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We show that the semi-classical analysis of generic Euclidean path
integrals necessarily requires complexification of the action and
measure, and consideration of complex saddle solutions. We demon-
strate that complex saddle points have a natural interpretation in
terms of the Picard-Lefschetz theory. Motivated in part by the
semi-classical expansion of QCD with adjoint matter on R

3 × S1,
we study quantum-mechanical systems with bosonic and fermionic
(Grassmann) degrees of freedom with harmonic degenerate min-
ima, as well as (related) purely bosonic systems with harmonic non-
degenerate minima. We find exact finite action non-BPS bounce
and bion solutions to the holomorphic Newton equations. We find
not only real solutions, but also complex solution with non-trivial
monodromy, and finally complex multi-valued and singular solu-
tions. Complex bions are necessary for obtaining the correct non-
perturbative structure of these models. In the supersymmetric limit
the complex solutions govern the ground state properties, and their
contribution to the semiclassical expansion is necessary to obtain
consistency with the supersymmetry algebra. The multi-valuedness
of the action is either related to the hidden topological angle or to
the resurgent cancellation of ambiguities. We also show that in
the approximate multi-instanton description the integration over
the complex quasi-zero mode thimble produces the most salient
features of the exact solutions. While exact complex saddles are
more difficult to construct in quantum field theory, the relation to
the approximate thimble construction suggests that such solutions
may be underlying some remarkable features of approximate bion
saddles in quantum field theories.

1. Introduction and physical motivation from QFT

In this paper we pursue two goals, one related to the proper formalism
of path integration in semi-classical analysis, and the other related to novel
phenomena in quantum mechanics and quantum field theory associated with
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new semi-classical contributions. Our first aim is to argue that the correct
framework for studying the semi-classical representation of a Euclidean path
integral necessarily involves complexifying the configuration space, measure
and action. This obviously implies complexification of classical mechanics
arising from the Euclidean action. Typically, once this is done, there are
complex saddle configurations, solutions to the complexified equations of
motion. Our second goal is to elucidate the physical role of complex sad-
dle configurations in the path integral formulation of quantum mechanics
and quantum field theory. The examples reveal surprising new phenomena,
with implications that force us to re-consider our intuition about the semi-
classical approach to path integrals.

The motivation for the present study comes from an intuition that devel-
oped in supersymmetric and non-supersymmetric quantum field theories, in
particular semi-classical studies of QCD with Nf adjoint fermion on R3×S1

[1, 2, 3, 4]. The case Nf = 1 is N = 1 supersymmetric gauge field theory.
In this context, monopole-instantons are solutions to the BPS (self-duality)
equations, and magnetic and neutral bions, correlated 2-events, are mani-
festly non-self-dual, and not a solution to first order BPS equations of mo-
tion. However, bions have an interesting property that suggests that they
may in fact be associated with exact saddle points of the path integral.
Bions have a calculable characteristic size, rb, parametrically larger than
the monopole-instanton radius rm (rm is dictated by the scale of the Higgs
phenomenon of the Wilson line). The scale rb ∼ rm/(g2Nf ) determines the
critical point of the quasi-zero mode integration. Neither g2 nor Nf enters
the second order Yang-Mills equations of motion, and hence, bions are not
solutions of the second order Euclidean equation.

A critical point on the quasi-zero mode integration contour at a finite
separation (either real or complex) is an unusual property. In the standard
textbook treatment of instantons in bosonic systems, it is shown that for
the quasi-zero mode associated with the instanton anti-instanton separa-
tion the critical point is at infinite separation, reflecting the fact that the
superposition of an instanton with an anti-instanton is not a solution at
finite separation. This is related to the non-linearity of the underlying in-
stanton equations, see the discussion in textbook [5, 6, 7, 8, 9, 10] or reviews
[11, 12, 13] on the subject. This raises the question of what the meaning of
a critical point at finite (real or complex) quasi-zero mode separation is. In
particular, is it possible that these configurations are exact saddle points in
some suitable formalism, and not just approximate descriptions? What is
the distinction between a critical point at real separation and at complex
“separation”? Since the quasi-zero mode direction is a particular direction in
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field space, real separation is a real field configuration and complex direction
is a complexified field configuration. What then is the natural habitat for
these saddle points? What is the role of complex fields in the semi-classical
treatment of real path integrals?

At this point in time we cannot provide definitive answers to all these
questions in quantum field theory. However, attacking the quantum field
theory problem in the more tractable context of quantum mechanics, we
study quantum systems with one bosonic and Nf fermionic (Grassmannian)
fields, corresponding to a particle with internal spin (12)

Nf . Nf = 1 cor-
responds to the N = 1 supersymmetric quantum theory. In each case we
demonstrate that both real and complex non-self dual saddle configurations
exist, and that they solve complexified equations of motion which can be
obtained by integrating out fermions exactly.1 We show that they must be
included in a consistent semi-classical expansion of the quantum path inte-
grals. In certain limits the exact solution has an approximate description in
terms of instanton-anti-instanton correlated 2-events with real and complex
quasi-zero mode separation. This Picard-Lefschetz thimble interpretation
generalized more directly to quantum field theory, and suggests that even in
quantum field theories exact complex saddle points may be underlying the
known bion analysis [1, 2, 3, 14, 15, 16, 17, 18, 4].

1.1. Complex saddle points in complexified Euclidean path
integrals

The basic question is the following: Given an ordinary path integral over
real fields in a general Euclidean version of QFT or quantum mechanics,

Zbos =

∫
Dx(t) e−

1

�
S[x(t)] =

∫
Dx(t) e

− 1

�

∫
dt

(
1
2 ẋ

2+V (x)
)
,(1)

how does one perform the semi-classical expansion? The same question also
applies to theories with both bosonic and fermionic degrees of freedom.

This question is usually answered by studying real saddle points, single-
valued and smooth configurations, such as instantons or multi-instantons
[5, 8, 6, 11, 7, 10, 12, 9, 13]. However, we show in this work that important

1Although we are mostly motivated by theories with fermions, it is important
to keep in mind that these systems can be represented in terms of purely bosonic
systems after quantizing fermions, and projecting on fermion number eigenstates,
and that all the conclusions of this work are equally valid for purely bosonic theories
with generic (non-symmetric) bosonic potentials.
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physics is missed in the standard approach which involves only real-valued
“instanton” solutions. These solutions satisfy Newton’s equation in the in-
verted potential −V (x):

δS

δx
= 0 =⇒ d2x

dt2
= +

∂V

∂x
.(2)

Instantons and anti-instantons are solutions of the second order equations
of motion by virtue of the real first-order equations:

dx

dt
= ±

√
2V (x) .(3)

The two main new observations made in this work are:

1) In order to perform the semiclassical expansion in a Euclidean quan-
tum mechanical path integral, the action and measure must be com-
plexified. The partition function is

Zbos =

∫
Γ
Dz e−

1

�
S[z(t)] =

∫
Γ
Dz(t) e

− 1

�

∫
dt

(
1
2 ż

2+V (z)
)
,(4)

where Γ is an integration cycle to be determined. Despite the fact
that the original path integral is a sum over real configurations, the
semi-classical expansion may receive physically important contribu-
tions from complex configurations. The critical points of the complex-
ified path integral are found by solving the holomorphic Newton equa-
tions in the inverted potential −V (z):

δS
δz

= 0 =⇒ d2z

dt2
= +

∂V

∂z
.(5)

Clearly this provides a larger basis of classical configurations for the
semi-classical expansion, and entails a physical interpretation in terms
of Picard-Lefschetz theory [19, 20, 21, 22, 23, 24, 25]. We demonstrate
that for generic potentials, physical properties of the ground state are
determined by complex rather than real saddle points. We stress that
this occurs in systems for which the physical couplings are manifestly
real, so that the theories have a precise Hilbert space interpretation,
which can be directly matched to the semi-classical analysis.

2) The generic saddle point configurations which contribute to the ground
state properties of a general quantum mechanical system are complex
solutions of the holomorphic Newton equations in the inverted poten-
tial, and they may even be multi-valued and singular. Despite this, the
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action of these saddles is finite, but typically with multi-valued imag-
inary part. The multi-valuedness and complexity of the action (recall
that the path integral for real coupling must be real), may appear to
be a serious problem, but it is indeed necessary. This phenomenon is
related to either i) the resurgent cancellations with the (lateral) Borel
resummation of perturbation theory, or ii) the hidden topological an-
gle phenomenon [26, 27]. The former provides a rigorous version of the
Bogomolny/Zinn-Justin (BZJ) prescription for controlling the ambi-
guities inherent in the analysis of instanton/anti-instanton correlated
two-event amplitudes in the instanton gas picture in bosonic theories
[28, 29].

In finite dimensional systems the analysis of exponential type integrals
via the complex generalization of Morse theory, Picard-Lefschetz theory, and
via resurgent trans-series are parallel constructions. Phenomena like Borel
resummation, and the associated ambiguities from asymptotic analysis, find
a geometric realization, respectively, as integration over Lefschetz thimbles
and Stokes jumps of the thimbles. A discussion of multi-dimensional inte-
grals, which defines a steepest surface using a complex gradient flow system,
can be found in [19, 20]. In [21, 23, 22, 24], this construction is implicit,
and the saddle-point method is already based on the assumption of the ap-
propriate Lefschetz thimble decomposition. The all-orders steepest descents
analysis, which includes all contributions beyond the usual Gaussian ap-
proximation, reveals a rich and intricate structure of relations between the
contributions from different saddles [22, 23, 24]. An application to infinite
dimensional path integrals appeared in [25] in the context of Chern-Simons
theory. In this case, due to the elliptic nature of the gradient flow system,
the nice properties of the finite dimensional system carry over to the infinite
dimensional case. Nevertheless, a surprising amount of this resurgent struc-
ture is also inherited by configuration space path integrals [30], for which the
gradient flow system is parabolic. A number of recent talks by Kontsevich
also emphasize the precise relation between resurgence and Lefschetz thim-
bles in finite dimensions, and discuss the extent to which these generalize to
infinite dimensional problems [31, 32, 33]. The point of view he presents is
close to our perspective, viewing the perturbative expansion around pertur-
bative saddle points as a constructive approach to defining the path integral,
even though the geometrization of the infinite dimensional path integral is
more complicated and richer than the finite dimensional case. Kontsevich
further claims that this framework could provide a rigorous mathematical
replacement for path integrals, which is also an optimism that we share. We
are also motivated by the well-known importance of complexified dynamics
in the theory of algebraically integrable quantum systems [34, 35, 36, 37, 38].
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From a complementary perspective, the uniform WKB approach pro-
vides a constructive and explicit realization of the relations between saddle
points [39, 40, 41], similar to the finite dimensional relations. One finds that
fluctuations about different non-perturbative multi-instanton sectors are re-
lated in a precise quantitative way, as has been confirmed recently by explicit
quantum field theoretic multi-loop computations [42, 43].

The perspective emanating from resurgence and finite dimensional ex-
amples of Lefschetz thimbles indicates that whenever we consider the semi-
classical analysis of the path integral (either QFT or QM), we are required
to start with a complexified/holomorphic version of it. In this paper, we ex-
plore consequences of this apparently innocuous step, which, in turn, leads
to many surprises.

1.2. Motivation from QFT translated to quantum mechanics

The physical basis for the QFT intuition from studies of magnetic and neu-
tral bions in QCD(adj) [1, 3, 4, 2, 14, 15] and 2d non-linear sigma models
with fermions [16, 17, 18, 44, 45, 46, 47], translated to the quantum me-
chanical context with Nf Grassmann valued (fermion) fields, amounts to
the following. First, consider an instanton/instanton or an instanton/anti-
instanton pair in the bosonic theory (Nf = 0). Since the BPS equations are
non-linear, it is clear that a superposition of two individual solutions is not
a solution at any finite separation τ between them. In fact, the action of the
configuration changes with separation as

S±(τ) ≡ 2SI + V±(τ) = 2SI ± Aa3

g e−mbτ bosonic models,(6)

where the + sign is for an [II] configuration, and the − sign for an [II]
configuration. Thus, the critical point of the potential between the two-
events is at infinite separation, τ∗ = ∞, which we refer to as a “critical
point at infinity”.

This is the point where one first realizes that something may be special
about bions in theories with fermions. For bions in such theories the potential
between the constituent instantons has a critical point at a finite separation.2

For example, the potential between two instantons in QM is of the form:

S±(τ)≡ 2SI +V±(τ)= 2SI ± Aa3

g e−mbτ+Nf mb τ theories with fermions,

(7)

2This is a universal phenomenon. (7) coincides with the quasi-zero-mode (QZM)
integrations in QFTs, such as non-linear sigma models in 2d and QCD(adj) [1, 14,
16, 17, 18, 44], and N = 1 SYM in 4d by a simple change of variables.
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and there exists a critical point at finite-separation τ∗ < ∞:

dS+(τ)
dτ = 0 ⇒ mb τ

∗ = log
(

Aa3

g Nf

)
for [II] ,(8a)

dS−(τ)
dτ = 0 ⇒ mb τ

∗ = log
(

Aa3

g Nf

)
± iπ for [II] .(8b)

The corresponding critical amplitude is

exp

[
−1

g
S+

]
=

(
g Nf

Aa3

)Nf

e−2SI for [II] ,(9a)

exp

[
−1

g
S−

]
= e±iπNf

(
g Nf

Aa3

)Nf

e−2SI for [II] .(9b)

The first case suggests that the [II]-two-event may actually be an approxi-
mate form of an exact real solution, while the latter case suggests that the
[II]-two-event may be an approximate form of a complex (possibly multi-
valued) exact solution. The factor e±iπNf , where Nf can also be continued to
non-integer values, associated with the [II] plays a crucial role in the behav-
ior of supersymmetry in these fermion/boson systems. We show explicitly in
Sections 5 and 6 that there are exact non-BPS saddle point solutions with
size Re (τ∗) in these two cases. See Fig. 9.

Based on these results we demonstrate in quantum mechanics a precise
relation between the nature of the integration over the complex quasi-zero
mode (QZM) thimble and the existence of exact solutions of the full path
integral:

i) τ∗ = ∞ ⇐⇒ Approximate quasi-solution.
ii) τ∗ ∈ R+, τ∗ < ∞ ⇐⇒ Exact real solution.
iii) τ∗ ∈ C\R+, Re τ∗ < ∞ ⇐⇒ Exact complex solution.

We show that the integral over the QZM-thimble reproduces the most im-
portant features of the exact non-BPS solutions, such as the critical size,
the ambiguous imaginary part of their action, and the hidden topological
angle(s) associated with the exact solutions. Based on these, we conjecture
that this deduction is also valid in general QFTs.

1.3. Necessity of complexification: simple pictures

To demonstrate the necessity of considering complex solutions, we first pro-
vide some simple illustrations. We will show that the following quantum
mechanical problems are closely related:
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Figure 1: Bosonic potential Vbos(x) (red dashed) vs. quantum modified po-
tential (black solid) V (x) for double-well system. The quantum modified
potential (11) is obtained upon quantizing the fermions and projecting to a
fermion number (or spin) eigenstate.

• Systems with degenerate harmonic minima coupled to Nf Grassmann
valued fields.

• Bosonic systems with non-degenerate harmonic minima.

In order to be specific, we consider two different bosonic potentials, a double-
well potential and a periodic potential, see Fig 1 and 2. We couple Grass-
mann fields to these potentials and project on fermion number eigenstates.
This leads to effective bosonic potentials in the sector with fermion number
p

V (x) = 1
2(W

′(x))2︸ ︷︷ ︸
Vbos(x)

+pg
2 W

′′(x), p = 2k −Nf ,(10)

which we refer to as the quantum modified potential. The fermion number p
is given by p = 2k−Nf with k = 0, . . . , Nf . In a SUSY theory, with Nf = 1,
the function W (x) is the superpotential [48, 49]. For Nf = 2, 3 . . ., we refer
to W (x) as an auxiliary potential.

In this sense, the first class of systems (with fermions) that we study
can be expressed as a collection of systems of the second type. “Integrating
out” fermions lifts the degeneracy of the harmonic minima. It is also useful
to consider p as an arbitrary parameter, which can even be taken to be
complex.

The bosonic double-well (DW) potential, with W (x) = 1
3x

3 − a2x, leads
to a quantum modified tilted-double-well potential
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Figure 2: Bosonic potential Vbos(x) (red dashed) vs. quantum modified po-
tential (black solid) V (x) for the periodic potential. The quantum modified
potential (12) is obtained upon quantizing the fermions and projecting to a
fermion number (or spin) eigenstate.

(11) V± =
1

2
(x2 − a2)2 ± pg x .

Similarly, the bosonic periodic Sine-Gordon (SG) potential, with W (x) =

4a3 cos
(

x
2a

)
, leads to a quantum modified double-Sine-Gordon potential

(12) V± = 2a4 sin2
( x

2a

)
∓ pga

2
cos

( x

2a

)
.

It is well known that there are instanton solutions for the untilted bosonic

potentials, with p = 0. These are real solutions to Newton’s equation in the

inverted potential, −V (x), given by solutions to the first-order equation (3).

By connecting degenerate harmonic vacua, this results in the familiar non-

perturbative level splitting [5, 6, 7, 8, 9, 10]. Instantons are associated with

the separatrix (see [50]) in the classical phase space of the inverted p = 0

potential.

For p 	= 0, the standard lore of semi-classics instructs us to search for

finite action classical solutions of the equations of motion for the Euclidean

action, which correspond to classical motions of a particle in the inverted

potential. But this leads to two immediate problems:

• Puzzle 1: For Nf = 1 SUSY QM with a bosonic tilted double-well

potential, it is well-known that the perturbatively vanishing ground

state energy is lifted non-perturbatively, and supersymmetry is spon-
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Figure 3: Inverted quantum modified potential in a theory with a symmetric
bosonic double-well potential. There are no real finite action saddle configu-
rations contributing to ground state properties, but there are exact complex
saddle solutions. The Euclidean description of the vacuum is a dilute gas
of these complex saddle points, which we call complex bions. The complex
bion is necessary in order to explain the non-perturbatively induced vacuum
energy of the corresponding Nf = 1 SUSY QM model.

taneously broken [48, 49]. However, there is no real classical finite
action solution contributing to the ground state energy.

• Puzzle 2: For Nf = 1 SUSY QM with a bosonic Sine-Gordon poten-
tial, it is known that the perturbatively vanishing ground state energy
remains zero non-perturbatively [48]. However, there is only one real
finite action solution which tunnels from one global maximum of the
inverted potential to the next. We call this solution the real bion so-
lution because its profile looks like two consecutive instantons. This
solution makes a negative contribution to the ground state energy. As
it stands, semi-classics would be in conflict with the SUSY algebra,
and positive-definiteness of the SUSY Hamiltonian.

We will show that the semi-classical configuration responsible for SUSY
breaking in the former case is a complex bion solution which tunnels from
the global maximum of the inverted potential to one of two complex turning
points, as shown in Figure 3. Moreover, the contribution to ground state
energy is −e−Scb = −e−2SI±iπ, admitting an interpretation in the two-
instanton sector of the formulation with fermions, and the ±iπ imaginary
part of the complex bion action, referred to as the hidden topological angle
(HTA) in [26], is crucial for the positive definiteness of the non-perturbative
vacuum energy. In the absence of ±iπ, one would end up with a negative
ground state energy, and semi-classics would be in conflict with the con-
straints of the supersymmetry algebra [49].



Toward Picard-Lefschetz theory of path integrals 105

Figure 4: Inverted quantum modified potential in a theory with a periodic
bosonic potential. There are exact real and complex saddle solutions in the
quantum modified Sine-Gordon model. Both the real and complex bions
are necessary in order to explain the non-perturbative vanishing of the vac-
uum energy of the corresponding Nf = 1 SUSY QM model. The Euclidean
description of the vacuum is a dilute gas of real and complex bions.

In the Sine-Gordon case we will show that in addition to the real bion

solution there is a second solution, the complex bion, which tunnels from

one global maximum of the inverted potential to one of two complex turning

points, as shown in Figure 4. Moreover, the real part of the action is exactly

equal to the real bion action, and roughly equal to the twice the instanton

action SI . The net contribution to the ground state energy is −e−Srb −
e−Scb = −e−2SI − e−2SI±iπ = 0. Notice that the imaginary part of the

complex bion action or HTA, ±iπ, is necessary for the non-perturbative

vanishing of the vacuum energy [26]. One dramatic aspect in this case is

that the complex bion solution is both multi-valued, as well as singular,

but has finite action with smooth real part. Similar multi-valued solutions

also appeared in Ref.[51], which we discuss in Section 8.1.) Since the hidden

topological angle is defined modulo 2π, the naively multi-valued action is in

fact single valued, and no pathologies arise for the supersymmetric theory.
For non-supersymmetric theories for which the complex bion term comes

out as e±ipπ, the semiclassical analysis involves both the HTA and resurgent

cancellations.

There is a particularly simple way to obtain the complex bion solutions

that we will employ in this work, and one can check that the resulting solu-

tions satisfy the holomorphic Newton equations. In Figs. 3 and 4, there is an
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obvious exact bounce solution. Starting with the bounce solution, consider
an analytic continuation in p

p ∈ R → peiθ ∈ C .(13)

As θ changes, the path integral moves into an unphysical region of parameter
space, similar to the discussion of [51], where the theory ceases to have a
physical Hilbert space interpretation. But the end-points of this unphysical
region, θ = 0 and θ = π, correspond to V+(x) and V−(x), which are physical
theories. However, in the cases studied in this work, the two potentials are
related either by parity (mirror images of one another) or a simple shift,
and the path integral representation and the set of non-perturbative saddle
points associated with them are identical.

Turning on θ gives the analytic continuation of the bounce into a com-
plex saddle. These complex saddles are plotted in Fig. 14 and Fig. 23. The
continuation to θ = π results in complex smooth saddles for the tilted DW
case and complex singular saddle for the double-SG example. One interest-
ing aspect of the analytic continuation for the DW system is that one can
show that the monodromies associated with the solutions are non-trivial. In
fact, as p changes its phase by 2π, the potential V+(x) turns back to itself,
but the two complex bion solutions are interchanged. Thus, the solutions
has a monodromy of order 2, reflecting the two-fold ambiguity in the choice
of the exact solutions.

1.4. What is surprising (and what is not)?

The necessity of complexification is not surprising from the point of view of
the steepest descent method for ordinary integration. Since the path integral
is a particular form of infinitely many ordinary integrals, complexification
is in fact a natural step. What is interesting and surprising is the important
new effects that appear in functional integrals.

As is well known, complexification is both a necessary and sufficient
step to capture a complete steepest descent cycle decomposition for ordinary
integration. Let f(x) be a real function, and consider an exponential type

integral I(�) =
∫ ∞
−∞ dx e−

1

�
f(x) which exists for � > 0. (We will also consider

the continuation � → �eiθ.) To tackle the integration via the steepest descent
method, the first step is to complexify:

(f(x),R) −→ (f(z),Γ ∈ C) .(14)

Since C has twice the real dimension of R the integration is restricted to a
certain middle-dimensional cycle Γ in C. The standard procedure is:



Toward Picard-Lefschetz theory of path integrals 107

I(�) =

∫ ∞

−∞
dx e−

1

�
f(x) −→︸︷︷︸

steepest descent method

∑
σ

nσ

∫
Jσ

dz e−
1

�
f(z) ,(15)

where Jσ is the steepest descent cycle attached to the critical point zσ of
f(z), i.e., f ′(zσ) = 0 and the interval

∫
[−∞,∞] =

∑
σ nσ

∫
Jσ

=
∫
Γ is a sum

over the homology cycle decomposition of the pair (f(z),C) despite the fact
that the original integration is over R. Jσ(θ) cycle is found by solving a
complex version of the gradient flow equation (also called Picard-Lefschetz
equation)

dz

du
= eiθ

∂f

∂z
,(16)

where u is gradient flow time. For � > 0, we take θ = 0. Note that the
vanishing of the right hand side determines the critical point set zσ for the
one dimensional integral given in (15).

If � is analytically continued to �eiθ, complex saddles zσ contribute once
their multipliers nσ 	= 0. In generic situations this is the case. However, con-
sider the case where � > 0, positive and real. Then, the cycle is R and the
decomposition is saturated by the real saddles on R. Namely, despite the
fact that complex saddles are present, their multiplier nσ is zero. Contribut-
ing cycles Jσ still live in C, but in the linear combination

∑
σ nσJσ, the

segments that move into the complex domain, always back-track by some
other contribution Jσ′ , so the full cycle is just R. In other words, complex
saddles in this case do not contribute to real integration.

Consider now a real Euclidean path integral. Based on the fact that
the partition function is real, and guided by the arguments given for ordi-
nary integrals above, complex saddles (which would typically give complex
contributions) were usually deemed irrelevant, and did not receive sufficient
attention. There are two potential ways around the problem that the parti-
tion functions must be real and, interestingly, path integrals take advantage
of both:

• If the action of a complex saddle point is Sr+ iπ (mod 2πi), the reality
of the partition function will be preserved. Indeed, path integrals of
many supersymmetric theories are of this type.

