([2], p. 131)4. Therefore, ωS =
360
Y degrees/day. We will take t0 as the time of mean conjunction so that
λm,S(t0) = the longitude of the mean conjunction, λmc.

The mean solar anomaly am is defined as λm,S − λah where λah is the
longitude of the aphelion. Ptolemy derives the values of λah and the ratio
of the radii of the epicycle and the deferent, rS

RS
, from the observed lengths

of seasons. He confirms Hipparchus’ value λah = 65; 30 and believed it to
remain constant over time. In fact aphelion moves forward at the rate of
0.0171◦ per year5. The correct value of λah for 140 C.E. is 71◦. The error in
aphelion would produce an ever greater error in the solar equation of center
which would have a larger and larger impact on the accuracy of eclipse
prediction as time went on.

4The reference is to Pedersen’s Survey [2]. For each formula or constant, Pedersen
cites the relevant section of the Almagest.

5al Battani (9th century) is credited to be the first astronomer to have discovered
the motion of aphelion and assigned the value 82; 17 to λah while al Zarqali (11th
century) assigned the value 77; 50 to it.
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Ptolemy obtains rS
RS

= 1
24 . He sets the radius of the Sun’s deferent RS

equal to 60 parts so that the radius of the Sun’s epicycle rS = 2; 30 parts.
The solar equation of center is given by

kS = − arcsin

⎛
⎝ rS

RS
sin am√

( rS
RS

sin am)2 + ( rS
RS

cos am + 1)2

⎞
⎠ ([2], 5.27)

and the true longitude of the Sun is given by λS = λm,S + kS .

3.2. Lunar equation of center

The longitude of the mean Moon is given by λm,M (t) = λm,M (t0)+ωt(t−t0)
where ωt is the mean tropical velocity of the moon = 13; 10, 34, 58, 33, 30, 30
degrees/day. The longitude of the lunar perigee is given by λpg(t) = λpg(t0)+
ωpg(t− t0) where the velocity of the lunar perigee is given by ωpg = ωt −ωa

with the mean anomalistic velocity of the moon ωa = 13; 3, 53, 56, 17, 51, 59
degrees/day. The longitude of the apogee λag(t) = λpg(t)−180. The Moon’s
tropical, draconitic, (i.e. node to node), anomalistic (from apogee to apogee)
and synodic (from conjunction to conjunction) velocities are given in [2] on
page 164.

The mean lunar anomaly is given by am = λm,M − λag. Ptolemy’s first
lunar model is similar to his solar model. He introduces evection in the
second model which depends on the elongation, that is the longitudinal
difference between the Sun and the Moon. He then introduces a correction
to the mean anomaly in the third model. Near a conjunction, the elongation
is nearly zero and hence the two corrections to the first model are small.
Example 12 in Appendix A of Toomer’s Almagest [4] indicates that only the
first lunar model was used for eclipse calculations. In this paper, I have used
the third model. Ptolemy deduced the distance of the Moon from the Earth
from its observed angular distance from zenith. From this, it is possible to
express the radii of the epicycle, deferent and the eccentricity of the lunar
orbit in terms of the radius of the Earth. ([2], p. 207):

Radius of Moon’s epicycle rM = 5; 10 Earth radii
Radius of Moon’s deferent RM = 48; 52 Earth radii
Lunar orbit’s eccentricity e = 10; 8 Earth radii
The formulas for calculating the true longitude λM of the Moon are:

c = 2(λm,M − λm,S)

p =
√

(1− ( e
RM

sin c)2) + e
RM

cos c ([2], 6.46)
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q = − arcsin

(
e

RM
sin c√

( e

RM
sin c)2+(p+ e

RM
cos c)2

)
([2], 6.48)

True anomaly: av = am + q ([2], 6.45)

Δ =
√

( rM
RM

sin av)2 + (p+ rM
RM

cos av)2) ([2], 6.51)

Equation of center: kM = − arcsin(
rM
RM

sin av

Δ ) ([2], 6.50)

λM = λm,M + kM

The distance of the Moon from the Earth’s center is RMΔ Earth radii.

