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Morphogens are diffusive molecules produced by cells, sending sig-
nals to neighboring cells in tissues for communication. As a result,
tissues develop cellular patterns that depend on the concentration
levels of the morphogens. The formation of morphogen gradients
is among the most fundamental biological processes during devel-
opment, regeneration, and disease. During the past two decades,
sophisticated mathematical models have been utilized to decipher
the complex biological mechanisms that regulate the spatial and
temporal dynamics of morphogens. Here, we review the model for-
mulations for morphogen systems and present the mathematical
questions and challenges that arise from the model analysis, with
an emphasis on Drosophila. We discuss several important aspects
of modeling frameworks: robustness, stochastic dynamics, growth
control, and mechanics of morphogen-mediated patterning.
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1. Introduction

How distinct cell types and organs are generated from a single cell or a
small number of cells is a fundamental question in studying multicellular
organisms. The concept of the morphogen is at the center of answering this
question [17, 130]. Morphogens are signaling molecules that can diffuse and
act over several cell diameters to induce concentration-dependent cellular
responses. This process involves various control strategies due to the com-
plexity and diversity among different types of organ development. ‘Wet’
experiments alone are usually insufficient for understanding the complex
machineries used for morphogen-mediated patterning and growth control.
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In recent years, the mathematical modeling approach has played a critical
role in delineating these complex processes, as well as the principles be-
hind them, providing an influx of fresh ideas and novel methods to biology
[47, 55, 59, 86].

This review focuses on mathematical models of morphogen gradient for-
mation, patterning robustness, and growth control, with an emphasis on
Drosophila. We begin the review with a brief description of the biological
background for morphogen systems. Next, we address general mathematical
formulations for several typical models of morphogen gradient systems. We
then discuss the robustness of morphogen gradients. Finally, we consider
morphogen-mediated growth control models that are closely related to the
scaling solutions and moving boundary problems. In this review, we focus
mainly on morphogen dynamics and growth driven by localized sources of
morphogens. Spontaneous patterning and some other aspects of patterning
studies can be found in other reviews [18, 80, 86, 121, 128].

2. Biological background

In 1969, Wolpert proposed that cells acquire positional information, such as
in a coordinate system, to produce spatial patterns of cellular fates [133].
Recently, substantial experimental evidence has shown that the positional
information of cells strongly depends on various types of signaling molecules
known as morphogens (aka ligands). For example, during embryonic devel-
opment, morphogens are sythesized at a localized site and dispersed (e.g.,
through diffusion) from their production site to bind to cell receptors on cell
membranes. These processes result in different levels of receptor occupancy
at different cell locations, leading to different levels of downstream signals
for different cells. The spatial concentration gradient of morphogen-receptor
complexes (aka signaling gradients) induces spatially graded differences in
cell signaling. These signaling gradients provide positional information for
the global patterns across the target tissue [133, 134]. An important concept
to understand is how cells know precisely and reliably where they are [60].

Morphogen-mediated pattern formation can be illustrated by a simple
non-biological system: the patterning of French flag (Fig. 1), which has a
simple pattern of one-third blue, one-third white, and one-third red in one
direction, similar to a line of cells with three different fates. In this system,
each cell has the potential to become blue, white, or red. One of the simplest
ways of achieving this patterning is that the cells acquire positional infor-
mation through the spatial gradient of the morphogen. If there is a source of
morphogen at one end and a sink at the other end, the morphogen diffuses
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Figure 1: The French flag model of pattern formation (replotted from [135]).

along the line of cells, leading to graded concentrations in space, with dif-
ferent positional information for each spatial region. If the cells respond to
threshold concentrations of the morphogen — for example, becoming blue,
white, or red in accordance with high, middle, or low level morphogen con-
centrations — the line of cells then develops to become a French flag (Fig. 1).

Much of the experimental evidence for morphogens has been observed in
systems such as the anterior-posterior patterning of the vertebrate limb, the
dorsal-ventral patterning of the vertebrate neural tube, the axes in Xeno-
pus, and the leg and wing imaginal discs of Drosophila. Known morphogens
include sonic Hedgehog (shh), which provides a graded signal for pattern for-
mation in the ventral neural tube [24]; the transforming growth factor beta
(TGF-beta) family, which is involved in dorsal-ventral patterning [109, 110];
retinoic acid, which stimulates growth of the posterior end of the organism
[48]; and decapentaplegic (Dpp) and Wingless (Wg), which regulate pattern-
ing and growth in Drosophila leg and wing imaginal discs [3, 90, 112, 114].
More examples of specific biological functions for various morphogens can
be found in other reviews [39, 111, 134, 130].

Aside from patterning, how morphogen gradients regulate tissue growth
is also a critically important question in morphogen systems [3, 19, 23, 101,
130]. For example, the Drosophila wing disc begins with approximately 40
cells and reaches a size of 50,000 cells in the late third instar larva [69].
Recent experimental studies on the development of the Drosophila wing
disc indicate that growth will not occur without morphogens; however, cell
proliferation is found to be spatially uniform in the wing disc, even with
a spatially graded morphogen [81]. This peculiar result raises the question
of how the spatially inhomogeneous morphogen gradient is translated into
uniform growth and how the wing disc maintains a robust final size at the
end of development.
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3. Reaction-diffusion equations driven by localized sources:
morphogen gradient formation

A number of mathematical models have been proposed for studying the
formation of morphogen gradients. Most of the models consist of morphogen
diffusion and the interaction among morphogen and cellular molecules, and
hence, the model of reaction-diffusion equations is a basic framework for
understanding this biological system [55, 128]. Here, we mainly focus on the
formation of long-range morphogen gradients (for example, the Dpp gradient
in the Drosophila wing imaginal disc shown in Fig. 2A) and review some
mathematical models that were developed from the study of morphogen
gradient formation, robustness, and growth control.

3.1. Ligand diffusion in extracellular space

The simplest biologically possible model is shown in Fig. 2B. In this model,
diffusive ligands are sythesized at a local site and then reversibly bind to re-
ceptors to form signaling complexes, and the signaling complexes are endocy-
tosed and degraded. In many situations, the morphogen activities essentially
vary only in the direction perpendicular to the axis of the production re-
gion. This behavior leads to the following one dimensional reaction-diffusion
equation of ligand extracellular diffusion (LED) (model B in [57]):

∂[L]

∂t
= V (X) +D

∂2[L]

∂X2
− kon[L](Rtot − [LR]) + koff [LR],(1)

LED:
∂[LR]

∂t
= kon[L](Rtot − [LR])− koff [LR]− kdeg[LR].(2)

Figure 2: A simple diffusion model. (A) Illustration of the distribution of
Dpp, shown in red, in the Drosophila wing imaginal disc. (B) The model
with diffusion, reversible binding, and degradation (replotted from [57]).
(Color figure online.)
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Here, 0 ≤ X ≤ Xmax for one half of the tissue region; [L] and [LR] represent
the concentration of ligands and signaling complexes, respectively; and the
total receptor concentration is assumed to be a constant, Rtot = [R] + [LR].
The formation and dissociation rates of the ligand-receptor complexes are
kon and koff , respectively, and the degradation rate of the signaling com-
plexes is kdeg. The diffusion is assumed to be governed by Fick’s second law,
with D the diffusion coefficient. The ligand production region along tissue
cells is specified by the function V (X). The localized synthesis site is often
represented by a narrow region of finite width 0 ≤ X ≤ Xmin. Thus, the
production rate V (X) is given in terms of the Heaviside unit step function
H(z) (referred to [63, 64]):

(3) V (X) =
v

Xmin
H(Xmin −X), H(z) ≡

{
0, (z < 0)
1, (z ≥ 0)

.

