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Signed support recovery for single index models
in high-dimensions

Matey Neykov, Qian Lin, and Jun S. Liu

In this paper we study the support recovery problem for single
index models Y = f(Xᵀβ, ε), where f is an unknown link func-
tion, X ∼ Np(0, Ip) and β is an s-sparse unit vector such that
βi ∈ {± 1√

s
, 0}. In particular, we look into the performance of two

computationally inexpensive algorithms: (a) the diagonal thresh-
olding sliced inverse regression (DT-SIR) introduced by [24]; and
(b) a semi-definite programming (SDP) approach inspired by [1].
When s = O(p1−δ) for some δ > 0, we demonstrate that both pro-
cedures can succeed in recovering the support of β as long as the
rescaled sample size Γ = n

s log(p−s) is larger than a certain critical

threshold. On the other hand, when Γ is smaller than a critical
value, any algorithm fails to recover the support with probabil-
ity at least 1

2 asymptotically. In other words, we demonstrate that
both DT-SIR and the SDP approach are optimal (up to a scalar)
for recovering the support of β in terms of sample size. We provide
extensive simulations, as well as a real dataset application to help
verify our theoretical observations.
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1. Introduction

Due to the recent advances in technology, collecting data becomes a routine.
The ‘small n, large p’ characteristic of modern data brings new challenges in
interpreting and processing it. Dimension reduction and variable selection
procedures become an indispensable step in data exploration. Regrettably,
the majority of the classical algorithms were developed to work in the regime
p � n, and hence one needs to exercise caution when applying existing meth-
ods in a high dimensional setting. A firm understanding of the limitations of
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classical dimension reduction procedures in the modern p � n regime, will
help facilitate their appropriate application.

For example, the archetypical unsupervised dimension reduction proce-
dure — principal component analysis (PCA), has been widely and success-
fully applied in a range of scientific problems [28, 4, e.g.]. The behavior
of PCA in high dimensions has been well studied in the recent years. In
[18, 19, 27], it was shown that in the spiked covariance model, PCA succeeds
if and only if lim p

n �= 0. This result stimulated the statistical community to
discuss the minimax rate of estimating the principal space under sparsity
constraints (see e.g., [5, 32] and references therein) and the tradeoff between
the statistical and computational efficiency (see e.g., [2]).

Another line of dimension reduction research, studies the so-called suf-
ficient dimension reduction (SDR). The goal of SDR is to find the minimal
subspace S such that Y ⊥⊥ X

∣∣PSX, where X ∈ Rp is the predictor vector
and Y ∈ R is the response [10, 22, 11, e.g.]. Unlike its unsupervised counter-
part, much less attention has been paid to how SDR algorithms behave in a
high dimensional setting. The optimal estimation rates of SDR algorithms
in terms of sparsity (s), dimensionality (p), and sample size (n) are unclear.

Sliced inverse regression, proposed by [22], is one of the most popular
SDR methods for estimating the space S. When the dimensionality p is
larger than or comparable to the sample size n, sparsity assumptions are
often imposed on the loading vector β [23, e.g.]. [24] proved that in fact

E[∠(β̂,β)] > 0 if ρ = lim p
n �= 0 and sin

(
∠(β̂,β)

)
= 0 when ρ = 0 where β̂

is the SIR estimator of β. In other words, the SIR estimator β̂ is consistent
(up to a sign) if and only if ρ = lim p

n = 0. One implication of this result
is that in order to estimate β, structural assumptions such as sparsity are
necessary in the high dimensional setting.

In the present paper, inspired by [1], we investigate the support recovery
problem for single index models (SIM) (1), under the sparsity assumption
‖β‖0 = s in the regime s = O(p1−δ) for some δ > 0. More formally we study
the models:

(1) Y = f(Xᵀβ, ε) with X ∼ Np(0, Ip),

where the noise ε is independent of X and f, ε,β belong to the class:
(2)

FA =
{
(f, ε,β) : Var(E[Z|f(Z, ε)]) ≥ A where Z ∼ N(0, 1),

βi ∈
{
± 1√

s
, 0
}

and (f, ε) is sliced stable (see Def. 1)
}
.
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Notice that no generality is lost in assuming that the vector β is a unit
vector since otherwise model (1) is not identifiable. Model class (2), fur-
ther assumes the idealized setting where all non-zero coordinates of β have
a signal strength of exactly the same magnitude, which simplifies our pre-
sentation while preserving the inherent complexity of the support recovery
problem. We believe that studying support recovery in SIM, would bring us
insightful understanding of SIR and other SDR algorithms.

In this paper, we study two procedures for signed support recover of
SIM (1): the DT-SIR introduced by [24] and the SDP approach inspired by
[1]. We let Γ = n

s log(p−s) be the rescaled sample size. Our main contribution

is to establish the existence of constants ω > 0 and Ω > 0 such that when
Γ > Ω both DT-SIR and SDP approaches recover the signed support of β
correctly, with probability converging to 1 asymptotically. Conversely, we
show that when Γ < ω any algorithm fails to recover the support of β with
probability at least 1/2. In other words, we show that the optimal sample
size of the support recovery problem of model (1) is of the order s log(p−s).
To the best of our knowledge, this optimality result, regarding the sample
size of SIM (1), has not been previously discussed in the literature. Our
second contribution is, to establish a sliced stability conjecture formulated
by [24], under the SIM case. We demonstrate that classical conditions of
[16] imply sliced stability in Section 2.1. This technical result might be of
independent interest, especially when one wants to discuss the optimal rate
problem for other SDR algorithms such as SAVE. We further develop a novel
tool along the way of our analysis, which may represent further interest —
a concentration inequality stated under Lemma 7.

1.1. Related work

In the fixed p setting, the first asymptotic results on SIR appeared in the
seminal papers [15, 16]. Later on [39] allowed p to diverge slowly with n
and established asymptotics in the regime p = o(n1/2). In the super high-
dimensional setting where p � n, several algorithms, hinging on regulariza-
tion such as LASSO [29] and Dantzig Selector [7] were proposed by [23, 36],
but these algorithms are not concerned with support recovery. Moreover,
the algorithm suggested by [23] did not come with theoretical guarantees,
and in [36] it is not allowed for s to scale with p and n. A generic variable
selection procedure was suggested in [38], with guarantees of support recov-
ery, in a more general setting than our present paper, but with a much more
restrictive relationship (p = o(n1/2)) than the one we consider.

In the parallel line of research on sparse PCA there have been more
developments. In [18] the algorithm Diagonal Thresholding (DT) was sug-
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gested, to deal with the spiked-covariance model. It was later analyzed by
[1], who showed that support recovery is achieved by DT in the sparse spiked
covariance model, provided that n � s2 log(p). [1] further showed an infor-
mation theoretic obstruction, in that no algorithm can recover the support
of the principal eigenvector if n � s log(p). A computationally inefficient
algorithm that succeeds in support recovery with high probability as long
as n � s log(p) is exhaustively scanning through all

(
p
s

)
subsets of the coor-

dinates of the principal eigenvector. In order to find feasible procedures, [1]
studied a semidefinite programming (SDP) estimator originally suggested
in [13] — and showed that if n � s log(p) and the SDP has a rank 1 so-
lution, this solution can recover the signed support with high probability.
Surprisingly however, [20] showed that the rank 1 condition, does not hold
if s2 log(p) � n � s log(p). In contrast to the PCA case, our current pa-
per argues that if one is concerned with the support recovery for SIM in
the class FA, no computational and statistical tradeoff exists in the regime
s = O(p1−δ), since the computationally tractable algorithms DT-SIR and
SDP algorithms solve the support recovery problem of SIM with optimal
sample size.

1.2. Preliminaries and notation

We first briefly recall the SIR procedure for SIM. Suppose we observe n =
Hm independent and identically distributed (i.i.d.) samples (Yi,Xi) from
model (1). SIR proceeds to sort and divide the data into H slices of equal
size, according to the order statistics Y(i) of Yi. Let the concomitant of Y(i)
be X(i). We will also use the double subscript notation Xh,i for X((h−1)m+i).
Let Sh = (Y((h−1)m), Y(hm)], 1 ≤ h < H, and SH = (Y((H−1)m),+∞) denote
the random intervals partitioned by the points Y(jm)(with Y(0) = −∞),

j ≤ H − 1. Furthermore let mj(Y ) = E[Xj |Y ] denote the jth coordinate of

the centered inverse regression curve E[X|Y ], and μj
h denotes E[Xj |Y ∈ Sh].