• If the action of a complex saddle point is Sr + ipπ, where p ∈ R

arbitrary, this will (naively) render the partition function complex. But
this issue is resolved via resurgence, and renders the trans-series sum
over saddles real. An explicit example of this phenomenon is discussed
in Section 7.
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Both of these mechanisms do not take place in one-dimensional real
exponential integrals, as we demonstrate in Appendix B, where we show
that for one dimensional real exponential integrals, complex saddles do not
contribute. However, it is not clear that this intersection theory argument
extends even to finite multi-dimensional integrals [24]. So in this sense, the
one dimensional exponential integral cannot necessarily be used as a guide
on this issue. Indeed, our analysis in this paper shows that complex saddles
do contribute to real Euclidean path integrals. It is an interesting open
question whether in a regularized version of the quantum mechanical path
integral, complex saddles contribute even when the parameters are real. For
future work, it would be interesting to construct our complex bion saddles
in a fully regularized theory.

In fact, the way that the second item is resolved is interesting. The action
of saddles contributing to the path integral is often multi-valued (even for
a supersymmetric theory). In particular, the action is of the form Sr ± ipπ.
In the past, multi-valued saddles were viewed as “disturbing”, since one is
trying to calculate a physical and unambiguous quantity. A recent serious
deliberation on this issue (which at the end remains undecided) can be found
in the recent work [51], which we will comment on in detail in Section 8.1.

The main surprise is the following: In order to get a physical real result
for the path integral, multi-valued saddle solutions and multi-valued actions
are required. The reason is that Borel resummation of perturbation theory is
also generically multi-fold ambiguous, with ambiguities related to the action
of the multi-valued saddles. The only possible way that the resulting path
integral can be real is by virtue of the exact cancellation between these two
types of ambiguities.

1.5. Holomorphic Newton equations

The holomorphic classical Euclidean equations (5) describe coupled motion
of the real and imaginary parts of z(t) = x(t) + iy(t). Expressing the holo-
morphic potential in terms of real and imaginary parts of the potential,
V (z) = Vr(x, y) + iVi(x, y), the holomorphic Newton equation can be re-
expressed as:

d2z

dt2
=
∂V

∂z
or equivalently

d2x

dt2
= +

∂Vr

∂x
,

d2y

dt2
= −∂Vr

∂y
,

(17)
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where the Cauchy-Riemann equations, ∂xVr = ∂yVi and ∂yVr = −∂xVi, are
used to obtain the second form. (17) implies that the force in the x-direction
is ∇xVr(x, y), and the force in the y-direction is −∇yVr(x, y). In this sense,
these are different from the classical motion in the inverted real potential
−Vr(x, y) in two space dimensions. This aspect underlies some of the exotic
features of our exact solutions.

To make this idea more concrete, as it will provide much intuition for
the exact solutions, consider the Euclidean Lagrangian LE = 1

2 ẋ
2+ 1

2x
2, and

energy conservation E = 1
2 ẋ

2− 1
2x

2. Obviously, a particle which starts at rest
at a typical point in the close vicinity of x = 0 will simply roll down. Making
the Lagrangian holomorphic, and taking advantage of the Cauchy-Riemann
equations, we may write

LE = 1
2 ż

2 + 1
2z

2, Re LE = 1
2(ẋ

2 − ẏ2) + 1
2(x

2 − y2) ,(18)

which means −Vr(x, y) = −x2 + y2. A particle which starts at rest at a
typical point in the the close vicinity of (x, y) = (0, 0) will roll down in x,
but will roll up in the y direction! This is counter-intuitive if we just think
in terms of potential −x2 + y2, but it makes sense because of the relative
sign in the kinetic term ẋ2 − ẏ2. For example, a particle that starts at
(x, y) = (0, y(0)) will evolve in time as x(t) = 0, y(t) = y(0) cosh(t), rolling
up in the y-direction to infinity.

Our goal is to study the path integral corresponding to the holomorphic
Lagrangian in (4), and find saddles in the system where we analytically
continue p as given in (13). The reason we do so is that it will be fairly
easy to find single valued solutions for general θ, but we will in fact observe
non-trivial effects exactly at the physical theories θ = 0, π. The saddle point
contributing to ground state properties is in general complex, sometimes
even multi-valued and singular, i.e, either the θ = 0 or θ = π direction may
correspond to a branch-cut, and we will obtain solutions in the cut-plane.
The multi-valued solutions are either related to resurgent cancellations or
to a hidden topological angle. Turning on θ provides a useful regularization
of the singular solutions.

The coupled Euclidean equations of motion for the tilted-double-well
system are

d2x

dt2
= +2x3 − 6xy2 − 2a2x+ pg cos θ,

d2y

dt2
= −2y3 + 6x2y − 2a2y + pg sin θ,(19)



110 Alireza Behtash et al.

and for the double-Sine-Gordon system they are given by

d2x

dt2
=a3 cosh(ya) sin(

x
a )

+
pg

4

(
cos θ cosh( y

2a) sin(
x
2a)− sin θ cos( x

2a) sinh(
y
2a)

)
,

d2y

dt2
=a3 cos(xa ) sinh(

y
a)

+
pg

4

(
sin θ cosh( y

2a) sin(
x
2a) + cos θ cos( x

2a) sinh(
y
2a)

)
.(20)

Note how these differ from the corresponding real Newton equations even
at θ = 0 or π, at which (19) and (20) still remain a coupled set of equations,
while the equations in the space of real paths are given by

d2x

dt2
= +2x3 − 2a2x+ pg ,(21)

d2x

dt2
= a3 sin

(x

a

)
+

pg

4
sin

( x

2a

)
.(22)

In terms of real paths, (21) and (22) do not have finite action non-trivial solu-
tions which start arbitrarily close to the global maximum of the inverted po-
tential. For example, for the tilted-double-well case, any real solution starting
at the global maximum of the inverted tilted-double-well potential will go
off to infinity and have infinite action. For the periodic double-Sine-Gordon
potential, there is a real solution connecting neighboring global maxima of
the inverted potential; this is the real bion solution.

On the other hand, (19) and (20) also admit complex finite action solu-
tions, with non-vanishing real and imaginary parts. We will see that these
exact solutions are crucial for the semiclassical analysis. The existence of the
complex bion solutions follows from consideration of the energy conserva-
tion equation for a particle starting at the global maximum of the inverted
potential of Figure 3 and Figure 4:

(23)
1

2
ż2 − V (z) = E .

The turning point equation V (z) = −E has 4 complex solutions. This is clear
for the tilted double well, which is described by a fourth order polynomial,
and is also true for the double-Sine-Gordon, which can be described by a
fourth order polynomial after a suitable change of variables. Two of the
turning points are degenerate roots at the global maximum of the inverted
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potential, while the other points form a complex conjugate pair near the

local maximum of the inverted potential (the point corresponding to the

false vacuum).

There indeed exist exact complex solutions3 for which a particle follows a

complex trajectory that reaches one of the complex turning points and back-

tracks to the initial position. We call such solutions complex bions, shown

in Figure 13 for the double-well system. Its real part is reminiscent of an

instanton-anti-instanton [II] configuration, and in fact [II] superposition
at a particular complex separation (see Section 4 for details) is a systematic

approximation to the exact complex bion solution.

Normally, an O(g) effect to the bosonic potential would be negligible

with no dramatic effects. However, whenever Vbos(z) has degenerate har-

monic minima, (this is the class of examples we consider), the instanton

is described as the separatrix of the inverted-potential. The “small” term

coming from integrating out fermions and projecting onto a definite sector

of the Fock space leads to a perturbative splitting of the separatrix by an

O(g) amount. This has dramatic effects as it causes the instanton to cease

being an exact solution. A single instanton has infinite action compared to

the vacuum, as one of its ends is in the true vacuum, while the other is

in the false vacuum. However what used to be an instanton–anti-instanton

configuration, for a specific value of a finite complex separation, becomes an

approximation to an exact solution. This exact solution is the complex bion.

1.6. Relation to complex gradient flow and Picard-Lefschetz

theory

Attached to each critical point there exists a cycle Jσ, as in (15), which

can be found by solving a complex gradient flow equation, or the Picard-

Lefschetz theory, to describe the Lefschetz-thimbles.4 In a theory with a field

z(t) and action functional S(z), this amounts to

∂z(t, u)

∂u
= +

δS
δz

= +

(
d2z

dt2
− ∂V

∂z

)
,

3The approximate form of the exact complex bion solutions was noted long ago
by Balitsky and Yung [52] in the case of tilted double well potential, see Section 8.

4Various applications of the Lefschetz thimbles to simple systems, and QFT at
finite density can be found in [25, 53, 54, 55, 56, 57, 58, 44]. Complex saddles
appear naturally in QCD at finite chemical potential, e.g, [59, 60], and in real time
Feynman path integrals [61, 62].
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∂z(t, u)

∂u
= +

δS
δz

= +

(
d2z

dt2
− ∂V

∂z

)
,(24)

where u is the gradient flow time. Note that vanishing of the right hand
side of the gradient system (24) is the complexification of the equations
of motion, (the holomorphic Newton equations), as it should be. The limit
u = −∞ is the critical point of the action, for which the right hand side is
zero and gives just the complexified equations of motions (17).

The partition function (4) can also be expressed as

Z =

∫
Γ
D(x+ iy) e−

1

�
(Re S+iIm S) =

∫
Γ
D(x+ iy) e−

1

�

∫ 1
2 (ẋ

2−ẏ2)+iẋẏ+... .

(25)

The “kinetic term” of y(t) is not bounded from below, and one may worry
about the convergence of the path integral. However, this is an illusion. The
thimble construction guarantees that the integral is convergent. It is an easy
exercise to prove, for example for the simple harmonic oscillator, that the
middle-dimensional cycle Γ reduces to the standard path integral.
Functional Cauchy-Riemann equation: In terms of real and imaginary
parts of the complexified field z(t) = x(t) + iy(t), the action satisfies a
functional (infinite dimensional) version of the Cauchy-Riemann equation:

Cauchy − Riemann :
δS
δz

= 0, ⇐⇒

δRe S
δx

= +
δIm S
δy

,

δRe S
δy

= −δIm S
δx

,

(26)

which means that action is a holomorphic functional of x(t)+ iy(t). Now, it
is also worthwhile to rewrite the complexified equations of motions:

Equation of motion :
δS
δz

= 0, ⇐⇒

δRe S
δx

= −δIm S
δy

,

δRe S
δy

= +
δIm S
δx

.

(27)

The combination of (27) with the holomorphy condition (26) has a simple
consequence. The critical points (saddles) of the real part of a holomorphic
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functional, Re S, which may be viewed as a Morse functional, are the same

as the critical points of S. In particular, using (27) and (26), the complexified

equations of motion can be re-written as

(28)
δRe S
δx

= 0 ,
δRe S
δy

= 0 .

Consider the saddle zσ(t) and the Lefschetz thimble Jσ attached to it. The

imaginary part of the action remains invariant under the gradient flow time

on the thimble. Using (24) and the chain rule,

∂Im[S]
∂u

= 0 ,(29)

meaning that

Im[S(z)] = Im[S(zσ)](30)

is invariant under the flow.

Given a set of saddles in a quantum mechanical path integral, in the weak

coupling regime, there is always a representation where the Euclidean vac-

uum of the theory may be viewed as a proliferation of these configurations,

corresponding to a “dilute gas”. Since Im[S(zσ)] is an invariant associated

with these saddles and thimbles, it will crucially enter into the Euclidean

vacuum description, and play important physical roles. This is the origin

of the hidden topological angle (HTA) discussed in [26]. We will provide

concrete examples of HTAs. An interesting observation is that the HTA as-

sociated with a critical saddle field (30) is identical to the one obtained by

studying the much simpler QZM-thimble (112).

We may consider the real part of the complexified action as a Morse

functional, or more precisely a Morse-Bott functional, h = Re S which

obeys

∂Re[−S]
∂u

≤ 0 ,(31)

indicating downward flow nature of the flow. A Morse function on a mani-

fold M is a function which has no degenerate critical points on the manifold.

Technically the real part of an action with any kind of symmetry is not a

Morse function, because there are degeneracies associated with the symme-

try of the system, and therefore there is a critical manifold, i.e. a manifold of
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critical points related by a symmetry. If the Hessian of all directions orthog-

onal to the critical manifold is non-singular, then such a function is referred

to as a Morse-Bott function. The critical points of the real part of a holo-

morphic functional h = Re S are the same as the critical points of S, found
by solving (28). In this paper we study these problems in two prototypical

examples, and make these ideas more concrete.

1.7. Comment on real time path integrals

The analysis of this paper is for Euclidean path integrals with real parame-

ters, which describes the partition function of the theory, and its spectrum.

We believe that the contribution of complex multi-valued saddles in the case

of a real path integral, with real parameters and a real integration cycle, is

a genuine surprise so far not emphasized in the literature.

In the present paper we do not discuss the Minkowski space path inte-

gral, which is inherently complex and highly oscillatory from the beginning.

However we make several brief comments on this, for completeness and clar-

ification. In Minkowski space path integration it is indeed natural to expect

the contribution of the complex saddles, but this turns out to be a subtle

issue, for reasons described in detail in [62], and reviewed briefly below.

As pointed out in [62], even the description of the usual real instantons

in the symmetric double-well potential V (z) = 1
2(z

2 − 1)2 becomes rather

exotic once Euclidean time is rotated to Minkowski time. Recall that the

usual instanton solution is given by z(τ) = tanh(τ). Let τ denote the Eu-

clidean time, and consider rotating it as τα = eiατ . Clearly, α = π/2 is

the Minkowski time case. Real Euclidean instantons become complex as one

rotates τ → τα. For generic α, the instanton is complex, and it interpolates

from the perturbative vacuum z = −1 to the vacuum at z = +1. Further-

more its action is α independent. This is certainly good news concerning

the understanding of the contribution of this saddle to the path integral

at arbitrary α. However, although the solution describes a complex path

from z = −1 to z = +1 for any α 	= π/2, it becomes purely imaginary,

z(t) = i tan(t) at α = π/2. This does not describe a tunneling event from

z = −1 to z = +1. In fact, even the action of the instanton is not well-

defined, or even real, exactly at the Minkowski coordinate. In this sense,

sitting exactly in the Minkowski space, the non-perturbative instanton con-

tribution to the path integral is not well-defined. The main conclusion of

[62] is that it can only be well-defined by a limiting procedure, namely,

first moving slightly away from Minkowski space, α = π/2 ± ε, calculating
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the saddle contribution there, and then taking the limit ε → 0. This sug-
gests that the non-perturbative definition of the Feynman path integral in
Minkowski space may exist as a limiting procedure from complex time.

Incidentally in this work we have also found that although complex sad-
dles may naively look pathological (i.e. multi-valued and singular) when all
parameters are real (i.e. physical), their contribution is absolutely essential
for the reproduction of the correct result, as we demonstrate explicitly in
Sections 5 and 6. The pathologies cancel completely via resurgence, which
strictly speaking requires all observables to be defined as a real limit of some
parameter(s). It is therefore tempting to reinterpret the observation of [62]
about the pathology of Minkowski complex-instantons as a generic feature
of semi-classical objects.

2. Graded Hilbert spaces

Outline: In this section, we generalize Witten’s construction of graded Hilbert spaces for supersym-

metric quantum mechanics [49] (Nf = 1 or spin- 12 particle) to multi-flavor non-supersymmetric theories

(Nf > 1 or internal spin ( 1
2 )

Nf particle.) This provides a calculable version of the path integral based

on a graded representation for the fermionic determinant. The graded system provides the staring point

for obtaining exact non-BPS solutions. The second (and more important) step is the idea of complexi-

fication.

2.1. Supersymmetric QM and its non-supersymmetric
generalization

Consider the Minkowski space action of supersymmetric quantum mechanics
with superpotential W(x) [49] in canonical normalization:5

(33)

SM =

∫
dt

(
1
2 ẋ

2 − 1
2(W

′)2 + 1
2 i(ψψ̇ − ψ̇ψ) + 1

2W
′′[ψ,ψ]

)
.

5Canonical vs. non-perturbative normalization: We use x to denote the
bosonic coordinate and W to denote auxiliary potential (superpotential) with a
canonical normalization, 1

2 ẋ(t)
2+ 1

2 (W ′)2+ . . .. For non-perturbative normalization,
we use x(t) and W (x), and Lagrangian reads 1

g [
1
2 ẋ(t)

2+ 1
2 (W

′)2+ . . .] where W (x)
is g independent. The relation between the two is

(32) x(t) =
√
gx(t), W(x) =

1

g
W (

√
gx(t)) .

The latter is more suitable for the non-perturbative treatment of instantons, and
the determination of other non-self-dual saddle points.
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We will consider a manifestly non-supersymmetric multi-flavor generaliza-
tion of this class of quantum systems. We introduce Nf flavors, coupled
as

SM =

∫
dt

(
1
2 ẋ

2 − 1
2(W

′)2 + 1
2 i(ψiψ̇i − ψ̇iψi) +

1
2W

′′[ψi, ψi]
)
,(34)

i = 1, . . . , Nf .

For the non-supersymmetric theory, we refer to W(x) as the “auxiliary po-
tential”. It plays a role similar to the superpotential in the Nf = 1 theory.
The study of Nf = 1 case is old, and Nf ≥ 2 generalization and its study is
new.6

We can canonically quantize this Lagrangian. Introduce bosonic position
x̂ and momentum p̂ operators obeying canonical commutation relation, as
well as fermionic creation ψ̂i

+ and annihilation ψ̂− operators obeying anti-
commutation relations:

[p̂, x̂] = −i , [p̂, p̂] = [̂x, x̂] = 0 ,

{ψ̂i
+, ψ̂

j
−} = δij , {ψ̂i

+, ψ̂
j
+} = {ψ̂i

−, ψ̂
j
−} = 0 .(35)

The Hamiltonian of the multi-flavor theory reads

Ĥ = 1
2 p̂

2 + 1
2(W

′)2︸ ︷︷ ︸
Ĥb

+1
2 [ψ̂

i
+, ψ̂

i
−]W ′′

= Ĥb + (N̂ − 1
2Nf )W ′′ ,(36)

where summation over repeated indices is assumed. In bringing the Hamil-
tonian into the latter form, we used

∑Nf

i=1[ψ̂
i
+, ψ̂

i
−] =

∑Nf

i=1(2ψ̂
i
+ψ̂

i
− − 1) ≡

2N̂ −Nf , where N̂ is the “fermion number” (or equivalently spin) operator.

Ĥb denotes the Hamiltonian of the Nf = 0 (purely bosonic) theory.

The Lagrangian is invariant under a U(1)× SU(Nf ) global flavor sym-
metry:

(37) ψi → eiαUijψj , eiα ∈ U(1), U ∈ SU(Nf ) .

6This type of generalization is motivated by the quantum field theory studies
of QCD(adj) and N = 1 SYM on R

3 × S1, where the former is the multi-flavor
non-supersymmetric generalization of the latter, and despite the absence of super-
symmetry, it admits a semi-classical calculable regime [1].
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This means that the Hilbert space is decomposable into irreducible rep-
resentations of U(1) × SU(Nf ). The charges associated with these global
symmetries are

N̂ =

Nf∑
i=1

ψ̂i
+ψ̂

i
− , Ŝa = ψ̂i

+(t
a)ijψ̂

j
− ,(38)

where ta, a = 1, . . . N2
f − 1 are the generators of the defining representation

of the su(Nf ) algebra. Clearly, these generators commute with the Hamil-
tonian,

[N̂ , Ĥ] = 0, [Ŝa, Ĥ] = 0 .(39)

N̂ allow us to express the full Hilbert space as a direct sum of graded Hilbert
spaces according to fermion number, and graded Hilbert spaces naturally fall
into irreducible anti-symmetric representation of the SU(Nf ) global symme-
try.

2.2. Fermionic Fock space

The fermionic operators can be used to build a finite dimensional fermionic
Hilbert space F . Let |Ω〉 denote the Fock vacuum, singlet under the SU(Nf )
flavor symmetry. It obeys

(40) ψ̂i
−|Ω〉 = 0 ∀ i ∈ [1, Nf ] .

There is one more singlet under the SU(Nf ) flavor symmetry. It is the fully
occupied state, defined as

(41) |Ω̃〉 = ψ̂1
+ψ̂

2
+ . . . ψ̂

Nf

+ |Ω〉

and by the Pauli exclusion principle, it obeys

(42) ψ̂i
+|Ω̃〉 = 0 ∀ i ∈ [1, Nf ] .

We can now construct the fermionic Hilbert space, which furnishes k-index
anti-symmetric irreps of SU(Nf ), where k = 0, . . . , Nf denotes the fermion

number sector, where k is eigenvalue of the fermion number operator N̂ .
There are Nf + 1 levels, and 2Nf states:

F =

Nf⊕
k=0

F (k) ,(43)
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where

F (0) := {|Ω〉} ,

F (1) :=
{
ψ̂i
+|Ω〉

}
,

F (2) :=
{
ψ̂i
+ψ̂

j
+|Ω〉

}
,

...

F (Nf−2) :=
{
ψ̂i
−ψ̂

j
−|Ω̃〉

}
,

F (Nf−1) :=
{
ψ̂i
−|Ω̃〉

}
,

F (Nf ) :=
{
|Ω̃〉

}
,(44)

with degeneracies at level k given by degk =
(Nf

k

)
given by the dimension

of k-index anti-symmetric irreps of SU(Nf ). The total number of states is
then

(45)

Nf∑
k=0

degk =

Nf∑
k=0

(
Nf

k

)
= 1 +Nf + Nf (Nf−1)

2 + . . .+Nf + 1 = 2Nf .

Both the unoccupied state and the fully occupied state are singlets under
SU(Nf ). Since the ground states of quantum mechanics must be singlets

under bosonic global symmetries, we should expect the |Ω〉 and |Ω̃〉 states
to play significant roles in the ground state properties.

2.3. Graded Hilbert space: fermion number representation

The Hamiltonian of the multi-flavor theory is diagonal in the fermion number
operator. This means that the decomposition of the fermionic Fock space
translates in a simple way to the decomposition of the full Hilbert space.
Any eigenstate of the full Hamiltonian can be written as |n〉B ⊗ |χ〉F , where
|χ〉F ∈ F . If |χ〉F ∈ F (k), then, (2N̂−Nf )|χ〉 = (2k−Nf )|χ〉, and the action
of the level k Hamiltonian on the state |n〉B is
(46)

Ĥ(Nf ,k) =
p2

2
+1

2(W
′(x))2+p

2W
′′(x), p = 2k−Nf , k = 0, . . . , Nf .

This permits us to decompose the Hilbert space H of Nf flavor theory
into sub-Hilbert spaces H(Nf ,k) graded under the “fermion number” k. The
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Hamiltonian Ĥ and the Hilbert space H of the Nf flavor theory can be

decomposed as:

Ĥ =

Nf⊕
k=0

deg(H(Nf ,k))Ĥ(Nf ,k), deg(H(Nf ,k)) =
(Nf

k

)
H =

Nf⊕
k=0

deg(H(Nf ,k))H(Nf ,k),(47)

where deg(H(Nf ,k)) is the degeneracy of a given sector. This construction

generalizes Witten’s discussion in supersymmetric QM to non-supersymmet-

ric theories [48]. We obtain a triangle of graded Hilbert spaces, where black

(k-even) are bosonic, and red (k-odd) are fermionic spaces:

(48)

The (Nf , k) = (0, 0) cell is the bosonic Hilbert space, H(0,0). The Nf = 1 row

contains the paired Hilbert spaces of supersymmetric quantum mechanics

[48]. The study of Nf ≥ 2 is new and has some surprising elements.

It is also useful to further grade the Hilbert spaces under fermion number

modulo two, (−1)F . For example, if the state |0〉B ⊗ |Ω〉 is a ground state,

then, obviously, H0 is bosonic, H1 is fermionic, H2 is bosonic, etc. If Nf is

odd, then HNf
is fermionic, while if Nf is even, then HNf

is bosonic.

The advantage of the graded formulation is the following. Given the

twisted partition function of the theory with multiple fermions, we can now

convert it into the sum of bosonic partition functions over the graded sectors:

Z̃(L) ≡TrH(−1)F e−LH

=

Nf∑
k=0

(−1)Nf−kdeg(Hk)TrHk
e−LHk
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=

Nf∑
k=0

(−1)Nf−kdeg(Hk)Zk .(49)

2.4. Derivation from the fermionic determinant

We can also derive (49) by using a functional integral formulation. Consider

Z̃(L)original =

∫
Dx

Nf∏
i=1

DψiDψi e
−

∫
dt

(
1
2 ẋ

2+
1
2(W

′)2+ψi(∂t+W ′′)ψi

)

=

∫
Dx e−

∫
dtLbos

[
det±(∂t +W ′′)

]Nf

.(50)

The fermionic determinant can be calculated exactly [63]. The result for
periodic (+) and anti-periodic (−) boundary conditions on the fermions is
given by

[det±(∂t +W ′′)]Nf =

⎧⎪⎪⎨⎪⎪⎩
[
2 sinh

(
1
2

∫
W ′′dt

) ]Nf

for ψi(L) = +ψi(0) ,

[
2 cosh

(
1
2

∫
W ′′dt

) ]Nf

for ψi(β) = −ψi(0) .