Here v is the synthesis rate per unit length. The no-flux condition is often
assumed at the one side of the morphogen production

(4)
∂[L]

∂X
= 0 at X = 0,

as a consequence of the symmetry relative to the border. At the other end
of the production, a sink condition is often used so that:

(5) [L] = 0 at X = Xmax.

For simplicity, we often consider the situation of point source, where the
ligand is only produced at X = 0. To this end, we can take the limit Xmin →
0 in (3); therefore, the production rate V (X) is given as a delta function

(6) V (X) = vδ(X).

We note that the boundary condition (4) is not valid in this case.
In the case of a point source, mathematical analysis shows that the

steady state gradient of the LED model depends on only two dimensionless
parameters, the ligand synthesis-to-degradation ratio β and the effective on
rate ψ, which are defined as

(7) β =
v

Rtotkdeg
, ψ =

X2
maxkdeg
D

konRtot

(koff + kdeg)
.

A biologically useful gradient (i.e., able to broadly distribute patterning in-
formation over the entire field of cells) can be produced only when β < 1 and



432 Jinzhi Lei et al.

the combination of β and ψ take values from a particular region [57]. For
biological gradients, the resulting signaling gradient exponentially decays
from the production border toward the other end. Linear stability analysis
showed that the steady state gradients are asymptotically stable [79]. When
a narrow region of ligand production is explicitly considered, it has been
proved that the system with a narrow region of ligand production always
has a positive steady state morphogen gradient, and hence there is no re-
striction on the synthesis-to-degradation ratio for the existence of steady
state gradient [63].

The idea that an in vivo morphogen gradient is formed by diffusion was
rejected in an early study by [50]. In this study, morphogen diffusion was
simulated over 180 receptor-bearing cells and the authors concluded that
morphogens can saturate all receptors in a region of tissue and thus cannot
form a biologically useful signaling gradient. However, this negative conclu-
sion was based on a numerical scheme without the degradation of signaling
molecules, which corresponds to the situation of kdeg = 0 (i.e., β = +∞)
in the LED model. Hence, this simulation would not exclude the diffusive
mechanism of gradient formation. The analysis in [57] further clarified the
condition to allow biologically useful gradients when β < 1. These results
highlighted the importance of qualitative study in understanding experimen-
tal facts [34].

The basic model (1)–(2) has been refined in many studies for more real-
istic situations, including the distributed synthesis of receptors [63, 79], en-
docytosis and exocytosis of receptors and signaling complexes [57, 79], and
extensions to two- or three-dimensional diffusion [123]. These improvements
make little difference to the conclusion of morphogen gradient formation but
can be more difficult in terms of mathematical analysis.

Despite the formation of biological gradients, numerical simulations have
showed that the signaling gradients produced from the above diffusion mech-
anism are not robust enough with respect to changes in the system param-
eters, as small changes in the ligand production rate can cause substantial
changes in the gradient shape [57]. In contrast, embryonic patterning is
usually highly robust, resisting not only substantial changes in the expres-
sion level of individual genes but also fluctuating environmental conditions.
These results suggest that additional biological processes must be at work
to ensure such robustness, leading to further model improvements that are
reviewed below. The contributions to robustness are discussed in Section 4.

3.2. Self-enhanced ligand degradation

In [28], the authors proposed the idea that self-enhanced ligand degrada-
tion can enhance the robustness of morphogen gradients. In this case, the
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degradation of morphogens is formulated as a nonlinear function of its own
concentration, instead of a linear function by first order degradation. A sim-
ple aspect of self-enhanced ligand degradation (SED) can be seen from the
following diffusion equation with a power-law degradation profile

(8) SED:
∂[L]

∂t
= D

∂2[L]

∂X2
− α[L]n + vδ(X).

In the case of linear degradation (n = 1), the steady state gradient is ex-
ponential decaying (here we assume the approximation Xmax → +∞) (also
see [52])

(9) [L] = [L]0e
−X/Δd , [L]0 = v/α, Δd =

√
D/α.

It is obvious that the steady state concentration is linearly dependent on
the ligand production rate; thus the morphogen gradient linearly tracks the
changes of the production rate when there are external perturbations to
ligand synthesis.

In the case of nonlinear degradation (n > 1), the steady state gradient
is power-law decaying (referred to [36] for detailed analysis):
(10)

[L] =
[L]0

(X/ε+ 1)m
, [L]0 =

n
√

v/α, m =
2

n− 1
, ε =

√
Dm(m+ 1)

αLn−1
0

.

Now, the steady state concentration depends on the ligand production rate
in a sublinear way, and hence, the morphogen gradient can buffer against
the fluctuations in the production rate.

Biologically, self-enhanced ligand degradation can be achieved through a
morphogen network composed of morphogen signaling-regulated (enhanced
or repressed) receptor expression and receptor-mediated ligand degradation
(often through a protease). Two types of regulation were proposed in [28]: the
Wingless(Wg)-like class, in which morphogen signaling represses the recep-
tor and the receptor stabilizes the morphogen, and the Hedgehog(Hh)-like
class, in which morphogen signaling activates receptor expression, and the
receptor enhances morphogen degradation. A general formulation is given
by the following set of reaction-diffusion equations [28]:

∂[L]

∂t
= V (X) +D

∂2[L]

∂X2
− k1+[L][R] + k1−[LR](11)

− a1[PR][L]− a2[P][L]− a3[L],
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∂[LR]

∂t
= k1+[L][R]− k1−[LR]− a4[LR],(12)

SED’:
∂[PR]

∂t
= k2+[R][P]− k2−[PR],(13)

∂[R]

∂t
= ηr1

Km
a

Km
a + [LR]m

+ ηr2
[LR]n

Kn
b + [LR]n

− k2+[R][P](14)

+ k2−[PR]− k1+[R][L] + k1−[LR]− α5[R] + ρα4[LR],

[P] = Ptot − [PR],(15)

where [L], [R], and [P] denote the concentrations of the ligand, receptor, and
protease, respectively, and the complexes are denoted by their constituents.
Different types of Wg-like or Hh-like regulation can be defined by adjusting
the parameters for protease-mediated ligand degradation (a1 and a2) and
for receptor expression (ηr1 and ηr2).

3.3. Non-receptor mediated ligand transport

Morphogen gradient formation may be modulated by interactions with hep-
aran sulfate proteoglycans (HSPGs) and other extracellular proteins that
tether morphogens to the cell surface [4, 8, 40, 53, 113, 137]. Such non-
signaling entities are called non-receptors because they bind with morphogens
in a way similar to receptors, but the resulting complexes do not signal cell
fate decisions. A good introduce was provided in [54] for how HSPGs af-
fect the stability and distribution of extracellular gradients. Many exper-
iments have shown that non-receptors play an important role in the for-
mation and robustness of morphogen gradients, such as Dpp, Wg, and Hh
[40, 74, 82, 137].

The basic model in Section 3.1 can be extended to include the binding
of morphogens with non-receptors, as illustrated in Fig. 3. In this model, we
consider a fixed concentration Ntot of proteoglycan-type non-diffusive non-
receptors and introduce a set of similar activities for the non-receptor sites.
These assumptions yield the following set of reaction-diffusion equations of
non-receptor mediated ligand extracellular diffusion (N-LED), described in
[66]:

∂[L]

∂t
= V (X) +D

∂2[L]

∂X2
− kon[L](Rtot − [LR])(16)

+ koff [LR]− jon[L](Ntot − [LN]) + joff [LN],
N-LED: ∂[LR]

∂t
= kon[L](Rtot − [LR])− (koff + kdeg)[LR],(17)
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Figure 3: Illustration of the non-receptor mediated morphogen gradient for-
mation.

∂[LN]

∂t
= jon[L](Ntot − [LN])− (joff + jdeg)[LN].(18)

Here, [LN] represents the concentration of ligand-non-receptor complexes,
Ntot = [N]+[LN], and the other variables are the same as in the above LED
model. Similarly to the discussions in Section 3.1, the ligand production
region is specified at 0 ≤ X ≤ Xmin, and the ligand production rate V (X)
is taken as a delta function V (X) = vδ(X) for a point source (Xmin = 0) or
a step function V (X) = (v/Xmin)H(Xmin −X) if Xmin > 0.