Note that conditionally on the values Y((h−1)m) and Y(hm) the quantities Sh

and μj
h become deterministic. For any integer k ∈ N put [k] = {1, . . . , k} for

brevity. Let X
j
h,S = 1

|S|
∑

i∈S Xj
h,i, where S ⊂ [m], j ∈ [p]. If S = [m] we

omit it from the notation, i.e., X
j
h = 1

m

∑m
i=1X

j
h,i. Put X

j
= 1

H

∑H
h=1X

j
h

for the global average. In terms of this notation, the SIR estimator V of the
conditional covariance matrix is given by

Vjk =
1

H

H∑
h=1

X
j
hX

k
h,(3)
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entrywise. The SIR estimator β̂ of β is defined as the principal eigenvector
of V. We will denote the support of the vector β by Sβ, i.e. we set Sβ :=
supp(β) = {j : βj �= 0}.

Finally, we need some standard notations. For a vector v, let ‖v‖p
denote the usual �p norm for 1 ≤ p ≤ ∞ and ‖v‖0 = | supp(v)|. For
a real random variable X, let ‖X‖ψ2

= supp≥1 p
−1/2(E|X|p)1/p, ‖X‖ψ1

=

supp≥1 p
−1(E|X|p)1/p. Recall that a random variable is called sub-Gaussian if

‖X‖ψ2
< ∞ and sub-exponential if ‖X‖ψ1

< ∞. For a matrix M ∈ Rd×d and
two sets S1, S2 ⊂ [d], by double indexing MS1,S2

we denote the sub-matrix of
M with entries Mij for i ∈ S1, j ∈ S2. Furthermore, for a d×d matrix Md×d,
let ‖M‖max = maxjk |Mjk| and ‖M‖p,q = sup‖v‖p=1 ‖Mv‖q. In particular,

we have ‖M‖2,2 = maxi∈[d]{σi(M)}, where σi(M) is the ith singular value of

M, and ‖M‖∞,∞ = maxi∈[d]
∑d

j=1 |Mij |. Let Fn(x) =
1
n

∑n
i=1 I(Yi ≤ x) de-

note the empirical distribution of the Y sample, and Φ (resp. φ) denote the
cdf (resp. pdf) of a standard normal random variable. We will also occasion-
ally use the abbreviation WLOG to stand for “without loss of generality”.

1.3. Organization

The paper is organized as follows. The main results, and confirmatory nu-
merical studies and a real data analysis are presented in Section 2 and Sec-
tion 3 respectively. Proofs of our main results are included in Sections 4 and
5 while technical lemmas are deferred to Appendix A. A brief discussion on
the potential directions is included in Section 6. In Appendix B we provide
several concrete examples of SIM.

2. Main results

In this section, we first prove a conjecture regarding the coordinate-wise
sliced stability conditions introduced by [24]. Second, we establish the op-
timal rate of support recovery in terms of the sample size. Throughout the
remainder of the paper, we assume that Y is a continuously distributed
random variable.

2.1. Sliced stability

Our proofs of signed support recovery rely on the following property of the
inverse regression curve of a SIM.

Definition 1 (Sliced Stability). We call the pair (f, ε) sliced stable iff there
exist constants 0 < l < 1, 1 < K, 0 < M , such that for any H ∈ N, H > M ,
and all partitions of R = {a1 = −∞, . . . , aH+1 = +∞} with l

H ≤ P(ah <
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Y ≤ ah+1) ≤ K
H there exist two constants 0 ≤ κ(l,K,M) < 1, C(l,K,M) >

0 such that for all j ∈ Sβ
1:

H∑
h=1

Var[mj(Y )|ah < Y ≤ ah+1] ≤ C(l,K,M)Hκ(l,K,M)Var[mj(Y )].(4)

The sliced stability assumption, is an implicit assumption on the function
f and the error distribution ε. If κ = 0, the condition means that the
cumulative relative variability of the inverse regression curve is bounded for
all slicing schemes with sufficiently small slices. If κ > 0 the cumulative
relative variability of the inverse regression curve is allowed to scale sub-
linearly with the number of slices (see also Figure 1). Intuitively, sliced
stability allows us to ensure that the estimates Vjj of Var[mj(Y )] become
increasingly accurate the more slices we introduce (see Lemma 3 for a more
rigorous treatment). Relying on the subsequent developments of this section,
in Example 2 and Remark 3 of Appendix B we demonstrate that models of
the form Y = G(h(Xᵀβ)+ε), where G, h are continuous and monotone and
ε is a log-concave random variable, satisfy the sliced stability assumption.

Definition 1 is the sliced stability definition from [24] restated in terms of
the SIM. [24] conjectured that the sliced stability condition could be implied
from the well accepted conditions proposed by [16], which we state below
with a slight modification. The first contribution of this paper is proving
this conjecture in the case of SIM.

LetAH(l,K), with 1 < K, 0 < l < 1, denote all partitions of R of the sort
{−∞ = a1 ≤ a2 ≤ . . . ≤ aH+1 = +∞}, such that l

H ≤ P(ah ≤ Y ≤ ah+1) ≤
K
H . Moreover, for any fixed B ∈ R, let Πr(B) denote all possible partitions
of the closed interval [−B,B] into r points −B ≤ b1 ≤ b2 ≤ . . . ≤ br ≤
B. Define the normalized version of the centered inverse regression curve

m(y) := sign(βj)mj(y)√
Var(mj(Y ))

, j ∈ [p]2, and let m satisfy the following smoothness

condition:

lim
r→∞

sup
b∈Πr(B)

r−1/(2+ξ)
r∑

i=2

|m(bi)−m(bi−1)| = 0,(5)

for any B > 0 for some fixed ξ > 0. Note that as mentioned in [16], as-
sumption (5) is weaker than assuming that m is of bounded variation, and

1Observe that (4) automatically holds for j �∈ Sβ in our case, since both the LHS
and the RHS of (4) are 0 in this case.

2By symmetry sign(βj)mj(y) = sign(βi)mi(y) for i, j ∈ Sβ
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Figure 1: Below, with a solid line we plot the standardized inverse regression

curve m(y) := sign(βj)mj(y)√
Var(mj(Y ))

, j ∈ Sβ, for the model Y = 2atan(Xᵀβ)+N(0, 1)

(see also (14)). The different colored parts of the dashed curve represent the
conditional densities of Y |Y ∈ Sh, where Sh for h ∈ [H] (with H = 7)
are the slices illustrated by punctured vertical black lines. Finally the seven
points’ vertical-axis values represent the variances Var[m(Y )|Y ∈ Sh]. Sliced
stability ensures that the average value of the variances Var[m(Y )|Y ∈ Sh]
has a decay rate of the order Hκ−1.

furthermore the bigger the ξ the more stringent this assumption becomes.
In addition, assume that there exists B0 > 0 and a non-decreasing function
m̃ : (B0,∞) �→ R, such that:

|m(x)−m(y)| ≤ |m̃(|x|)− m̃(|y|)|, for x, y ∈ (−∞,−B0) or (B0,+∞),(6)

and moreover, E[|m̃(|Y |)|(2+ξ)] < ∞ (where in the expectation we set m̃(y) =
0 for |y| ≤ B0). We are now in a position to formulate the following:

Proposition 1. Assume that the standardized centered inverse regression
curve satisfies properties (5) and (6) for some ξ > 0. Then we have that for
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any fixed 0 < l < 1 < K:

lim
H→∞

sup
a∈AH(l,K)

1

H2/(2+ξ)

H∑
h=1

Var[m(Y )|ah < Y ≤ ah+1] → 0.(7)

We defer the proof of Proposition 1 to Appendix A. It is clear however
that (7) implies the existence of constantsM , C(l,K,M) such that (4) holds,
with κ = 2

2+ξ < 1.

2.2. Optimal sample size for support recovery

Recall that Γ = n
s log(p−s) is the rescaled sample size. First we establish an

information theoretic barrier of the support recovery problem, i.e. we show
that there exists a positive constant ω such that, when Γ < ω every algorithm
fails with probability at least 1/2. Then we prove that two algorithms — DT-
SIR and an SDP based procedure achieve this bound, i.e. we demonstrate
that there exists a positive constant Ω, such that, when Γ > Ω, these two
algorithms successfully recover the signed support with probability 1 as n →
∞.

2.2.1. Information theoretic barrier. Intuitively, when the sample size
is small, no algorithm is expected to be able to recover the support success-
fully. In fact, let us consider the simple linear regression model:

Y = Xᵀβ + ε where X ∼ Np(0, Ip), ε ∼ N(0, σ2),(8)

where β is a unit vector such that βi ∈ {± 1√
s
, 0}. This model belongs to the

class F(σ2+1)−1 (to verify sliced stability refer to Example 2 and Remark 3 of
Appendix B). The following result, which is obtained by a slight modification
of the arguments in [33], shows that support recovery is infeasible if Γ is
small, by effectively arguing that no algorithm works even for model (8).