(51)

This implies that we can express the twisted partition function as

Z̃(L) =

∫
Dx e

−
∫
dtLbos−Nf log

(
2 sinh

1
2

∫
dtW ′′

)
.(52)

This strategy is commonly used in QFT applications of the fermionic deter-
minant. We obtain a closed form result, but it is manifestly non-local7. In
the present case, however, there is a more useful representation. Instead of
exponentiating the fermionic determinant, if we just expand it into a bino-
mial expansion, we obtain the link between the fermionic determinant and

7Notice the fact that the determinant makes the sign problem manifest if W(x)
is an odd function of x. Under x(t) → −x(t), the second term in the action picks
up an extra phase eiπNf , leading to destructive interference between the Euclidean
paths x(t) and −x(t) for Nf odd, and to constructive interference for Nf even. This

is a manifestation of the sign problem, Z̃(L) ∼ (1 + eiπNf ) in the odd-Nf theory,
see for example, [64] for the Nf = 1 case. The sign problem in these examples is
related to exact spectral cancellations.
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the graded Hilbert spaces. We find

Z̃(L)original =

∫
Dx e−

∫
dtLbos

[
2 sinh 1

2

∫
dtW ′′

]Nf

=

∫
Dx e−

∫
dtLbos

Nf∑
k=0

(
Nf

k

)
(−1)Nf−k

[
e
∫
dtW′′

2

]k[
e−

∫
dtW′′

2

]Nf−k

=

Nf∑
k=0

(
Nf

k

)
(−1)Nf−k

∫
Dx e

−
∫
dt

(
1
2 ẋ

2+
1
2(W

′)2+(2k−Nf )
W′′
2

)

=

Nf∑
k=0

(
Nf

k

)
(−1)Nf−kZk = Z(L)graded .(53)

This simple equality has great utility. In particular, the graded formulation
will allow us to find new exact saddles in the problem. In the original for-
mulation where we keep the fermions, it is more difficult to demonstrate the
existence of exact solutions. The beauty of the graded formulation is that
we can show that these approximate solutions are actually approximations
to the exact solutions.

Consider taking the compact radius L to be infinitely large, and restrict
to solutions starting and ending in a particular harmonic minimum, which
we label by xi. These are the solutions which are interesting if we wish
to quantize around the classical minimum at x = xi. Then W ′′(x(t)) ≈
W ′′(xi) = ωi, the natural local harmonic frequency, almost everywhere on
this solution. The determinant in the infinite volume limit L → ∞ will then
become a simple exponential

[det±(∂t +W ′′)]Nf =
L→∞

=
L→∞

⎧⎪⎨⎪⎩
e

sign(ωi)Nf

2

∫
W ′′dt for ψi(L) = +ψi(0) ,

(sign(ωi))
Nf e

sign(ωi)Nf

2

∫
W ′′dt for ψi(β) = −ψi(0) .

(54)

The above form yields a perfectly local action which corresponds to the pro-
jection to the k = 0 (empty) or k = Nf (fully occupied) fermion number
eigenstates. This corresponds to maximal spin projection, i.e. Sz = ±Nf/2.
The reason this is the case is that the ground state(s) lives in the max-
imal spin state, and sending L → ∞ projects onto the ground-state(s)
only.
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2.5. Graded Hilbert space: spin representation

For Nf = 1, the full Hamiltonian can be interpreted as describing the motion
of a spin-12 particle in a spin-independent potential, (W ′)2, and a “magnetic
field”, W ′′

, which couples to the spin. This is the case with exact super-
symmetry in the interpretation of Ref. [49]. For Nf = 2, we have a spin
1
2 ⊗ 1

2 = 1 ⊕ 0 particle, a spin-1, and a spin-0 particle in a magnetic field.
For few low-Nf , we have

Nf = 0, 0 ,

Nf = 1, 1
2 ,

Nf = 2, 1
2 ⊗ 1

2 = 1(1)⊕ 1(0) ,

Nf = 3, 1
2 ⊗ 1

2 ⊗ 1
2 = 1(32)⊕ 2(12) ,

Nf = 4, 1
2 ⊗ 1

2 ⊗ 1
2 ⊗ 1

2 = 1(2) + 3(1)⊕ 2(0) ,

Nf = 5, 1
2 ⊗ 1

2 ⊗ 1
2 ⊗ 1

2 ⊗ 1
2 = 1(52) + 4(32)⊕ 5(12) .(55)

In general, decomposing

(12)
Nf =

Smax⊕
S=Smin

mult(S) S ,(56)

where

Smax =
Nf

2
, Smin =

{
0 Nf even ,
1
2 Nf odd ,

(57)

the multiplicity of the spin-S sector is given by

S =
Nf

2
− k, mult(S) =

{
1 k = 0 ,(Nf

k

)
−

( Nf

k−1

)
1 ≤ k ≤ �Nf

2 � .(58)

Therefore, the fermionic Fock space admits a representation both in terms
of fermion number sectors as well as spin sectors. It is easy to show that the
dimension of the Fock space agree:

2Nf =

Nf∑
k=0

deg(Hk) =

Smax∑
S=Smin

mult(S)(2S + 1).(59)

One can re-interpret the Hamiltonian of the “multi-flavor” theory as a
direct sum over allowed spin quantum numbers, appearing on the right hand
side of (56):
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Ĥ =

Smax⊕
S=Smin

mult(S)Ĥ(S) .(60)

The Hamiltonian in the spin-S sector is given by:

Ĥ(S) = 1
2 p̂

2 + 1
2(W

′)2 + SzW ′′,(61)

where Sz = Diag(s, s− 1, . . . ,−s+ 1,−s),

is the diagonal spin matrix. This provides a second representation for the
thermal partition function:

Z(β) ≡
Smax∑

S=Smin

mult(S)ZS ,(62)

where ZS is the partition function in the spin-S sector. Note that odd Nf

is associated with a sum over half-integer spins, and even Nf is associated
with a sum over integer spins.

The partition function for the S = 1
2 case (or Nf = 1 supersymmetric

QM) is given by (see [8, 9] for discussions concerning the path integral
representation of spin)

Z(β) =

∫
DxD(cos θ)Dφ e

−
∫
dt

(
1
2 ẋ

2+
1
2(W

′)2+SB(θ,φ)+SWZ(θ,φ)
)
,

SB(θ, φ) =

∫
dt12W

′′ cos θ , SWZ(θ, φ) = i12

∫
dt(1− cos θ)∂tφ ,(63)

where (θ, φ) ∈ S2 parameterize the Bloch sphere. SB(θ, φ) denotes the spin-
“magnetic field” interaction, and SWZ(θ, φ) is the abelian Berry phase (or
Wess-Zumino term). For a spin-S sector, the generalization of this expression
is8

ZS(β) =

∫
DxD(cos θ)Dφ e

−
∫
dt

(
1
2 ẋ

2+
1
2(W

′)2+S(W ′′ cos θ+i(1−cos θ)∂tφ
)
.(64)

In this work we will not take full advantage of the spin-representation. How-
ever, it is useful to keep in mind that the most physically appropriate in-

8The result we give here is for the thermal partition function. For the twisted
partition function an insertion (−1)Nf−k needs to be inserted. Since Sz = k−Nf/2,
with k being the fermion number, and since Sz = S cos θ, to implement this twist

we can insert a term iπ 1
L

∫ L

0
dt (S cos θ −Nf/2) into the action.
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Figure 5: Fermion number vs. spin representation for the multi-flavor the-
ory with Lagrangian (34). Nf is chosen to be odd. The system describes a
particle with internal (12)

Nf -spin.

terpretation of the problem is actually that of a particle with internal spin

(12)
Nf . In fact, the equivalence of (64) and (49) is straightforward. The re-

lation between the partition function graded according to fermion number

and spin representations is given by

Z(β) ≡
Nf∑
k=0

deg(Hk)Zk︸ ︷︷ ︸
sum over columns in Figure 5

=

Smax∑
S=Smin

mult(S)ZS︸ ︷︷ ︸
sum over rows in Figure 5

.(65)

2.6. Twisted partition function vs. supersymmetric Witten index

The twisted partition function (49) Z̃(L) is identical to the supersymmet-

ric Witten index IW [49] for the Nf = 1 theory. For non-supersymmetric

theories with Nf > 1 the twisted partition function has a set of remark-

able properties, which are still connected to spectral cancellations (under

the conditions stated below) in non-supersymmetric theories. In particular,

we will show that for certain choices of the auxiliary potential W(x), the

twisted partition function (49) vanishes for any odd Nf .

First note the following three properties regarding the structure of the

graded Hilbert space (48):
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i) The degeneracies of states in Hk and HNf−k are the same: deg(Hk) =

deg(HNf−k) =
(Nf

k

)
as dictated by the dimensions of corresponding

irreps of SU(Nf ).
ii) ForNf even,Hk andHNf−k are either Bose-Bose or Fermi-Fermi pairs.

For Nf odd, Hk and HNf−k form Bose-Fermi pairs.
iii) If the auxiliary potential is an odd function of x, W(−x) = −W(x), or

a periodic function, then Hk and HNf−k exhibit spectral degeneracy,

spec(Ĥk) = spec(ĤNf−k).

If these conditions hold, the twisted partition function for odd-Nf the-
ories is “trivial” and vanishes:

Z̃(L) ≡ TrH(−1)F e−LH =

Nf∑
k=0

deg(Hk)(−1)Nf−kTrHk
e−LHk = 0 .(66)

Readers familiar with supersymmetric quantum mechanics will immediately
realize that with the choice of W(x) quoted in iii), the Witten index is iden-
tically zero, IW = 0. As a reminder, we note that IW = 0 means one of two
things: a) Supersymmetry is spontaneously broken, and there are degener-
ate positive energy grounds states. b) Supersymmetry is not broken, and
there are degenerate zero energy grounds states. In both cases, regardless of
spontaneous breaking of supersymmetry, there is an exact spectral cancella-
tion between bosonic and fermionic Hilbert spaces. Remarkably enough, the
spectral cancellation generalizes to multi-flavor non-supersymmetric quan-
tum mechanics for this general class of auxiliary potentials, and we will take
advantage of that.

2.7. Isospectral pairs

Let W(x) be an odd-polynomial, which means W ′(x) is even and W ′′(x) is
odd. Consider

Ĥk = Ĥbos + (k − Nf

2
)W ′′, ĤNf−k = Ĥbos − (k − Nf

2
)W ′′ .(67)

Let ψk,n(x) be an eigenstate of Ĥk with eigenvalue Ek,n: Ĥkψk,n(x) =
Ek,nψk,n(x). Acting with parity operator from the left, and realizing simple
identity9:

PĤkP = ĤNf−k,(68)

9This identity fails if W(x) is an even-polynomial. In that case, PĤkP = Ĥk

with no non-trivial implications.
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Figure 6: Hilbert-space of the Nf = 2 (prototype for even Nf ) and Nf = 3
(prototype for odd Nf ) flavor theories with odd auxiliary potential W (x).
The Hilbert space decompose according to fermion number. We use the
notation (degk)H±

k to label a graded Hilbert space, where ± is the value
under (−1)F . For odd Nf , all sectors are paired via nilpotent operators,
PQ, for even Nf , all but the middle one are paired. In both cases, there are
two ground states.

we reach to the conclusion that Pψk,n(x) = ψk,n(−x) is an eigenstate of

ĤNf−k with the same eigenvalue. Thus, we identify ψk,n(−x) = ψNf−k,n(x),

and Ek,n = ENf−k,n. This demonstrates isospectrality for odd-polynomial

auxiliary potentials.

For periodic potentials, such as W(x) = 4a3

g cos
x
√
g

2a , the demonstration

is almost the same, with a minor difference. The potential appearing in Ĥk

is of the form 1
2(W ′)2 + (k − Nf

2 )W ′′. This implies that the period of (W ′)2

is
x
√
g

2a ∼ x
√
g

2a + π, while the period of W ′′ is 2π. Based on this observa-

tion

TπĤkT
†
π = ĤNf−k,(69)

where Tπ is shift operator by π. This also implies, for periodic potentials,

Ĥk and ĤNf−k are isospectral.

Although this is sufficient to demonstrate isospectrality, it is also useful

to construct this mapping in terms of operators acting in the full Hilbert

space H, i.e, restore the fermion operators in the above discussion. To this

end, we note that we can define the following classes of nilpotent operators
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as maps from F (k) to F (Nf−k), namely,

Q̂Nf
=

{
ψ̂1
+ψ̂

2
+ . . . ψ̂

Nf

+

}
: F (0) −→ F (Nf )

Q̂Nf−2 =
{
ψ̂1
+ψ̂

2
+ . . . ψ̂i−1

+ ψ̂i
−ψ̂

i+1
+ . . . ψ̂

Nf

+

}
: F (1) −→ F (Nf−1), etc.(70)

Clearly, these operators do not commute with the Hamiltonian, for example,

[N̂ , Q̂Nf
] = Nf Q̂Nf

, [Ĥ, Q̂Nf
] = NfW ′′Q̂Nf

,(71)

On the other hand, the operators PQ̂Nf
, P Q̂Nf−2, . . . are nilpotent and they

commute with the Hamiltonian,

(PQ̂Nf
)2 = (PQ̂Nf−2)

2 = . . . = 0 and [Ĥ, P Q̂Nf
]|Ψ〉 = 0 ∀ |Ψ〉 ∈ H .

(72)

Note that, for odd (even) Nf , PQ̂Nf
, P Q̂Nf−2, . . . pair up bosonic states

with fermionic (bosonic) states. See Figure 6 for a demonstration in the

cases Nf = 2 and Nf = 3.

Use of analytic continuation in conjunction with isospectrality:

The isospectrality will be useful in path integration as well. The partition

functions of the isospectral pairs are obviously identical. In the path integral

picture, there is a trivial change of variable which takes one path integral to

the other, by x(t) → −x(t) for the double-well, or a shift
x
√
g

2a ∼ x
√
g

2a + π for

the periodic potential.

Alternatively, one can also view these paired systems as follows: Consider

the analytic continuation of the potential in sector k, (47), into V (x) =
1
2(W ′)2 + (k − Nf

2 )eiθgW ′′, where we inserted eiθ into the fermion induced

term. Clearly, interpolating in θ from θ = 0 to θ = π interchanges the two

potentials, Hamiltonians, and Hilbert spaces:

(Ĥk,Hk)(θ = π) = (ĤNf−k,HNf ,k)(θ = 0) .(73)

When we discuss exact saddles, we will often find one simple bounce solution

in one of the mirror pairs (it does not matter which) which is related to the

excited state, and by analytic continuation in θ all the way to π, we will land

on the more exotic complex bion saddles on the mirror which determines

the properties of the ground state! This is discussed in depth in section 5

and 6.
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3. Original formulation and local-global relations

Outline: In this section we provide an analysis of the problem using conventional methods: the BPS-

equations, instantons, local harmonic analysis, and index theorems. The non-perturbative contribution

to the ground state energy in multi-flavor theories Nf ≥ 1 is always a two-instanton effect (unlike the

symmetric DW, where it is a one-instanton effect). We also build up a Hilbert space interpretation for

the ground states in terms of local harmonic states, which is again different from the symmetric DW.

3.1. Auxiliary potential

We first consider a general auxiliary potential W(x). For the Nf = 1, super-
symmetric, theory it coincides with the superpotential. Our goal is to give
an intuitive explanation of certain local vs. global relations, which have close
relations with real Morse theory, but are fairly easy to explain in physical
terms. In the case of a W(x) for which the bosonic potential Vbos =

1
2(W ′)2

has local harmonic minima, there are deep connections between certain local
and global properties of the system.

• Two consecutive ground states in harmonic approximation always al-
ternate, |0〉 ⊗ |Ω〉 vs. |0〉 ⊗ |Ω̃〉, where |Ω〉 is unoccupied and |Ω̃〉 is the
fully occupied state.

• The index for Dirac operator for two consecutive instantons10 always
alternate in sign.

• These two statements are related to the finiteness of the fermionic Fock
space, the absence of a fermion number anomaly, and the absence of
a Dirac sea in quantum mechanics.

It may appear surprising that the perturbative vacuum structure in the
harmonic approximation “knows” about the index theorem and its implica-
tions. This, too, is related to the information encoded in W ′(x) and to real
Morse theory. We will not dwell on this subject here. Let us first start with
local harmonic analysis.

3.2. Local harmonic analysis, states, and auxiliary Morse
function

In order to understand the connection between the local harmonic analysis
of the Hilbert space at each minimum and the index of the Dirac operator

10We take the definition of instantons as right tunneling events, and anti-
instanton as left tunneling. See Section 3.3 for details.
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Figure 7: A typical auxiliary potential W(x) and associated real potential
Vbos(x) =

1
2(W ′(x))2. The auxiliary potential (which may also be viewed as a

Morse function) is useful in understanding local harmonic analysis of Hilbert
spaces at each well, and in the study of the index for the Dirac operator in
the presence of an instanton. These two (naively) different type data must be
related because of the absence of Dirac sea and absence of fermion number
anomaly in quantum mechanics.

it is useful to realize that the auxiliary potential W(x) is a Morse function,
a real-valued smooth function of Euclidean time. Let us further choose the
potential to be a square-free polynomial:

Vbos(x) =
1
2(W

′)2, W ′(x) = (x− x1) . . . (x− xn), x1 < x2 < . . . < xn

(74)

A typical potential Vbos(x) is shown in Figure 7. At first glance, all the
minima xi of the potential V (x) may be viewed on the same footing, and in
fact, in a purely bosonic theory, this is the case. But even at the level of
the harmonic approximation, in theories with fermions, there are differences
between consecutive minima. This difference is best described if one plots
the auxiliary potential W(x), which we view as a real Morse function. The
extrema (minima and maxima) ofW(x) are the zeros of the potential Vbos(x),
and there are differences in the description of states depending on xi being
a local minimum or maximum of the auxiliary function W(x). A typical
auxiliary potential and its bosonic potential are shown in Figure 7.

Evaluating the Hamiltonian at the ith harmonic minimum to quadratic
order, we find that

Ĥi =
1
2p

2 + 1
2(W

′′(xi))
2(δx)2 + (signW ′′(xi))|W ′′(xi)|

Nf∑
i=1

(ψ̂i
+ψ̂

i
− − 1

2)

= ωi

[
a†bab +

1
2 + (−1)μi(N̂f − 1

2Nf )
]
, ωi = |W ′′(xi)|
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= ωi

⎧⎨⎩
[N̂b − N̂f + Nf+1

2 ] if μi = 1,

[N̂b + N̂f + 1−Nf

2 ] if μi = 0,

(75)

where ωi is the natural frequency of the harmonic oscillator at ith minimum
and μi is the Morse index (number of downward flow directions), which is
one if xi is a maximum, and zero if it is a minimum. The crucial point is
the appearance of (−1)μi = signW ′′(xi)) in the local quadratic Hamiltonian.
For a real polynomial W(x), two consecutive extrema are of opposite nature,
thus, sign(W ′′(xi)) alternates in its sign. This implies that the ground states
in two consecutive vacua are also alternating:

local harmonic ground states =

⎧⎨⎩|0〉 ⊗ |Ω̃〉 = |0〉 ⊗ | ↑ . . . ↑〉 for μi = 1 ,

|0〉 ⊗ |Ω〉 = |0〉 ⊗ | ↓ . . . ↓〉 for μi = 0 .

(76)

3.3. Instantons and index theorem for Dirac operator

Instantons are tunneling events that involve transitions between two critical
points, say, xi to xi+1, of W (x). We use physics conventions for instantons,
i.e., we refer to right tunneling events along which x(t) increases in the
−∞ < t < ∞ as “instantons”. Consequently, our instanton obeys:

ẋ = −W ′(x) if W ′(x) < 0 for xi < x < xi+1,

ẋ = +W ′(x) if W ′(x) > 0 for xi < x < xi+1,(77)

so that the right hand side is always positive and hence, x(t) increases with
t. Our anti-instantons are left tunneling events, with opposite signs.11 The
action of these instanton events is given by

gSI,i =

∣∣∣∣∫ xi+1

xi

dW

∣∣∣∣ = |W (xi+1)−W (xi)| ,(78)

which is just the difference of the magnitude of the auxiliary Morse function
W (x) at two consecutive points.

11According to (real) Morse theory, if the flow from the critical point xi to xi+1

is down-ward flow, the flow from the critical point xi+1 to xi+2 must be an upward
flow. This is the reason for the sign in our instanton equation. Otherwise, if we take
a uniform sign convention for instantons, two consecutive right tunneling events
would be called instanton and anti-instanton.
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In this work we consider a cubic auxiliary potential W (x) for which the
bosonic potential Vbos(x) is the standard double-well potential, as well as
a cosine potential W (x) which leads to the Sine-Gordon bosonic potential.
Using non-perturbative normalization, see Footnote 5,

W (x) =
x3

3
− a2x ,(79)

W (x) = 4a3 cos
( x

2a

)
.(80)

In non-perturbative normalization, the first order BPS equation and its so-
lution are independent of the coupling g. The smooth instanton solutions
and their actions are given by

DW : xI(t) = a tanh
mb

2
(t− tc), mb = 2a, SI =

4a3

3g
,

(81a)

SG : xI(t) = 4a arctan(exp[mb(t− tc)]), mb = a, SI =
8a3

g
.

(81b)

tc ∈ R is the position modulus, a bosonic zero mode of the instanton solution.
The parameter mb is the mass parameter, which is the natural frequency of
small oscillations around the harmonic minima.

The instanton amplitude is given by

I = Jtc e
−SI

[
det′M

detM0

]− 1

2

=

⎧⎨⎩
√

6S
π e−S (DW),√
2S
π e−S (SG),

(82)

where Jtc =
√

S
2π is the Jacobian associated with the bosonic zero mode,

M = − d2

dt2 +V ′′(x)|x=xI(t) is the quadratic fluctuation operator in the back-
ground of the instanton and prime in det′M denotes removal of the zero
mode, and detM0 is for normalization. The determinant can be evaluated in
multiple different ways [6, 65], for example, via the Gelfand-Yaglom method
[66], and gives

det′M

detM0
=

{
1
12 (DW),
1
4 (SG),

(83)

resulting in the instanton amplitudes given in (82).
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Fermionic zero modes and index theorem: In the theory with fermions,
an instanton has a certain number of fermion zero modes, as a result of an
index theorem for the one dimensional Dirac operator. Defining

D = +dt +W ′′(xI), D† = −dt +W ′′(xI),(84)

the index is equal to the spectral asymmetry of the Dirac operator. For each
flavor of fermions,

nψ − nψ = Index = dim ker(D)− dim ker(D†)

=
1

2

[
sign{W ′′(xI(t = ∞))} − signW ′′(xI(t = −∞))

]
=

1

2
[(−1)μi − (−1)μi+1 ]

=

{
1 for μi = 1,
−1 for μi = 0.

(85)

Thus, the “instanton amplitudes” differ for an instanton interpolating from
xi to xi+1 relative to the consecutive instanton interpolating from xi+1 to
xi+2. In particular, one has

Ii,i+1 ∼
√

SI

2πe
−SI“ψ1ψ2 . . . ψNf

” ,

Ii+1,i+2 ∼
√

SI

2πe
−SI“ψ1ψ2 . . . ψNf

” .(86)

The anti-instanton amplitudes are given by the conjugates of these. We put
the annihilation and creation operators ψi, ψi in quotes is to remind the
reader that this is a symbolic notation, inspired by the index theorem. But
the meaning is different from QFTs, where instantons induce an anomaly.
In quantum mechanics, of course, there is no anomaly, and the instanton
amplitudes do not violate fermion number symmetry (or spin), see Section
3.4.

3.4. Difference between QFT and QM: Hilbert’s hotel or not

There is a significant difference between the physical implications of the
index theorem for the Dirac operator in 1d quantum mechanics compared
to QCD or other QFTs. In QCD, in the background of an instanton, there
is chiral charge non-conservation, i.e. the U(1)A is anomalous. A left handed
particle can annihilate and create a right handed one, violating NR−NL by
two units. In the Euclidean formulation, the density of these events is finite,
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thus, in an infinite volume, this process may happen infinitely many times.
This does not lead to any pathology in QFT because there is an (infinite)
Dirac sea reservoir for both chiralities, i.e, the Dirac sea is a “Hilbert hotel”.

In quantum mechanics, there is no anomaly because of the finiteness of
the number of degrees of freedom and ultimately, due to the absence of the
Dirac sea. In particular, there is no fermion number anomaly. Despite the
fact that the instanton amplitude looks like it violates fermion number by
Nf , this does not imply an anomaly.