The existence, uniqueness, and linear stability of the steady state gra-
dient for the N-LED model were analytically studied in [66]. Similarly to
the case without non-receptor, when Xmin = 0 (point source), the system
has a unique steady state gradient if the synthesis-to-degradation ratio, now
defined as

(19) β =
v

Rtotkdeg +Ntotjdeg
,

satisfies β < 1. When Xmin > 0 (narrow production region), the system
always has a unique steady state gradient. Furthermore, the steady state
gradient is linearly stable in either of these situations. The presence of non-
receptor should reduce the amount of morphogen available for binding to
receptors and thereby inhibit cell signaling. This aspect was analytically
proved in [66]: for sufficiently low morphogen synthesis rates, the presence
of non-diffusive non-receptors generally lowers the normalized concentration
level of both free ligand and ligand-receptor concentrations at each point
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of the solution domain, reduces the steepness of the negative slope, and

increases the convexity of the concentrations (see Theorem 3 in [66]).

Although the system always has a steady state gradient when Xmin > 0,

not all gradient shapes are biologically useful, i.e., some gradients may not

be multi-fate gradients that can broadly distribute patterning information

over the entire field of cells. In [72], the multi-fate gradient was defined in a

mathematical way based on the following three aspects of the gradient pro-

file: the slope of the normalized signaling gradient should not be too steep;

the concentration of patterning signal should not be too low in the vicinity

of the ligand production region; and the slope of the normalized free ligand

concentration at the farther end of the tissue should be a small value. Anal-

ysis of the model equation showed that the steady state gradient mainly

depends on four parameters [72]: the normalized ligand synthesis rate v, the

ratio of saturation levels of receptors to non-receptors γ, the ratio of degra-

dation flux of receptors to non-receptors p, and the total degradation flux

of receptors and non-receptors λ. Furthermore, when γ is small enough, a

multi-fate gradient can be achieved for a suitable level of the ligand syn-

thesis rate v. These results outline the restrictions to produce a biologically

acceptable multi-fate gradient following the N-LED model.

Most HSPGs are static components in the extracellular matrix and there-

fore are considered to be non-diffusible. However, these non-diffusible non-

receptors can transport ligands through a “bucket brigade” pathway to form

long-range signals [71, 70, 73] (restricted diffusion model in [137]) (Fig. 4).

With these “bucket brigade” transports, ligands move across the tissue in a

manner similar to diffusion through the random work of the heparan sulfate

(HS) chains and hence can again be mathematically described by diffusion

equations [71]. Thus, we have a set of reaction-diffusion equations in which

both [L] and [LN] are allowed to diffuse (ND-LED, the N-LED with diffusion

in non-receptors)[73]:

∂[L]

∂t
= V (X) +DL

∂2[L]

∂X2
− kon[L][R] + koff [LR](20)

− jon[L](Ntot − [LN]) + joff [LN]− kdeg,L[L],

ND-LED:
∂[R]

∂t
= ωR([LR])− kon[L][R] + koff [LR]− kdeg,R[R],(21)

∂[LR]

∂t
= kon[L][R]− (koff + kdeg,LR)[LR],(22)

∂[LN]

∂t
= DLN

∂2[LN]

∂X2
+ jon(Ntot − [LN])− (joff + jdeg)[L].(23)
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Figure 4: The model of morphogen gradient formation with “bucket brigade”
transport through membrane-associated non-receptors and possible fast
degradation of free ligands.

Here, the synthesis and degradation of receptors are explicitly included, and
feedback from the signaling molecule to receptor synthesis is given by the
function ωR. Furthermore, the degradation of free ligand, with a degrada-
tion rate kdeg,L, is also included. If the morphogen is rapidly turned over
(kdeg,L � jonNtot) but is protected against degradation while binding to the
non-receptors (jdeg = 0), the system has a unique steady state solution, and
the solution is linearly stable [73].

In several studies of the formation of the BMP gradient in Drosophila
or zebrafish embryos [78, 85, 105, 139], the binding of morphogen to the
diffusible non-receptor can result in sharp enhancement of the signaling
gradients. Mathematical models of these studies are similar to the above
equations; however, the boundary conditions are different in that the tissue
geometries are modeled as closed circles for the patterning of dorsal-ventral
development.

3.4. Receptor-mediated transcytosis

In additional to the formation of long-distance gradients by free diffusion
and/or “bucket brigade” transportation through non-receptors, the mor-
phogen can also be transported with the help of receptors, a process termed
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transcytosis, i.e., by repeated rounds of morphogen binding to cell surface

receptors, internalization into the cell and subsequent externalization, and

release of the ligand from the receptor on the cell surface (i.e., dynamin-

dependent endocytosis) [16, 15, 14, 30, 92].

Similarly to the LED model in Section 3.1, a simple model of such

receptor-mediated transcytosis (RMT) can be formulated as

∂[L]

∂t
= V (X)− kon[L](Rtot − [LR]) + koff [LR],(24)

RMT:
∂[LR]

∂t
= D

∂2[LR]

∂X2
+ kon[L](Rtot − [LR])(25)

− koff [LR]− kdeg[LR].

Discussions in [57] have shown that transcytosis can form a multi-fate gra-

dient; however, a series of cell biological events would have to occur at im-

plausibly fast rates to form the gradient in a reasonable timeframe.

In [15] and [14], based on a microscopic model of transcytosis transport,

the authors derived effective transport equations and showed that transcy-

tosis can lead to robust ligand profiles. Moreover, in [16], the authors further

discussed the precision of a morphogen gradient by considering how cell-to-

cell variability in the source, the target tissue, or both contribute to the

variations of the gradient. In these studies, each single cell in the field of

interest was considered individually, and the system dynamics can be de-

scribed by a set of ordinary differential equations. Thus, cell-to-cell variabil-

ity was modeled through fluctuations in the concentrations of intracellular

and extracellular molecules and system parameters.

There has been a long debate regarding whether a long-range morphogen

gradient is formed by morphogen diffusion or by non-diffusive mechanisms

[50, 57, 92, 140]. In [52], kinetic parameters of two key morphogens, De-

capentaplegic (Dpp) and Wingless (Wg), during the development of the fly

wing were studied quantitatively. Dpp forms a longer-range gradient than

Wg. The kinetic parameters suggested that dynamin-dependent endocytosis

was required for the gradient formation of Dpp but not of Wg. However, the

dynamin-dependent endocytosis of Dpp can be the result of ligands binding

to either receptor or non-receptor, which yield different type formulations of

diffusive ligand-receptor (the RMT model (24)–(25)) or ligand-non-receptor

(the ND-LED model (20)–(23)). The receptor plays different roles in these

two models. In the receptor-mediated transcytosis model, the receptor is

essential for the endocytosis, re-secretion, and thus transport of ligands,
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whereas in the ligand extracellular diffusion model, receptors merely mod-
ulate ligand distribution by binding the ligand at the cell surface for inter-
nalization and signaling. In [102], the authors combined genetic tools with
mathematical modeling to discriminate between the two models for Dpp gra-
dient formation in the Drosophila wing disc. They analyzed how receptor
mutant clones affect the Dpp profile and suggested that receptor-mediated
transcytosis cannot account for the Dpp gradient formation, and thus the
Dpp gradient should be formed following the mechanism of extracellular
diffusion mechanism [102].