Proposition 2. Suppose there are n observations from the model (8). Then
there exists a positive constant ω, such that if

Γ =
n

s log(p− s)
< ω,

any algorithm for support support recovery will have errors with probability
at least 1

2 asymptotically.

2.2.2. Optimality of DT-SIR. Recall that we are working with the class
of models FA (2). One key observation is the following signal strength result.
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Lemma 1. For any j ∈ Sβ = supp(β), one has:

A

s
≤ Var(mj(Y )) ≤ 1

s
,(9)

and Var(mj(Y )) = 0 for j �∈ Sβ.

By Lemma 1 WLOG we can assume that there exists a CV > 0 such
that Var[mj(Y )] = CV

s for any j ∈ Sβ. Now we are ready to discuss the
properties of the DT algorithm which we formulate below. In this paper, we
assume that the sparsity s is known.

Algorithm 1: DT algorithm

input: (Yi,X i)
n
i=1: data, H: number of slices, s: the sparsity of β

1. Calcluate Vjj , j ∈ [p] – according to formula (3);
2. Collect the s highest Vjj into the set Ŝ;
3. Output the set {j : Vjj ∈ Ŝ}.

Recall the definitions (see (3)) ofV andVjj the estimates of Cov[E[X|Y ]]
and Var[mj(Y )] respectively. To obtain the result on sample size optimality
of Algorithm 1, a key point is to establish a concentration inequality for
Vjj . When j �∈ Sβ, a standard deviation inequality for the χ2 distribution is
applicable. For j ∈ Sβ, we need to pay extra effort to obtain the appropriate
deviation inequality, which is also the main technical contribution of this
paper. Once we have established these deviation inequalities, we can show
the following theorem.

Theorem 1. Suppose s = O(p1−δ) for some δ > 0. There exists a positive
constant Ω such that, for any

Γ =
n

s log(p− s)
≥ Ω,(10)

the support S is recovered by the DT algorithm (i.e., Ŝ = S) with probability
converging to 1 as n increases. Additionally, the number of slices can be held
large enough but fixed (depending solely on C, l,K,M, κ,CV ).

Remark 1 (Choice of H). An interesting by-product of our analysis is that
we can choose the number of slices H large enough but finite. When dimen-
sion p is fixed, this has already been observed in the literature [22], however
in high dimensional setting to the best of our knowledge this property has
not been discussed.

Clearly the DT algorithm does not recover the signed support of β stan-
dalone. One can apply DT first to select the variables and then apply the
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SIR procedure to obtain an estimate of the principal eigenvector. To ob-
tain the signed support of β, take the sign of the principal eigenvector. We
summarize this algorithm in the following:

Algorithm 2: DT-SIR

input: (Yi,X i)
n
i=1: data, H: number of slices, s: the sparsity of β

1. Perform Algorithm 1 to obtain the set {j : Vjj ∈ Ŝ}.
2. Evaluate v — the principal eigenvector of the matrix VŜ,Ŝ .

3. Output sign(v).

We note that this algorithm recovers the signed support, up to multipli-
cation by ±1. The following result is a direct corollary of Theorem 1, whose
proof is omitted.

Proposition 3. Under the assumptions of Theorem 1, with a potentially
bigger value of Ω, applying Algorithm 2 restores the signed support (up to a
sign) with asymptotic probability converging to 1. In fact Algorithm 2 works
when X ∼ Np(μ, Ip) with V substituted with V̂ where the jkth entry of V̂

is defined as V̂jk = 1
H

∑H
h=1(X

j
h −X

j
)(X

k
h −X

k
).

2.2.3. Optimality of SDP. Algorithm 2 is a two-step procedure, select-
ing variables by applying DT and then obtaining the SIR estimate of β.
Recent advances of optimization theory provide us with a more sophisti-
cated one-step approach to obtain a sparse principal eigenvector. It is well
known that the principal eigenvector of a symmetric positive definite matrix
A is given by:

ẑ = argmax
z∈R:‖z‖2=1

zᵀAz

and the principal eigenvalue is ẑᵀAz. When z is sparse, i.e., ‖z‖0 ≤ s,
the above optimization problem with an additional sparsity constraint is
computationally expensive. To remedy this difficulty, [14] proposed an SDP
approach to solve the sparse optimization problem. They suggested to solve
the following convex program:

Ẑ = argmax
tr(Z)=1,Z∈Sp

+

tr(AZ)− λn

p∑
i,j=1

|Zij |,(11)

where S
p
+ is the set of all the p × p positive semi-definite matrices. If the

solution happens to be a rank 1 solution, then it is of the form Ẑ = ẑẑᵀ,
and hence we can easily obtain an estimate of the principal eigenvector.
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In the following algorithm we summarize the SDP approach, tailored for
the signed support recovery of SIM. We remind the reader, that this algo-
rithm recovers the signed support, up to multiplication by a global constant
equal to ±1.

Algorithm 3: SDP algorithm for SIR

input: (Yi,X i)
n
i=1: data, H: number of slices, s: the sparsity of β

1. Calcluate the matrix V — as given in (3);
2. Obtain the matrix Ẑ by solving (11), with A = V;
3. Find the principal eigenvector ẑ of Ẑ;
4. Output sign(ẑ).

The performance of this algorithm is guaranteed by the following theo-
rem.

Theorem 2. Suppose s = O(p1−δ) for some δ > 0, then there is a positive
constant Ω such that, for any

Γ =
n

s log(p− s)
≥ Ω,(12)

with a properly chosen the tuning parameter λn, Algorithm 3 recovers the
signed support with probability converging to 1, i.e. P(sign(ẑ) = sign(β)) →
13.

Remark 2. In fact Algorithm 3 works when X ∼ Np(μ, Ip) with V substi-

tuted with V̂ where the jkth entry of V̂ is defined as V̂jk = 1
H

∑H
h=1(X

j
h −

X
j
)(X

k
h −X

k
). The proof of this fact is trivial and is omitted.

3. Numerical experiments and data analysis

We open this section with extensive numerical studies and in Section 3.2 we
apply our algorithms to a real dataset.

3.1. Simulations

In this section we compare Algorithms 2 and 3 in terms of signed support
recovery. We consider the following scenarios:

Y = Xᵀβ + sin(Xᵀβ) +N(0, 1),(13)

3We understand that ẑ is selected so that ẑᵀβ ≥ 0 by convention.
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Y = 2atan(Xᵀβ) +N(0, 1),(14)

Y = (Xᵀβ)3 +N(0, 1),(15)

Y = sinh(Xᵀβ) +N(0, 1).(16)

In each simulation we create a sample of size n with dimensionality p and
sparsity levels s =

√
p (s = log(p) resp.) and we vary the rescaled sample

size Γ ∈ [0, 30] for the DT-SIR and Γ ∈ [0, 40] for the SDP approach. The
vector β is selected in the following manner:

βj =
1√
s
, j ∈ [s− 1], βs = − 1√

s
, and βj = 0, for j > s.

Each simulation is repeated 500 times, and we report the proportion of
correctly recovered signed supports of the vector β. We remark that in
general, it should not be expected that the phase transition described in
Theorems 1 and 2 to occur at the same places for these 4 models.

We first explore the predictions of Proposition 3 and Algorithm 2. Even
though we provide theoretical values of the constants H and m, we ran all
simulations with H = 10 slices. We believe this scenario, is still reflective
of the true nature of the DT-SIR algorithm, as the theoretical value of H
we provide is not optimized in any fashion. In Figure 2, we present DT-SIR
results from plots for different p values in the regime s =

√
p.

On the X-axis we have plotted the rescaled sample size n
s log(p−s) and on

the Y -axis is the estimated probability of successful signed support recovery.
We would refer to these curves as efficiency curves (EC). The EC plots in
the case s =

√
p, are very similar to the corresponding plots in the regime

s = log(p), which can be seen in Figure 4 in Appendix C. Both EC plots
are in concordance with the predictions from our theoretical results. We can
distinctly see the phase transition occurring in approximately the same place
regardless of the values of the dimension p.

Next, we present the corresponding ECs for Algorithm 3. We used the
code from an efficient implementation of program (11), as suggested in [37].
The code was kindly provided to us by the authors of [37]. In Figure 3 we
plot the ECs for the four models in the case when s =

√
p. Due to running

time limitations we only show scenarios where p ∈ {100, 200, 300}.
Here we have again used H = 10 in all scenarios, for simplicity. We

observe that phase transitions are occurring in all of the models, and the
signed support is being correctly recovered for large enough values of Γ =

n
s log(p−s) . Plots for the setting s = log(p) are provided in Figure 5. An

important empirical observation is that the constant Ω needs to be higher
when running the SDP algorithm compared to when running the DT-SIR.
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Figure 2: Efficiency Curves for DT-SIR, s =
√
p, Γ = n

s log(p−s) ∈ [0, 30].