Consider QCD with one-flavor Dirac fermion. The instanton reduces the
U(1)A symmetry down to Z2 because of the anomaly. In contrast, consider
Nf = 2 QM. The instanton amplitude is formally the same, and one may
think that this also reduces U(1)F down to Z2. However, this is incorrect,
because of the absence of a fermion number anomaly:

I4d ∼ e−SIψLψR =⇒ U(1)A −→ Z2 for QCD,

I1d ∼ e−SIψ1ψ2 	=⇒ U(1)F −→ Z2 for QM.(87)

However while in QCD the instanton vertex ψLψR is a genuine operator
accompanying an instanton in the low energy effective theory, in QM writing
ψ1ψ2 is symbolic and it implies the existence of two zero-modes. The meaning
of ψ1ψ2 is that the instanton saturates a matrix element connecting states
whose fermion number differs by two units.

Further, let |Gi〉 denote a ground state of either theory. Then the dif-
ference between QFT and QM is that in QCD, for the present example of
1-flavor QCD, the ground state is unique, and U(1)A breaking operators have
a non-zero expectation value in the ground state. In QM, on the other hand,
there is more than one ground state. The operator charged under U(1)F has
vanishing matrix elements in each of the ground states. Instead, the operator
ψ̂1ψ̂2 has non-zero matrix elements between states whose fermion number
differs by two units.

for QCD : 〈Gi|ψ̂Lψ̂R|Gi〉 	= 0 ,

for QM :

⎧⎨⎩
〈Gi|ψ̂1ψ̂2 |Gi〉 = 0 ,

〈Gj |ψ̂1ψ̂2 |Gi〉 	= 0 . ∃(i, j), (i 	= j).

(88)

Indeed, in the semi-classical approximation, two consecutive harmonic vacua
are, respectively, full and empty. The alternating vacuum structure and al-
ternating index theorem conspire to give an alternating harmonic vacuum
chain among the perturbative vacuum states:
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−→︸︷︷︸
I∼ψ1...ψNf

|0〉i ⊗ |Ω̃〉i −→︸︷︷︸
Ii∼ψ1...ψNf

|0〉i+1 ⊗ |Ω〉i+1

−→︸︷︷︸
Ii+1∼ψ1...ψNf

|0〉i+2 ⊗ |Ω̃〉i+2 −→︸︷︷︸
I∼ψ1...ψNf

(89)

Starting with a fully occupied harmonic state an instanton event in QM is
associated with a transition matrix element with the insertion of operator
ψ̂1 . . . ψ̂Nf

for which the fermion number changes by Nf . Thus, the subse-
quent state is empty. The next instanton event is associated with a fermion
number increasing matrix element, and refills all Nf unoccupied states, and
so and so forth. One cannot have two consecutive instanton events where all
are reducing the fermion number. This clashes with finiteness of the Fermion
Fock space. Unlike the chiral charge in QCD which does not commute with
the QCD Hamiltonian, the fermion number operator (i.e. z-component of
Spin) commutes with the Hamiltonian (36). As a result, there are a mul-
titude of interesting and somehow unconventional instanton effects in this
class of quantum mechanical theories, discussed in the next section.

To summarize, we show that the following three concepts are intertwined:

• Finiteness of Fock space, or absence of Dirac sea.
• Alternating index for instantons, absence of fermion number anomaly.
• Alternating fermion numbers in perturbative vacua in harmonic ap-
proximation.

3.5. Mixing of harmonic states in QM with fermions: new
instanton effects

For simplicity, we discuss a particle with internal spin (12)
Nf in a DW poten-

tial. This has almost all interesting features that also takes place for more
general potentials.
Nf = 0 (reminder): The theory is bosonic and the states on either well are
harmonic oscillator eigenstates, |L, n〉 and |R,n〉. These states are degener-
ate to all orders in perturbation theory. Non-perturbatively, the degeneracy
between |L, 0〉 and |R, 0〉 is lifted due to tunneling/instanton events. The
ground state is the parity even combination and the first excited state is the
parity odd combination of the two lowest lying modes. These are

|Ψε〉 =
1√
2
(|L, 0〉+ ε|R, 0〉), P|Ψε〉 = ε|Ψε〉, ε = ±,(90)

where P is the parity operator. The tunneling amplitude is equal to the
instanton amplitude given in (82):
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〈−a|e−TH |a〉 = N I = N
√

6SI

π
e−SI ,(91)

where N = 1
2〈R, 0|a〉2(ωT )e−ωT . Consequently, the non-perturbative split-

ting or lifting of the perturbative two-fold degeneracy is an instanton effect

(E−−E+)/ω =
√

6SI

π e−SI at leading non-perturbative order. The reason for

restating this well-known result is that instantons do not lead to the level
splitting effects in theories with Nf ≥ 1, as described below.

Nf = 1 (supersymmetric) theory: In the harmonic approximation the
states in both the left or the right well are described by the Hilbert space of
supersymmetric harmonic oscillator. The lowest lying states in HL and HR

as well as the corresponding eigen-energies are:

E3 = 3

B︷ ︸︸ ︷
|L, 2〉|0〉 ←→

F︷ ︸︸ ︷
|L, 3〉|1〉

B︷ ︸︸ ︷
|R, 3〉|0〉 ←→

F︷ ︸︸ ︷
|R, 2〉|1〉

E2 = 2 |L, 1〉|0〉 ←→ |L, 2〉|1〉 |R, 2〉|0〉 ←→ |R, 1〉|1〉
E1 = 1 |L, 0〉|0〉 ←→ |L, 1〉|1〉 |R, 1〉|0〉 ←→ |R, 0〉|1〉
E0 = 0 |L, 0〉|1〉︸ ︷︷ ︸

HL

|R, 0〉|0〉︸ ︷︷ ︸
HR

(92)

In the supersymmetric theory, the two perturbative ground states |L, 0〉|1〉
and |R, 0〉|0〉 cannot mix because of the conservation of fermion number or
spin. As emphasized in Sec. 3.4, there is no fermion number anomaly, i.e.,
fermion number operator commutes with the Hamiltonian:[

H, N̂f

]
=

[
H,σ3

]
= 0.(93)

Thus, the matrix element of e−TH connecting left harmonic ground state to
right one vanishes:

〈−a|〈1|e−TH |a〉|0〉 = 0,(94)

in contrast to the bosonic case (91), which implies that there is no splitting
of the two lowest lying states. Instead, the energy of both states gets simul-
taneously lifted, and because of supersymmetry the shift is exactly the same
for both states. To leading order in �, the lifting is due to mixing between
the harmonic ground state of HL, and the first excited state of HR. For the
other ground state the role of L and R is exchanged.

Therefore, in terms of the harmonic states of the left and right well, the
two non-perturbative ground state wave functions are given by
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|Ψ0〉|1〉 = a1 |L, 0〉|1〉︸ ︷︷ ︸
Ground state in HL

+a2 |R, 0〉|1〉︸ ︷︷ ︸
First−excited state in HR

+ . . .

|Ψ0〉|0〉 = a1 |R, 0〉|0〉︸ ︷︷ ︸
Ground state in HR

+a2 |L, 0〉|0〉︸ ︷︷ ︸
First−excited state in HL

+ . . . .(95)

Unlike the bosonic system in which the ground state must be unique, in the

theory with fermions, the ground state is two-fold degenerate. The ground

state energy can be found by calculating the expectation value of the Hamil-

tonian in either one of the two true ground states. We have

E0 = 〈Ψ0|〈0|Ĥ |0〉|Ψ0〉 = 1
2〈Ψ0|〈0|{Q,Q}|0〉|Ψ0〉 = 1

2〈Ψ0|〈0|QQ|0〉|Ψ0〉

= 1
2〈Ψ0|〈0|Q

⎛⎝ ∑
n,σ=0,1

|σ〉|Ψn〉〈Ψn|〈σ|

⎞⎠Q|0〉|Ψ0〉

= 1
2

∑
n

|〈Ψn|〈1|Q|0〉|Ψ0〉|2

≈ 1
2 |〈Ψ0|〈1|Q|0〉|Ψ0〉|2,(96)

where Q = (p + iW ′)ψ̂+ and Q = (p − iW ′)ψ̂− are the supercharges, and

in the final line we inserted a complete set of states. Note that since Q

commutes with Hamiltonian, but anti-commutes commute with (−1)F , the

sum over σ reduces to σ = 1. For the final estimate, we kept only the

dominant n = 0 state in the sum.

The ground-state energy is therefore the square of a matrix element,

E0 = 1
2 |ε|2, where ε = 〈Ψ0|〈1|Q|0〉|Ψ0〉. This is the quantity saturated by

an instanton. Instanton processes are associated with the matrix element

〈Ψ0|〈1|Q|0〉|Ψ0〉 between the two ground states, which have different fermion

numbers (or spin). In the functional integral formulation, this result can be

written as:

〈Ψ0|〈1|Q|0〉|Ψ0〉∼ 〈−a|〈1|Q|+ a〉|0〉∼
∫ x(∞)=+a

x(−∞)=−a
DxDψDψe−S (p+ iW ′)ψ .

(97)

The evaluation of the integral gives ε ∼ e−SI . See [67] for details. The shift

in the ground state energy is

E0 ∼ e−2SI .(98)
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This is a second order effect in semi-classical expansion, and it can be in-
terpreted in terms of a dilute gas of correlated instanton-anti-instanton [II]
events. However, this formulation does not tell us if the [II] configuration
is an exact solution or not. In fact, there is reason to think otherwise. Since
the BPS equations are non-linear, the superposition of the two configuration
is not a solution to that BPS equation, i.e, the configuration is non-BPS.

In the graded formulation, we will prove that an exact non-BPS com-
plex saddle is responsible for the ground state energy (98), and that [II]
(evaluated on appropriate complex quasi-zero mode thimble, not over the
naive “separation” cycle) is an approximation to the exact solution. We will
also show that the exact saddles are solutions to holomorphic and quantum
modified second order Euclidean equations of motions.
Nf ≥ 2 (non-supersymmetric, multi-flavor) theory: In harmonic ap-
proximation the states in the left and right well are described by a natural
generalization of the Hilbert space of the supersymmetric harmonic oscilla-
tor. Our construction follows [68]. For the free theory, which is relevant in the
case of the harmonic approximation, one can define Nf nilpotent conserved
fermionic charges:

Qi = a†bψ̂
i
−, Q2

i = 0.(99)

Let |ψ〉 = |n〉|Ω〉 be an eigenstate of the Hamiltonian ĤR with energy En

annihilated by Qi, ∀i = 1, . . . , Nf . It is possible to generate all states in the

right harmonic Hilbert space HR by acting with the Q†
i ’s on |ψ〉. Consider

the set:

S = {|ψ〉, Q†
i |ψ〉, Q

†
iQ

†
j |ψ〉, . . . , Q

†
i . . . Q

†
iNf

|ψ〉} .(100)

If n ≥ Nf , this procedure, which goes parallel to our construction of the
fermionic Fock space in Section 2.2, creates 2Nf degenerate states at each
level: If n < Nf , some combination of the operators Q†

i1
. . . Q†

ik
annihilates

|ψ〉. For example, in the case Nf = 2, the lowest lying states in HL and their
eigen-energies are given by:

E3 = +5
2 |L, 1〉|00〉 ←→ |L, 2〉|10〉 ←→ |L, 2〉|01〉 ←→ |L, 3〉|11〉

E2 = +3
2 |L, 0〉|00〉 ←→ |L, 1〉|10〉 ←→ |L, 1〉|01〉 ←→ |L, 2〉|11〉

E1 = +1
2 |L, 0〉|10〉 ←→ |L, 0〉|01〉 ←→ |L, 1〉|11〉

E0 = −1
2 |L, 0〉|11〉(101)

and analogously, the eigen-states in HR and their eigen-energies are

E3 = +5
2 |R, 3〉|00〉 ←→ |R, 2〉|10〉 ←→ |R, 2〉|01〉 ←→ |R, 1〉|11〉
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E2 = +3
2 |R, 2〉|00〉 ←→ |R, 1〉|10〉 ←→ |R, 1〉|01〉 ←→ |R, 0〉|11〉

E1 = +1
2 |R, 1〉|00〉 ←→ |R, 0〉|10〉 ←→ |R, 0〉|01〉

E0 = −1
2 |R, 0〉|00〉 .(102)

As in the Nf = 1 supersymmetric theory, for Nf > 1 as well, the two

perturbative ground states |L, 0〉|Ω̃〉 and |R, 0〉|Ω〉 cannot mix because of
the conservation of fermion number (93). Therefore, the transition matrix
element vanishes:

〈−a|〈Ω̃|e−TH |a〉|Ω〉 = 0, ∀ Nf ≥ 1 .(103)

Similar to the supersymmetric theory, and again unlike the bosonic theory,
this implies that there will be no splitting of the two lowest lying states.
Instead, the energy of both states gets simultaneously lifted, and they do
get lifted exactly by the same amount.

To leading order in �, the lifting is due to mixing between the ground
state of HL, |L, 0〉|Ω̃〉 and the N th

f excited state of HR, |R, 0〉|Ω̃〉, and vice

versa for the other ground state.12 Therefore, the two non-perturbative
ground state wave functions are

|Ψ0〉|Ω̃〉 = a1 |L, 0〉|Ω̃〉︸ ︷︷ ︸
Ground state in HL

+a2 |R, 0〉|Ω̃〉︸ ︷︷ ︸
Nth

f −excited state in HR

+ . . .

|Ψ0〉|Ω〉 = a1 |R, 0〉|Ω〉︸ ︷︷ ︸
Ground state in HR

+a2 |L, 0〉|Ω〉︸ ︷︷ ︸
Nth

f −excited state in HL

+ . . .(104)

Unlike the bosonic system in which the ground state must be unique, for the
theory with fermions, the ground state is two-fold degenerate. The ground
state energy can be found by calculating the expectation value of the Hamil-
tonian in either one of the two true ground states.

In contrast to the supersymmetric theory, the shift in the ground state
energy has perturbative and non-perturbative contributions. We have

E0 = 〈Ψ0|〈Ω|Ĥ|Ω〉|Ψ0〉 = Epert
0 (g) + Enon−pert

0 (g) ,(105)

where the non-perturbative part is a second order effect in the semi-classical
expansion,

Enon−pert
0 (g) ∼ |〈Ψ0|〈Ω̃|QNf

|Ω〉|Ψ0〉|2 ,(106)

12The mixing between the lowest state on one side with the N th
f excited state on

the other side is also present for the Nf = 0 (bosonic) and Nf = 1 (supersymmetric)
examples. For general Nf , this is a new result.
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given by a square of a matrix element, ε = 〈Ψ0|〈Ω̃|QNf
|Ω〉|Ψ0〉. Because the

instanton contributes to a fermion number changing matrix element, and
because fermion number commutes with Hamiltonian, the non-perturbative
contribution to ground state energy can only start at second order in semi-
classical expansion. In terms of a functional integral we can write

ε = 〈Ψ0|〈Ω̃|Q̂Nf
|Ω〉|Ψ0〉 ∼ 〈−a|〈Ω̃|Q̂Nf

|Ω〉|+ a〉

=

∫ x(∞)=+a

x(−∞)=−a
Dx

Nf∏
i=1

DψiDψi e
−S ψ1ψ2 . . . ψNf

.(107)

The evaluation of this integral gives ε ∼ e−SI , because the ψ1ψ2 . . . ψNf
inver-

sion gets soaked up to the unpaired zero modes in the measureDψi(t)Dψi(t).
The non-perturbative shift in the ground state energy is

Enon−pert
0 (g) ∼ e−2SI .(108)

Similar to the supersymmetric case, this can be interpreted in terms of a
dilute gas of correlated instanton-anti-instanton [II] events. Similar to the
supersymmetric theory, in the graded formulation, we prove that an exact
non-BPS complex saddle is responsible for the non-perturbative lifting of
the ground state energy, and that [II] is an approximation to the exact
solution.

4. Approximate versions of exact solutions from quasi-zero
mode thimbles

Outline: We discuss correlated two-instanton events on the complexified quasi-zero mode Lefschetz

thimbles. The treatment of the QZM integration over the Lefschetz thimbles represents a reduced version

of the complexification of the full field space. The conventional wisdom is that instanton-anti-instanton

events can at best be approximate solutions, due to the non-linearity of the underlying BPS-equations.

This intuition turns out to be incorrect, as we later find exact saddles. Remarkably, the Lefschetz

thimble treatment of the multi-instantons provides a systematic approximation to the exact result and

reproduces the important features of the exact solutions discussed in Section 5 and 6.

4.1. Multi-instantons and boson and fermion induced
interactions

In the previous section we saw that for Nf ≥ 1 the non-perturbative con-
tribution to the ground state energy is of the form e−2SI , rather than e−SI .
In the graded theory, we will in fact find an exact non-BPS bion saddle



140 Alireza Behtash et al.

which is responsible for this ground state energy (98). However, in order to
understand the connection between the exact saddle and the instantons in
the original description, we first sketch the calculation of the contribution
to correlated 2-events [II] or [II] in the original formulation. Note that in
the double-well potential we only have [II], while in the periodic potential,
we have both.

The instanton amplitude is given in (86). As discussed earlier, an in-
stanton has an exact position modulus. If we consider a two instanton
configuration then the center position of the two is still an exact zero
mode, but the relative separation τ is a quasi-zero mode. The reason for
this fact is the interaction (in the euclidean sense) between the two in-
stantons. The bosonic interaction can be described as due to the exchange
of bosonic fluctuations, derived in detail in [6]. The fermion induced in-
teraction can be deduced either by studying the fermionic determinant in
the background of an instanton-(anti)instanton pair, or equivalently, by
looking to the connected correlator of the fermion zero mode structure
〈ψ1(0) . . . ψNf

(0)ψ1(τ) . . . ψNf
(τ)〉 ∼ e−Nfmbτ [27, 52]. Here, instead of these

technical arguments, we provide a more intuitive physical description.
An instanton will interact with an anti-instanton due to the spin in-

teraction with the “magnetic field” W ′′(x). The “magnetic field” at the
two classical vacua are W ′′(±a) = ±2a = ±ω, where ω is the natural fre-
quency. The spin-dependent part of the Hamiltonian is −SzW

′′(x), where
Sz ∈ [−Nf/2, Nf/2] is the spin. Therefore the ground state in the left well
will have Sz = Nf/2 (i.e. all spins up) while the ground state on the right
will have s = −Nf/2 (i.e. all spins down) (see Fig. 8 ). Now let us consider
an instanton–anti-instanton pair interpolating from vacuum at x = −a to
the vacuum at x = +a and back, and let the time that this configuration
spends at x = +a be τ . Since the configuration spends an infinite amount
of time in the vacuum x = −a, the spin s must be s = +Nf/2, and it
cannot change along the instanton path, as spin is conserved. Then, the
spin induced action cost is the penalty for the Euclidean time spent in the
“false vacuum”. Then the action cost (compared to the vacuum) will be a
product of 2ω (the change in the magnetic field from left well to the right
well), the spin s = Nf/2 and the time spent in the right well τ . Therefore
Sint = Nfωτ .

We denote the interaction potential between two instantons by V+(z),
and the one between an instanton and anti-instanton by V−(z).

V±(τ) = ±Aa3

g
e−mbτ +Nfmbτ A =

{
16 for DW,
32 for SG.

(109)
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Figure 8: Hilbert-space on the left and right well in the Nf = 2 (multi-
flavor) theory in harmonic approximation. Perturbative ground state on the
left well is fully occupied, while the one on the right is empty. These two
cannot mix (form linear combinations) due to conservation of fermion num-
ber or spin. Non-perturbatively, the theory has two ground states. One is
(approximately) a linear superposition of ground state on the left and second
excited state on the right (with the same fermion occupation number, the
ones in red boxes), and the other is the linear superposition of the states in
blue boxes.

In both cases the fermion zero mode induced interaction is attractive. For

V+(z) the boson induced interaction is repulsive, and for V−(z) the bosonic

part is attractive. In the space of fields (or paths), the quasi-zero mode

direction is non-Gaussian, and the integral over the QZM needs to be treated

exactly in order to obtain the correlated 2-event amplitudes.

4.2. [II] thimble integration and approximate form of real bion

The QZM integration for the [II] correlated event is

(110)

I+(Nf , g) =

∫
Γqzm

+

d(mbτ)e
−V+(τ) =

∫
Γqzm

+

d(mbτ)e
−

(
Aa3

g
e−mbτ+Nfmbτ

)
,

where Γqzm
+ is the QZM-cycle for the QZM-integration, shown in Fig. 9,

lower figures. The critical point of the integration is located at

dV+(τ)

dτ
= 0 , τ∗ = m−1

b ln

(
Aa3

gNf

)
.(111)
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Figure 9: The quasi-zero mode (QZM) integral between two instanton events
has a critical point at a finite (real) separation. The QZM integration for
the instanton-anti-instanton has a a critical point at a finite (complex) sep-
aration. It is usually believed that two-events can at best be quasi-solutions
due to non-linearity of the BPS equations. In this work, we prove that the
figures on the right are actually exact non-BPS solutions to holomorphic
Newton equations. We call these solutions complex (top) and real (bottom)
bions. The figures are for Nf = 1 and periodic potential.

The descent manifold (Lefschetz thimble) associated with this critical point

is the real axis, Γqzm
+ = R, as can be deduced by solving the stationary phase

condition

Im [V (τ)− V (τ∗)] = 0 .(112)

Substituting u = e−mbτ , we map the integral to the standard representation

of the Gamma-function:

I+(Nf , g) =

∫ ∞

0
du uNf−1 e−

Aa3

g
u =

( g

Aa3

)Nf

Γ(Nf ).(113)
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The [II] event, obtained by integrating over the QZM amplitude, has the
form

[II] = I+(Nf , g)× [I]2 =
( g

Aa3

)Nf

Γ(Nf )× SI

2π

[
det′ M
detM0

]−1
e−2SI .(114)

Meaning of the critical point at finite real separation and a puzzle:
It is interesting to note that the critical point of the interaction between
two instantons (109), unlike the bosonic case Nf = 0 where it is located
at infinity mbτ

∗ = ∞, is located at a finite real separation (111). This
phenomena appeared first in field theory, in QCD(adj) for magnetic bions
[1], and makes one suspect that there may be something “special” about
such correlated two-events. The idea is that perhaps these correlated two-

events are related to some exact solution with size τ∗ = m−1
b ln

(
Aa3

gNf

)
.

There is an apparent problem with this idea, however. Neither in the BPS-
equation, nor in Newton’s equation for the inverted bosonic potential, does
the coupling constant g or the number of fermions Nf appear. But mbτ

∗, the
characteristic size of the correlated-two event depends on both g and Nf . So,
it seems impossible for these configurations to be solutions to the standard
equations of motion in the inverted potential. We will solve this problem
in this work, and show that the two-instanton correlated event is actually
an approximation to an exact solution, that we refer to as a real bion, see
Section 6.3, which solves the equation for a quantum modified potential.

4.3. [II] thimble integration and approximate form of complex
bion

The QZM integration for the [II] correlated event is
(115)

I−(Nf , g) =

∫
Γqzm

−

d(mbτ)e
−V−(τ) =

∫
Γqzm

−

d(mbτ)e
−

(
−Aa3

g
e−mbτ+Nfmbτ

)
,

where Γqzm
− is the QZM-cycle for the [II] QZM-integration. The critical

point of the integration is located at a complex point:

dV−(τ)

dτ
= 0 τ∗ = m−1

b

[
ln

(
Aa3

gNf

)
± iπ

]

=

⎧⎪⎪⎨⎪⎪⎩
1
2a

[
ln

(
16a3

gNf

)
± iπ

]
(DW),

1
a

[
ln

(
32a3

gNf

)
± iπ

]
(SG).

(116)
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The descent manifold associated with this critical point is in the complex
plane, Γqzm

− = R ± iπ, as can be deduced by solving the stationary phase
condition (112): see Fig. 9. Substituting u = e−mτ , we map the integral to
the standard representation of Gamma-function:
(117)

I−(Nf , g) = e±iπNf

∫ ∞

0
du uNf−1 e−

Aa3

g
u = e±iπNf

( g

Aa3

)Nf

Γ(Nf ) .

The [II] event, obtained by integrating over the QZM-thimble, has the form

[II]± = I−(Nf , g)× [I]2 = e±iπNf

( g

Aa3

)Nf

Γ(Nf )× SI

2π

[
det′ M
detM0

]−1
e−2SI .

(118)

The integration over Γqzm
− -thimbles is a rigorous version of the BZJ-prescrip-

tion, and generalized to the multi-flavor theory.
Meaning of the critical point at finite complex separation, and an-
other puzzle: For the instanton-anti-instanton, there is a critical point at a
finite complex separation. All the concerns stated in the previous item stand.
On top of that, apparently, the quasi-zero mode, a part of field space, is nec-
essarily complexified in order to make sense of [II]. If we plot, for example,
an instanton-anti-instanton separated by τ∗, we see that the combination
is actually complex, see the top part of Figure 9. Evidently, this cannot be
a solution to the real Newton equation for the inverted bosonic potential.
We will also solve this problem, and show that the instanton-anti-instanton
event is an approximation to an exact complex solution, that we call com-
plex bion, discussed in Sections 5.3 and 6.4, which solves the holomorphic
Newton equation.