3.5. Other models

In the above models, we mainly discuss gradient formations in which mor-
phogens are sythesized at a localized site and transported to further tissue
cells at the other side to form a long-range signaling gradient. The formu-
lation of these gradients is usually modeled by reaction-diffusion equations
with a source term at one side and a sink at the other side, and hence
the signaling gradient at steady state is driven by the boundary conditions
(the source term). Hence, the steady state pattern is described by a set of
nonlinear boundary value problems, and a key mathematical question is to
determine how the solution of the boundary value problem depends on sys-
tem parameters. In most mathematical models, the positional information is
assumed to be decoded by the concentration of signaling molecules at steady
state. However, alternative decoding strategies are also possible, including
pre-steady state readout [12], temporal derivatives of the morphogen concen-
tration [98], dynamics of morphogen signaling [131, 129], and the integration
of signals from multiple morphogens [83, 88].

There are many other biological problems that yield alternative forms
of mathematical models. In the dorsal-ventral patterning of Drosophila em-
bryonic development, the morphogens Dpp and short gastrulation (Sog) are
synthesized in different regions, diffuse to the whole tissue, and then interact
with each other to pattern tissue development [26, 67, 104]. A mathematical
model of such Dpp/Sog patterning was developed in [78]. In this model, the
Drosophila embryo was represented by a ring for the dorsal-ventral cross-
section, Dpp is only produced in the upper part (dorsal region), and Sog
is only produced in the lower part (ventral region). Hence, the steady state
gradient is regulated by the interactions between the two morphogens. The
effect of receptor over-expression in the Dpp-Sog system was discussed in
[67]. A similar computational model, but in three spatial dimensions, was
developed for the BMP gradients in the dorsal-ventral patterning of the
zebrafish embryo [139].
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In addition to the mechanisms of patterning with signaling gradients,
other developmental patterning strategies include patterning with activator-
inhibitor systems (i.e., Turing’s theory), genetic oscillations in neighboring
cells, or mechanical deformations. Refer to [55], [86] and [80] for reviews of
the mathematical models and computational approaches of these patterning
strategies.

How tissue growth affects the scaling of a morphogen gradient and how
a morphogen gradient mediates tissue growth are interesting questions for-
mulated in recent years. Mathematically, these questions lead to the scal-
ing solution of reaction-diffusion equations and moving boundary problems,
which are discussed in Section 5.

4. Robustness of morphogen gradients

Robustness — a phenotypic trait of the absence or low level of variation
of phenotype in the face of genetic and/or environmental perturbation —
has become a commonly used term in biological studies [32]. During em-
bryonic development, there are many perturbations that can be unfavor-
able for precise pattern formation. Hence, it is important for an embryo
to be tolerant toward different perturbations, including noisy environmen-
tal variation and genetic variation. Exploring the robustness of morphogen
gradient formation and identifying ways of producing robust patterning has
become a major research topic in recent years [61, 60, 117]. Most works
have focused on parametric robustness, i.e., insensitivity to parameter val-
ues [27, 58, 61, 72, 73, 76, 87, 105, 124, 125, 132]. Some investigators also
focus on the “precision” of morphogen gradients, i.e., the natural variation
among individuals in a population [16, 29, 38, 45, 116]. Recently, a few
studies have drawn attention to the effects of noise in morphogen gradients,
especially the precision of patterning boundaries [16, 43, 44, 138].

The precise definition of robustness is often ambiguous, despite its com-
mon use in biological studies. When defining robustness, it is important to
specify which trait is robust to which perturbation and to provide a quantifi-
cation for measuring robustness [32]. The robustness of a system to external
or internal variations is often quantified by the sensitivity coefficient, which
corresponds to the fold change in the output of interest in response to a
given fold change in a particular input [96].

For the morphogen gradient formations discussed in this review, often
described by a set of reaction-diffusion equations with suitable boundary
conditions, the signaling gradient is described by the solution of the result-
ing boundary value problem at steady state. Here, we introduce general ways
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to define robustness. To this end, we always assume that the boundary value
problem has a unique solution, denoted by Sig(X; p), and the signal concen-
tration at position X is dependent on the parameter value p. Therefore, the
sensitivity coefficient of the signal with respect to changes in p is defined as

(26) SSig,p(X) =

∣∣∣∣∂ ln Sig

∂ ln p

∣∣∣∣ =
∣∣∣∣ p

Sig

∂Sig(X; p)

∂p

∣∣∣∣ .
This sensitivity coefficient is based on the definitions for robustness in many
studies, such as [15, 28, 71, 73].

In experiments, a natural pattering phenotype is to measure the loca-
tion X of cells with a particular cell type, which is determined by the corre-
sponding signaling level Sig. Thus, as in [76], the corresponding sensitivity
coefficient is given by

(27) SX,p(Sig) =

∣∣∣∣ pX ∂X(Sig, p)

∂p

∣∣∣∣ .
When the cell type is well defined by a signaling threshold, the robustness
of patterning can be measured by the sensitivity coefficient at the signal-
ing boundary, i.e., SX,p with signaling concentration taken as the threshold
value. Otherwise, the robustness of patterning formation with respect to the
parameter p can be defined as the mean of sensitivity over the signaling
region

(28) Rp =
1

Sig1 − Sig0

∫ Sig1

Sig0

∣∣∣∣ pX ∂X(Sig, p)

∂p

∣∣∣∣ dSig.
The sensitivity coefficient defined by (27) is a good quantity to measure

the variation with respect to small changes in the input parameter, i.e., per-
turbations in system parameters. However, in biological systems, mutations
in genes can yield significant changes to certain parameters, such as protein
synthesis rates [87]. To measure the robustness with respect to these changes,
the root-mean-square of cell displacement after parameter changes would be
a meaningful measurement of robustness, which is formulated as [72]

(29) Rp→p′ =
1

|X(Sig1, p)−X(Sig0, p)|

√
1

Sig1 − Sig0

∫ Sig1

Sig0

(ΔX)2dSig,

where ΔX = X(Sig, p′) − X(Sig, p) is the change in cell location, with a
given signaling concentration Sig, when p is changed to p′.
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The above definitions are straightforward for parametric robustness in
which changes in parameters often shift the signaling gradient in a single
direction. However, the boundary between different cell fates is well defined
by the concentration threshold, whereas noise perturbations in cell-to-cell
variations can often mix up the cell fate boundary and induce a “salt-and-
pepper” transition zone. In this situation, a sharpness index is often defined
for the robustness of patterning formation in the context of noise perturba-
tions [76, 77, 138].

Mathematically, the formulation of the steady state solution demon-
strates that this robustness (or sharpness index) depends on the system
parameters in a highly nonlinear way. Hence, it is difficult to perform math-
ematical analysis of the robustness dependence. Below, we introduce two
typical examples to discuss the mathematical questions that arise from ro-
bustness analysis.

4.1. A boundary value problem: perturbation in morphogen
synthesis

We begin by reviewing a well-accepted strategy for achieving parametric
robustness in morphogen gradients: the principle of self-enhanced clearance
[28]. A simple model to demonstrate how a morphogen’s stimulation of its
own degradation can provide a way to build a robust gradient is described in
Section 3.2. From equation (8), in the case of linear degradation (n = 1), the
sensitivity of the ligand concentration atX with respect to the concentration
at the synthesis site is

(30) SX,L0
|n=1 =

∣∣∣∣L0

[L]

∂[L]

∂L0

∣∣∣∣ = 1.

When there is self-enhanced clearance (n > 1), the sensitivity coefficient is
given by

(31) SX,L0
|n>1 = 1− X/ε

X/ε+ 1
.

Thus, self-enhanced clearance (increasing n) tends to decrease the sensitivity
of ligand concentration to variation in the morphogen synthesis, hence im-
proving robustness. Refer to [61] for a review of the strategy of self-enhanced
clearance.