4. Parallax

Figure 1: Parallax.

The parallax Π of a celestial body P when viewed from a point on the
surface of the Earth is illustrated in Figure 1. The circle represents the
surface of the Earth. Let ζP be the angular distance of P from the local
zenith Z if observed from the center of the Earth and let ζ ′P be its angular
distance from Z observed from the surface of the Earth. Then, Π = ζ ′P − ζP .

sinΠ ≈ tanΠ =
ρe sin ζP

ΔP − ρe cos ζP
([2], 7.9)

where
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ρe the radius of the Earth.
ΔP distance of P from the Earth’s center.

Ptolemy assumes that the Sun’s distance from the Earth’s center is con-
stant and equal to 1210 Earth radii ([2], p. 211). His formula for the distance
of the Moon from the Earth’s center is given in the section on the lunar
equation of center.

The maximum value of the parallax is called the horizontal parallax.
It occurs when P is on the observer’s horizon since sinΠ = ρe sin ζ

′
P /ΔP .

ΠH = arcsin ρe

ΔP
≈ ρe

ΔP
.

Figure 2: Salient points on the ecliptic.

For predicting the time and magnitude of solar eclipses, it is necessary
to calculate the components of Π along the ecliptical coordinates, namely,
the parallax in longitude Πλ and the parallax in latitude Πβ. (Π is called
the parallax in altitude.) In Figure 2, P is geocentrically observed to be on
the ecliptic. P ′ is the position of P as seen by an observer on the surface of
the Earth. The arc P ′P ′′ is the parallax in latitude and the arc PP ′′ is the
parallax in longitude.

Let γ denote the angle between the ecliptic and the vertical circle through
P . Then, treating the triangle PP ′P ′′ as a plane triangle,

Parallax in latitude Πβ = Πsin γ
Parallax in longitude Πλ = Πcos γ
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These are the formulas given by Ptolemy in the Almagest. For the pur-
pose of calculating its parallax, Ptolemy assumes that the Moon is on the
ecliptic. The main problem in calculating the parallax is how to determine
the zenith distance and the angle γ.

4.1. Zenith distance ζ and angle γ

This is essentially a question of coordinate transformation and spherical
trigonometry. There are three spherical coordinate systems relevant here.
One is the ecliptical coordinates defined by ecliptical longitude λ and latitude
β. Another is the equatorial coordinates defined by right ascension α and
declination δ. Finally, the horizontal coordinates at a given location are
defined by azimuth τ and altitude a. The zenith distance is the complement
of the altitude. Instead of azimuth, hour angle is specified to fix the position
of a point on ecliptic with respect to the local meridian. The hour angle is
defined as the right ascension of the zenith minus the right ascension of the
given point on the ecliptic. The angle γ is easily computed using spherical
trigonometry.

Ptolemy’s method is somewhat circuitous involving the ascendant and
the midheaven (Figure 2). The ascendant is the point where the ecliptic
intersects the horizon in the east. The midheaven is the point where it in-
tersects the local meridian. Before we list formulas related to these, we note
the following two basic transformations:

sin δ = sinλ sin ε ([2], 4.2) and sinα = tan δ cot ε ([2], 4.3)

where ε is the obliquity of the ecliptic. In the Almagest, ε = 23; 51, 20◦. A
simpler formula relating α and λ is tanλ = tanα

cos ε .
Let P denote either the Sun or the Moon with longitude λP and hour

angle h. Note that because of the way we have set the clock, the right
ascension of the zenith αZ = (Y +1)λm,S modulo 360 where Y is the length
of the tropical year in days. The hour angle of P equals αZ −αP degrees or
(αZ − αP )/15 hours..