4.4. Other aspects of thimble integration

Meaning of poles at Nf = 0,−1,−2, . . . The Γ(Nf ) function is mero-
morphic in the complexified Nf plane, with poles at Nf = 0,−1,−2, . . . if
one analytically continues Nf ∈ N to complex numbers. Recall that a Hilbert
space interpretation requires Nf ∈ N, but as a statistical field theory, we are
free to move to complex Nf and view Nf as a coupling constant (parameter)
in the functional integral.

Thus, the correlated [II]-amplitude is meromorphic in the whole com-
plex Nf plane except for the poles, which requires an interpretation. For
Nf → 0+, the convergence factor due to fermion zero modes that regu-
lates the large τ behavior disappears. The physical explanation of this phe-
nomenon is that these events are uncorrelated, and are already included in
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the leading order semi-classical result. Expanding the result around ε = 0
we obtain

I+(ε, g) =
( g

Aa3

)ε
Γ(ε) =

1

ε
−

(
ln

(
Aa3

g

)
+ γ

)
︸ ︷︷ ︸

Q1(Nf=0,g)

+O(ε) .(119)

Subtracting off the 1
ε -pole in order to get rid of double counting of the uncor-

related two instanton events, we obtain the correlated two-event amplitude
in the Nf = 0 theory. The Nf = 0 result is derived in [69] by using Lef-
schetz thimble of the bosonic theory. A similar subtraction is also needed for
Nf = −1,−2, . . . as well. The result for the correlated 2-events for general
Nf is

[II] =
( g

Aa3

)Nf

Γ(Nf )
SI

2π

[
det′ M
detM0

]−1
e−2SI , Nf ∈C\{0,−1,−2, . . .},

[II] =Q1(Nf , g)
SI

2π

[
det′ M
detM0

]−1
e−2SI , Nf =0,−1,−2, . . . .(120)

For Nf = 0, this results agrees with Bogomolny [28] and Zinn-Justin’s
bosonic result [29] and can also be obtained also via the WKB approxi-
mation. For Nf = 1 this agrees with the result obtained with the use of
supersymmetry [67, 52]. For small values of Nf the polynomials Q1(Nf , g)
are given by

Q1(Nf = 0, g) = −γ − ln[Aa3/g] ,

Q1(Nf = −1, g) = −1 + γ + ln[Aa3/g] ,

Q1(Nf = −2, g) = 1
4(3− 2γ − 2 ln[Aa3/g]) ,

Q1(Nf = −3, g) = 1
36(−11 + 6γ + 6 ln[Aa3/g]) .(121)

Differentiating ambiguities from hidden topological angle: The [II]
amplitude can be written as

[II]±= e±iπNf

( g

A

)Nf

Γ(Nf )
SI

2π

[
det′ M
detM0

]−1
e−2SI , Nf ∈C\{0,−1,−2, . . .} ,

[II]±=Q1(Nf , e
±iπg)SI

2π

[
det′ M
detM0

]−1
e−2SI , Nf =0,−1,−2, . . . ,

(122)

where Q1(Nf , g) are the polynomials given in (121). This amplitude is di-
vergent for Nf = 0,−1,−2, . . .. This divergence is the same as in the [II]
case, and is subtracted off to prevent double-counting.
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The ambiguous imaginary part is related to resurgence. However, the
ambiguous imaginary part disappears for Nf ∈ N+. This may imply the
disappearance of the first would-be singularity in the Borel plane, located at
2SI . Singularities at 4SI , 6SI , . . . etc are still expected. This is to a certain
degree similar to the disappearance of the first renormalon singularity in
Borel plane in N = 1 SYM theory [70].

For Nf ∈ N+, there is a more subtle effect. Re [II] ∝ e±iπNf and
this means that the contribution to the ground state energy due to [II] is
proportional to (−1)Nf ∈ Z2, alternating in sign depending on Nf being
even or odd. Recall that Nf even correspond to the integer spin, and Nf

odd correspond to the half integer spin. When we discuss exact solutions,
we will provide an interpretation for this hidden topological angle in terms
of topology in complexified field space.

5. Graded formulation: double-well potential

Outline: In this section we construct new exact saddle solutions to the holomorphic Newton equations.

In addition to the familiar real bounce solution, there is also a complex bion solution. The proliferation

of the complex bions provides the Euclidean description of the ground state.

5.1. Quantum modified potential and exact non-BPS solutions

As described in Section 2.3, we grade the system with fermions according
to fermion number, resulting in a sequence of quantum modified bosonic
models, which we then complexify:

L(ẋ, x, ψ) −→
Nf⊕
k=0

deg(Hk)Lk(ẋ, x) −→
Nf⊕
k=0

deg(Hk)Lk(ż, z) .(123)

The quantum modified (or graded) bosonic potentials are of the form

Vk(z) =
1

2
(W ′(z))2︸ ︷︷ ︸
Vbos(z)

+
pg

2
W ′′(z)︸ ︷︷ ︸

fermion−induced

, p ≡ (2k −Nf ), k = 0, . . . , Nf .

(124)

For the case of the double-well we have W ′(z) = z2 − a2, W ′′ = 2z, so the
fermion-induced potential introduces a tilting, breaking the degeneracy of
the ground state of the bosonic potential. The non-perturbative normaliza-
tion of the action makes it manifest that the fermion induced potential is
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Figure 10: Inverted tilted DW potential. The three critical points are denoted
zcra , a = 1, 2, 3, and Ea, a = 1, 2, 3 labels the Euclidean energy at these
critical points.

O(g) with respect to bosonic potential Vbos(z). Since Vbos has exactly degen-
erate minima, an order O(g) tilting effect lifts the degeneracy of the classical
potential, see Figure 10, and produces significant physical effects.

Recall that instantons satisfy a first order equation, ż = W ′(z), already
given in (77). Differentiating once with respect to time, the instanton also
satisfies the second order equations of motion for a classical particle moving
in the inverted potential, −Vbos = −1

2(W
′)2, namely

z̈instanton = żinstantonW
′′ = W ′W ′′ = +

∂Vbos

∂z
.(125)

Obviously, (77) and (125) do not involve g, the coupling constant, and nei-
ther does the solution. So, the correlated two-event discussed in Section 4,

which has characteristic size τ∗ = m−1
b ln

(
Aa3

g Nf

)
cannot be the solution to

(77) and (125).
However, the saddle equations that one needs to solve are actually not

these equations. Instead, we need to solve the complexified Newton equations
for the inverted quantum modified potential:

z̈saddle = W ′W ′′ +
gp

2
W ′′′ = +

∂Vbos

∂z
+

g p

2
W ′′′ .(126)
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This equation involves both g and p (i.e. spin projection), due to the fermion

induced term, and we now show that it gives new exact solutions with char-

acteristic size τ∗ = m−1
b ln

(
Aa3

g Nf

)
.

Since the quantum modified potentials are quartic polynomials, the sad-

dles are given in terms of standard elliptic functions, as follows. The saddles

are found by using conservation of energy for a classical particle in the in-

verted potential. Consider a classical particle with Euclidean energy E in

potential −V (z):

L = 1
2 ż

2 + V (z) ,

E = 1
2 ż

2 − V (z) .(127)

For pg/a3 ∈ R and pg ≤ 4a3

3
√
3
, the potential has three real critical points, zcr� ,

� = 1, 2, 3, whose expressions involve complicated cube roots. These can be

usefully parametrized as follows:

zcr� = − 2a√
3
cos

(
1

3
arccos

(
3
√
3

4a3
pg

)
− 2(�− 1)π

3

)
, � = 1, 2, 3(128)

For small pg/a3 � 1, the tilting is small and zcr1 ≈ −a, zcr2 ≈ 0, and zcr3 ≈ +a:

zcr1 ≈ −a− pg

4a2
+

3(pg)2

32a5
−O((pg)3) ,

zcr2 ≈ pg

2a2
+

(pg)3

8a8
+O((pg)5) ,

zcr3 ≈ a− pg

4a2
− 3(pg)2

32a5
−O((pg)3) .(129)

The corresponding Euclidean energies, Ek ≡ −V (zcrk ), also play an impor-

tant role in the description of the exact saddle solutions. As shown in Figure

10, these Euclidean energies mark the boundaries at which turning points

coalesce. These are points where two roots of the quartic V (z) + E = 0

coalesce. For example, as E approaches E3 from below, the right-hand pair

of real turning points coalesce, while for E > E3, the turning points zT3 and

zT4 become complex (they form a complex conjugate pair for pg/a3 ∈ R).

Similarly at E = E1 the turning points zT1 and zT2 coalesce; they are real for

E2 ≤ E ≤ E1, but are complex for E > E1.

It is useful to view the energy conservation relation as the projection

of a complex algebraic curve to real momentum and position. Consider the
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complex algebraic curve:

P2 = 2V (z) + 2E = z4 − 2z2a2 + 2gpz + a4 + 2E .(130)

This “energy conservation” (130) can be integrated by quadratures to give:∫ t

t0=0
dt =

∫ z

zT

dz

P =

∫ z

zT

dz√
2(E + V (z))

.(131)

This integral can be computed exactly in terms of theWeierstrass ℘-function,
and takes a particularly simple form when zT is a turning point; i.e., if zT
is any root of the equation E + V (z) = 0 (see Appendix A). The solution is

(132) z(t) = zT +
1
2V

′(zT )

℘(t; g2, g3)− 1
12V

′′(zT )
.

Here, the algebraic invariants g2(E) and g3(E) are given by

g2(E) = 2E +
4a4

3
,

g3(E) = −8a6

27
− 2Ea2

3
− p2g2

4
.(133)

The exact solution (132) has a center position modulus, associated with
translation symmetry in t, which can be restored by setting t → t − tc.
Without loss of generality, we set tc = 0 from now on.

Since the classical saddle bounce and bion solutions begin and end on
turning points (either real or complex), they can all be expressed in closed
form using the expression (132). All that needs to be done is to match to
the appropriate boundary conditions.

The Weierstrass ℘-function is doubly periodic, with a real and complex
(in our case, purely imaginary) period13, T1 and T2. There is a simple inter-
pretation of the double periodicity. The real period is the period of bounded
motion in the potential −V (z) with energy E. To understand the imaginary
period, take t → it (back to Minkowski space for a moment) and observe
that this reverses the signs of potential and energy in the conservation of
energy: (−V (z), E) → (V (z),−E). The magnitude of the imaginary period
is the period of classical motion either on the left or right well. Note that
the left-well and right-well periods are actually equal to each other, for any

13Standard mathematical notation for the two periods are (2ω1, 2ω2), which we
call here (T1, T2). See, for example, Whittaker and Watson [71].
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Figure 11: Doubly periodic structure at a typical energy E. At critical en-
ergies shown in Fig. 10, two of the turning points degenerates.

asymmetric double-well quartic potential! This remarkable fact helps us to
write down simpler expressions for exact solutions. Explicit expressions for
the two periods are (see Figure 11).

T1(E) =

∫
γ1

dz

P = 2

∫ z3(E)

z2(E)

dz

P ,

T2(E) =

∫
γ2

dz

P = 2

∫ z2(E)

z1(E)

dz

P = 2

∫ z4(E)

z3(E)

dz

P .(134)

where γ1,2 are the cycles defined on a Riemann torus

5.2. Exact (real) bounce solution

The bounce solution is a solution with Euclidean energy E = E3, equal to
minus the potential at the lower of the maxima of −V (z), see Figure 10. At
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this energy there are three real turning points. It is useful to parametrize all

the turning points (which are cumbersome in terms of original parameters

of the potential), as well as exact solutions in terms of a critical point. This

provides relatively simple expressions:

{zT1 , zT2 , zT3 = zT4 } =

{
−zcr3 −

√
pg

zcr3
,−zcr3 +

√
pg

zcr3
, zcr3

}
.(135)

The “bounce” solution [5] bounces off the (real) turning point zT = −zcr3 +√
pg
zcr
3
at some finite time t = 0, tending as t → ±∞ to the lower of the (real)

maxima of the inverted potential, z = zcr3 . At this particular energy, T1

diverges and the doubly-periodic Weierstrass function in (132) degenerates

to a singly-periodic function:

(136) ℘(t) =
ω2
bn

4

(
1

sinh2 (ωbn t/2)
+

1

3

)
,

where

ωbn =
√

V ′′(zcr3 ) ,(137)

is the curvature of the potential at zcr3 .14 This corresponds to the singly-

periodic limit where ω2
bn = −18g3(E3)/g2(E3), in terms of the algebraic

lattice invariants g2(E) and g3(E) in (251).

Thus, the exact bounce solution can be written as (here zT = −zcr3 +√
pg
zcr
3
)

zbn(t) = zcr3 + (zT − zcr3 )
cosh2 (ωbn t0/2)

cosh2 (ωbn t/2) + sinh2 (ωbn t0/2)
(139)

14The linear frequency on the right (R) well at z = zcr3 (the value of the frequency
as one take E → −E3 limit in the original potential) is equal to the non-linear
frequency on the left (L) well at z = zcr1 for the energy level E = −E3!

ωbn = ωR
linear(E = −E3) = ωL

non−linear(E = −E3) .(138)

This identity is a consequence of the relation (134) for the periods of the complex
algebraic curve. Physically, in the singly periodic limit of the Weierstrass function,
iωL

non−linear(E = −E3) is the (pure imaginary) frequency which remains finite, while
the other real frequency tends to zero.
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Figure 12: Bounce solution in the double well case. Note that the separation

between instanton-anti-instanton is 2t0 ≈ 1
2a ln

(
16a3

pg

)
.

= zT + (zcr3 − zT )
sinh2 (ωbn t/2)

sinh2 (ωbn t/2) + cosh2 (ωbn t0/2)
,(140)

where (see Appendix A)

t0 =
2

ωbn
arccosh

(√
3

1− V ′′(zT )/ω2
bn

)
.(141)

Comparing with (253), we see that this solution satisfies the desired bound-
ary conditions:

zbn(±∞) = zcr3 , zbn(0) = zT ≡ −zcr3 +

√
pg

zcr3
.(142)

The bounce solution is shown in Figure 12.
It is physically more intuitive to rewrite the exact bounce solution (140)

as

zbn(t) = zcr3 − (zcr3 − zT )

2
coth

(
ωbn

t0
2

)(
tanh

[
ωbn

(t+ t0)

2

]

− tanh

[
ωbn

(t− t0)

2

])
,(143)
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where t0 is given by (141). This expression makes it clear that the real
bounce solution has a kink/anti-kink form. In fact, the exact bounce solu-
tion is nothing but the exact version of the approximate correlated anti-
instanton/instanton [II] event in the language of Section 4. The bounce is
an I event taking place at t = −t0, followed by an instanton event I at
t = +t0. The separation between these two events is fixed and is given by

2t0 ≈ m−1
b ln

16a3

pg
≡ τ∗ , for gp � a3 .(144)

This is precisely the scale which dominates the quasi-zero-mode thimble

integration: τ∗ = m−1
b ln

(
Aa3

g Nf

)
, where in this case A = 16, mb = 2a, and

p = Nf in (111).
An important characteristic property of the solution is the parametri-

cally large plateau, i.e, parametrically large time spent around the turning
point zT . This makes this solution slightly different from the conventional
bounce solutions (which looks just like a regular bump). Therefore a more
appropriate name would be a flat bounce. The classical particle starts at
the local maximum zcr3 at t = −∞ (see Fig. 10). After spending an infinitely
long time there, it rolls down at an instant (like an instanton), and reaches
the vicinity of the turning point zT2 within a time scale ∼ a−1, characteristic
of instantons. Since zT2 is is parametrically close to the global maximum, the
classical particle spends a large time span 2t0 ∼ m−1

b ln 16a3

gp near the turn-

ing point zT2 . The Euclidean particle gets parametrically close to the global
maximum zcr1 , |zcr3 − zT2 | ∼

√
pg/a, and returns to the local maximum zcr3 .

The crucial point is that the size of the flat-bounce solution is not controlled
by the inverse natural frequency of the system ∼ (2a)−1 ≡ m−1

b , which is the
case for conventional instantons as well as bounce solutions. Rather, the size
of the flat-bounce solution is parametrically larger than the instanton size,
by a factor ln 16a3

gp . For a harmonic unstable equilibrium point, a particle

with energy E → E1 from below will spend a time span of log |E − E1| in
the neighborhood of the critical point. This form of divergence is universal
around the critical point. In the present case, for E = E2, the time span on
the plateau is − log |E2 − E1| = log 16a3

pg . This feature leads to some inter-
esting new effects when we discuss the fluctuation operators around these
exact new saddles in Section 6.9.

5.3. Exact complex bion solution

The complex bion solution is a complex classical solution with Euclidean
energy E = E1, equal to minus the potential evaluated at the higher of the
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maxima of −V (z). See Figure 10. The complex bion bounces off one of the

complex turning points z = zT = −zcr1 + i
√

pg
−zcr

1
, (or its complex conjugate

z = z∗T ), at some finite time t = 0, and reaches the upper of the (real)
maxima of the inverted potential, z = zcr1 as t → ±∞, see Figure 10. The
doubly-periodic Weierstrass function in (132) degenerates again to a singly-
periodic function, and we obtain a solution of the same form as the bounce
solution in (140), but with different critical point and turning point:

zcb(t) = zcr1 + (zT − zcr1 )
cosh2 (ωcb t0/2)

cosh2 (ωcb t/2) + sinh2 (ωcb t0/2)
(145)

= zT + (zcr1 − zT )
sinh2 (ωcb t/2)

sinh2 (ωcb t/2) + cosh2 (ωcb t0/2)
,(146)

where zT = −zcr1 + i
√

pg
−zcr

1
, and

ωcb =
√

V ′′(zcr1 ) .(147)

The parameter t0 is given by (see Appendix A)

t0 =
2

ωcb
arccosh

(√
3

1− V ′′(zT )/ω2
cb

)
.(148)

Comparing with (253), we see that this solution satisfies the desired bound-
ary conditions:

zcb(±∞) = zcr1 , zcb(0) = zT = −zcr1 + i

√
pg

−zcr1
.(149)

We can also write the complex bion as

zcb(t) =zcr1 − (zcr1 − zT )

2
coth

(
ωcbt0
2

)(
tanh

[
ωcb

(t+ t0)

2

]

− tanh

[
ωcb

(t− t0)

2

])
,(150)

where t0 is given by (148). Notice that ωcb is real, but t0 is complex, as is
zT . Thus, the complex bion has both real and imaginary parts. The complex
bion is plotted in Figure 13.
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Figure 13: Real (black) and imaginary (red) parts of the complex bion for the

double well case. The real part of the separation is Re(2t0) ≈ 1
2a ln

(
16a3

pg

)
.

At weak coupling, we see that an approximate form of the exact solution
(150) is directly related to the correlated instanton-anti-instanton [II] pair
discussed in Section 4. To see this we can use the fact that, in the weak
coupling regime, the complex turning point, zT , and the critical point zcr1
have the expansions:

zT = a+ i

√
pg

a
+

pg

4a2
+ . . . ,

V ′′(zT ) = (2a)2 + 12i
√
apg + 3pg/a+ . . . ,

zcr1 = −a− pg

4a2
+ . . . ,

V ′′(zcr1 ) = ω2
cb = (2a)2 +

3pg

a
+ . . . .(151)

The complex turning points in the bion solutions acquire an elegant rein-
terpretation in terms of the complex quasi-zero mode in the instanton-anti-
instanton correlated event. To see this, consider the kink/anti-kink form in
(150). The separation between the instanton and anti-instanton (148) has
both real and imaginary parts. Using the weak coupling expansions given in
(151), the approximate form of the complex separation can be written as

2 t±0c ≈ m−1
b

[
ln

(
16a3

pg

)
± iπ

]
≈ τ∗ .(152)

This is precisely the scale which dominates the quasi-zero-mode thimble

integration: τ∗ = m−1
b ln

(
Aa3

g Nf

)
, where in this case A = 16, ωcb ≈ mb = 2a,
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and p = Nf in (116). This proves that the integration over the complexified
quasi-zero mode described in Section 4 produces the most significant physical
features of the exact complex bion solution, such as the size of the two-event
and most importantly, the hidden topological angle.

5.4. Actions and amplitudes of the (real) bounce and the
complex bion

The bounce and complex bion solutions have finite Euclidean action. To
obtain the action we simply integrate

(153) gS = 2

∫ zT

zcr

dz
√

2E + 2V (z) ,

where zcr is the critical point, corresponding to the initial and final point of
the solution, and zT is the turning point. For the bounce, the critical point
is zcr3 associated with the energy level E3 in Fig. 10 and for the complex
bion, the critical point is zcr1 associated with the energy level E1 in Fig. 10:

bounce (bn) : zcr = zcr3 , zT = −zcr3 +

√
pg

zcr3
,(154a)

complex bion (cb) : zcr = zcr1 , zT = −zcr1 + i

√
pg

−zcr1
.(154b)

Note that the turning point zT is real in the case of the bounce, and complex
in the case of the complex bion. Both zcr1 and zcr3 are real. To evaluate (153),
since either E1 level and E3 level are associated with the separatrices (critical
orbits) where two of the roots of the quadratic polynomial degenerate, we
can express the integrand as

(155) 2E + 2V (z) = (z − zcr)
2(z − zT )(z − z′T ) ,

where z′T is the other turning point. Then the action integral (153) can be
performed and it yields

(156)

gS =
1

12

{√
(zcr − zT )(zcr − z′T )

[
3(zT − z′T )

2 + 4(zcr − zT )(zcr − z′T )
]

− 3(zT − z′T )
2(2zcr − zT − z′T ) ln

(√
zcr − zT
zT − z′T

+

√
zcr − z′T
zT − z′T

) }
.
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This expression can be simplified significantly using simple algebraic prop-
erties of the critical points and turning points. Equating (130) with (155)
at the critical energy levels, the vanishing of the cubic term implies: 2zcr +
zT + z′T = 0. Comparing the linear terms in the two expressions, we obtain
−(zT + z′T )z

2
cr − 2zT z

′
T zcr = 2pg. These two equations allow us to express

both zT and z′T in terms of zcr,

zT = −zcr +

√
pg

zcr
, z′T = −zcr −

√
pg

zcr
.(157)

which is a useful parametrization. Finally, comparing quadratic terms, one
obtains

2z3cr + pg

zcr
= 2a2 .(158)

This equation has three solutions. These are just the three critical points in
(128) and (129). For the bounce we choose zcr = zcr3 , and for the complex
bion we choose zcr = zcr1 . Using these relations, the action (156) reduces to

Ssaddle =
4a2

√
6z2cr − 2a2

3g
− 4p ln

(√
1
2 +

√
z3cr/pg +

√
−1

2 +
√

z3cr/pg

)
=

8a3

3g

√
1− 3pg

4a2zcr
+ 2p arccosh

(
2

√
1

2
+

z3cr
pg

)
.(159a)

For the bounce we choose zcr = zcr3 , Ssaddle is real, and for the complex bion
we choose zcr = zcr1 , Scb has both real and imaginary parts. In particular,
it is easy to write that, by simply observing the fact that zcr1 < 0, and
expressing (159a) in terms of real and imaginary parts,

Scb = Re[Scb]± ipπ, Im [Scb] = ±pπ.(160)

The imaginary part is the hidden topological angle (HTA) discussed in [26]
for integer p. For non-integer p, it is related both to HTA and resurgent
cancellations with perturbation theory. The sign of the HTA depends on the
choice of complex turning point, see Figure 14. A crucial point is that the
imaginary part is independent of pg/a3 (so long pg/a3 is small enough not
to alter the tilted double-well structure.)

In fact, it is more illuminating to express the actions in the weak coupling
regime, pg

a3 � 1. For the (real) bounce solution, Ssaddle is real, while for the
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Figure 14: This figure shows the real (solid black line) and imaginary (dashed
red line) parts of the classical solution z(t) in the double well potential for
pg/a3 � 1, and a range of values of the θ parameter. The θ = 0 solution
corresponds to the real bounce, θ = π and θ = −π are the complex bions.
The solution has monodromy 4π, or order 2 monodromy.

complex bion Ssaddle has an imaginary part:

Sbn =
8a3

3g
+ p ln

( pg

16a3

)
+O(g1/2),

Scb =
8a3

3g
− p ln

( pg

16a3

)
± iπp+O(g1/2).(161)

Clearly, the real part of the action of the complex bion is larger than twice
the instanton action in the original formulation, which, in turn is larger than
the action of the bounce.

These weak coupling expressions are in precise agreement with the orig-
inal formulation in Section 4, where we obtained instanton-anti-instanton
correlated two-events by integration over the quasi-zero mode (QZM) thim-
ble, Γqzm. The corresponding amplitude of the complex bion and real bounce
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take the form:

Ibn ∼
( pg

16a3

)−p
e−2SI ,

Icb ∼
( pg

16a3

)p
e−2SI±ipπ,(162)

as can be deduced in the original formulation. This one-to-one correspon-
dence between the exact complex and real solutions and the complexification
of the (QZM)-thimbles suggests that the latter rationale is actually a sys-
tematic approximation to the saddles in the full quantum theory.