A possible means of self-enhanced clearance can be the consequence of
enhancing ligand degradation through non-signaling receptors (non-receptor).
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Analytical studies in [72] provided a theoretical basis of how a robust sig-
naling gradient can be achieved by substantial binding of the signaling mor-
phogen to non-receptors and degradation of the resulting complexes at a
sufficiently rapid rate. A simple model of morphogen gradient formation in-
cluding the reversible binding and unbinding of ligands with non-receptors
and the rapid degradation of the resulting complexes is shown by (16)–(18)
(the N-LED model) in Section 3.3. Alternatively, see [72] for a model in-
cluding the synthesis of the receptor and non-receptor and the transport of
extra- and intracellular molecules. To analyze the robustness, the dimen-
sionless form of the steady state equation for the normalized free ligand
concentration a(x) can be written as follows [72]:

(32) a′′ − λ2

(
p

1 + a
+

1− p

1 + γa

)
a+ (v/d)H(d− x), ( )′ =

d( )

dx
,

where 0 < x < 1 is the normalized spatial variable, H is the Heaviside unit
step function so that the ligand synthesis region is limited to [0, d], and the
boundary condition is defined as

(33) a′(0) = a(1) = 0.

The normalized concentration of the signaling morphogen-receptor com-
plexes is given by

(34) b(x) =
a(x)

a(x) + 1
.

Hence, the signaling gradient b(x) is defined by the boundary value problem
(32)–(34). There are five dimensionless parameters: the relative width of the
ligand production region d, the normalized ligand synthesis rate v, the ratio
of the saturation level of receptors to the saturation level of non-receptors γ,
the ratio of the degradation fluxes of the receptor to the degradation fluxes
of the non-receptor p, and the sum of these fluxes λ2. Here, d is a geometric
parameter and is often fixed in studies (for example, d = 0.06 in the case of
the Drosophila wing imaginal disc, corresponding to the width of 12μm for
the production region compared with the total width of 200μm), and hence
the signaling gradient and robustness depend on the other four parameters:
v, γ, p, λ. Here, we note that p = 1 corresponds to the situation without
non-receptor. Given the nonlinear boundary value problem, the dependence
of the signaling concentration on parameters is not obvious, and hence it is
not straightforward to calculate the robustness.
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Using the energy integral method, it has been shown that the boundary
value problem (32)–(33) has a unique solution, and hence the robustness
measures how sensitively this unique solution depends on system parameters.
The robustness with respect to a 2-fold change in the synthesis rate (v → 2v)
was discussed in [72], in which the robustness index R was defined by the
root-mean-square of cell displacement (29). Focusing at multi-fate signaling
gradients, it was proven that the robustness has a lower bound defined by a
function J(p, γ):

(35) J(p, γ) = min
ξ>0

∫ 2ξ
ξ

du√
E(u)∫ ξ

ξ

5+4ξ

du√
E(u)

, E(u) =

∫ u

0
a

(
p

1 + a
+

1− p

1 + γa

)
da.

In particular, when p = 1 (the case without non-receptor), J(1, γ) > 0.35,
which indicates that without non-receptor, the system always has poor ro-
bustness (biologically acceptable robustness is often taken to be R < 0.2).
This analysis provided a theoretical base for the numerical simulation stud-
ies in [65] of the nonexistence of robust multi-fate gradients without non-
receptors among simulations conducted for 220 random sets of parameter
values. In the opposite situation, when p = 0 (the case without receptor)
and γ = 0, the boundary value problem (32)–(33) can be solved explicitly,
and good robustness can be achieved if the ligand synthesis rate v is large
enough. Despite the biologically non-realistic situation p = 0, based on the
continuous dependence of the robustness R on the four parameters p, γ, λ, v,
good robust multi-fate gradients are possible if both p and γ are small values
and v is large enough. Biologically, these conditions are met as follows: (1)
a receptor degradative flux sufficiently low relative to the non-receptor and
(2) the synthesis rate of free ligand is sufficiently high, but not high enough
to saturate available receptors in signaling cells [72].

As discussed previously, the formation of a morphogen gradient can also
be modeled by “bucket brigade” transportation so that free ligands move
long distances through the help of non-receptors, which results in the ND-
LED model (20)–(23). The normalized steady state gradient is given by the
following boundary value problem [73]:

θl
∂2l

∂x2
− (l − w)− ε (l (1− w)− γ (αu− l r)) + (η/ε)H(d− x) = 0,(36)

∂2w

∂x2
− λ2(w − ε l (1− w)) = 0,(37)
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where 0 < x < 1, the functions u and r depend on l through

(38) l = (α+ 1)u/r, r = k(u)− μu.

Here, l and u are normalized ligand and ligand-non-receptor complex con-

centrations, respectively, and u is the normalized signaling (ligand-receptor

complex) concentration. The boundary conditions are

(39) w′(0) = l′(0) = w(1) = l(1) = 0, ( )′ =
d( )

dx
.

The nonlinear function k(u) represents the feedback from signal concentra-

tion to the synthesis of receptors. Non-positive feedback is often considered,

so that

(40) k(0) = 1, k′(u) ≤ 0, k(u) > 0, ∀u ≥ 0.

To study robustness with respect to the ligand synthesis rate, we need

to investigate how the solution u(x) of the above boundary value problem

depends on η. In [73], it was proven that if ε is small enough, then a unique

combination of biologically acceptable gradients {w, (x), l(x), u(x), r(x)} ex-

ist, i.e., the gradients satisfy (36)–(38), and the restrictions

(41) 0 ≤ w(x) ≤ 1, l(x) ≥ 0, r(x) ≥ 0, u(x) ≥ 0, (0 ≤ x ≤ 1).

When ε 	 1 and θl 	 1, the approximation of the acceptable gradients

can be calculated explicitly. Based on these approximations, [73] discussed

the robustness of the signaling gradient when the ligand synthesis rate η

increases to η′, Rη→η′ , and showed that Rη→η′ = O(η−1/2) when η is suffi-

ciently large. This result suggests that a robust gradient can be achieved for

a high ligand synthesis rate. Biologically, the conditions ε 	 1, θl 	 1 and

η � 1 are met if (1) the free ligand is rapidly turned over and (2) the ligand

synthesis rate is large enough that non-receptors in the ligand production

region have high occupancy.

Cell membrane non-signaling receptors (such HSPG) are important for

the formation of morphogen gradients. A series of studies have shown that

the presence of non-receptors is favorable for robust gradients [71, 72, 73].

The desired robust morphogen gradient with respect to substantial pertur-

bations of the morphogen synthesis rate is seen to be achievable through

two different mechanisms involving regulation by non-receptors [73]:



446 Jinzhi Lei et al.

Mechanism 1: Substantial (reversible) binding of slowly turned over mor-

phogen molecules with membrane-bound non-receptors, with the re-

sulting non-signaling complexes degrading at a sufficiently rapid rate.

Mechanism 2: Fast binding of rapidly turned over free morphogen

molecules with non-receptors so that the non-signaling complexes move

downstream through a “bucket brigade” process.

However, the above two mechanisms fail to generate good robustness with

respect to perturbations in the receptor synthesis rate due to the restriction

of the kinetic and diffusive resistances in molecule transportation [71, 76]. As

a consequence of this restriction, there is a trade-off between the robustness

with respect to the receptor synthesis rate and the signaling length scale.

Hence, some other mechanisms must be involved to achieve robustness with

respect to multiple perturbations.

In [76], the authors investigated the interplay between the robustness of

patterning to the changes in receptor synthesis and morphogen synthesis and

to the effects of cell-to-cell variability. Based on a simple model of morphogen

gradient formation with diffusion and receptor-mediated uptake, the analysis

showed the trade-offs and constraints to achieve these three performance

objectives simultaneously. This study proposed a potential mechanisms for

mitigating such trade-offs and constraints. The strategy includes the down-

regulation of receptor synthesis in the morphogen source and the presence

of non-receptors. Recently, the effects of feedback mechanisms on the robust

gradient were discussed in [56]. In particular, a new approach to robust

signaling gradients was introduced through nonlocal feedback with delay to

the ligand synthesis rate [56, 108].