Ptolemy calculates the zenith distance ζP of P by first determining the
longitudes λasc and λmh of the ascendant and the midheaven respectively by
means of their rising times. The rising time, also called the oblique ascen-
sion, θ(λ, ϕ) of a point on ecliptic at longitude λP at a given location with
terrestrial latitude ϕ is the local rising time of the arc of the ecliptic from
the vernal equinox to the point P . It is given in degrees by the formula

θ(λP , ϕ) = arcsin

(
sinλP cos ε

cos δP

)
− arcsin

(
sinλP sin ε tanϕ

cos δP

)
([2], 4.22)
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The first term on the right side is the right ascension αP of P . The last term
is called the ascensional difference.

To determine λasc, solve for λasc the following equation:

θ(λasc, ϕ) = 15h̄+ θ(λP , ϕ) ([2], 4.29)

where h̄ = hours after the rise of P = half day length + h. The day length
= (θ(λP + 180, ϕ)− θ(λP , ϕ))/15 hours ([2], 4.26).

To determine λmh, solve for λmh:

θ(λmh, 0) = 15h̄+ θ(λP , 0) ([2], 4.30)

Zenith distance of Midheaven: ζmh = ϕ− δmh ([2], 4.36)

cos ζP =
cos ζmh sin(λasc − λP )

sin(λasc − λmh)
([2], 4.37)

cos γP = − cot ζP cot(λasc − λP ) ([2], 438a)

The last formula becomes numerically unstable as either ζP → 0 or
|λasc − λP | → 0. The following reformulation removes this singularity.

sin ζP cos γP = −cos ζmh cos(λasc − λP )

sin(λasc − λmh)

Assuming sinΠ ≈ Π, the components of the parallax are:

Πλ ≈ ρe sin ζP cos γP
ΔP − ρe cos ζP

Πβ ≈
√

Π2 −Π2
λ

Πβ > 0 if ϕ < δmh, Πβ < 0 if ϕ > δmh

The problem in implementing these formulas is that Ptolemy does not
have an explicit formula for the inverse of function θ. He solves the equa-
tions for λasc and λmh by interpolating his table for θ. The simpler formulas
described in the next section circumvent the use of rising times and inter-
polation.

4.2. Calculating ζP and γ without using rising times

ζP and cos γP may be calculated using the standard formulas of coordinate
transformation.

cos ζP = sinϕ sin δP + cosϕ cos δP cosh.
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This formula was known to Āryabhat.a in India in the 5th century C.E.
In view of the close connection between medieval Indian astronomy and the
pre-ptolemaic astronomy in Greece, it is strange that this formula is absent
from the Almagest. cos γP may be calculated from the equatorial coordinates
of the zenith as follows.

Declination of the zenith δZ = ϕ.
Right ascension of zenith αZ = αP + h.
sinβZ = cos ε sinϕ − sin ε cosϕ sinαZ . (This formula is given in the

Tantrasaṅgraha.)
sinλZ = cosϕ cos ε sinαZ+sinϕ sin ε

cosβZ
.

cosλZ = cosϕ cosαZ

cosβZ
.

The longitudes of the midheaven and the ascendant may also be easily
calculated.

αmh = αZ and λmh = arctan( tanαmh

cos ε ).
λasc = λZ + 90.
The formula for cos γ now follows by considering the right spherical tri-

angle PV Z in Figure 2. The point V on the ecliptic is called the nonagesimal
where the ecliptic has the maximum altitude. Use of ecliptical coordinates
λZ , βZ of the zenith which are basic quantities in the Indian tradition is
absent from the Almagest, although βZ is implicit in Ptolemy’s formula for
the angle between the ecliptic and the horizon.

5. Ptolemy’s algorithm for predicting solar eclipses

The following algorithm is described in the Almagest (VI 9, H528-533) and
Example6 12, Appendix A in [4]. Start with the longitude λmc of the mean
conjunction at time tmc and the longitudinal distance Ωmc of the mean
conjunction from the nearest lunar node. Ωmc = λmc − λnode. The small
motion of the nodes is ignored as the following steps are carried out.