5.5. Analytic continuation and monodromy: from real bounce to
complex bion

By the discussion of Section 2.7, we know that for the tilted double-well
potential, PĤ+pP = Ĥ−p, namely parity maps one Hamiltonian system to
an isospectral Hamiltonian system, by (68). The non-perturbative effects in
the paired graded systems are same, and can be obtained from each other by
analytic continuation. In particular, we can obtain the complex bion solution
by analytic continuation of the real bounce solution, essentially analytically
continuing p → −p. Consider analytic continuation of the tilted DW theory
to the complex p plane, namely:

p → p eiθ ∈ C(163)

Start with V+(z) = 1
2(W

′(z))2 + pg
2 W

′′(z). Turn on θ 	= 0. At θ = π, we
reach the theory described by the potential V−(z), which is the parity trans-
form of V+(z). Upon analytic continuation all the way to θ = π: (i) The
local maximum (of course, restricted to the real axis) of −V+(z) becomes
the global maximum of −V−(z). (ii) The global maximum of the −V+(z)
becomes the local maximum of −V−(z). (iii) The real turning point of the
real bounce solution in the −V+(z) system turns into a complex turning
point in the −V−(z) system. At intermediate θ, the complex solution is al-
ways a complex classical solution to the holomorphic equations of motions,
and the profiles of the real and imaginary parts are shown in Figure 14 and
Figure 15 for various values of θ.

Fig. 16 depicts the real and imaginary part of the action (Re(S), Im(S))
of the analytically continued real bounce solution as a function of θ. θ = 0
correspond to the real bounce solution, which is purely real. Note that the
action of the real bounce is less than two-times instanton action, 2SI , in
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Figure 15: Parametric plot of the real and imaginary parts of the analytic
continuation of the real bounce solution z(t). We continue p → peiθ and
show the solution for a range of θ parameters. θ = 0 corresponds to the real
bounce solution, with a real turning point. As one changes θ, the turning
point becomes complex. Exactly at θ = π−, the real bounce turns into a
complex bion.

Figure 16: Real and imaginary part of the action of the analytically continued
real bounce solution for p = 1. Under θ → θ + 2π, a complex solution goes
to the conjugate, reflecting monodromy 2 nature of the solution.
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terms of the instanton action of the original formulation. The reason for this
is that the bounce is associated with the lower separatrix (critical orbit)
associated with energy E3 in Fig. 10. As θ is turned on, it interpolates into
a smooth saddle of the analytically continued path integral. At θ = π−, the
real bounce turns into a complex bion. The real part of the action is con-
tinuous at θ = π, while the imaginary part is discontinuous. Note that the
real part of the action of the complex bion is larger than twice the instanton
action, 2SI . The reason for this is that the bion is associated with the upper
separatrix associated with energy E1 in Fig. 10. As for the imaginary part,
for p 	∈ Z+, the ambiguity of the action is related to resurgence, and am-
biguity cancellation, and for p ∈ Z+ it is related to the hidden topological
angle.

In fact, as p changes its phase by 2π in (163), the potential V+(x) turns
back to itself, but two complex bion solutions are interchanged. On the pair
of solutions, (zcb, z

∗
cb)

T , the monodromy matrix acts as

M(2π) =

(
0 1
1 0

)
, M(4π) = M2 =

(
1 0
0 1

)
.(164)

Thus, the bounce or bion solutions have monodromy of order 2, reflecting
the two-fold ambiguity in the choice of the exact solutions for the physical
theory. We show in Section 7 that this two-fold ambiguity is related to the
two-fold ambiguity in Borel resummation of perturbation theory.

5.6. Vacuum as a complex bion gas

Reminder of the bosonic case, ground state wave function vs. in-
stanton gas: It is well-known that in the bosonic (symmetric) double-well
potential, the dilute gas of instantons dictates the ground state properties of
the system. In particular, the non-perturbative level splitting between the
first excited state and the ground state can be shown to be due to instantons.
More specifically, the ground state wave function is symmetric with respect
to parity, (90), and the probability to find the particle on the left and right
well is equal. The dilute instanton gas reflects this property. In fact, in the
dilute instanton gas, the classical Euclidean particle spends half of its (Eu-
clidean) time at +a and the other half at −a, reflecting the symmetry of the
ground state wave function.
Ground state wave function vs. bion gas: We have shown that complex
bions are exact saddle points of the path integral in theories with fermions
(Nf ≥ 1). The Euclidean description of one of the vacua of these theories
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Figure 17: The ground state properties of the theory with fixed number of
fermions (Nf ≥ 1) is controlled by a dilute gas of complex exact bion saddles,
with density e−2S0 . Black solid (red dashed) line is the real (imaginary)
part of the complex solution. The imaginary part is related to the HTA
phenomenon.

can be viewed as a dilute gas of neutral bions, see Figure 17. The Euclidean
configurations reflects the fact that the ground state wave function is not
symmetric. Fermion number is conserved, and in any of the two Fock space
sectors the particle spends most of its time in the deeper well. More specif-
ically, we showed in (165) that one of two ground states is described by

|Ψ0〉|Ω〉= |Ψ0〉⊗ |↓ . . . ↓〉= a1 |R, 0〉|Ω〉︸ ︷︷ ︸
Ground state in HR

+a2 |L, 0〉|Ω〉︸ ︷︷ ︸
Nth

f −excited state in HL

+ . . . .
(165)

and the other ground state is given by L ↔ R. Since the density of the
complex bions is e−2SI , the probability to find the particle on the shallow
well compared to an deep well is exponentially small. This can also be shown
to be the case by using WKB approximation.

Pr.(+a)

Pr.(−a)
∼ e−2ΔW/g = e−Sb ∼ e−2S0 for one of the ground states.

(166)

For the other ground state, odd and even sites are interchanged. Also, note
that the complex bions increase the ground state energy for odd-integer Nf ,
(unlike instantons in bosonic theories), and lower it for even-integer Nf .
What would happen if the complex bion saddle did not contribute?
Consider the Nf = 1 theory, corresponding to N = 1 supersymmetric QM.
In this theory supersymmetry is spontaneously broken, and the ground state
energy is given by Egr ∝ e−2SI . This is an effect due to complex bion config-
uration. If this configuration is not included, one would erroneously conclude
that the ground state energy remains zero, and supersymmetry is unbroken.
In the original description involving fermions and instantons, the ground
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Figure 18: Quantum modified potential (red dashed) for Nf ≥ 1 theories,
and one of the two ground state wave function. The probability to find the
particle on an +a well is suppressed exponentially, by e−2SI , consistent with
the dilute complex bion gas description. As is well-known, in the bosonic
case, Nf = 0, the wave function is equally dominant both on the even and
odd sites. Note the absence of any bump in the wave function at x = +a.

stage energy is an instanton–anti-instanton [II] effect. A rigorous attempt
to compute the [II] contribution amounts to the complexification of the
quasi-zero mode direction, and essentially results in a systematic approxi-
mation to the complex bion configuration as described in Section 4.
Complexity of the solution and the hidden topological angle (HTA):
Again we consider the case Nf = 1. The ground state energy is given by

Egr ∝ −e−2SI±iNfπ
∣∣∣
Nf=1

= e−2SI > 0 .(167)

Although the action is multi-valued and ambiguous for general non-integer
Nf , it becomes unambiguous for even Nf . For odd-integer Nf , it is again
unambiguous, because the imaginary part of the action is defined only mod-
ulo 2π, and hence, ±π are actually identified.15 However, the fact that
|Im(S)| = π is extremely important, because it determines the sign of the
ground state energy. Without the HTA, or if the solution were real, we would
conclude that the ground state energy must be negative. Indeed, in some of
the older literature on instantons it is asserted that non-perturbative sad-
dles always reduce the ground state energy. But this would be inconsistent

15This aspect of the hidden topological angle is the same as the usual topological
Θ-angle in Yang-Mills and other theories. Yang-Mills theory is invariant under CP-
at Θ = 0 (obvious) and at π, because ±π are identified.
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with the supersymmetry algebra, which implies positive-definiteness of the
ground state energy

〈Gi|H|Gi〉 =
∣∣∣Q|Gi〉

∣∣∣2 ≥ 0 .(168)

The role of the hidden topological angle (and complexity of the solution) is
to restore consistency between supersymmetry algebra and the semi-classical
approximation.

6. Graded formulation: periodic Sine-Gordon potential

Outline: In this section we construct new exact saddle point solutions for the system whose bosonic

potential is the periodic Sine-Gordon potential. In addition to an exact real bounce solution, there is

an exact real bion solution, and also an exact complex bion solution. The main new phenomenon is

that there is a multi-valued bion solution which is also singular, but has finite action. We show that

the singular bion contributes to the path integral, and must be included in the semi-classical analysis

in order to obtain results consistent with the Witten index, and the SUSY algebra in the Nf → 1 limit.

This resolves an old and controversial issue regarding the inclusion multi-valued, singular saddles in the

evaluation of path integral.

6.1. Quantum modified potential and exact non-BPS solutions

The Euclidean Lagrangian for the periodic auxiliary potential in the pres-
ence of Nf Grassmann-valued fermion fields is given by a set of graded La-
grangians, as described in §. 2.3, with W ′(z) = −2a2 sin(z/2a). The graded
Euclidean Lagrangian and energy conservation relations for the periodic sys-
tem are given by

L = 1
2 ż

2 + V (z) = 1
2 ż

2 + 2a4 − 2a4 cos2(z/2a)− pg
2 a cos(z/2a),(169a)

E = 1
2 ż

2 − V (z) = 1
2 ż

2 − 2a4 + 2a4 cos2(z/2a) + pg
2 a cos(z/2a),(169b)

for the fermion-number sector k, where p = Nf − 2k, for k = 0, . . . , Nf . As
in the double-well case, the fermion-induced potential is of order g.

The inverted potential is shown in Figure 4, along with the physically
important saddles. The bounce solution is straightforward, but is not rele-
vant for the ground state properties. The real bion is expected, as it exists
as a solution of the ordinary (real) Newton equation in the inverted poten-
tial. The surprise is the complex bion solution to the holomorphic Newton
equation, which has no counterpart in (real) classical mechanics.

To describe the non-perturbative saddles in the problem, we study the
classical solutions in the inverted potential, −V (z), in Euclidean time. The
solutions can be found by quadratures:



Toward Picard-Lefschetz theory of path integrals 165

∫ t

t0=0
dt = −

∫ z

zT

dz√
2(E + V (z))

= −
∫

dz√
2E + 4a4 − 4a4 cos2(z/2a)− pga cos(z/2a)

.(170)

Substituting

Z = a cos(z/2a)(171)

the integration takes a form familiar from the Weierstrass elliptic functions:

t− tc =

∫ cos(z/2)

cos(zT /2)

dZ√
Z4 + 1

4a2 pgZ3 − 1
2a2 (E + 4a4)Z2 − 1

4pgZ + a4 + 1
2E

,

(172)

where tc is the integration constant (which becomes the center position
modulus of the solution), and zT is the turning point. The mapping (171)
maps two physically distinct points, z and −z, to the same value of Z. The
inversion of this mapping is two-valued, and requires some care, which will
be easy to understand both on physical and mathematical grounds. There
will be another multi-valuedness in the story unrelated to this, and tied
with the nature of the exact complex bion solution. The integral (172) can
be associated with a complex algebraic curve:

F (Z) = P2(Z) := Z4 + 1
4a2 pgZ

3 − 1
2a2 (E + 4a4)Z2 − 1

4pgZ + a4 + 1
2E.

(173)

The general solution z(t) for an energy E that corresponds to a turning
point ZT (a zero of the polynomial F (Z)), is given by

z(t) = ±2a arccos

(
ZT +

1
4F

′(ZT )

℘(t; g2(E), g3(E))− 1
24F

′′(ZT )

)
.(174)

where g2(E), g3(E) are the associated with algebraic lattice invariants, given
by

g2(E) =4a4

3 + 2
3E + 1

48a4E
2 + 1

64a2 g
2p2,

g3(E) =− 8a6

27 − 2a2

9 E − 5
144a2E

2

+ 1
1728a6E

3 − 1
192a2 g

2p2 − 1
768a4 g

2p2E.(175)



166 Alireza Behtash et al.

Figure 19: Bounce solution for the Sine-Gordon case, for a = 1. The size of

separation (or the size of plateau is 2t0 ≈ a−1 ln
(
32a3

pg

)
.

Below, we construct the most interesting solutions: First, a simple bounce
solution, and then the complex and real bion solutions which determine the
ground state properties of the quantum system.

6.2. Exact (real) bounce solution

The “bounce” solution [5, 72, 73] is a classical solution with Euclidean energy

E = −1
2pga(176)

equal to the value of the inverted potential at z/a = 2π+4πk, for k ∈ Z, the
lower of the (real) maxima of the inverted potential. At this energy there
are real turning points at z = zT where

cos zT
2a = 1− gp

4a3 , zT = ±2a arccos
(
1− gp

4a3

)
+ 4aπk, k ∈ Z .(177)

The bounce solution bounces off the (real) turning point zT at a finite time
t = 0, tending as t → ±∞ to z/a = 2π + 4πk, for k ∈ Z, see Figure 19.

With these boundary conditions, the general solution (174) simplifies sig-
nificantly, as the Weierstrass function reduces to a singly-periodic function.
We find

zbn(t) = 2a arccos

(
1− pg

8a3−pg cosh
2 (ωbnt)

1 + pg
8a3−pg cosh

2 (ωbnt)

)
(178a)

= 4a arctan

(√
pg

8a3 − pg
cosh (ωbnt)

)
,(178b)
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where ωbn is the curvature of the potential at z = 2πa, given by16

ωbn =
√

V ′′(2aπ) = a
√

1− pg
8a3 .(180)

Alternatively, we can obtain this solution more directly by substituting into
the energy condition (169b) the ansatz

z(t) = 4a arctan (f(t)) ,(181)

which produces the following equation for f(t):

a2ḟ2 =
1

8

(
E +

pg

2
a
)
f4 +

E + 4a4

4
f2 +

1

8

(
E − pg

2
a
)
.(182)

At the bounce energy, E = −pg
2 a, the quartic term in f vanishes, and we ob-

tain the solution in (178b). The bounce solution clearly satisfies the desired
boundary conditions (mod 4aπ):

(183) zbn(±∞) = 2aπ, zbn(0) = 2a arccos
(
1− gp

4a3

)
.

It is physically instructive to rewrite the bounce solution as

zbn(t) = 4πa− 4a
[
arctan (exp [−ωbn(t− t0)]) + arctan (exp [ωbn(t+ t0)])

]
,

(184)

where we have defined

t0 ≡ ω−1
bn ln

[√
8a3

pg
(1 + ωbn/a)

]
≈ 1

2a
ln

(
32a3

pg

)
.(185)

Thus, the real bounce has the form of a Sine-Gordon instanton at t = −t0,
followed by a anti-instanton at t = +t0, as shown in Figure 19. However,

16The linear frequency on the well at z = 2πa (the value of the frequency as one
take E → 1

2pga limit in the original potential) is equal to the non-linear frequency
on the well at z = 0 for the energy level E = 1

2pga.

ωbn = ω2πa
linear(E = 1

2pga) = ω0
non−linear(E = 1

2pga)(179)

This identity is a consequence of the relation (134) for the periods of the complex
algebraic curve. Physically, in the singly periodic limit of the Weierstrass function,
iω0

non−linear(E = 1
2pga) is the (pure imaginary) frequency which remains finite,

while the other purely real frequency tends to zero.
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unlike the superposition of the instanton-anti-instanton, which is an approx-
imation, the real bounce solution is exact.

As in the double-well case, the bounce is parametrically flat. The bounce
spends a parametrically large time in the vicinity of the turning point (unlike
instantons). The size of the flat-bounce is given by

2t0 ≈ m−1
b ln

(
32a3

pg

)
,(186)

where mb = a in the SG case. Note that the size of the bounce obtained in
the exact solution agrees precisely with the integration over the quasi-zero
mode thimble Γqzm. In particular, the scale (186) provides the dominant
support of the QZM integral (111), and corresponds to the saddle of the
QZM-integration.

Finally, the action of the bounce solution is given by

Sbn = 16a3

g

√
1− gp

8a3 − 2p arctanh
[√

1− gp
8a3

]
(187a)

= 16a3

g

√
1− gp

8a3 − p log

[
1 +

√
1− gp

8a3

1−
√

1− gp
8a3

]
(187b)

=
16a3

g
− p ln

(
32a3

pg

)
+O(g).(187c)

Similar to DW, the action of the real bounce is less than two-times instanton
action, 2SI . The reason for this is that the bounce is associated with the
lower separatrix associated with energy (176).

6.3. Exact real bion solution

The real bion solution has Euclidean energy

E = 1
2pga ,(188)

equal to the inverted potential at its global maxima: z/a = 4πk, for k ∈ Z.
Qualitatively, the classical particle, after spending an infinite amount of
time at the global maximum, rolls down at some instant in time (just like
the instanton), and then spends a parametrically large but finite amount of
time in the vicinity of the local maximum near 2πa, and continue its path,
reaching to the next equivalent global maximum at 4πa after infinite time.
The exact real bion solution is shown in Fig. 20.

At the energy level of upper separatrix (188), the general solution (174)
simplifies significantly, as theWeierstrass function reduces to a singly-period-
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Figure 20: Exact real bion solution, interpolating from 0 to 4π, for a = 1.
The plateau in the middle is associated with the characteristic size of the

solution 2t0 ≈ a−1 ln
(
32a3

pg

)
. The ground state properties of the quantum

theory in leading order semi-classics are described in terms of a dilute gas
of real bions and complex bions.

ic function, leading to

zrb(t) = 2πa+ 4a arctan
(√

pg
8a3+pg sinh(ωrbt)

)
,(189)

where ωbn is the curvature of the potential at z = 0 and is given by

(190) ωrb =
√

V ′′(0) = a
√

1 + pg
8a3 .

This satisfies the boundary conditions:

zrb(−∞) = 0 , zrb(0) = 2πa , zrb(+∞) = 4πa .(191)

Alternatively, applying the transformation z(t) = 2πa + 4a arctan f(t) to
(169b), we obtain

a2ḟ2 =
1

8

(
E − pg

2
a
)
f4 +

E + 4a4

4
f2 +

1

8

(
E +

pg

2
a
)
.(192)

At E = pg
2 a the quartic term in f vanishes, and we obtain the solution in

(193). It is instructive to rewrite the real bion solution as
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(193)
zrb(t) = 2aπ + 4a (arctan (exp [ωrb(t+ t0)])− arctan (exp [−ωrb(t− t0)])) ,

where t0 is

t0 = ω−1
rb ln

[√
8a3

pg
(1 + ωrb/a)

]
≈ 1

2a
ln

(
32a3

pg

)
.(194)

Hence, one observes that the real bion solution is the exact version of the
correlated instanton-instanton event described in Section 4. Despite the fact
that the [II] event is an approximate solution in the original formulation,
the real bion solution is exact. In the regime pg � a3, the relation between
the two is:

zrb(t) ≈ xI(t+ t0) + xI(t− t0) + 2aπ, for pg � a3.(195)

The characteristic size of the real bion solution (194) agrees with (111),
which is the saddle point of the QZM-thimble Γqzm

+ integration in the original
formulation, see Figure 9.

The action of the real bion solution is given by

Srb = 16a3

g

√
1 + gp

8a3 + 2p arctanh
[
1/

√
1 + gp

8a3

]
(196a)

=
16a3

g
+ p ln

(
32a3

pg

)
+O(g).(196b)

The action of the real bion is larger than twice the instanton action, 2SI . The
reason for this is that the real bion is associated with the upper separatrix
with energy (188), and the area underneath the separatrix in classical phase
space is larger than the instanton-anti-instanton separatrix.

6.4. Exact complex bion solution

To find the exact complex bion solution, we impose the boundary condition
that at t = 0 the solution starts at one of the complex turning points

zT = 2aπ ± 2ia arccosh
(
1 +

pg

4a3

)
,(197)

for which the Euclidean energy is

E = 1
2pga .(198)
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Figure 21: Real (black) and imaginary (red) parts of the complex bion for

the Sine-Gordon case, The separation is 2t0 ≈ a−1 ln
(
32a3

pg

)
. The singular

solution smooths out upon analytic continuation p → peiθ.

Then, from the general solution (174), or by substituting an appropriate
ansatz, we find the two complex conjugate complex bion solutions to be

zcb = 2aπ ± 4a arctan

(
i

√
pg

8a3 + pg
cosh (ωcbt)

)
,(199)

where ωcb is the frequency of the system at z = 0 well, given by:

(200) ωcb =
√

V ′′(0) = a
√

1 + pg
8a3 .

This expression is very similar to that of the real bion, which is related to
the fact that both solutions start at the global maximum. The solution is
complex, and its real and imaginary parts are plotted in Figure 21.

Note that the real part jumps, and the imaginary part is correspondingly
singular, at a particular ±t0, where 2t0 can be interpreted in terms of the
size of this configuration. In the past, such configurations would not even be
seriously considered as legitimate saddles due to “disturbing” discontinuity
and singularity. But the story is more interesting and beautiful, and such
saddles do contribute to the path integral. The physics of this jump behavior
is discussed below in Section 6.5. It is easy to show that the complex solution
in SG can also be written exactly in terms of an instanton-anti-instanton
pair as
(201)
zcb(t) = 2πa± 4a [arctan (exp (ωcb(t+ t0))) + arctan (exp (−ωcb(t− t0)))] ,
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where

t0 = ω−1
cb ln

[√
−8a3

pg
(1 + ωbn/a)

]
≈ 1

2a

[
ln

(
32a3

pg

)
± iπ

]
.(202)

The complex bion solution is the exact form of the [II]± correlated 2-event
found by integrating over the quasi-zero mode thimble, Γqzm

− . Again, rather
remarkably, the approximation over the complexified quasi-zero mode thim-
ble (115) has all the correct features of the complex bion solution, i.e., it is a
systematic approximation to the exact solution. In particular, the complex
quasi-zero mode “separation” saddle of the integration is the same as the
size of the plateau, τ∗ ≈ 2t0, which is an exact feature of the exact solution.

The action of the complex bion is

Scb = 16a3

g

√
1 + gp

8a3 + 2p arctanh
[√

1 + gp
8a3

]
(203a)

=
16a3

g
+ p ln

(
32a3

pg

)
± ipπ +O(g).(203b)

The real part of the action of the complex bion is equal to the action of the
real bion, as can be seen by inspecting (203a) and (196b). Furthermore, it is
larger than two-times instanton action, 2SI since it is associated with upper
separatrix. They differ in the imaginary part of the action of the complex
bion. If p = 1, 2, . . ., then, the complex action is unambiguous (because the
imaginary part of the bion action is well-defined modulo 2π), and relates to
the hidden topological angle [26]. If p is non-integer, then, the action is multi-
fold ambiguous, similar to the action of the DW complex bion in (160) which
cancels with the ambiguity associated with the non-Borel resummability of
the perturbation theory, as described in more detail in Section 7.
Equality of the real bion and real part of the complex bion actions:
The equality of the real bion action Srb with the real part of the complex
bion Scb action can also be shown in a more elegant manner, (without doing
computation) by using contour deformation. The complex bion increases the
ground state energy by an amount ∼ e−Re (Scb), and the real bion lowers it
by ∼ e−Srb . The ground state energy will remain zero (as required by SUSY)
if and only if Srb = Re (Scb).

The actions of the real and complex bion are computed along the con-
tours C1 and C2 defined in Figure 22:

Srb =

∫ 4π

0
dz

√
2V (z)) =

∫
C1

√
2V (z) ,(204)
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Figure 22: The complex z-plane. C1 is associated with real bion, and C2 is
associated with the complex bion with complex turning point. Here we have
taken a = 1.

Scb = 2

∫ zT

0
dz

√
2V (z) = 2

∫
C2

√
2V (z) ,(205)

where V (z) is the quantum modified potential and zT is the complex turning
point. On the other hand, S∗

cb can be written as an integral over the contour

C′
2: S

∗
cb = 2

∫ zT

0 dz
√

2V (z) = 2
∫
C′
2

√
2V (z). Because V (4aπ − z) = V (z) we

can change variables, z → 4aπ − z, and write
∫
C′
2
=

∫
C3
, where the contour

C3 is shown in Figure 22. Therefore

Re Scb = 1
2(Scb + S∗

cb) =

∫
C2∪C3≡C1

dz
√
2V = Srb .(206)

This proves the equality of the real parts of the actions for any positive value
of p = Nf . When we analytically continue p → p eiθ, this equality breaks
down.

6.5. Analytic continuation: from real bounce to complex bion

As in the double-well system, the complex bion can be obtained by ana-
lytic continuation of the real bounce solution. Let us consider the analytic
continuation of the Sine-Gordon theory to the complex p plane, namely:

p → p eiθ ∈ C(207)

The interesting aspect is the following. Start with V+(z) = 1
2(W

′(z))2 +
pg
2 W

′′(z), and consider θ 	= 0. At θ = π, we reach to the theory described by
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the potential V−(z), which is isospectral to V+(z), because the two systems
are related by a translation by 2πa, see (69). Upon analytic continuation all
the way to θ = π: (i) The local maximum of the −V+(z) (along real axis)
becomes the global maximum of −V−(z). (ii) The global maximum of the
−V+(z) becomes local maximum of −V−(z). (iii) The real turning point of
the real bounce solution in the −V+(z) system turns into a complex turning
point in the −V−(z) system.