4.2. Stochastic modeling: cell-to-cell variability and noise in

downstream

Cell-to-cell variation can be important for the precision of a morphogen

gradient [44, 61, 136]. A simple diffusion-based model including cell-to-cell

variation is described by [16] as

(42)
∂

∂t
c(t, �x) = ∇ · [(D0 + η(�x))∇c(t, �x)]− (k0 + ξ(�x))c(t, �x),

where c(t, �x) is the ligand concentration, and �x is a spatial position (�x =

(x, y) for 2 or �x = (x, y, z) for 3 dimension). Here, η(�x) and ξ(�x) are random

functions with zero average that describe the fluctuations in the diffusion
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rate and clearance rate, respectively. The ligand synthesis is given by the
boundary condition

(43) (D0 + η(�x))
∂

∂x
c(�x, t) = −j0 − χ(�x)|x=0,

where j0 is the average current across the boundary and χ(�x)|x=0 is a random
function with zero average.

Equation (42) describes morphogen gradient formation with cell-to-cell
variation through a reaction-diffusion equation with spatially dependent co-
efficients. Due to the presence of multiplicative noise, the analytical calcula-
tion of the steady state solution is challenging. Numerical simulations in [16]
showed that when there is cell-to-cell variability in the source, while the tar-
get cells are identical, the uncertainty of the morphogen concentration in the
target tissue decreases with distance from the source. Alternatively, when
the producing cells are identical but there is variability in the target, the un-
certainty increases at large distances. In general, cell-to-cell variability exists
in both the source and the target tissue. In this scenario, the uncertainty
first decreases for a small distance from the source, reaches a minimum, and
then increases for large distances. Hence, there is an optimal distance from
the source at which the morphogen concentration has the best precision.

In pattern formation, cells sense their positions along morphogen gradi-
ents and collectively respond to form precise domains for target gene expres-
sion. However, noise perturbation can often affect the boundary in multi-fate
cell patterning. Spatially constrained stochastic models suggest that noise
depends predominantly on the transcription and translation dynamics of
target gene expression [44], and external fluctuations in signals also play an
important role in downstream responses [43]. Additionally, computational
analysis of a stochastic model showed that noise could promote the sharp-
ening of boundaries between adjacent segments [138].

In [138], the authors showed how noise drives the sharpening of gene
expression boundaries in the development of rhombomeres in the zebrafish
hindbrain, in which the morphogen retinoic acid (RA) induces the expres-
sion of hoxb1a in rhombomere 4 (r4) and krox20 in r3 and r5. In this study,
spatial and temporal noises in the morphogen synthesis and ligand-receptor
binding were introduced to the reaction-diffusion model of RA morphogen
gradient formation, and temporal noises were introduced for each gene ex-
pression. In the model, the two genes hoxb1a and krox20 inhibit each other
to form positive feedback, which yields bistability with either low or high
expression of each gene. The temporal noise in gene expression can induce
switches between the two expression states to form the patterning of the
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zebrafish hindbrain. Computational analysis further showed that the spatial
temporal noise in morphogen gradient formation can improve the sharpen-
ing of boundaries. This finding suggested a noise attenuation mechanism
that relies on intracellular noise to induce switching and coordinate cellular
decisions during developmental patterning [138].

5. Morphogen-mediated growth control

The morphogen gradient is closely related to tissue growth. To determine
how the inhomogeneous morphogen gradient is translated into uniform
growth and how the wing disc maintains a robust final size at the end,
a number of potential growth control models have been proposed, includ-
ing the temporal dynamics model [6, 130, 131], the slope model [100], the
mechanical feedback model [1, 2, 106], and others. In the slope model, the
relative slope of the signal controls cell division; in the temporal dynamics
model, growth is regulated by the percentage of increase in the signal over
time; and in the mechanical feedback model, the mechanical stress induces
cell proliferation, while the final size of the tissue is controlled by the me-
chanical compression. However, the mechanisms for morphogen-mediated
growth control remain controversial, as none of them can explain all signifi-
cant biological data.

5.1. Scale-invariance of reaction-diffusion: scaling with tissue size

Scaling of the morphogen gradient with tissue size is essential for ensuring a
body plan of reproducible proportions. Scaling has been observed in many
biological systems [37, 68, 83, 122, 120], including the Drosophila wing imag-
inal disc [131]. The scale-invariance of the Dpp gradient was experimentally
observed in mutants of the insulin pathway, which affects the wing disc size
[112].

When cell division and proliferation depend on morphogen signaling, the
morphogen gradient scales with the growing tissue size (Fig. 5). In mathe-
matical descriptions, the growing tissue is represented by a moving bound-
ary, and a perfect scaling of the morphogen gradient with the growing tissue
size is defined as a scaling solution, i.e., a time-independent function F (x)
exists for all x ∈ [0, 1] such that

(44) [L](X, t) = [L](0, t)F

(
X

Xmax(t)

)
for all X ∈ [0, Xmax(t)],

where Xmax(t) represents half size of the growing tissue.
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Figure 5: Illustration of perfect scale-invariance of morphogen gradient with
growing tissue size. Left panel: blue line represents the morphogen at time t1;
green line represents the morphogen at time t2; red line represents the mor-
phogen at time t3. We set Xmax(t2) = 2Xmax(t1) and Xmax(t3) = 2Xmax(t2).
(Color figure online.)

For tissue growth control, recent experimental and theoretical studies
supported that scale-invariance in the morphogen gradients may be a key
factor for achieving robust patterning, spatially uniform growth, and a finite
tissue size [6, 62, 131, 127]. In this section, we discuss some models for the
scaling of morphogen gradients with tissue size.

In [91], a framework for studying the scale-invariance of a Turing system
was proposed:

∂[L]

∂t
=

∂

∂X
(D0 +D1[E]))

∂

∂X
[L] + F ([L]),(45)

∂[E]

∂t
= DE

∂2

∂X2
[E] + vE .(46)

Here, X ∈ [−Xmax, Xmax] denotes the region of space occupied by the devel-
oping system. In this model, morphogen diffusion is affected by regulatory
molecules so that the diffusion rate depends on [E], which denotes the con-
centration of regulatory molecules. The boundary conditions at X = Xmax

are:

∂[L]

∂X
= 0 and −DE

∂[E]

∂X
= h[E].(47)
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The boundary conditions at X = −Xmax are:

∂[L]

∂X
= 0 and DE

∂[E]

∂X
= h[E].(48)

Because the time scale of tissue growth is much longer than the time

scale of morphogen dynamics, the study in [91] mainly focused on the steady

state morphogen gradient. When the spatial coordinate is replaced by a

dimensionless variable ζ = X/Xmax ∈ [−1, 1], the steady state system for

morphogen concentration can be formulated as

(49)
1

X2
max

∂

∂ζ
(D0 +D1

ˆ[E]))
∂

∂ζ
ˆ[L] + F ( ˆ[L]) = 0,

where ˆ[L] and ˆ[E] are the steady state concentrations of the morphogen

and regulatory molecule, respectively. From equation (49), a simple and

key condition for perfect scale invariance for the gradient [L] is that the

morphogen diffusion coefficient (D0 + D1[E]) is proportional to the tissue

size X2
max.

In [91], Turing stability analysis was applied to study the conditions for

achieving perfect scale-invariance in a growing domain. The analysis showed

that the coefficient of permeability for the leaky boundary condition, the

parameter h, is the key to achieve scaling. With sufficiently large h, the

range of Xmax over which the growing pattern is essentially unchanged can

be made as large as desired.

While [91] focused on the Turing system without sources at the bound-

ary, the methods and model structure can be applied to the French flag

type models discussed in this review. In [118], the author applied multiple

time scale analysis to identify the conditions for the scale-invariance of the

LED model. A model of the Expansion-Repression (ER) mechanism, was

proposed for studying the scale-invariance of the morphogen system in the

Drosophila wing disc [9, 10, 11].