5.1. Determine the true geocentric conjunction

Let kS and kM be the equations of center for the Sun and the Moon at the
time of mean conjunction. Let λtc be the longitude of the true conjunction
occurring at time ttc. Ptolemy assumes that the instantaneous lunar velocity
λ̇M and instantaneous solar velocity λ̇S are constant and their ratio is equal
to 1

13 during the time interval between tmc and ttc. Then

Δλ = λtc − λmc =
13

12
(kS − kM )

6This example is due to Theon of Alexandria (c.4th century C.E.)
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ttc = tmc +Δλ/λ̇M

He approximates λ̇M by the formula ([2], 7.51)

λ̇M = ωt +
∂kM
∂av

ωa

∂kM

∂av
is the partial derivative of the lunar equation of center kM with respect

to the true anomaly av at mean conjunction, that is, when the elongation is

zero.

The distance of the true conjunction from the nearest node Ωtc = Ωmc+

kM +Δλ.

5.2. Determine the locally observed apparent conjunction

First Approximation:

• Calculate the longitudinal component Π̄
(1)
λ of the net parallax (that

is, the parallax of the Moon minus the parallax of the Sun) at the

time of true conjunction. The longitudes of the apparent Moon and

the apparent Sun now differ by Π̄
(1)
λ .

• Time of apparent conjunction tac ≈ ttc +
Π̄

(1)
λ

λ̇M

.

Second Approximation (Epiparallax):

• Calculate Π̄
(2)
λ at time tac. The longitudes of the Sun and the Moon set

equal to λtc. The distance of the Moon from the Earth, ΔM is calcu-

lated using the value of the mean anomaly at time tac and elongation

set equal to zero.

• ΔΠ̄λ = Π̄
(2)
λ − Π̄

(1)
λ .

• The longitudinal component of the total net parallax

Π̄λ = Π̄
(1)
λ +ΔΠ̄λ + (ΔΠ̄λ)2

Π̄
(1)
λ

.

• Time of apparent conjunction: tac = ttc +
13Π̄λ

12λ̇M

.

• Longitude of the apparent conjunction: λac = λtc +
13
12Π̄λ.

• With longitude λac of the Moon at time tac, calculate the net latitu-

dinal parallax Π̄β. (Elongation = 0.) The corresponding longitudinal

distance is 12Π̄β. (Ptolemy’s approximation: The inclination of the

Moon’s orbit ι = 5 degrees. 1
sin ι ≈ 12.) Let σ = 1 if the nearest node

is the ascending node; σ = −1 if the nearest node is the descending
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node. Then, the distance Ωap of the apparent conjunction from the

parallax corrected nearest node is given by

Ωap = Ωtc +
13

12
Π̄λ + 12σΠ̄β.

5.3. Magnitude of the eclipse

Let νM and νS be the angular radii of the Moon and the Sun respectively as

seen from the Earth. The angular distance between the apparent Sun and

the apparent Moon βap = σι sinΩap. If |βap| < νS + νM , a solar eclipse is

locally observed with

magnitude of the eclipse = 1− |βap|
νS + νM

.

Since the distance of the Sun from the Earth is assumed to be constant,

νS is constant and assumed to be equal to the minimum value of νM at

syzygies. Ptolemy determines the maximum and minimum values of the

angular radius of the moon at syzygies from pairs of lunar eclipses occurring

near the perigee and the apogee. These are 0;17,40◦ and 0;15,40◦ respectively.
These values are inconsistent with Ptolemy’s theory of lunar motion. Since

νM = arctan ρM

ΔM
where ρM is the Moon’s radius and ΔM is its distance from

the Earth, νM approximately varies inversely as ΔM . From the equations of

lunar motion, it may be readily seen that ρM varies between 53; 50 and 64; 10

Earth radii at syzygies ([2], page 207). Therefore according to Ptolemy’s

lunar theory, the maximum of νM should deviate from its average by 8.8%,

but Ptolemy’s observed values deviate from their average only by 6.0%.

In the statistical trials reported below, the values of νM according to the

modern theory deviated from their average at most by 6.4% which is close

to Ptolemy’s observed value.

Instead of determining the magnitude as defined above, Ptolemy ex-

presses the extent to which the Sun is occluded in digits. The Sun is assumed

to be 12 digits wide. His tables for eclipses occurring at syzygies follow from

the following formulas.