This fact coupled with the much slower run-times of the SDP algorithm
speak in favor of using the DT-SIR algorithm in practice.

In addition to the above simulations, we also performed numerical stud-
ies over the same set of models (13), (14), (15) and (16), where the coef-
ficients of the vector β were not of equal magnitude. In our second set of

simulations we chose β = β̃

‖β̃‖2

, where the entries of β̃ were drawn in each

simulation as

β̃j = Uj for j ≤ �s/2�, β̃j = −Uj for s/2 < j ≤ s, and β̃j = 0 otherwise,

(17)
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Figure 3: Efficiency Curves for SDP, s =
√
p, Γ = n

s log(p−s) ∈ [0, 40].

where Uj for j ∈ [s] are i.i.d. uniform U(12 , 1) random variables. The re-
sults are similar to the ones reported above, although the efficiency curves
required somewhat higher values of the rescaled sample size Γ, and extra
variability can be seen in the curves due to the random choice of β. This
is to be expected, since under such a generation scheme, the lowest sig-
nal will be of lower magnitude compared to the uniform signal case. We
show the results for the case s =

√
p in Appendix C under Figures 6

and 7. Due to space considerations, we do not show results for the case
s = log p, as the results are comparable to the results plotted in Figures 4
and 5.
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3.2. Real data example

In this sub-section we will illustrate the practical benefits of our algorithm
on a real dataset. Our dataset is the mouse embryonic stem cells (ESCs)
dataset, and has been previously analyzed by [38, 17].

The outcome variable is the expression levels of 12,408 genes, and is
derived using RNA-seq technology in mouse ESCs [9]. The predictors cor-
respond to 312 transcription factors (TFs). From the predictors, 12 TFs
are known to be associated with different roles in the ES-cell biology as
constituents of important signaling pathways, self renewal regulators, and
key reprogramming factors, and the remaining 300 are putative mouse TFs
compiled from the TRANSFAC database. For each gene and TF, the pre-
dictor matrix contains a score which is the transcription factor association
strength score [8, 26] for the 12 known TFs, and motif matching scores for
the remaining 300 genes which were introduced by [38]. Hence, the design
matrix X = (Xᵀ

i )
ᵀ
i∈[n] is a n×p matrix, where n = 12,408 and p = 312, each

entry of which represents the score of a TF for the corresponding gene. The
EFCs dataset is not truly a high-dimensional dataset in the sense n < p, but
serves to illustrate that our algorithms can successfully perform variable se-
lection. Since X is coming from a real dataset with non-homogeneous scores
across the predictors, we wouldn’t expect it to be centered with identity
covariance. To deal with this problem we use the statistics Ṽjk in place of

Vjk where the matrix Ṽ is defined as:

Ṽ := Σ̂
−1/2 1

H

H∑
h=1

(Xh −X)(Xh −X)ᵀΣ̂
−1/2

,

and Σ̂
−1/2

:=
[
n−1

∑
i∈[n](Xi−X)(Xi−X)ᵀ

]−1/2
is the symmetric square

root of the covariance matrix of X. Notice that in this dataset Σ̂
−1/2

can be
estimated without the application of sparse inverse procedures since n > p.
As in the simulation section we used H = 10 slices.

We ran the DT and SDP procedures (i.e. Algorithms 1 and 3) on the
ESCs dataset, and the DT procedure selected 28 TFs which it found as-
sociated with the outcome, while the SDP procedure selected 36. In Table
1 we compare the rankings of the 12 known ES-cell TFs within the TFs
selected by DT and SDP algorithms to the same rankings produced by the
procedures SIRI-AE [17] and COP [38].

The top 10 highly ranked genes of SIRI-AE, DT, SDP and COP contain
8, 6, 7, 3 known ES-cell TFs respectively. The DT algorithm is the most par-
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Table 1: Rankings of the 12 known TFs among the selected TFs by different
algorithms

TFs names DT SDP SIRI-AE COP
E2f1 1 1 1 1
Zfx 2 3 3 3

Mycn 3 2 4 10
Klf4 7 4 5 19
Myc 4 7 6 –

Esrrb 14 10 8 –
Oct4 20 20 9 11

Tcfcp2l1 8 8 10 36
Nanog 11 17 14 –
Stat3 – 23 17 20
Sox2 24 – 18 –

Smad1 25 25 32 13

simonious out of all procedures (SIRI-AE and COP have reportedly selected
34 and 42 TFs correspondingly), but nevertheless includes all of the known
TFs with the exception of the Stat3. The DT algorithm is additionally able
to capture both Nanog and Sox2 which are generally believed to be the
master ESC regulators. These TFs are completely missed by COP and the
Sox2 TF was omitted by SDP. The SIRI-AE algorithm is the only algorithm
which is able to recognize all of the 12 known TFs. We would like to mention
that compared to our work the SIRI-AE algorithm is designed to work in
a lower dimensional setup, and is able to capture interactions beyond the
single-index models, which could help explain its better performance on the
ESCs dataset.

All in all, we believe the results of our algorithms are satisfactory, and
illustrate that both DT and SDP can be successfully applied in practice. As
a remark, in a truly high-dimensional setting when n < p, instead of the

estimate Σ̂
−1/2

, in practice one might resort to sparse estimators produced
by procedures such as CLIME [6], and use the corrected statistics Ṽ in place
of V.

4. Proof of Theorem 1

We will prove this theorem under slightly more general conditions:

i. Let Xj , j ∈ [p] be centered, sub-Gaussian random variables with
maxj∈[p] ‖Xj‖ψ2

≤ K.

ii. For j ∈ Sβ, we assume that Var[mj(Y )] ≥ CV

s .
iii. For j ∈ Sc

β, we assume that mj(Y ) = E[Xj |Y ] = 0 a.s.



Signed support recovery for single index models 395

It is easy to see for that for SIM in FA, the above conditions are satisfied in
the case when X ∼ Np(0, Ip). We start with a high level outline of the proof.
As we pointed out, the key argument is to show a deviation inequality for
Vjj , i.e. we will show that |Vjj −Var[mj(Y )]| is small (e.g. < 1

3 Var[mj(Y )])
with high probability provided that Γ = n

s log(p−s) is large enough. Note that:

|Vjj −Var[mj(Y )]| =
∣∣∣∣∣ 1H

H∑
h=1

(
X

j
h

)2
−
∫

m2
j (y)pY (y)dy

∣∣∣∣∣ .(18)

We will show below (see (22)), that the above expression is well approxi-
mated by: ∣∣∣∣∣ 1H

H∑
h=1

(
X

j
h

)2
−

H∑
h=1

(μj
h)

2
P(Y ∈ Sh)

∣∣∣∣∣ ,(19)

under sliced stability (where Y(0) = −∞). Intuitively, we have 1) P(Y ∈
Sh) ≈ 1

H and 2) X
j
h ≈ μj

h, which shows that (19) should be close to 0.
To rigorously validate this intuition, we use the Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality [25] for 1) and concentration inequalities for 2).

Note that the probability P(Y ∈ Sh) is a random variable, where the
randomness comes from the two endpoints — Y(m(h−1)) and Y(mh) of the
interval Sh. Recall that Fn is the empirical distribution function of Y , based
on the sample Yi. By the DKW inequality, we have that P(supy |Fn(y) −
F (y)| > ε) ≤ 2 exp(−2nε2), which in addition to the fact that Y has a
continuous distribution, implies that for all h we have:

1

H
− 2ε ≤ P

(
h− 1

H
< Fn(Y )<

h

H

)
≤P

(
h− 1

H
≤ Fn(Y ) ≤ h

H

)
≤ 1

H
+ 2ε,

(20)

on an event with probability at least 1 − 2 exp(−2nε2). Denote the event
where (20) holds with E.

Next, notice that for h ∈ [H−2] and a random permutation π : [m−1] �→
[m− 1], the collection random variables Xj

h,πi
, i ∈ [m− 1] are conditionally

i.i.d. given (Y(m(h−1)), Y(mh)), and for h = H − 1 and a random permutation

π : [m] �→ [m] the random variables Xj
h,πi

, i ∈ [m] are conditionally i.i.d.
given Y(m(H−1)), as they can be generated via simple rejection sampling.

Hence conditionally on (Y(mh))h∈[H−1] the sample means X
j
h,1:(m−1) have

corresponding means μj
h when h ∈ [H − 1] and X

j
H has a mean of μj

H .
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For consistency of notation we will discard a point at random in the Hth

slice, and WLOG (upon re-labeling the points) we assume that the discarded
point is XH,m. Next, we formulate the following concentration result for the
sliced means, which we show in Appendix A:

Lemma 2. Let G ⊆ [p]. On the event E, for η > 0 we have the following:

P

(
max

j∈G,h∈[H]

∣∣∣Xj
h,1:(m−1) − μj

h

∣∣∣ > η

)
≤ 2|G|H exp

(
− η2(m− 1)

C1K2q−1 + C2Kη

)
,

(21)

where q = 1
H − 2ε, for some absolute constants C1, C2 > 0.