The ERmechanism achieves scale-invariance in French flag model through

the inhibition of morphogen degradation. Experiments have suggested that

Dpp gradient formation, the diffusive molecule Pentagone (Pent) plays a

role as an “expander” that is repressed by Dpp signaling and can expand

the morphogen gradient by either enhancing morphogen diffusion or de-

creasing morphogen degradation [126]. If the expander inhibits morphogen

degradation (Fig. 6), the dynamics of morphogen gradient formation can be

modeled as
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Figure 6: Illustration of the Expansion-Repression mechanism through reg-
ulation of morphogen degradation.

∂[L]

∂t
= DL

∂2[L]

∂X2
− βL

1 + [E]/E0
[L],(50)

ER:
∂[E]

∂t
= DE

∂2[E]

∂X2
− βE [E] + αE

TH
rep

TH
rep + [L]H

,(51)

where [E] denotes the concentration of the expander. The expander produc-
tion is inhibited by the morphogen signaling and is represented by a Hill
function. The morphogen is produced with a flux from X = 0 and reflective
at the other boundary so that

∂[L]

∂X
= − jin and

∂[E]

∂X
= 0, at X = 0;(52)

∂[L]

∂X
= 0 and

∂[E]

∂X
= 0, at X = Xmax.(53)

As the expander accumulates, the degradation of the morphogen decreases,
and the morphogen diffuses farther from the source, narrowing the region
where the expander is expressed. With the assumption that the expander
diffuses rapidly and degrades slowly, the distribution of the expander is
approximately uniform across the field and continues to accumulate as long
as it is produced. Under these conditions, the system reaches a steady state
only when the expander production is repressed throughout the field [9, 10].
A scaling measurement was defined in these studies to discuss the conditions
for achieving scale-invariance in morphogen systems.
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In [75], the above model was modified by replacing the boundary con-
dition (52) with a no flux boundary condition, and a narrow region of lig-
and production was introduced. Assuming that expanders rapidly diffuse
and slowly degrade, the steady state system of the ER mechanism can be
simplified to a one-equation boundary value problem for the steady state
morphogen concentration a(X):

(54) DL
d2a

dX2
− βL

1 + b/E0
a+ V (X) = 0,

where

(55) b =
1

βE

∫ Xmax

−Xmin
VE(a(X))dX

Xmax +Xmin
,

and

(56) VE(y) = αE

TH
rep

TH
rep + yH

.

Here, the function V (X) is defined by the Heaviside function as (3). In
this case, the existence and uniqueness of the steady state gradient were
proven, and it was suggested that the ER mechanism could contribute to
the robustness of morphogen-mediated patterning.

5.2. Moving boundary problem: from tissue growth to scaling of
morphogen gradient

In the previous section, we discussed studies on the scaling of a steady state
morphogen gradient. However, the motion field created by tissue growth may
affect the dynamics of the morphogen gradient in the growing domain [22].
Tissue growth control and scaling of a morphogen gradient can be coupled
through advection in a simple model. A generic model for a morphogen
system on a growing domain was proposed by [35]. The model is based on
the Reynolds transport theorem and is formulated as

(57)
∂[L]

∂t
+

∂(v[L])

∂X
= DL

∂2[L]

∂X2
, on X ∈ (0, Xmax(t)),

where v denotes the growth field, and the domain is expanding linearly with
time so that

(58) Xmax(t) = Xmax(0) + vgt.



Morphogen dynamics and growth control 453

The boundary condition is given by

(59)
∂[L]

∂X
= −jin, at X = 0;

∂[L]

∂X
= 0, at X = Xmax(t).

For a uniformly growing domain, the local growth rate ∂v/∂X is defined as

(60)
∂v

∂X
=

vg
Xmax(t)

.

In this system, morphogens spread, and an advection term is included be-
cause the morphogens may be attached to cells during tissue development.
This inclusion is based on the fact that in the Drosophila wing disc, at least
97% of morphogens have been found either to be internalised or absorbed
by cells [112, 140]. Because of the advection term, the dynamics is different
from the previous models, in that the morphogen gradient does not reach a
steady state within the physiological time scale.

Equation (57) can be rewritten in the following form:

(61)
∂[L]

∂t
+ v

∂([L])

∂X
= DL

∂2[L]

∂X2
− [L]

∂v

∂X
.

In [35], the last term is called the dilution term, which is critical for per-
fect scaling in a uniformly growing domain. Simulations in [35] have showen
that the morphogen gradient has perfect scaling when there is no diffusion
(DL = 0), which indicates that the impact of advective transport is es-
sential for scale-invariance. This result was further verified in an advective
ligand extracellular diffusion model (A-LED) involving reaction terms such
as receptor binding and unbinding and morphogen internalization [35]:

∂[L]

∂t
+

∂(v[L])

∂X
= DL

∂2[L]

∂X2
− kon[L][Ro](62)

+ koff [LRo] + VL(X, t)
∂[Ro]

∂t
+

∂(v[Ro])

∂X
= − kon[L][Ro] + koff [LRo](63)

− kin[Ro] + kout[Ri],
∂[Ri]

∂t
+

∂(v[Ri])

∂X
= kin[Ro]− kout[Ri](64)

A-LED: − kdeg,R[Ri] + VR(X, [LR]),
∂[LRo]

∂t
+

∂(v[LRo])

∂X
= kon[L][Ro]− koff [LRo](65)

− kin[LRo] + kout[LRi],
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∂[LRo]

∂t
+

∂(v[LRo])

∂X
= kin[LRo]− kout[LRi](66)

− kdeg,LR[LRi],

[LR] = [LRo] + [LRi],(67)

where Ro, Ri, LRo and LRi denote the internal receptor, membrane-bound
receptor, internal morphogen-receptor complex and membrane-bound
morphogen-receptor complex, respectively.

5.3. Moving boundary problem: from morphogen gradient
scaling to tissue growth

Experimental observations showed that cell division is strongly connected
with the temporal dynamics of morphogen signaling [131]. In particular, the
local growth rate is proportional to the relative temporal change of mor-
phogen signaling. Based on this assumption and the Expansion-Repression
mechanism, the advection ER (A-ER) system can be modeled by the follow-
ing advection-reaction-diffusion equations [6]:

∂[L]

∂t
+

∂(v[L])

∂X
= DL

∂2[L]

∂X2
− βL

1 + [E]/E0
[L],(68)

A-ER:
∂[E]

∂t
+

∂(v[E])

∂X
= DE

∂2[E]

∂X2
− βE [E] + αE

TH
rep

TH
rep + [L]H

.(69)

The boundary condition is the same as (52)–(53) in the ER model, and the
local growth rate ∂v/∂X is defined by the relative time derivative of the
ligand concentration as

(70)
dv

dX
=

vg
[L]

∂[L]

∂t
.

In the absence of expander, the ligand gradient satisfies

∂[L]

∂t
+

∂(v[L])

∂X
= DL

∂2[L]

∂X2
− βL[L].(71)

An analytical study in [6] showed that scaling of the morphogen gradient
implies a bounded tissue size at any time, resulting in a finite final tissue
size at steady state. Furthermore, a finite final size leads to exponential
decay morphogen gradients and uniform growth [6]. This result is consistent
with experimental observations and provides a simple way to understand
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how the final size of a tissue is regulated by the morphogen. In the presence
of the expander, assuming that DE � 1, further analysis showed that the
system can also reach a finite tissue size, and the Expression-Repression
feedback can increase the final tissue size and extend the time to reach the
final size. Moreover, numerical studies suggested that Expression-Repression
feedback can improve the robustness of the final tissue size to various model
parameters.