At the apogee, νM = νS . Therefore, the Sun is fully occluded (d = 12)

when Ωap = 0. If the Sun and the Moon just touch each other, d = 0 and

|Ωap| = (νM + νS)/ tan 5
◦ ≈ 6◦. Interpolating linearly, we get

da(Ωap) = 12− 2|Ωap| digits



20 Jayant Shah

At the perigee, νM > νS . The Sun becomes fully occluded as soon as
|Ωap| = (νM − νS)/ tan 5

◦ ≈ 0.4◦. Therefore, Ptolemy sets d = 12 when
|Ωap| = 0.4. d = 0 when |Ωap| = (νM+νS)(/ tan 5

◦) ≈ 6.4◦. The interpolation
formula at the perigee is

dp(Ωap) = 12.8− 2|Ωap| digits

Note that dp = 12.8 when Ωap = 0.
Occlusion when the lunar position is between the syzygies with nodal

distance Ωap and the distance Δ from the Earth is obtained by linear inter-
polation:

d(Ωap,Δ) = da(Ωap) + [dp(Ωap)− da(Ωap)]
Δa −Δ

2rM
= 16.968− 0.07742Δ− 2|Ωap|

In the above, the distance from the Earth at apogee, Δa = 64; 10 and the
radius of the epicycle, rM = 5; 10.

To convert the digits as defined by Ptolemy to the magnitude of the
eclipse as defined above, note that when Ωap = 0, d(0,Δ) = 16.968 −
0.07742Δ and the magnitude equals 1. Therefore,

magnitude of the eclipse =
d(Ωap,Δ)

16.968− 0.07742Δ
= 1− |Ωap|

8.484− 0.03871Δ

and
|βap|

νS + νM
=

|Ωap|
8.484− 0.03871Δ

6. Mumford’s statistical framework

A sample of hypothetical solar eclipses is created by randomly choosing
longitudes of the mean conjunction, perigee and a lunar node. The node
is randomly chosen to be ascending or descending. The longitude of the
node is chosen to be within 20 degrees of the conjunction. A solar eclipse
is predicted if |βap| < νS + νM and it occurs during daylight. A prediction
is considered strong if its magnitude is greater than 0.1 and the time of
the nearest approach is at least one hour after sunrise or one hour before
sunset. A prediction is weak if it is not strong. A strong prediction by an
ancient algorithm is considered to be correct if it is predicted at least weakly
by modern algorithms; it is a false positive otherwise. A strong modern
prediction is called false negative if it is not even weakly predicted by the
ancient algorithm.
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In order to assess accuracy of an algorithm, instead of comparing magni-
tudes, normalized latitudes βap

νS+νM
are compared and the standard deviation

of the error is computed. The hour angle and the equation of center of the
Moon and the Sun are compared as well and the standard deviation of the
errors is computed.

7. Results

I have used the same format as in [1] for summarizing the results below.
In addition to presenting an analysis of Ptolemy’s algorithm, I have also
included analyses of the Tantrasaṅgraha [3] and the Shoushihli [1] for com-
parison across different traditions. In each case, I ran 10,000 trials. Table
1 shows the rate of false positives and false negatives for each of the algo-
rithms. The Almagest is the most accurate with an error rate of 3% while
the Tantrasaṅgraha is the least accurate with an error rate of 11.8%. The
Shoushihli is not much better with an error rate of 9.9%.

Table 1: Eclipse Predictions

Almagest Tantrasaṅgraha Shoushihli
Strong Prediction 973 1065 1099
False Positive 24 (2.5%) 116 (10.9%) 101 (9.2%)
False Negative 5 (0.5%) 10 (0.9%) 8 (0.7%)

The rate of false positives for the Shoushihli reported in [1] is 8.2% which
is lower than the 9.2% found here, but it is within the statistical margin of
error. The 95% confidence interval is 9.2 ± 1.7%. The sample size in [1] is
twice the sample size used in this paper.