Set G = [p] and denote with Ẽ the event on which we have

max
j∈[p],h∈[H]

∣∣∣Xj
h,1:(m−1) − μj

h

∣∣∣ ≤ η.

By (21), (20) and the union bound we have that:

P(Ẽ) ≥ 1− 2pH exp

(
− η2(m− 1)

C1K2q−1 + C2Kη

)
− 2 exp(−2nε2).

Next we move on, to show that (18) is close to (19) on the event E, as
well as we collect two straightforward inequalities in the following helpful:

Lemma 3. Assume that the sliced stability condition (4) holds. Then we
have the following inequalities holding on the event E, for large enough H,
and small enough ε:

|Vjj −Var[mj(Y )]| ≤
∣∣∣∣∣ 1H

H∑
h=1

(
X

j
h

)2
−

H∑
h=1

(μj
h)

2
P(Y ∈ Sh)

∣∣∣∣∣(22)

+
CHκ

s

(
1

H
+ 2ε

)
︸ ︷︷ ︸

B1

,

H∑
h=1

(μj
h)

2 ≤
CV

s +B1(
1
H − 2ε

)︸ ︷︷ ︸
B2

,(23)

H∑
h=1

|μj
h| ≤

√
CV

s +B1(
1
H − 2ε

)︸ ︷︷ ︸
B3

.(24)
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Note. We refer to the constants from (4) as C and κ, dropping the depen-
dence on K and M for brevity, and in fact C = C(l,K,M)CV .

Note that by an elementary calculation — using (20) and Lemma 3, on
the event Ẽ we get:

|Vjj −Var[mj(Y )]| ≤ 1

H

H∑
h=1

∣∣∣∣(Xj
h

)2
− (m− 1)2

m2
(μj

h)
2

∣∣∣∣(25)

+

(
2ε+

1

H
− (m− 1)2

Hm2

)
B2︸ ︷︷ ︸

I1

+ B1︸︷︷︸
I2

,(26)

where we used (22), the triangle inequality and (23). Consider the following:

Lemma 4. There exists a subset
˜̃
E ⊂ Ẽ such that P(Ẽ \ ˜̃E )≤ p exp(−c τ2n

4K4 ),
for some fixed τ ∈ [0, 2K2) on which we have the following bound for all
j ∈ [p]:

1

H

H∑
h=1

∣∣∣∣(Xj
h

)2
− (m− 1)2

m2
(μj

h)
2

∣∣∣∣ ≤ (2K2 + τ)

m︸ ︷︷ ︸
I3

+
2
√
2K2 + τ√

m

√
2η2 + 2

B2

H︸ ︷︷ ︸
I4

(27)

+ η2︸︷︷︸
I5

+2η
B3

H︸ ︷︷ ︸
I6

.

We defer the proof of this lemma to the appendix. Next, we provide
exact constants, such that |Vjj−Var[mj(Y )]| ≤ CV

ρs for some constant ρ > 0

and all j ∈ [p], so that the probability of the event
˜̃
E still converges to 1.

The remarkable phenomenon here is that the number of slices H, can be
selected so that it is a constant, which might seem counterintuitive. Select
the constants in the following manner:

H = max

{
M,

(
γCK

CV

) 1

1−κ

}
,(28)

ε = min

{
K − 1

2H
,
1− l

2H
,

l

4(γ + 1)H

}
,(29)

η =
l
√
CV

2
√

γ(γ + 1)
√
s
,(30)
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m ≥ max
{8γ(γ + 1 + l)(2K2 + τ)s

lCV
,
4(γ + 1)

l
,(31)

2s log(p− s)

Υ
+ 1,

8K4 log(p− s)

τ2cH

}
where γ ≥ 12 is a positive constant and Υ = l2CV

4(γ(γ+1))

(
K2C1Hl−1+

C2Kl
√

CV

2
√

γ(γ+1)

) .
Simple algebra shows that selecting these constants ensures the following
inequality:

max(I1, I2, I3, I4, I5, I6) ≤
CV

γs
.

By combining (25) and (27) we arrive at:

|Vjj −Var[mj(Y )]| ≤ 6CV

γs
,(32)

as promised for ρ = γ
6 . Next we proceed to show that the probability of the

event
˜̃
E converges to 0. To achieve this, note that in (29) we chose ε to be a

constant, so evidently exp(−nε2) → 0. Moreover p exp(−c τ
2mH
4K4 ) ≤ p

(p−s)2 →

0 by (31). Finally to show that P(
˜̃
E ) → 1, we need:

η2(m− 1)

C1(H−1 − 2ε)−1K2 + C2Kη
− log(p)− log(H) → +∞.

Noting that H−1 − 2ε ≥ lH−1, η ≤ l
√
CV

2
√

γ(γ+1)
and that by (28) H is fixed,

the above expression is implied by:

Υ
(m− 1)

s
− log(p) ≥ 2 log(p− s)− log(p) → +∞,

where we used (31) and the fact that 2 log(p − s) ≥ log(p) asymptotically

(since s = O(p1−δ) for δ > 0). Hence we have guaranteed that P(
˜̃
E ) → 1.

Now, note that for variables j �∈ Sβ we have mj(Y ) = E[Xj ] = 0, which

implies that for all h ∈ [H], j ∈ Sc
β we have μj

h = 0. Using (32) and selecting
γ = 18, we conclude that:

Vjj ≥ 2

3

CV

s
, j ∈ Sβ and Vjj ≤ CV

3s
, j ∈ Sc

β,

and hence separation of the signals is asymptotically possible, as we claimed.
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5. Proof of Theorem 2

In this section we show that the SDP relaxation will have a rank 1 solution
with high probability and moreover this solution will recover the signed
support of the vector β. In contrast to Section 4, here we make full usage of
the fact that X ∼ Np(0, Ip). One simple implication of this, is for example
the fact that maxj ‖Xj‖ψ2

< 1, and hence we can set K = 1. For the analysis
of the algorithm we set the regularization parameter λn = CV

2s .
To this end, we restate Lemma 5 from [1], which provides a sufficient

condition for a global solution of the SDP problem:

Lemma 5. Suppose there exists a matrix U satisfying:

Uij =

{
sign(ẑi) sign(ẑj), if ẑiẑj �= 0;

∈ [−1, 1], otherwise.
(33)

Then if ẑ is the principal eigenvector of the matrix A − λnU, ẑẑᵀ is the
optimal solution to problem (11).

Recall that the SIR estimate of the variance-covariance matrix has en-
tries:

Vjk =
1

H

H∑
h=1

X
j
hX

k
h.

Denote with Ṽ = V − λnU, where U is a to be defined sign matrix from
Lemma 5. We furthermore consider the decomposition of Ṽ into blocks —
ṼSβ,Sβ

, ṼSc
β,Sβ

, ṼSc
β,Sc

β
. Here, these three matrices are sub-matrices of the

matrix Ṽ restricted to entries with indexes in the sets Sβ or Sc
β correspond-

ingly. We observe that USβ,Sβ
= sign(βSβ

) sign(βSβ
)ᵀ.

We first focus on the VSβ,Sβ
matrix. We calculate the value of the co-

variance of two coordinates j, k ∈ Sβ:

Cov[mj(Y ),mk(Y )] = E[mj(Y )mk(Y )] = sign(βj) sign(βk)E[m
2
k(Y )](34)

= βjβkCV ,

where we used that sign(βj)mj(Y ) = sign(βk)mk(Y ), which follows by notic-

ing that the distribution of Xj |Y is the same as the distribution of Xk|Y
except the potential difference in the signs of the coefficients, because of the
symmetry in the problem.