The analytic continuation of the bounce solution to arbitrary θ is clearly
still an exact solution of the holomorphic Newton equations (20) in the
inverted potential. The solutions are obviously complex for general θ, with
real and imaginary parts plotted in Figure 23 for various values of θ. The
solution obtained via analytic continuation of the bounce is:

(208) z(t, θ) = 4a arctan

⎛⎝√
pg eiθ

8a3 − pg eiθ
cosh

(√
1− pg eiθ

8a3 at

)⎞⎠ .

The solution is smooth for all θ ∈ [0, π), but exhibits two-valuedness for
θ = π, see Figure 23, which will be discussed below. It satisfies the correct
boundary conditions:

(209) z(t = ±∞, θ) = 2aπ, z(t = 0, θ) = zT = 2a arccos
(
1− gp eiθ

4a3

)
,

where zT is the complex turning point, shown in Figure 24. We can calculate
the action which is also multi-valued function at θ = π. In the gp/(8a3) � 1
regime, the action is is analytic in the cut plane,

S(g, θ) = 16a3

g

√
1− gp eiθ

8a3 − 2p eiθarctanh

[√
1− gp eiθ

8a3

]
,(210)

and two-valued for θ = π. The real and imaginary part of the action is
plotted in Figure 25. The real part is continuous, with a cusp at θ = π.
The imaginary part is also continuous except for a discontinuity at θ = π
(interpreted below). Note that on general grounds, the action is well defined
only up to 2π shifts in its imaginary part, as reflected in Figure 25.

6.6. Physical role of singular, multi-valued solutions

At θ = π, the potential is again real, and the complex saddles become
a multi-valued complex bion solution. Let us now discuss what happens
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Figure 23: Complex saddle solution z(t, θ). Black lines show Re(z) and
dashed red lines show Im(z). We have chosen pg/a3 � 1 and set a = 1.
θ = 0 corresponds to the real bounce, and θ = π∓ corresponds to the com-
plex bion. The characteristic size of the solution is always 2t0 ≈ ln(32a

3

pg ).

at θ = π in more detail. We can consider the behavior of the solution at
θ = π ∓ ε with ε > 0. The multi-valued complex bion solution is given
by

(211) z±(t) = z(t, θ = π ± ε) .
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Figure 24: Parametric plot of the real and imaginary part of the analytic
continuation of the real bounce solution, p → peiθ. θ = 0 correspond to real
bounce solution, with a real turning point. As one dials theta, the turning
point becomes complex. At θ = π−, the real bounce turns into a complex
bion, and the turning points becomes complex.

This solution is actually not only multi-valued, it is also singular. (The un-
derlying reason is discussed in the next section.)

In the formalism of real path integration, even the real part of such
configurations would not contribute to the path integral as saddle points.
Clearly, there are singular configurations in the real path integral (and these
are actually generic), but there cannot exist singular saddles with finite
action. The simple reason for this is that the kinetic term

∫
1
2 ẋ

2 blows up for
a singular or discontinuous configuration. But in complex path integration
the situation is different. The kinetic term is now replaced by:∫

1
2 ż

2 =

∫
1
2(ẋ

2 − ẏ2) + 2i

∫
ẋẏ .(212)

Even if the real and imaginary part of a solution z(t) are singular or discon-
tinuous, the action may remain finite provided the real and imaginary parts
lead to cancellations in the action. For the holomorphic path integral this is
what is taking place at θ = π, see Figure 25.

Remembering that arctanh(z/a) is analytic in the cut-plane C\cut, and
double-valued along the cut z/a ∈ (−∞,−1) ∪ (1,∞) we have
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Figure 25: Action of the analytic continuation of the real bounce solution
under p → peiθ. At θ = π−, the real bounce turns into a complex bion.
The real part of the action is continuous at θ = π, while the imaginary
part is discontinuous. This effect, for p 	= 1, 2, . . . is related to resurgence,
and ambiguity cancellation, and for p = 1, 2, . . ., it is related to the hidden
topological angle.

arctanh(z/a) =

⎧⎪⎨⎪⎩
+1

2 ln
(
z+a
z−a

)
± 1

2πi, z/a ∈ (−∞,−1) ∪ (1,∞) ,

+1
2 ln

(
z+a
z−a

)
, z/a ∈ C\(−∞,−1) ∪ (1,∞) .

(213)

The action of the complex bion acquires an unambiguous real part and a
discontinuous imaginary part at θ = π. Both are shown in Figure 25. The
action of the complex bion, in its exact form (203a), can be rewritten along
the cut as

S±
cb = S(g)

g = 16a3

g

√
1 + gp

8a3 + 2p ln

[√
1 + gp

8a3 + 1√
1 + gp

8a3 − 1

]
± ipπ(214a)

= Re[Scb]± ipπ, Im [Scb] = ±pπ .(214b)

Before making a few physical remarks on the implication of the complex
saddles in the physical theory, it is useful to state the amplitudes associated
with the real bounce, real bion and complex bion in the weak coupling
regime:

Ibn ∼
( pg

32a3

)−p
e−2SI ,

Irb ∼
( pg

32a3

)+p
e−2SI ,
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I±cb ∼
( pg

32a3

)+p
e−2SI±ipπ,(215)

This is in precise agreement with the approximate amplitudes of the two-
events obtained in Section 4 upon integration over the appropriate QZM-
thimbles, Γqzm, in the weak coupling regime. A few remarks are in order:

• The exact solution (208) is discontinuous and singular at θ = π, but the
real part of the action is continuous. The imaginary part of the action
jumps, making the action, as well as the complex bion amplitude I±cb
two-fold ambiguous for general values of p, namely, p ∈ R−{1, 2, . . .}:
For the consistency of the theory this discontinuity must be canceled
by the ambiguity of the (left/right) Borel resummation of perturbation
theory.17

• For integer values, p = 1, 2, . . ., where p = 1 corresponds to supersym-
metric QM, the ambiguity in the amplitude of complex bion disap-
pears:

I±cb ∼ e−Sr
cbe±iπ =

{
+e−Sr

cb p : 2, 4, . . . ,
−e−Sr

cb p : 1, 3, . . . .
(216)

In theories for which p is an odd-integer there is a Z2-worth of hidden
topological angle (HTA) discussed in our recent work [26]. For example,
for p = 1, this configuration gives a positive contribution to the ground
state energy. But there exists another saddle in the problem, the real
bion discussed in Section 6.3, which gives a negative contribution to
the ground state energy, such that the combination of the two cancels
exactly. In this potential, supersymmetry is actually unbroken and
the vanishing of the ground state energy relies on the existence of this
complex multi-valued, discontinuous saddle in addition to the real bion
saddle.

6.7. Physics of the complex bion solution, multi-valuedness and
singularity

One may wonder why the complex bion solution exhibits singular behavior
in the Sine-Gordon system, in contrast with the complex bion in the double
well potential discussed in Section 5.3, particularly given that the solution
was found by mapping the problem to the double well potential.

17Discontinuities of this type in saddle amplitudes have led to some concern
in the literature, see footnote 33 of [51]. We discuss this important issue and the
resolution of the problem in Section 8.1.



Toward Picard-Lefschetz theory of path integrals 179

An elementary way to understand the difference between the double well
and the Sine-Gordon systems is to consider the problem of integrating the
classical equations of motion, starting at some complex turning point zT of
the potential V (z) at time t = 0:

z(t) = zT + t ż(0) +
t2

2
z̈(0) +

t3

3!

...
z (0) + . . . .(217)

If the initial point, z(0) = zT is a turning point, then ż(0) = 0, so the first
step of the evolution is governed by

z̈(0) =
∂V

∂z

∣∣∣∣∣
t=0

.(218)

It is easy to see that for the double-well case, z̈(0) = 2z3T − zTa
2 + pg

is complex, with both non-vanishing real and imaginary parts. Thus the
evolution moves away from the complex turning point in the complex plane,
ending at the critical point zcr1 . This can be seen pictorially in Figure 26,
which shows the complex bion for the double-well “rolling” on the surface
of the real part of the inverted potential.18

By contrast, for the Sine-Gordon system, starting at the complex turning
point zT /a = 2π + 2i arccosh

(
1 + pg

4a3

)
, we have

z̈(0) = a2 sin(zT /a) +
p

4
a2 sin(zT /2a) = −2ia2

√
pg

2a3

(
1 +

pg

8a3

)3/2
,(219)

which is pure imaginary. This pattern propagates through the entire series
in (217) and is a consequence of the symmetry (222): all odd derivatives of
z(t) vanish at t = 0, while even derivatives are all pure imaginary. Thus, the
real part of z must remain constant; it cannot change from its initial value
of 2aπ, except when Im (z) reaches infinity, as it does in a finite time t0,
and at this point the real part of z can jump by 2aπ. This can be seen in

18Note that, in contrast to naive intuition, the particle does not fall into the
infinitely deep well. The force on a classical particle in the inverted potential is not
(minus) the gradient, −�∇(−Vr). Instead, ẍ = −∂x(−Vr), ÿ = +∂y(−Vr), notice the
crucial relative minus sign, as discussed around (17). The force in the y-direction
is negated with respect to the usual equations of motion due to holomorphy. As
a result, a particle which would, according to the regular Newton equation in 2d,
“roll down” into a well, may instead, “rolls up”. This is the reason that the classical
(holomorphic) particle in the inverted potential does not fall into the well in Figure
26.
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Figure 26: Complex bion rolling on the real part of the inverted potential
for the double-well case with a = 1, and pg = 1/10. The trajectory begins
for t = 0 at the complex turning point and continues to the critical point
zcr1 as t → ±∞. The motion is perfectly smooth.

the “rolling” of the classical particle shown in Figure 27. The particle rolls
out along the ridge at Re (z) = 2aπ, reaching the point at infinity in finite
time, and then rolls back along the ridge at Re (z) = 0, reaching the critical
point at z = 0 at t = ±∞. The sudden jump at infinity may be regularized
by analytically continuing p in the potential to have a phase, as discussed
in the previous subsection. In this case, the jump at infinity is smoothed
out.
Symmetry and multi-valuedness (or an alternate story for Buri-
dan’s donkey): There is another more general way to see why the disconti-
nuity and singularity occurs. First, in classical mechanics (and its holomor-
phic version) uniqueness of solutions is guaranteed for any motion given the
initial conditions. This means that the turning point defined by −V (zT ) = E
uniquely defines the trajectory of motion in the holomorphic classical me-
chanics. Since the motion is constrained by constancy of energy, set to be
equal to the energy at one of the turning points (which is on the same crit-
ical orbit with a critical point), initializing the motion on the critical orbit
to which turning point belongs will necessarily result in the particle ending
its motion at one of the critical points with this energy.

However, if the potential of motion possesses an exact symmetry un-
der which turning points remains invariant, then the path of the motion
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Figure 27: First figure: Complex bion rolling on the real part of the inverted
potential for the Sine-Gordon case with a = 1 and pg = 1/10. The particle
begins at t = 0 at the complex turning point and rolls out along the ridge
at Re (z) = 2π, reaching the point at infinity in finite time, and then rolls
back along the ridge at Re (z) = 0, reaching the critical point at z = 0 at
t = ±∞. The discontinuous jump occurs at infinity. The second figure shows
this curve as well as the real bion with p → p e−i19π/20, which effectively
smooths out the trajectory so that it passes from one ridge to another in
a completely regular way. As p → −p we obtain the discontinuous complex
bion trajectory.

must also remain invariant (since the turning point determines the path
uniquely). On the other hand, if the critical points are not invariant under
this symmetry, but instead go into each other, then the motion cannot con-
nect smoothly to them. This is similar to the paradox of Buridan’s donkey.
There are two critical points on the same energy level, equidistant from the
turning point, and both are equally attractive. The only option is for the
motion to evolve to infinity. If the situation is slightly perturbed (i.e. by
changing the potential) so that the symmetry in question is broken even by
a very small-amount, the motion will reduce to the generic situation and
the Euclidean particle will asymptote to one of the critical points. This is
precisely what causes the multivaluedness of the solution, i.e. the trajectory
depends on how exactly we perturb the potential. The singular nature of
the solution also goes hand in hand with multivaluedness, as the only way
the particle can move is along a trajectory which obeys the invariance un-
der the symmetry. In the absence of this invariance for critical points, the
particle is forced to move off to infinity. This is the singular behavior of the
solution.
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Example: Let us consider the double-Sine-Gordon case. (Set a = 1 momen-

tarily.) The real part of the Lagrangian is:

Re L = 1
2(ẋ

2 − ẏ2)− 2 cos2(x2 ) cosh
2(y2 ) + 2 sin2(x2 ) sinh

2(y2 )

− pg
2 cos(x2 ) cosh(

y
2 ) ,(220)

and the holomorphic equations of motion, written in terms of real and imag-

inary part of z(t) = x(t) + iy(t), take the form:

d2x

dt2
= cosh y sinx+

pg

4
cosh(y/2) sin(x/2) ,

d2y

dt2
= cosx sinh y +

pg

4
cos(x/2) sinh(y/2) .(221)

The transformation

(222) x(t) → −x(t) + 4πa , y(t) → y(t)

is a symmetry of the real part of the holomorphic Lagrangian, as well as the

equations of motion. For example, the two turning points located at

(223) zT± = 2πa± 2ia arccosh
(
1 +

pg

4a3

)
go back to themselves upon the transformation (222), while the critical point

at zcr = 0 goes to zcr = 4π, and vice versa.

Since only the real part of the potential enters the equations of motion

(221), if a particle is initialized at the point which obeys the symmetry, then,

by uniqueness of the solution, the entire trajectory must obey it. Therefore

the Euclidean particle initialized at one of the turning points zTk,± cannot

asymptote to one of the critical points zcr = 0 or 4πa, but must fly off to

infinity.

However if the system is slightly perturbed, for example by giving p

a small complex part, p → peiθ, the invariance of the turning points zT±
and invariance of the Lagrangian and equations of motion (see (20)) is de-

stroyed, and the motion will generically asymptote to one of the critical

points. In the limit of real p, the motion will turn into the singular mo-

tion from the turning point to one of the critical points, depending how

the limit of real p is taken. This is the multivaluedness of the complex

bion.
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6.8. Vacuum as a complex and real bion gas

Reminder of the bosonic case, ground state wave function vs.
instanton gas: In the bosonic periodic potential the Euclidean descrip-
tion of the ground state is given by a dilute gas of instantons (at lead-
ing order in semi-classical expansion). The ground state wave function is
periodic and symmetric. For comparison with the case of a particle with
spin, consider a the bosonic potential which is periodic with period 2πa,
but the theory is considered on a circle with circumference 4πa. Then the
ground state is symmetric and the first excited state is anti-symmetric in
the interval [0, 4π]. This is equivalent to the Bloch wave boundary condition
Ψ(x + 2πa) = eiαΨ(x), with α = 0 for the ground state, the lower edge of
the band, and α = π for the upper edge of the band. The non-perturbative
splitting between the first excited state and the ground state is due to in-

stantons, ΔE = Jτ0

[
det′ M
detM0

]− 1

2

e−SI . The probability to find the particle

either at x = 0 or x = 2πa is equal. The dilute instanton gas reflects this
property. The classical particle spends half time at x = 0 and the other half
at x = 2πa. We see that in the theory of a particle with spin (or Nf ≥ 1)
the ground state structure is dramatically different.
Ground state wavefunction vs. bion gas: Now consider Nf ≥ 1. We
have shown that real and complex bions are exact saddles points of the path
integral for theories with fermions. The vacuum is two-fold degenerate. The
Euclidean description of either one of the vacua is given by a dilute gas of
real and complex bions, see Figure 28. The density of both types of bions
is e−Sb ≈ e−2SI . The semi-classical picture is based on a particle that starts
at 0 (or an even site) on the left, and makes occasional excursions to 2π
(odd site), where it spends a time 2t0 ≈ m−1

b ln 32a3

pg ≡ τ∗, and immediately

returns back to an even site, either back to 0 (complex bion) or forward
to 4π. In other words, the Euclidean particle spends an exponentially short
time (unlike the bosonic case) on odd sites. In the wave function language,
the wave function must be completely dominated at even sites. The ratio of
the probability to find the particle on an odd-site compared to an even site
is exponentially small and equal to the bion density:

Pr.(4π(k + 1
2))

Pr.(4π)
∼ e−Sb ∼ e−2S0 for one of the ground states.(224)

For the other ground state, odd and even sites are interchanged.
This has a simple interpretation in the Hamiltonian formulation as well.

Consider for simplicity the supersymmetric case Nf = 1. The qualitative
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Figure 28: The ground state properties of the theory with fixed number of
fermions (Nf ≥ 1) is dictated by a dilute gas of real (smooth) and complex
(singular) bion events, both with density e−2SI . Both real and complex bions
are exact solutions, and Re [2t0]

cb = [2t0]
rb. Note that the Euclidean time

spend on x = 2π (mod 4π) is exponentially small compared to the time
spent at x = 0 (mod 4π) by a factor e−2SI .

picture is same for any Nf ≥ 1. The ground state wave functions are given
by,

〈x|G1〉 = Ne+W (x)/g | ↓〉, 〈x|G2〉 = Ne−W (x)/g| ↑〉 .(225)

Both ± states are renormalizable on the interval [0, 4π]. Consider the +
solution. Indeed, this wave function is dominated by even-integer wells, and
suppressed at the odd-integer wells:

Pr.(2π)

Pr.(0)
=

∣∣∣〈2π|G1〉
〈0|G1〉

∣∣∣2 = e−2ΔW/g = e−Sb = e−16a3/g .(226)

The picture in terms of complex and real bions shown in Figure 28 exactly
matches the Hamiltonian picture.

This simple system shows that introducing Grassmann valued fields into
the Lagrangian dramatically alters the ground state structure. This change
in the ground state structure is the simple quantum mechanics realization
of the magnetic bion mechanism in QCD(adj) [1, 3], where introducing the
Grasssmann valued fermion fields alter the ground state structure in a sim-
ilar manner with respect to purely bosonic case of deformed Yang-Mills
[74, 75].
What would happen if the multi-valued singular saddle did not
contribute? Consider the Nf = 1 theory, corresponding to N = 1 super-
symmetric QM. In this example, it is known that supersymmetry is un-
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Figure 29: Quantum modified potential (red dashed) for Nf ≥ 1 theories,
and associated ground state wave function. The probability to find the parti-
cle on an odd-numbered well is suppressed exponentially, by e−2SI , consistent
with the dilute bion gas description. As is well-known, in the bosonic case,
Nf = 0, the wave function is equally dominant both on the even and odd
sites. Note the absence of a bump in the wave function at x = 2π.

broken. The Witten index IW = 0, but there are Bose-Fermi degenerate
two ground states, (225), with Egr = 0. The effect of the real bion is to
reduce the ground state energy by an amount proportional to −e−2SI . If
this was the only contribution there would be a contradictions with super-
symmetry algebra, which demands positive semi-definiteness of the ground
state energy. However, we showed that there is also a complex bion solu-
tion, which gives a contribution of the same magnitude but opposite sign,

Egr ∝ −e−2SI±iNfπ
∣∣∣
Nf=1

= e−2SI > 0. This is the mechanism for the non-

perturbative vanishing of the ground state energy:

Egr ∝ −e−2SI − e−2SI±iπ = 0 .(227)

Here, as in the double-well problem, eiπ is the Z2 valued hidden topological
angle associated with the complexity of the solution [26].

6.9. Remark on fluctuation operators

In the present work, although we do not examine the fluctuation operators
around the new exact saddle points in detail, it is worthwhile to point out
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Figure 30: The potential of fluctuation operators for the exact flat-bounce
solution and real bion solution.

some of their interesting properties. Consider the fluctuation operators for
the bounce and real bion solution. For the complex bion the analysis can
either be done by using analytic continuation from the real bounce, or by
studying the complex fluctuation operator directly.

The fluctuation operator around a classical solution zcl is given by

(228) M = − d2

dt2
+ V ′′(z)|z=zcl(t) .

Figure 30 depicts the case of the real bion and bounce solutions. The char-
acteristic feature in both cases is the plateau and the double-well structure.
This implies that the fluctuation operator differs from the one in the case
of instantons, which is a single-well (Pöschl-Teller type), or the one for a
typical bounce, which is also usually single-well.

Real bion: For the real bion, the zero mode wave function is

Ψ0(t) = żrb(t) .(229)

Since the fluctuation operator M commutes with parity, [M,P] = 0, the
ground state must be parity even. Since Ψ0(−t) = Ψ0(t) and it is nodeless,
the ground state wave function of the fluctuation operator is the one of the
zero mode wave-function

ΨG(t) = Ψ0(t), eG = e0 = 0 .(230)

This is an exact zero mode. In fact, the fluctuation operator is factorizable
and hence, a partner in a supersymmetric pair.
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The parity-odd anti-symmetric combination is a parametrically small
eigenmode of the fluctuation operator, and requires special care. Let us call
it Ψ1(t). The energy e1 of the Ψ1(t) must be parametrically small with
respect to the rest of the spectrum of M. A way to see this is to realize
that the parametric smallness of e1 itself is an instanton effect. But this
instanton is extremely exotic, it actually lives in the fluctuation operator of
the real bion solution. So, we call this instanton an “f-instanton”. The non-
perturbative splitting e1 − e0 = e1 is proportional to e−SfI . The f-instanton
is a configuration which interpolates between one maximum of −V ′′(z)|z=zcl

and the other maximum, but with a flat potential in between. Here, we do
not discuss the details of the f-instanton, except for pointing out that it
accounts for the parametric smallness of the quasi-zero mode eigenvalue of
fluctuation operator.

Bounce: For the real bounce the zero mode wave function is

Ψ0(t) = żbn(t) .(231)

But now, the zero mode with energy e0 = 0 is parity odd, Ψ0(−t) = −Ψ0(t)
and has a single node. Since [M,P] = 0, the ground state must be parity
even and nodeless. Thus, the zero mode cannot be the ground state, ΨG(t):

ΨG(t) 	= Ψ0(t), eG < e0 = 0 .(232)

Since Ψ0(t) has only one node, there can only be one negative eigenmode,
denoted as ΨG(t), with a negative eigenvalue. eG is a parametrically small,
negative eigenmode. Similar to the previous case, the parametric smallness
of the eigenvalue eG is due to f-instanton effect, the instanton living in the
fluctuation operator. A more detailed study of the fluctuation operators,
including the complex fluctuation operators, is deferred to future work.

7. Complex saddles and resurgence

In both the tilted DW and double-SG quantum mechanics example, we have
shown that inclusion of the complex saddles prevents a potential discrepancy
between semi-classical analysis and the constraints of supersymmetry. In this
sense, the necessity of the inclusion of these saddles in supersymmetric the-
ory is not in doubt. However, one may still ask a more general question:
In a non-supersymmetric theory, what is the guiding principle which in-
structs us that complex solutions with multi-fold ambiguous actions must
be included? In particular, why does multi-valuedness of these saddles not
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lead to multi-valuedness in the energy spectrum (which must be unambigu-
ous) of the theory? (This second question and its various incarnations in
QFT are prime arguments against the physical significance of multi-valued
saddles.) In this brief section, we show that the multi-valuedness associ-
ated with the amplitudes of the complex bion cancels with the ambiguity
in the left/right Borel resummation of the perturbation series. This is a
natural implication of resurgence theory, and a realization of Borel-Ecalle
(BE)-summability [76, 77, 78], providing a mechanism for the reality of the
resurgent transseries in the physical domain where it indeed has to be real
[79, 30, 65]. A general discussion of all-orders cancellations in real trans-
series is elegantly described in [79], also see other examples in [80, 81]. Some
aspects of resurgence in supersymmetric quantum mechanics from a complex
WKB point of view is also discussed in [82, 83].

The contribution of the complex bions to the vacuum energy for the
tilted-DW system is

E0 = +
1

2π

(
−g

16a3

)p−1

Γ(p) e−8a3/3g

= +
1

2π

( g

16a3

)p−1
(
− cos(pπ)Γ(p)± i

π

Γ(1− p)

)
e−8a3/3g ,(233)

which has both real and imaginary (ambiguous) parts. In the second step,
we assumed that p is real. Of course, as it stands, this expression is not
acceptable on physical grounds.

Consider perturbation theory for the energy spectrum, in particular the
ground state energy, for the tilted DW system. Let En(g) be the energy of
the state with quantum number n (n may be a collective quantum number)
in units of natural frequency (boson mass) mb of the system. Let

(234) En(g) = an,0 + an,1g + an,2g
2 + . . . =

∞∑
q=0

an,qg
q .

The large-order behavior for the ground and first few states are derived
using the methods of Bender-Wu [84, 85] in Ref.[86], and alternatively, using
instantons and dispersion relations in [87]. The Bender-Wu recursive method
is based on a Hamiltonian approach, and does not rely on instanton calculus.
The leading order factorial divergence of the perturbative series are [87, 86]:

a0,q ∼ −6−p+1

2π

Γ(q − p+ 1)

Γ(1− p)

1

(2SI)q
,
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a1,q ∼ −6−p+3

2π

Γ(q − p+ 3)

Γ(2− p)

1

(2SI)q
.(235)

The perturbative series is a formal asymptotic non-alternating series of the
form q!/(2SI)

q. It is not Borel summable, due to singularities on the positive
real axis on the Borel plane, but it is left and right Borel summable, giving
a two-fold ambiguous result S±E(g2).