In the case of the Tantrasaṅgraha, the rate of false positives reported
in [3] is 3.9% which is much lower than the rate of 10.9% reported here.
The explanation is the following. Comparison of the Shoushihli and the
Tantrasaṅgraha in [3] is made using the same place and the same year for
both. As explained below, relative sizes of the error in the aphelion in the
two cases depend on the choice of the year. Therefore a neutral choice was
to use the theoretically correct value of aphelion in both cases, thus making
the comparison independent of the choice of the year. The results in [3]
correspond to the results shown in Table 3 below. The rate of 3.9% for false
positives in [3] is close to the corresponding value of 4.3% in Table 3.

False predictions in all three cases are mostly false positive. The standard
deviation of errors in normalized latitude, hour angle and equations of center
is tabulated in Table 2. All three have large standard deviation of error in
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Table 2: Standard Deviation of errors

Std. dev. of error
Almagest Tantrasaṅgraha Shoushihli

Normalized Latitude 0.1131 0.2022 0.1873
Hour angle (minutes) 50 min. 73 min. 29 min.
Solar equation of center 0.3625◦ 0.4465◦ 0.3620◦

Lunar equation of center 0.1827◦ 0.1538◦ 0.3330◦

the solar equation of center. The Shoushihli has the smallest standard devia-
tion of error in the hour angle but almost twice as large a standard deviation
of error in the lunar equation of center. Values of the three algorithms for
normalized latitude, hour angle and equations of center vs the corresponding

modern values are plotted in Figures 3 and 4. Black circles in the plot of
normalized latitude represent correct predictions. Red crosses represent false
negatives and the green stars represent false positives. (In the print version
of the figure, false negatives are represented by dark grey crosses and false
positives are represented by light grey squares.) The two black diagonals
represent predictions differing from modern predictions by ±0.25%.

In the case of the Almagest and the Tantrasaṅgraha, it is possible to
analyze the effect of the error in the parameter values on the prediction
error. The motion of the Sun is the simplest and close to modern theory. The
solar equation of center7 is sin kS ≈ (rS/RS) sin(λm,S −λah) mod (rS/RS)

2.
In all three traditions, the aphelion was believed to be at a permanently

fixed position on the ecliptic. An error in the longitude λah of the aphelion
amounts to a phase difference between the ancient and the modern values
of anomalies giving the plot in Figure 4 an oval shape. Ptolemy deduced
the values λah = 65.5◦ and the ratio rS

RS
= 1

24 from the observed lengths of
seasons. λah according to the modern theory was about 71◦ in 140 C.E. In
India, the value of λah was fixed at 78◦ at the time of Āryabhat.a (5th century
C.E.). The correct value at that time was between 77◦ and 78◦. Its correct
value in 1500 C.E. was 97.3◦. Although there was no explicit concept of
perihelion and aphelion in the Chinese tradition, Chinese astronomers since
the 6th century always assumed that the aphelion coincides with the summer

solstice. The correct value of λah in 600 C.E. was 79◦, but at the time of the
Shoushihli, the correct value was 90.6◦, very close to the traditional Chinese
value of 90◦. Consequently, the plot for the Shoushihli in Figure 4 is not

7In Indian astronomy, rS is not held constant, but assumed to depend on the
solar anomaly. Consequently, sin kS = (rS/RS) sin(λm,S − λah) exactly in the
Tantrasaṅgraha.
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Figure 3: Left: Predicted vs correct normalized latitude. Right: Predicted
vs correct hour angle. Top: Almagest, Middle: Tantrasaṅgraha, Bottom:
Shoushihli.



24 Jayant Shah

Figure 4: Left: Predicted vs correct solar equation of center. Right: Predicted
vs correct lunar equation of center. Top: Almagest, Middle: Tantrasaṅgraha,
Bottom: Shoushihli.
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oval, but almost linear. The small deviation from the linear fit is due to the
fact that the Shoushihli approximates the solar equation in each season by
a cubic polynomial.