Next, let G = Sβ (hence |G| = s) in Lemma 2 to obtain that:
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max
j∈Sβ,h∈[H]

∣∣∣Xj
h,1:(m−1) − μj

h

∣∣∣ ≤ η,(35)

with probability at least 1 − 2sH exp
(
− η2(m−1)

C1q−1+C2η

)
− 2 exp(−2nε2). Let

ẼSβ
⊂ E, be the event where (35) holds. We proceed with formulating a

bound similar to Lemma 4, but for the covariance:

Lemma 6. There exists an event
˜̃
E Sβ

with P(ẼSβ
\ ˜̃E Sβ

) ≤ s exp(−c τ
2n
4 )

(c > 0 is an absolute constant), for some fixed τ ∈ (0, 2], such that for all
j, k ∈ Sβ, we have the following inequality:∣∣∣Vjk − Cov(mj(Y ),mk(Y ))

∣∣∣ ≤ (2ε+ 1

H
− (m− 1)2

Hm2

)
B2 +B1 + 4η

B3

H

+
4(2 + τ)

m
+

4
√
2 + τ√
m

√
2η2 + 2

B2

H
+ 4η2.(36)

LetH ′, ε′, η′ are constants selected according to (28) — (30), with K = 1,
correspondingly. Set H = H ′, ε = ε′, η = η′

2 , and take

m ≥ max

{
32

8γ(γ + 1 + l)(2 + τ)s

lCV
,
8s log(p− s)

Υ
+ 1,

8 log(p− s)

τ2cH

}
,(37)

where Υ is specified as before with K = 1. Similarly to Section 4, we can
show that the following inequality:

sup
j,k∈Sβ

∣∣∣Vjk − Cov(mj(Y ),mk(Y ))
∣∣∣ ≤ 6CV

γs
,(38)

holds on
˜̃
E Sβ

, with the probability of
˜̃
E Sβ

tending to 1. To get the bound in
(38), one can observe that with the choices of constants as above all 6 terms
in (36) are guaranteed to be smaller than CV

γs . Here similarly to Section 4, H
is large enough but fixed. Having in mind the above inequality we consider
the matrix ṼSβ,Sβ

:

ṼSβ,Sβ
=

CV

2
βSβ

βᵀ
Sβ

+N,

where N is some symmetric noise matrix. Note that by (34), (38) gives a
bound on ‖N‖max. Next we make usage of Lemma 8, which is a restatement
of Lemma 6 in [1] and can be found in the Appendix for the reader’s conve-
nience. We start by verifying that condition (53) indeed holds for the matrix
N. We have that:
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‖N‖max = ‖VSβ,Sβ
− CV βSβ

βᵀ
Sβ
‖max ≤ 6CV

γs
,(39)

with the last inequality following from (38). Selecting γ = 240 bounds
‖N‖max by CV

40s , as required in (53). Thus, by Lemma 8 we conclude that:

(a) For γ1 := λmax(Ṽ) and the second largest in magnitude eigenvalue of
Ṽ we have γ1 > |γ2|.

(b) The corresponding principal eigenvector of Ṽ — z̃Sβ
satisfies the fol-

lowing inequality: ∥∥∥z̃Sβ
− βSβ

∥∥∥
∞

≤ 1

2
√
s
.

Next we show that the rest of the sign matrix U, i.e. USc
β,Sβ

and USc
β,Sc

β

can be selected in such a way, so that the blocks ṼSc
β,Sβ

and ṼSc
β,Sc

β
are 0. For

this purpose we select USc
β,Sβ

= 1
λn

VSc
β,Sβ

and USc
β,Sc

β
= 1

λn
VSc

β,Sc
β
. Since

it is clear that the vector (z̃Sβ
, 0Sc

β
) is the principal eigenvector of Ṽ, if U

is a sign matrix, Lemma 5 will conclude that — (z̃ᵀ
Sβ
, 0ᵀ

Sc
β
)ᵀ(z̃ᵀ

Sβ
, 0ᵀ

Sc
β
) is the

optimal solution to the optimization problem, which will in turn conclude
our claim.

It remains to show that the specified U is indeed a sign matrix. Note
that by Cauchy-Schwartz for k ∈ Sc

β and any j, we have:

Vjk ≤
√
Vjj

√
Vkk.(40)

From (38) if j ∈ Sβ, we have that high probability:

Vjj ≤ CV

s
+

6CV

γs
=

(γ + 6)CV

γs
.

Hence, it is sufficient to select m,H large enough so that:

Vkk ≤ γCV

4(γ + 6)s
.

To achieve the above bound, we make usage of the following tail inequality,
for χ2 random variables which we take from [21] (see Lemma 1):

P

(
χ2
H

H
≥ 1 + 2

√
x

H
+

2x

H

)
≤ exp(−x).

Note that, Vkk ∼ 1
mHχ2

H for k ∈ Sc
β. Thus applying the bound above we

have
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1

mH
χ2
H ≤ 1

m
+

2

m

√
x

H
+

2x

mH
≤ 2

m
+

3x

mH
,(41)

with probability at least exp(−x). Applying (41) it can be easily seen that
by selecting:

x =
nγCV

24(γ + 6)s
,

we can ensure (after using (37)) thatVkk ≤ γCV

4(γ+6)s for all k ∈ Sc
β. Requiring:

nγCV

24(γ + 6)s
≥ 2 log(p− s),(42)

ensures that the probability of the event is asymptotically 1 from the union
bound. This combined with (40) shows that the so defined matrix U is
indeed a sign matrix, which concludes the proof.

6. Discussion

Sliced inverse regression has been widely applied in various scientific prob-
lems. Though it is a successful tool in terms of data visualization, and prov-
ably works when the dimension p is not large, its behavior in the high-
dimensional regime p � n is much less well understood.

In this paper, we studied the support recovery of SIM within the class of
models FA. We demonstrated that the optimal sample size of this problem
is of the order s log(p− s). Two unforeseeable results of our analysis might
be of particular interest for future investigations.

Recall that a central subspace of a pair of random variables (Y,X) is
the minimal subspace S such that Y ⊥⊥ X

∣∣PSX. The first implication of
our results, as we hinted in Remark 1, is that if we focus on estimating the
support of the central subspace rather than consistently estimating the in-
termediate matrix, better convergence rate might be expected. For instance,
the results in [24] show that, under mild conditions, the convergence rate
of the SIR estimate V of Var(E[X|Y ]) is OP (

1
H +

√
p
n). In order to get

a consistent estimation of the intermediate matrix Var(E[X|Y ]), the slices
number H has to be diverging. The result regarding the choice of H in this
paper suggests that it would be possible to get an improved convergence
rate of estimating the central subspace which is expected to be

√
p
n .

The second consequence is that estimating the central subspace might
be easier than that of sparse PCA in terms of computational cost. At first
glance, the unknown nonlinear link function f could bring in difficulties in
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determining the optimal rate, and it might be reasonable to expect that
this difficulty will increase the computational cost in general. The results
in this paper however, provide the opposite evidence — as long as s =
O(p1−δ) for some δ > 0, the computationally efficient algorithms DT-SIR
and SDP approach can solve the support recovery problem. In other words,
the tradeoff between computational and statistical efficiency for estimating
the central subspace might occur in a more subtle regime, where s ∝ p and
n ∝ p. Finally combining our results with the results of [24], calculating the
minimax rate of an estimator for the SDR space in model (1) appears to be
a plausible exercise, and is left for future work.
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Appendix A. Technical proofs

Proof of Lemma 1. First take any vector b ∈ Rp such that b ⊥ β. We have:

E[X|Y ]ᵀb = E[Xᵀb] = 0,

since Xᵀb is independent of Xᵀβ and ε. This implies that

E[X|Y ] = c(Y )β,(43)

for some real valued function c. Since β is a unit vector it follows that
c(Y ) = E[Xᵀβ|Y ]. Take j ∈ Sβ and apply (43) to get:

Var[mj(Y )] =
Var[E[Xᵀβ|Y ]]

s
.(44)
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Combining the observation above with the following two inequalities:

A ≤ Var(E[Xᵀβ|Y ]) ≤ Var(Xᵀβ) = 1,

gives the desired result.

Proof of Proposition 1. We first note that without loss of generality we can
consider the function m̃ to be non-negative, at the price of potentially shrink-
ing the interval (B0,∞) to (B0+η,∞) by any η > 0. To see this fix an ε > 0,
and define m̃′(x) = m̃(x) − m̃(B0 + η) for x ∈ (B0 + η,∞). Then since (6)
holds on (−∞,−B0) ∪ (B0,∞), clearly:

|m(x)−m(y)| ≤ |m̃′(|x|)−m̃′(|y|)|, for x, y ∈ (−∞,−B0−η) or (B0+η,+∞).

By the convexity of the map x �→ x2+ξ we have m̃′(x)2+ξ ≤ 21+ξ(|m̃(x)|2+ξ+
|m̃(B0 + η)|2+ξ) and hence E[|m̃′(|Y |)|(2+ξ)] < ∞. Finally by definition m̃′ is
non-negative and non-decreasing on (B0 + η,∞).

Next note that if Y has a bounded support, this proposition clearly fol-
lows from assumption (5) alone. Thus, without loss of generality we assume
that Y has unbounded support (from both sides, as if one of them is bounded
we can handle it in much the same way as the proof below).