Some investigators also consider tissue growth control through a spatial
model, in which the local growth rate is assumed to be dependent on the
slope or relative slope of the morphogen gradient [23, 100]. Based on the
recent experimental data [100], it was proposed that the local growth rate
might depend on the slope of the morphogen gradient and the concentration
of the receptor [7]:

(72)
dv

dX
= v1H

(∣∣∣∣∂[L]∂X

∣∣∣∣ − cL

)
+ v2H([R]− cR),

where H is the Heaviside function. The numerical and analytic results
showed that exponentially growth of the wing disc could be induced by
uniform domain growth. However, this model does not include any mecha-
nism for the termination of growth. Another approach of the spatial model
is that the local growth rate depends on the relative spatial slope:

(73)
dv

dX
= vg max

(
1

[L]

∣∣∣∣∂[L]∂X

∣∣∣∣ − c, 0

)
,

where c is a constant to control the final size. If the relative slope
|∂[L]/∂X|/[L] is smaller than c, then the local growth rate becomes zero, and
the tissue reaches its final size. The assumption of the relative slope model
provides a potential answer for growth control; however, some experimental
data challenge this hypothesis [103, 131]. Moreover, in this model, it is not
clear how the cells robustly translate the noisy slope information to growth
signaling when there is cell-to-cell variability.

5.4. Vertex models: mechanical feedback as a regulator of tissue
growth

Mechanical feedback from stress and compression has also been hypothesized
to modulate morphogen-mediated cell proliferation [1, 2, 106]. In [1], the
size of the wing imaginal disc of Drosophila was investigated by considering
the interplay between tissue growth and mechanical forces. In the study,
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Figure 7: Illustrations of the mechanical feedback model. (A) Ring-shaped
compartment-based model for wing imaginal disc of Drosphila in [1]. Distri-
bution of Dpp is shown in red. (B) Vetex model of general tissue shape in
[31]. (Color figure online.)

the wing pouch was approximately modeled as a radially symmetrical, two-
dimensional elastic sheet with constant cell density, and the domain was
discretized into several ring-shape compartments along the radius from the
center (Fig. 7A). The model proposed that tissue growth is stimulated by
high-level morphogen signaling at the center of the disc but is inhibited by
increasing compression from the peripheral regions. Mechanical stretching
in the peripheral regions induces growth even though morphogen levels are
not above a particular threshold for inducing growth [1]. Based on these
assumptions, uniform growth and finite final tissue size can be obtained from
the model. However, the assumption of a radially symmetric wing pouch is
not consistent with the actual wing pouch shape in experiments.

Several vertex models were proposed for the study of mechanical force
balance in tissue developmental processes [2, 31, 33, 46]. Vertex models can
be used to approximate the general shape of epithelial tissues by modeling
cells with two-dimensional polygons (Fig. 7B). In [31] and [2], cell shapes
are calculated by minimizing the energy

(74) E =
∑
α

Kα

2
(Aα −A(0)

α )2 +
∑
<i,j>

Λijlij +
∑
α

Γα

2
L2
α,
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where A(0) denotes a target cell area, lij denotes the junction length between
nodes i and j, and L denotes a cell perimeter. The energy function describes
forces due to cell elasticity, actin-myosin bundles, and adhesion molecules
[31]. This model provides a way to investigate the role of mechanical forces
in cell topology. Using this vertex model, it was shown that growth con-
trol by mechanical forces can explain uniform growth, and the tissue can
robustly reaches a finite size [2]. In [2], regulatory signaling pathways were
included in the wing pouch model to explicitly connect mechanicals forces
with growth control. This model further explains how mechanical feedbacks
can regulate tissue growth at the molecular level. Numerical simulations
showed that the model can account for growth termination as well as for
the paradoxical observation that growth occurs uniformly in the presence of
a non-uniform morphogen gradient and non-uniformly in the presence of a
uniform morphogen gradient.

Mechanical feedback as a plausible mechanism of growth control is sup-
ported by many theoretical and experimental studies [19]. Nevertheless, cur-
rently, morphogen gradient formation has not been discussed in most studies
of mechanical feedback regulation [1, 2, 46]. In these studies, the morphogen
gradients in the models were usually explicitly formulated as an exponen-
tially decreasing function from the source to the far boundary. Some mod-
els also involved scaling of the morphogen gradients [1, 2]. However, this
approach cannot capture how the mechanical forces affect the morphogen
gradient formation.

6. Conclusions and prospects

Remarkable progress has been made during the past 20 years in understand-
ing morphogen-mediated patterning due to the rapid advance of experimen-
tal techniques and, most importantly, the involvement of mathematical mod-
eling in recent years. The major contribution of mathematical models is in
the areas of morphogen gradient formation and the mechanisms controlling
the gradient. The models, many of which can now directly relate to exper-
imental data, have been valuable in explaining how morphogen gradients
form, how this information is translated into their target genes, how other
diffusive molecules contribute to precise and robust morphogen-mediated
signaling, how and why feedback regulations improve robustness and tim-
ing in morphogen dynamics, and how morphogen gradients regulate organ
size. It has become increasingly clear that the interplay between experiments
and mathematics is critical to establishing general theories that can make
sense of the mechanistic complexity of organismal development driven by
morphogens [34, 47, 59].
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While modeling has significantly enhanced our understanding of mor-
phogens, many important mathematical questions associated with the mod-
els remain to be addressed, and many biological questions remain unan-
swered. On the experimental side, numerous aspects of morphogen systems
need more study, such as cell fate specification [60, 84, 99, 134], the com-
plex dynamics of bone morphogen protein (BMP) gradients [13, 41, 93],
the coordination of patterning and growth by morphogens [41, 97, 130], the
dynamics of morphogen signaling [51], the design principles underlying the
objectives of robust and precise pattern formation [59, 61], and the control
of organ size [94].

On the modeling side, more advanced models need to include elements
such as downstream signaling pathways that regulate gene expression [107],
the growth Hippo signaling pathway [20, 21, 115], the temporal integration
of morphogen signals for noise reduction [12, 60], cell-to-cell contacts that
modulate growth [2], multiple morphogens for improving robustness [42, 83,
116], cooperative feedback loops [139], the role of tissue geometry in pattern
formation [119], and noise in morphogen gradients [5, 43, 44, 138].

On the side of mathematical analysis and computational tools, several
major challenges and unanswered questions remain. How do we determine
the conditions for the existence, uniqueness, and stability of steady state
gradients? The existence and uniqueness of the solutions of such bound-
ary value problems are not always obvious, especially when the morphogen
system is coupled with multiple nonlinear feedback loops. How does the sig-
naling gradient depend on model structures and undetermined parameters?
What is the best way to study the robustness of morphogen systems? While
the classical asymptotic theory may be useful, the perturbations observed
in morphogen systems tend to be much larger than the values of “small
parameters” that are critically important in applying asymptotic analysis.
Another mathematical challenge is the study of dynamic tissue boundaries,
which is directly linked to the modeling of tissue growth control. How do
we estimate final tissue size when a morphogen gradient is coupled with cell
division (moving boundary)? Finally, efficient numerical schemes are needed
for simulating tissue patterning and growth, and many challenges arise when
solving temporal-spatial stochastic systems, higher dimensional morphogen
systems, growing and moving boundary problems, and models of complex
geometries [25, 49, 89, 119].

Studying physical systems, such as water waves, drops, and bubbles, has
led to the establishment of the branch of mathematical and computational
mechanics in mathematics and to the creation of many classical equations
(e.g., Navier-Stokes equations) to which many mathematicians have devoted
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their entire research. The modeling study of morphogen systems, a focus of
this review, is introducing new equations and new methodologies for math-
ematics and computations [95]. Many characteristics, challenges, and ques-
tions associated with the complexity of morphogen systems will require new
mathematics and new computational tools, likely leading to an emerging
research area: mathematical and computational morphogenesis.
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