Results of running the statistical trials after correcting Ptolemy’s and
Nı̄lakan. t.ha’s values of λah are shown in Tables 3 and 4, and plotted in Figure
5. The standard deviation of error in the solar equation of center drops from
0.3625◦ to 0.3329◦ in the case of the Almagest and from 0.4465◦ to 0.1664◦

in the case of the Tantrasaṅgraha. The performance of the Almagest has
improved, but that of the Tantrasaṅgraha has improved more because the
error in the Tantrasaṅgraha’s λah is larger. The Tantrasaṅgraha’s rate of
prediction error drops from 11.8% to 4.3% and the standard deviation of
error in the hour angle drops from 73 minutes to mere 17 minutes compared
to Ptolemy’s 42 minutes.

Table 3: Eclipse Predictions (correct λah)

Almagest Tantrasaṅgraha
Strong Prediction 974 1079
False Positive 15 (1.5%) 46 (4.3%)
False Negative 0 (0%) 0 (0%)

Table 4: Standard Deviation of errors (correct λah)

Std. dev. of error
Almagest Tantrasaṅgraha

Normalized Latitude 0.0882 0.0963
Hour angle (minutes) 42 min. 17 min.
Solar equation of center 0.3329◦ 0.1664◦

Lunar equation of center 0.1829◦ 0.1558◦

An error in the ratio rS/RS produces a tilt in the plot with respect to
the 45◦ diagonal. The linear fit to its plot in Figure 5 has a slope 1.25 in the
case of the Almagest and 1.12 in the case of the Tantrasaṅgraha. The reason
for the systematic error is that the value of the ratio rS

RS
is too large. If we

put r0
RS

= 2e where e = the eccentricity of the Earth’s orbit, the equation of
center coincides with the Keplerian model up to first order. The theoretical
value of 2e is 1

29.9239 ≈ 1
30 . So the correct value of rS

RS
is approximately

1
30 . Ptolemy’s value is 1

24 while Nı̄lakan. t.ha’s value is 3
80 . In the case of the

Shoushihli, there is no explicit parameter rS
RS

, but note that 1
24/

1
30 = 1.25

and 3
80/

1
30 = 1.125 which are the values of the slopes of the linear fit of plots

of Ptolemy and Nı̄lakan. t.ha’s solar equation in Figure 5. The plot for the
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Figure 5: Solar equation of center with correct aphelion. Left: Almagest,
Right: Tantrasaṅgraha.

Table 5: Eclipse Predictions (corrected solar equation)

Almagest Tantrasaṅgraha Shoushihli
# Prediction 983 1,059 1,112
False Positive 16 (1.6%) 42 (4.0%) 136 (12.2%)
False Negative 4 (0.4%) 0 (0%) 40 (3.6%)

Table 6: Standard Deviation of errors (corrected solar equation)

Std. dev. of error
Almagest Tantrasaṅgraha Shoushihli

Magnitude 0.0905 0.1082 0.2331
Hour angle 39 min. 29 min. 64 min.
Solar eqn of cntr 0.0091◦ 0.0145◦ 0.0407◦

Lunar eqn of cntr 0.1862◦ 0.1578◦ 0.3389◦

Shoushihli in Figure 5 has a slope 1.26. Therefore, the Shoushihli’s equation

of center may be corrected by dividing it by 1.26. The results of the 10,000

random trials with corrected equation of center are shown in Tables 5 and 6.

The standard deviation of error in the solar equation of center drops fur-

ther from 0.3329◦ to 0.0091◦ in the case of the Almagest and from 0.1664◦

to 0.0145◦ in the case of the Tantrasaṅgraha. The prediction error in the

case of the Almagest goes up slightly while there is a slight improvement in

the hour angle. In the case of the Tantrasaṅgraha, it is exactly the oppo-

site. In the case of the Shoushihli, the effect is more dramatic. The standard
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deviation of error in the solar equation of center does drop from 0.3620◦ to
0.0407◦ but the prediction error goes up from 9% to 15.8%. The standard
deviation of error in the hour angle goes up from 29 minutes to 64 minutes.
This is quite surprising. Standard deviation of error in the distance of the
true conjunction (which does not involve parallax) from the node after cor-
recting for rS

RS
drops from 0.3497 to 0.0315 for the Almagest and from 0.1694

to 0.0223 for the Tantrasaṅgraha, but in the case of the Shoushihli it drops
from 0.3868 to a still high 0.3256. Perhaps this is related to the large error
in the Shoushihli’s lunar equation of center.