Let B̃0 = B0 + η, for some small fixed η > 0. Fix any partition a ∈
AH(l,K). Let S0 = {h : ah ∈ [−B̃0, B̃0]}, and let hm = minS0, hM =
maxS0. Note that the following simple inequality holds for any 2 ≤ h ≤
hm − 2 or hM + 1 ≤ h ≤ H − 1:

Var[m(Y )|ah < Y ≤ ah+1] ≤ inf
t∈(ah,ah+1]

E[(m(Y )−m(t))2|ah < Y ≤ ah+1]

≤ sup
y,t∈(ah,ah+1]

(m(y)−m(t))2

≤ (m̃(|ah|)− m̃(|ah+1|))2.

This gives us the following inequality:

hm−2∑
h=2

Var[m(Y )|ah < Y ≤ ah+1] ≤
hm−2∑
h=2

(m̃(|ah|)− m̃(|ah+1|))2(45)

≤ (m̃(|a2|)− m̃(|ahm−1|))2,

where the last inequality holds since m̃ is non-decreasing. Similar inequality
holds for the other tail as well.

Using a similar technique we obtain the following bound on the interval:
[−B̃0, B̃0]:
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hM−1∑
h=hm

Var[m(Y )|ah < Y ≤ ah+1] ≤
hM−1∑
h=hm

E[(m(Y )−m(ah))
2|ah < Y ≤ ah+1]

≤
hM−1∑
h=hm

sup
y∈(ah,ah+1]

(m(y)−m(ah))
2.

Notice further that:

Var[m(Y )|ahm−1 < Y ≤ ahm
] ≤ sup

y∈(ahm−1,ahm ]
(m(y)−m(−B̃0))

2

≤ sup
y∈(ahm−1,−B̃0]

(m(y)−m(−B̃0))
2 + sup

y∈[−B̃0,ahm ]

(m(y)−m(−B̃0))
2.

And a similar inequality holds for Var[m(Y )|ahM
< Y ≤ ahM+1]. Thus:

hM∑
h=hm−1

Var[m(Y )|ah < Y ≤ ah+1] ≤
hM−1∑
h=hm

sup
y∈(ah,ah+1]

(m(y)−m(ah))
2

︸ ︷︷ ︸
I1

+ sup
y∈(ahm−1,−B̃0]

(m(y)−m(−B̃0))
2

︸ ︷︷ ︸
I2

+ sup
y∈[−B̃0,ahm ]

(m(y)−m(−B̃0))
2

︸ ︷︷ ︸
I3

+ sup
y∈[B̃0,ahM+1]

(m(y)−m(B̃0))
2

︸ ︷︷ ︸
I4

+ sup
y∈(ahM

,B̃0]

(m(y)−m(B̃0))
2

︸ ︷︷ ︸
I5

.

We have:

I1 + I3 + I5 ≤ sup
b∈Π2|S0|+3(B̃0)

2|S0|+3∑
i=2

(m(bi)−m(bi−1))
2(46)

≤ sup
b∈Π2|S0|+3(B̃0)

⎛⎝2|S0|+3∑
i=2

|m(bi)−m(bi−1)|

⎞⎠2

.(47)

To see this, consider a partition containing the points b1 = −B̃0, b3 =
ahm

, . . . , b2|S0|+1 = ahM
, b2|S0|+3 = B̃0, and b2k = argmaxy∈(b2k−1,b2k+1](m(y)−

m(b2k−1))
2, k ∈ [|S0|] and b2|S0|+2 = argmaxy∈(b2|S0|+1,B̃0]

(m(y) − m(B̃0))
2

(note that if the max doesn’t exist we can take a limit of partitions converg-
ing to it).
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Next, we control I2:

I2 = sup
y∈(ahm−1,−B̃0]

(m(y)−m(−B̃0))
2 ≤ (m̃(|ahm−1|)− m̃(B̃0))

2.

with the last inequality following from (6). Combining this bound with (45)
we get:

(m̃(|a2|)− m̃(|ahm−1|))2 + I2 ≤ (m̃(|a2|)− m̃(B̃0))
2.(48)

Similarly, for I4 and the other bound in (45) we have:

(m̃(|aH |)− m̃(|ahM+1|))2 + I4 ≤ (m̃(|aH |)− m̃(B̃0))
2.(49)

Finally, we deal with the tail part:

Var[m(Y )|Y ≤ a2] ≤ E[(m(Y )−m(a2))
2|Y ≤ a2]

(50)

≤ E[(m̃(|Y |)− m̃(|a2|))2|Y ≤ a2]

≤ 4E[(m̃(|Y |))2|Y ≤ a2]≤ 4(E[|m̃(|Y |)|2+ξ|Y ≤ a2])
2/(2+ξ)

= 4

(∫ a2

−∞
|m̃(|y|)|2+ξdP(Y ≤ y)P(Y ≤ a2)

−1

)2/(2+ξ)

= o(1)P(Y ≤ a2)
−2/(2+ξ).

where we used the fact that E[|m̃(|Y |)|2+ξ] is bounded by assumption, and
the o(1) is in the sense of |a2| → ∞. We can show a similar inequality for
the other tail — Var[m(Y )|Y ≥ aH ].

Combining (45), (48), (49), (46) and (50) we have:

H∑
h=1

Var[m(Y )|ah < Y ≤ ah+1] ≤ sup
b∈Π2|S0|+3(B̃0)

⎛⎝2|S0|+3∑
i=2

|m(bi)−m(bi−1)|

⎞⎠2

+ o(1)P(Y ≥ aH)−2/(2+ξ) + o(1)P(Y ≤ a2)
−2/(2+ξ)

+ (m̃(|a2|)− m̃(B̃0))
2 + (m̃(|aH |)− m̃(B̃0))

2.

Since (m̃(|a2|) − m̃(B̃0))
2 ≤ 4(m̃(|a2|))2, and we know that m̃(|a2|)2+ξ l

H ≤
m̃(|a2|)2+ξP(Y ≤ a2) → 0, this means that m̃(|a2|)2 1

H2/(2+ξ) → 0. Furthre-

more o(1)P(Y ≤ a2)
−2/(2+ξ) 1

H2/(2+ξ) = o(1). Finally we recall that by (5) we
have:
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sup
b∈Π2|S0|+3(B̃0)

⎛⎝2|S0|+3∑
i=2

|m(bi)−m(bi−1)|

⎞⎠2

= o
(
|S0|2/(2+ξ)

)
.

However |S0| ≤ P(−B̃0 ≤ Y ≤ B̃0)H/l + 1 and thus:

sup
b∈Π2|S0|+3(B̃0)

⎛⎝2|S0|+3∑
i=2

|m(bi)−m(bi−1)|

⎞⎠2

= o
(
H2/(2+ξ)

)
,

which finishes the proof.

Proof of Lemma 2. Before we go to the main proof of the lemma we first
formulate a simple but useful concentration inequality.

Lemma 7. Let X̃ be a sub-Gaussian random variable with ‖X̃‖ψ2
≤ K. Let

A(X̃, ν) ∈ {0, 1} be any (randomized) acceptance rule such that P(A = 1) ≥
q, with ν being any random variable. Let X1, . . . , Xr be an i.i.d. samples of
the distribution X̃|A(X̃, ν) = 1. Denote with μ = E[Xi]. Then there exist
some absolute constants C1, C2 > 0 such that:

P(|X − μ| > ε) ≤ 2 exp

(
− ε2r

C1K2 exp(
√

1− log(q)) + C2Kε

)
.

As a Corollary to Lemma 7, observe that since supq∈[0,1] exp(
√

1− log(q))q =
e, we then have the following:

P(|X − μ| > ε) ≤ 2 exp

(
− ε2r

C1K2q−1 + C2Kε

)
,

for some absolute constants C1, C2 > 0.
By (20) we know that P(Y ∈ Sh) ≥ 1

H −2ε on E, thus setting q = 1
H −2ε,

by Lemma 7 conditionally on {Y(mh) : h ∈ [H − 1]} we have for all j ∈ G
and all h:

P

(∣∣∣Xj
h,1:(m−1) − μj

h

∣∣∣ > η
)
≤ 2 exp

(
− η2(m− 1)

C1K2q−1 + C2Kη

)
.

Note that Lemma 7 is applicable in this case, since the statistics Xj
h,πi

are i.i.d. conditionally on Y(m(h−1)) and Y(mh), where π is a random per-

mutation, as we noticed in the main text. Therefore Xj
h,πi

d
= Xj |A(Xj , ν)
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for the acceptance rule A(Xj , ν) := A(X, ε) = 1(f(Xᵀβ, ε) ∈ Sh). Fur-
thermore, notice that the above inequality holds regardless of the values of
{Y(mh) : h ∈ [H − 1]}, on the event E.