Remarkably, the ambiguity inherent to the complex saddle and the am-
biguity in the lateral Borel resummation of perturbation theory cancel each
other exactly:

Im
[
S±E(g2) + I±cb

]
= 0 ,(236)

and the non-perturbative contribution to the ground state energy is

En.p.
0 = − 1

2π

( g

16a3

)p−1
Γ(p)e−8a3/3g cos(pπ) .(237)

This presents a mechanism in which the discontinuities in saddle amplitudes
can cancel in the sum over different saddle points, despite the fact that
different saddles are hierarchical, providing a resolution of a puzzle addressed
in [51].

The crucial (and almost paradoxical) point is that the reality of resurgent
trans-series associated with a physical observable for real physical values of
the couplings demands complexification of the path integral, and contribu-
tion of complex multi-valued saddles.

8. Comments on the literature

8.1. Witten and Harlow-Maltz-Witten on analytic continuation
in Chern-Simons and Liouville theory

Prior to this work, the most serious study of complex, multi-valued, and
singular saddle points of the path integral is described in the recent work of
Harlow, Maltz, and Witten (HMW) on Liouville theory [51]. First, we would
like to emphasize that there are two closely related ideas:

• The analytic continuation of Euclidean path integrals as coupling con-
stants are continued to the complex domain.

• The complexification of Euclidean path integrals even if the coupling
constants are real.
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In the following we will try to explain the relationship between HMW and
our work:

1) The first idea is the starting point of the recent work of Witten on
Chern Simons theory [25], and of Harlow et al. on Liouville theory
[51]. These papers emphasize the need to complexify the path integral
once one performs analytic continuation of a coupling parameter into
an unphysical region of parameter space. In the case of Chern-Simons
theory Witten considers analytic continuation to non-integer values of
the coupling k.
In the present work we show that even for physical values of the param-
eters, that means for values of the coupling for which a Hilbert space
interpretation exists, the path integral still has to be complexified in
order to obtain the correct semi-classical expansion.

2) A more complicated issue raised by HMW is the role of singular and
multi-valued solutions. HMW find solutions of this type in analytically
continued Liouville theory. In the introduction to their paper HMW
state

“Rather surprisingly, we have found that allowing ourselves to use the
multi-valued “solutions” just mentioned in the semiclassical expansion
enables us to account for the asymptotics of the DOZZ formula through-
out the full analytic continuation in the ηi. . . . We do not have a clear
rationale for why this is allowed.”

In the present paper we found a simple quantum-mechanical example
in which we provide evidence that multi-valued discontinuous solutions
with finite action must be included in the semi-classical expansion. In
particular, in the SUSY QM case, we showed that the inclusion of
singular solutions is needed to achieve consistency between the super-
symmetry analysis and the semi-classical expansion.

3) HMW raise a more specific concern related to multi-valued actions. In
footnote 33, HMW state that perhaps discontinuities can cancel in the
sum over different saddle points. However, they reject this possibility
based on the fact that for generic values of the parameters there will
be a complex saddle that is parametrically larger than the rest.
We note that a hierarchy of saddle points also occurs in our exam-
ples. However, in the context of resurgence theory this is an expected
feature of the semi-classical expansion. Indeed, consider a dominant
and subdominant saddle, and assume the action associated with the
sub-dominant saddle is multi-valued. What happens in resurgent ex-
pansions is that the ambiguity associated with perturbation theory
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around the dominant saddle, is of the same order as the subdomi-
nant saddle. Consequently, there may in fact be cancellations of the
discontinuities between hierarchical saddles. In Sec. 7, we provided a
concrete realization of such cancellations.

Other studies on complexification of path integration, with different
physical motivations, are discussed in [88, 89, 90, 91, 92].

8.2. Brezin, Le Guillou, and Zinn-Justin on complex instantons

Almost four decades ago Brezin, Le Guillou, and Zinn-Justin (BGZ) [93]
considered the potential

V (x) = 1
2x

2 − γx3 + 1
2x

4 ,(238)

which, for γ > 1, is the same as our tilted double-well example, and for γ < 1
corresponds to a potential with a unique minimum. γ = 0 is the focus of the
Bender-Wu analysis of the large order behavior of perturbation theory.

In the case γ > 1, the analysis of BGZ corresponds to “half” of our real
bounce. BGZ find the real solution interpolating from the local maximum of
the inverted potential −V (x) to a real turning point. However, the complex
(and sometimes multi-valued) configuration that we call the complex bion,
which dictates ground state properties, is not considered in [93]. We note
that the complex bion corresponds to either a singularity in the Borel plane
on R+ (p 	= N+), where the complex bion amplitude has a genuine ambigu-
ity with amplitude e−Re Scb±ipπ, or to a hidden topological angle (p ∈ N+),
where the complex bion amplitude is unambiguous. In the second case, the
leading singularity in the Borel plane fades away as p approaches a pos-
itive integer. The Stokes multiplier of this configuration is non-zero, and
contribute crucially to ground state properties.

In the case γ < 1 BGZ construct complex instantons, which interpolate
between x = 0 and a complex turning point zT , z

∗
T . This type of complex

instanton are argued to lead to a Borel summable series, similar to and are
associated with singularities in the C\R+ portion of the Borel plane. For
example, in the case γ = 0, the associated singularity is on R− and leads to
the famous alternating series, found by Bender and Wu [84, 85]. In this case,
although complex instantons dictate the perturbative result, their Stokes
multiplier is zero. If that were not the case, complex instantons would give
a pathological, exponentially increasing, contribution to the path integral
of the form eA/g, A > 0, similar to a particular type of complex instantons
in QFT [94]. In the present work, the complex saddles have nonzero Stokes
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multipliers, their weight is exponentially suppressed, e−A/g, A > 0. It is
important to realize that generically the complex bion lead to a Borel non-
summable series, unlike the complex instantons, and they are crucial for the
correct Euclidean description of the ground state physics.

8.3. Balitsky and Yung on complex quasi-solutions

Some of the ideas in our work are inspired from the work of Balitsky and
Yung (BY) [52]. In a beautiful, and under-appreciated, paper on semi-
classical aspects of supersymmetric quantum mechanics BY considered both
supersymmetric QM and the deformation of the Yukawa term in (33) away
from p = 1, which is the supersymmetric point. The BY deformation corre-
sponds to the two SU(Nf ) singlet sub-sectors in our construction with k = 0
and k = Nf .

BY constructed, following Zinn-Justin, an approximate real instanton-
anti-instanton configuration. This is not an exact solution, but a good ap-
proximation to the exact bounce solution in the weak coupling regime. They
also constructed the approximate complex solution by using analytic contin-
uation from the approximate bounce solution, following the idea from [93].
BY correctly interpret this solution as governing the ground state properties.
However, BY do not obtain the exact complex solutions found here.

8.4. Other related works

There are earlier important works in quantum mechanics in which complex-
ification plays some role. The main distinction between our present study
and these works is the following. In our work, we have shown that the ground
state properties of a generic quantum mechanical system are governed by
complex (sometimes even multi-valued) saddles. In the quantum mechan-
ical papers mentioned below, the ground state properties are always gov-
erned by real saddles, such as instantons, but complex classical solutions
become important when considering the entire spectrum, for example the
spectral resolvent. Gutzwiller [95, 96] pioneered the idea of summing over
all classical solutions in semiclassical expansions of Green’s functions and
spectral problems. This was further developed by many authors, from a
general formulation in [97, 98], to specific analyses of the symmetric double-
well [99, 100, 101] and periodic potentials [102]. A complex version of WKB
analysis of the pure quartic oscillator also requires inclusion of complex semi-
classical configurations in addition to the familiar real Bohr-Sommerfeld ones
[103, 104, 105].
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9. Conclusion

In this work we studied the semiclassical expansion in two classes of quantum
mechanical models with fermions, as well as closely related purely bosonic
systems with non-degenerate harmonic minima. We showed that correct
semi-classical results can only be obtained if the path integral is complexi-
fied, and finite action complex solutions are taken into account. This includes
solutions that are singular and multi-valued. Our main conclusions are:

• We argued that in quantum mechanical models with multiple Grass-
mann fields, the natural setting for finding the semi-classical expansion
is a graded formulation in which fermions are integrated out. This in-
duces a quantum modified potential for the bosonic fields.

• The real Euclidean equations of motion in the inverted potential may
or may not have real finite action solutions. But once the path integral
is complexified, the critical points are described by the solutions of
the holomorphic Newton equation in the inverted quantum modified
potential:

d2z

dt2
= +

dV

dz
= W ′(z)W ′′(z) +

pg

2
W ′′′(z) .(239)

This equation generically admits complex, multi-valued finite action
solutions.

• The characteristic size of the real and complex bion saddle solutions
is parametrically larger than the natural size of the instanton solution
in the original formulation. The instanton size is parametrically ω−1

where ω is natural frequency, and bion size is τ∗ ∼ ω−1 ln Aa3

gp . The
non-BPS bion solutions are exact for any value of the coupling. In the
weak coupling regime, it can be described as a correlated two-instanton
event (which is only approximate quasi-solution).

• The action of the exact non-BPS solution is in general multi-valued,
and weight of these saddles is of the form∼ e−Sr±ipπ. ForNf = 1, 2, . . .,
where p = Nf −2k, the multi-valuedness of the action disappears since
the imaginary part of the action is defined modulo 2π. This gives the
Z2 valued hidden topological angle [26].

• For non-integer values of p, the multi-valuedness of the fugacity is
canceled by Borel resummation of perturbation theory, an explicit re-
alization of resurgence. In this sense, neither divergence of a series (or
its ambiguous Borel resummation), nor the multi-valued saddles are
meaningless or a nuisance. Rather, they are essential in order to give
proper meaning to the path integral.
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• In generic quantum mechanical systems, the Euclidean description of
the vacuum is a dilute gas of complex and real bions. In particular, the
much better known instantons, and the dilute instanton gas picture,
are relatively rare cases relevant for potentials with symmetry.

9.1. Prospects in quantum field theories

In this paper we pursued two strategies for constructing saddles in path
integration, one of which is exact, and the other approximate.

(A) Exact solution of complexified Newton equations after integrating out
fermions exactly.

(B) Construct BPS solutions, and glue them together by integrating over
the complexified quasi-zero mode thimble, Γqzm, using the finite di-
mensional steepest descent method.

In weak coupling we have shown that all the essential features of the exact
solutions, their real or complex nature, multi-valuedness, singular or smooth
behavior, hidden topological angle, characteristic size, and monodromy prop-
erties, are reproduced by the second (approximate) method. This makes us
confident that the second method, (B), is indeed a systematic approximation
to exact saddle point calculations.19 The physical reason for this conjecture
is based on the following argument: Consider a two-instanton event, and
fluctuations around it. The center position of the two instantons is an exact
zero mode, the relative position is a quasi-zero mode, and the remaining
modes are Gaussian. The quasi-zero mode is special in this sense. An exact
integration over the Γqzm-cycle, which passes through the saddle of the in-
teraction potential of the two instantons is capable of producing the features
of the exact solution.

The first method, (A), is hard to generalize to QFT. In studying the
quantum mechanics of a single particle with spin degrees of freedom we are in
a somewhat fortunate situation in the sense that we can write the notorious
fermion determinant Nf log det(D) (where D is the Dirac operator) as a
sum of local modifications of the bosonic potential. This is important for
constructing of exact solutions. In QFT, this is a formidable task, although
in certain background field problems it has been shown, using the world-line
representation of the fermion determinant, that complex saddles govern the
physics [106].

19Proving this statement starting with the complex gradient flow equations by
using techniques from partial differential equations (PDEs) would represent major
progress in Picard-Lefschetz theory.
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Another consideration is that in bosonic quantum field theories and

quantum mechanics, when the topological theta angle is set to zero, the

contribution of instantons (as well as other real saddles) to the ground state

energy is universally negative. In theories with fermions (multiple Grass-

mann valued fields), instantons do not contribute to the ground state energy

because of the fermionic zero modes. At second order, there can be either a

negative or positive contribution. In fact, for real saddles (at second order or

otherwise), the contribution to the ground state energy is universally nega-

tive. For complex saddles, whether the contribution is negative or positive

depends on the hidden topological angle. For example, in the present work,

we showed that complex saddles contribute to the ground state energy as

− cos(pπ) e−Sr , so it is positive for p = 1, and negative for p = 2.

If we accept the idea that the second method, (B), is indeed a system-

atic approximation to exact saddle points in QFT, we find ourselves in an

interesting situation. In particular, such real and complex saddles must exist

in four dimensional gauge theories, QCD and SQCD on R4, N = 1 SYM

and QCD(adj) on R3 × S1, N = 2 SYM on R3, and sigma models such as

CP
N−1 and O(N) models with fermions on R2 as well as R1×S1, and more.

Consider for example N = 1 SYM. It is a vector-like (QCD-like) theory,

without an elementary scalar. It is also a minimal supersymmetric gauge

theory, and an integral part of all SQCD theories. In this sense, it is a

useful model to describe phenomena that may take place both in QCD and

SQCD. On R3 × S1, at leading order in the semi-classical expansion, this

theory has monopole-instantons which induce a superpotential [107, 108]. At

second order in the semi-classical expansion, the microscopic origin of the

bosonic potential can be understood in terms of magnetic bions (in one-to-

one correspondence with the positive entries of the extended Cartan matrix)

and neutral bions (in one-to-one correspondence with the negative entries of

extended Cartan matrix) [1, 14, 109]. For example, for SU(2) gauge theory,

the bosonic potential is

V (φ, σ) ∼ −e−2Sm cos(2σ)− e−2Sm±iπ cosh(2φ) ,(240)

where σ is the dual photon and φ is the fluctuation of the holonomy relative

to the center symmetric point. Magnetic bions contribute negatively to the

ground state energy (found by setting σ = 0, φ = 0), and neutral bions

contribute positively:

Egr ∝ −e−2Sm − e−2Sm±iπ = 0 .(241)
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Note that this formula is identical to the one we found in supersymmetric
quantum mechanics with periodic superpotential (227). There is a relative
eiπ hidden topological angle difference between the two amplitudes. Accord-
ing to our criterion, it seems plausible that the magnetic bion is associated
with an exact real saddle while the neutral bion is associated with an exact
complex saddle. All statements concerning two-events (second order semi-
classics) in N = 1 SYM are also valid for QCD(adj) on R3 × S1, as well as
non-linear sigma models on R1 × S1 [17, 18, 44].

Similarly, in three-dimensional N = 2 SUSY gauge theory [110], the
bosonic potential can either be derived from the superpotential or by per-
forming a quasi-zero mode integration, and provides a positive definite run-
away potential,

V (φ) ∼ −e−2Sm±iπe−2φ .(242)

The origin of the positive definiteness of the run-away potential is a complex
phase that arises from the QZM integration.

Finally, in SQCD with Nf = Nc − 1 in R4, the semi-classical analysis is
reliable, because the IR-divergence due to the instanton size modulus is cut-
off by the scalar meson vacuum expectation value. The theory has a bosonic
run-away potential, which can either be derived from the instanton-induced
ADS-superpotential [111], or alternatively, it can be derived by computing
the [II] two-event amplitude [112]. In order for the potential to be positive
semi-definite, the contribution of the [II] saddle must be −e−2SI+iπ. This
also suggest that the [II] event in SQCD may in fact be be an exact complex
saddle.

Our results suggest that the natural formalism for the semi-classical anal-
ysis of quantum field theory, and quantum mechanics, is the complexified
version of the path integral. This perspective provides a physical interpreta-
tion for non-BPS solutions [113, 114, 115, 116], and possibly also for complex
instantons [117].

9.2. Other related directions

Lattice constructions and sign problem: The Lefschetz thimble de-
composition is applied to QFTs with sign problems in various lattice the-
ories, see, e.g. [53, 54, 55, 56, 118]. Very often, these simulations are run
in the vicinity of one saddle. In the present work, we have seen that the
effect of different saddles generically have different phases, leading to a
(Euclidean version of) interference in the sum over saddles. For example,
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vanishing of the vacuum energy in supersymmetric theory is of the form
Egr = 0e−Spert − e−Srb − eiπe−Srb , where eiπ is the Z2 valued hidden topolog-
ical angle (HTA), leading to destructive interference among saddles [26, 27].
This important point is also emphasized in the context of sign problem in
[119, 120]. Clearly, future lattice (as well as continuum) studies must take
into account the sum over all contributing saddles due to interference effects
induced by the HTA.

Complex gradient flow equations and N = 2 instantons: Readers
familiar with extended (N = 2) supersymmetric quantum mechanics will
realize that the complex gradient flow equation (16) in a d = 0 dimensional
“field theory” is identical to the instanton equation for the N = 2 system
with superpotential W (z) = f(z).

dz

du
= eiθ

∂W

∂z
,(243)

where θ in QM may be identified with the phase of the central charge, and
u is the gradient flow time (which becomes Euclidean time in the second
interpretation). Namely, thimbles in the simple zero dimensional integrals
are related to integration cycles in path integrals of (N = 2) supersymmetric
QM related to instantons. This also generalizes to certain QFTs, see [25] and
the following item. We find this connection intriguing.

Parabolic vs. elliptic gradient flow: The first path integral analyses
of the Lefschetz thimble decomposition were performed for Chern-Simons
theory and the phase space path integral (where the Hamiltonian is set to
zero) [25, 88]. In both cases, the complex gradient flow equations are ellip-
tic PDEs, and possess a higher dimensional (Euclidean version of Lorentz)
symmetry, e.g. for Chern-Simons, these equations are

∂Ai

∂u
= −eiθ

δSCS

δAi

= 1
2e

iθεijkF jk ,(244)

which is the complex generalization of the instanton equation in A4 = 0
gauge:

F (2) = eiθ ∗ F (2)
or Fμν = eiθ 12εμνρσFρσ .(245)

The reason for the 3d−4d connection is actually not an accident: Thimbles in
d = 3 dimensional Chern-Simons theory [25] are related to the complexified
instanton equations in the twisted version of theN = 4 super Yang-Mills the-
ory in four dimensions. Indeed, (245) appeared first in the context of lattice
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supersymmetry [121], and in the Geometric Langlands program [122], again,
not accidentally, because both of these are applications of the same twist.
Witten argues that the nice properties of the finite dimensional Lefschetz
thimble decomposition carry over to the infinite dimensional functional in-
tegral for the elliptic flow equations [25]. On the other hand, for almost all
interesting QFTs and configuration space path integrals, the complex gra-
dient flow equations are parabolic. It will be interesting to understand more
precisely the relation between the nature of the flow equation (parabolic vs.
elliptic) and the nature of the saddles (smooth/singular/multivalued), and
the implications for the the thimble construction.

Clearly, it is of interest to study general field theories using complexified
path integrals. We expect other interesting applications in cosmology, string
theory, and condensed matter; indeed in any problem in which the path
integral is a useful tool.
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Appendix A. Review of some relevant elliptic integrals

In this appendix, we summarize some basic result concerning elliptic func-
tions and elliptic integrals [71]. These result are used in constructing the
exact bounce and bion solutions. Let

(246) t =

∫ z

za

dw√
F (w)

,

where F (w) is a quartic polynomial with no repeated factors

F (w) := a4w
4 + 4a3w

3 + 6a2w
2 + 4a1w + a0 .(247)



Toward Picard-Lefschetz theory of path integrals 199

Then, the general solution to

z̈ =
∂F

∂z
(248)

is given by

z(t)= za

(249)

+

√
F (za)℘

′(t; g2, g3)+
1
2F

′(za)[℘(t; g2, g3)− 1
24F

′′(za)]+
1
24F (za)F

′′′(za)

2[℘(t; g2, g3)− 1
24F

′′(za)]2− 1
48F (za)F ′′′′(za)

,

where ℘(t; g2, g3) is the Weierstrass elliptic function with algebraic quadratic

and cubic lattice invariants g2 and g3 related to the coefficients of the quartic

polynomial F in (247) by

g2 := a4a0 − 4a3a1 + 3a22,

g3 := a4a2a0 − 4a3a2a1 − a32 − a4a
2
1 − a23a0.(250)

The function ℘(t; g2, g3) is an even, doubly-periodic, elliptic function with

periods T1 and T2 expressed in terms of the invariants g2, g3 of the associated

algebraic curve of genus g = 1:

g2 = 60
∑

(m,n) �=(0,0)

(mT1 + nT2)
−4, g3 = 140

∑
(m,n) �=(0,0)

(mT1 + nT2)
−6.

(251)

The complex periods T1 and T2 define a 2D lattice, and ℘ parametrizes

the algebraic curve F (z) corresponding to a complex Riemann surface with

genus g = 1; i.e., a torus with two periods corresponding to each cycle S1.

More technically, this torus is obtained by ramifying a Riemann sphere at 4

points, i.e., zeros of F (z), whose branched double covering is the function ℘.

In the generalization of our solutions to higher degree potentials, the energy

conservation relation defines a higher genus complex algebraic curve, and the

role of the Weierstrass function is played by hyperelliptic and automorphic

functions.

If za is a zero of F (z), which corresponds to the relevant situation of za
being a turning point, then the general solution (249) simplifies significantly

to:
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z(t) = za +
1
4F

′(za)

℘(t)− 1
24F

′′(za)
.(252)

This is our “master formula”, which gives the general solution to the Eu-
clidean equations of motion. To find bounce or bion solutions which pass
through certain physically important turning points and critical points, we
must specify the point za and determine the appropriate invariants g2 and
g3. Note that the “Euclidean energy” E in (130) enters into the quartic
polynomial F (z) ≡ 2(E + V (z)), so the invariants g2 and g3 depend on E,
and take especially simple values when za is a critical point of the potential.

Note the interesting but elementary algebraic fact that for a quartic
polynomial F (z), as in (247), if z1 and z2 are two points such that F (z1) =
F (z2), then

F ′(z1) + F ′(z2) =
1

6
(z1 − z2)

(
F ′′(z1)− F ′′(z2)

)
.(253)

Appendix B. Absence of a hidden topological angle in
one-dimensional real integrals with real

parameters

Consider a one dimensional integral

(254) I =

∫ ∞

−∞
dx e−

1

�
S(x) .

with S(x) real for any x ∈ R, and � > 0. Consider decomposing the real
integration cycle R into a sum over Lefschetz thimbles: R =

∑
σ nσJσ. Here,

we prove that if zσ is a contributing saddle to the integration, i.e, nσ 	= 0,
then the phase associated with this cycle must be zero. This proves that
the HTA phenomenon that we found in the semi-classical analysis of the
path integral over real fields and real values of the parameters does not have
a counterpart in one-dimensional exponential type integrals, and does not
provide an accurate intuition for the problem. This may be one reason why
the possibility of complex saddles contributing to the semi-classical analysis
of path integrals was not taken sufficiently seriously in the past.

If the integral has a critical point at zσ, then the steepest descent equa-
tion Im S(z) = Im S(zσ) has two solutions: “the upward flow” Kσ, and the
“downward flow” Jσ (see Fig. 31). The “upward flow” (“downward flow”)
is the solution under which Re (−S(z)) increases (decreases) away from the
critical point. For the cycle Jσ to contribute to the cycle decomposition of
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Figure 31: Sketch of upward and downward flows from a critical point.

the real line R, its upward flow Kσ must intersect the real line. However

since Im S(x) = 0, ∀x ∈ R, and since the phase is stationary over the as-

cent thimble, Im S(x) = const, ∀z ∈ K0, it follows that Im S(zσ) = 0. This

shows that HTA of any critical point which contributes to the integral (254)

is always identically zero.

It is not clear to us that this one-dimensional intersection theory ar-

gument can be naively extended to infinite dimensional path integrals, for

which we have demonstrated in this paper that complex saddles must con-

tribute to certain real path integrals. It is also not clear to us whether this

one-dimensional intersection argument can even be naively extended to fi-

nite multi-dimensional real exponential integrals. We have several reasons

to be cautious about this: (i) the analysis of [24] concludes that the multi-

dimensional case is significantly different from one dimension; (ii) in many

complex dimensions the entire notion of intersection is much more subtle

than in in one complex dimension; (iii) in certain N × N matrix models,

which naturally generalize the one-dimensional integrals to higher finite di-

mensions, it has been observed that the cycle structure introduces new ef-

fects [123], which account for the phenomenon of phase transitions in matrix

models [124, 125, 126], something that cannot be seen in one-dimensional

integrals. While strictly speaking these phase transitions occur in an infi-

nite N limit, a recent numerical study of the Gross-Witten-Wadia model

has observed the contribution of complex saddles even at large but finite N

[127]. These factors suggest to us that the intersection theory argument for

path integrals requires much more careful study, even for regularized finite-

dimensional approximations to path integrals. For future work, it would be

interesting to construct complex bion saddles in regularized path integrals.
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