The plot of the lunar equation of center in Figure 6 shows no systematic
error as in the case of the solar equation, but there two other important
sources which introduce systematic error. One is the inclination ι of the
lunar orbit. An error in ι introduces a proportionate amount of error in
the lunar latitude. Ptolemy’s value ι = 5◦ is a little too small compared to
the theoretical value ι = 5.145◦. Indian astronomers always used a grossly
inaccurate value ι = 4.5◦.

Since sinΠ = ρe

d sin ζ ′, the horizontal parallax ΠH = ρe

d is the other
source of systematic error. Because the solar parallax is very small, we focus
only on the horizontal parallax of the Moon. The lunar distance from the
Earth’s center varies and so the error in the lunar horizontal parallax is
intimately connected with the theory of lunar motion. A linear fit of the
plot of Ptolemy’s horizontal parallax vs the theoretical has the equation

ΠH(Almagest) = 1.3804ΠH(Modern)− 0.0061

Ptolemy estimates the distance of the Moon from an observation he made
of the zenith distance of the Moon in Alexandria. This is enough to deduce
that Ptolemy’s mean distance of the Moon equals 59 Earth radii. This is the
only parameter available for adjustment of the horizontal parallax without
changing the rest of the theory of the Moon. The theoretically correct value
is 60.27. The linear fit of the plot of the horizontal parallax in the case the
Tantrasaṅgraha has the equation

ΠH(Tantrasaṅgraha) = 1.9841ΠH(Modern)− 0.0177

Again, the mean lunar distance is the only parameter we can adjust.
Nı̄lakan. t.ha assumes that the mean lunar distance is 65.46 Earth radii.

Results of running the statistical trials after the following modifications
are shown in Tables 7 and 8: ι was changed to its correct value = 5.145◦. The
lunar distance calculated using Ptolemy’s lunar theory was multiplied by
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60.27
59 and the lunar distance computed according to the Tantrasaṅgraha was

multiplied by 60.27
65.46 . The algebraic model of the Shoushihli is not amenable

to such an adjustment8.
Again, the impact of the latest corrections is insignificant in the

case of the Almagest, but they significantly improve the accuracy of
the Tantrasaṅgraha’s eclipse prediction.

Table 7: Eclipse Predictions (corrected parameters)

Almagest Tantrasaṅgraha
Strong Prediction 982 942
False Positive 12 (1.2%) 12 (1.3%)
False Negative 2 (0.2%) 0 (0%)

Table 8: Standard Deviation of errors (corrected parameters)

Std. dev. of error
Almagest Tantrasaṅgraha

Normalized Latitude 0.0892 0.0777
Hour angle (minutes) 40 min. 26 min.
Solar equation of center 0.0092◦ 0.0146◦

Lunar equation of center 0.1863◦ 0.1565◦

8. Conclusion

The Almagest is the most accurate among the three algorithms considered in
this paper with the rate of error in eclipse prediction of 3%. The Shoushihli
is a distant second with an error rate of 9.9%. The least accurate is the
Tantrasaṅgraha with an error rate of 11.8%. Almost all of the false predic-
tions are false positive in all three traditions. Accuracy of eclipse prediction
by the Tantrasaṅgraha suffers most from its continued use of the longitude
of aphelion which was fixed a millenium earlier and its inaccurate value of
the inclination of the lunar orbit. Tests of the Tantrasaṅgraha’s algorithm
show that its accuracy after correcting crucial parameters is comparable to
that of the Almagest. With its reliance on empirical algebraic formulas, the
Chinese formulation is inherently limited to the time and place for which
it was designed. With no underlying parametric model, it is unclear if and
how its accuracy could be improved.

8The Shoushihli’s value for ι is 5.91◦.
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