Finally, using union bound across the slices and the indexes j ∈ G, we
have that this holds for all slices or in other words

P

(
max

j∈G,h∈[H]

∣∣∣Xj
h,1:(m−1) − μj

h

∣∣∣ > η

)
≤ 2|G|H exp

(
− η2(m− 1)

C1K2q−1 + C2Kη

)
,

on the event E. This is precisely what we wanted to show.

Proof of Lemma 7. Observe that the random variable X
d
= X̃|A(X̃, ν) sat-

isfies the following inequality:

P(|X| ≥ t) = P(|X̃| ≥ t|A(X̃, ν) = 1) =
P(|X̃| ≥ t, A(X̃, ν) = 1)

P(A(X̃, ν) = 1)

≤ q−1
P(|X̃| ≥ t) ≤ q−1e exp(−ct2/K2),

where c is an absolute constant, and the last inequality follows by the fact
that X̃ is assumed to be sub-Gaussian. Clearly the above bound can be

substituted with the trivial bound 1, for values of t ≤
√

−K2/c log
( q
e

)
. Let

f(q) :=
√

−K2/c log
( q
e

)
. Next, for any positive integer j ∈ N, we have:

E[|X|j ] =
∫ ∞

0
P(|X| ≥ t)jtj−1dt

≤
∫ f(q)

0
jtj−1dt+

∫ ∞

f(q)
q−1e exp(−ct2/K2)jtj−1dt.

Multiplying by λj/j! and summing over j = 1, 2, . . ., we obtain:

E[exp(λ|X|)] ≤ 1 + λ

∫ f(q)

0
exp(λt)dt+ λ

∫ ∞

f(q)

e

q
exp(−ct2

K2
) exp(λt)dt

= exp(λf(q)) +
λe

√
πK

q
√
c

exp(K2λ2/4c)

[
1− Φ

(
f(q)−K2λ/(2c)

K/
√
2c

)]
.

Assuming that λ is small enough so that f(q) − K2λ/(2c) > 0, we can use
the well known tail bound 1− Φ(x) ≤ φ(x)/x, for x > 0 to get:

E[exp(λ|X|)] ≤ exp(λf(q)) +
λeK2√π exp(K2λ2/4c)

q(f(q)−K2λ/(2c))
√
2c

φ

(
f(q)−K2λ/(2c)

K/
√
2c

)
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= exp(λf(q))

(
1 +

λK2

2c(f(q)−K2λ/(2c))

)
.

Next, by the triangle inequality and the convexity of the exponent and the
absolute value we have:

E[exp(λ|X − μ|)] ≤ E[exp(λ|X|)] exp[E[λ|X|]] ≤ E[exp(2λ|X|)].

Set Z := X − μ. We have showed the following:

E[exp[λ|Z|]− 1− λ|Z|] ≤ E[exp[λ|Z|]]

≤ exp(2λf(q))

(
1 +

λK2

c(f(q)−K2λ/c)

)
,(51)

for a λ such that f(q)−K2λ/c > 0. By selecting λ := 1
2

√
c
K2 , one can easily

verify that (f(q) − K2λ/c) ≥ λ−1/4, and hence λK2

c(f(q)−K2λ/c) ≤ 1, for any

q ≤ 1. With this choice of λ (51) becomes:

E[exp[λ|Z|]−1−λ|Z|]λ−2 ≤ 8K2

c
exp

(√
c

K2
f(q)

)
=

8K2

c
exp

(√
− log

q

e

)
.

Recall that a version Bernstein’s inequality (see Lemma 2.2.11 [30])
states that if the following moment condition E|Z|j ≤ j!λ−(j−2)v/2 is met
for all j ≥ 2 and Zi ∼ Z, i ∈ [r] are mean 0, i.i.d. then:

P

(∣∣∣∣∣
r∑

i=1

Zi

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−1

2

ε2

rv + λ−1ε

)
.

Observe that by a Taylor expansion the condition

E[exp[λ|Z|]− 1− λ|Z|]λ−2 ≤ 1

2
v,

implies the moment condition from above. Hence we conclude:

P

(∣∣∣∣∣1r
r∑

i=1

Xi − μ

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−1

2

ε2r

16K2 exp(
√

1− log(q))/c+ 2K/
√
cε

)
,

which completes the proof.

Proof of Lemma 3. Using the sliced stability condition, for large H we get:
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∣∣∣∣∣Var[mj(Y )]−
H∑

h=1

(μj
h)

2
P(Y ∈ Sh)

∣∣∣∣∣ =
H∑

h=1

Var[mj(Y )|Y ∈ Sh]P(Y ∈ Sh)

≤ CHκ

s

(
1

H
+ 2ε

)
.

This shows (22). Consequently we have:(
1

H
− 2ε

) H∑
h=1

(μj
h)

2 ≤
H∑

h=1

(μj
h)

2
P(Y ∈ Sh) ≤

CV

s
+

CHκ

s

(
1

H
+ 2ε

)
.

This yields (23). To get (24) we proceed as follows:(
1

H
− 2ε

) H∑
h=1

|μj
h| ≤

H∑
h=1

|μj
h|P(Y ∈ Sh)

≤

√√√√ H∑
h=1

P(Y ∈ Sh)

√√√√ H∑
h=1

(μj
h)

2P(Y ∈ Sh)

≤
√

CV

s
+

CHκ

s

(
1

H
+ 2ε

)
,

and we are done.

Proof of Lemma 4. Note that on the event Ẽ we have the following chain of
inequalities:

1

H

H∑
h=1

∣∣∣∣∣
(

1

m
Xj

h,m +
m− 1

m
X

j
h,1:(m−1)

)2

− (m− 1)2

m2
(μj

h)
2

∣∣∣∣∣ ≤
H∑

h=1

(Xj
h,m)2

Hm2

(52)

+
2(m− 1)

Hm2

H∑
h=1

|Xj
h,m|(η + |μj

h|) +
(m− 1)2

Hm2

H∑
h=1

η(2|μj
h|+ η) ≤

≤ 1

m

1

n

n∑
r=1

(Xj
r)

2 +
2

Hm

√√√√ n∑
r=1

(Xj
r)

2

√√√√2

H∑
h=1

(η2 + (μj
h)

2) + η2 + 2
η

H
B3.

where we used that we are on the event Ẽ in the first inequality, and
(24), Cauchy-Schwartz and the trivial bounds m−1

m < 1, 1
n

∑H
h=1(X

j
h,m)2 ≤

1
n

∑n
r=1(X

j
r)

2 in the second one.
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To this end, observe that (Xj
r)

2, r ∈ [n] are i.i.d. random variables with
sub-exponential distributions. This can be seen from the standard inequality:

‖(Xj
r)

2‖ψ1
≤ 2‖Xj

r‖2ψ2
≤ 2K2.

Clearly we also have E[(Xj
r)

2] ≤ 2K2. Denote the mean E[(Xj
r)

2] = ν. Now
we are in a position to use a Bernstein type of deviation inequality (see
Proposition 5.16 in [31]). We obtain:

P

(
1

n

n∑
r=1

(Xj
r)

2 > ν + τ

)
≤ exp

(
−cmin

(
τ2n

4K4
,
τn

2K2

))
,

for some absolute constant c > 0. Hence we infer that, when τ ≤ 2K2, there

exists a set
˜̃
E ⊂ Ẽ failing with probability at most p exp(−c τ2n

4K4 ), such that
1
n

∑n
r=1(X

j
r)

2 ≤ ν + τ ≤ 2K2 + τ for all j ∈ [p]. Therefore continuing the

bound on the event
˜̃
E , we get:

(52) ≤ (2K2 + τ)

m
+

2
√
2K2 + τ√

m

√
2η2 + 2

B2

H
+ η2 + 2η

B3

H
,

where we used (23). This finishes the proof.

Proof of Lemma 6. Fix any τ ∈ (0, 2]. Define the event:

˜̃
E Sβ

= ẼSβ
∩ { sup

j∈Sβ

n−1
n∑

i=1

(Xj
r)

2 ≤ 2 + τ}

We first note that the following inequality holds:∣∣∣∣Vjk − sign(βj) sign(βk)
CV

s

∣∣∣∣ =
∣∣∣∣∣ 1H

H∑
h=1

X
j
hX

k
h − sign(βj) sign(βk)

CV

s

∣∣∣∣∣
≤
∣∣∣∣∣ 1H

H∑
h=1

(X
j
h)

2 − CV

s

∣∣∣∣∣+ 1

H

H∑
h=1

∣∣∣Xj
h

∣∣∣ ∣∣∣sign(βj)X
j
h − sign(βk)X

k
h

∣∣∣ ,
where the LHS equals, the LHS of (36) after using (34). Fortunately (25)

and (27) already give bounds on the first term on the event
˜̃
E Sβ

, which can
be seen with identical arguments to Lemmas 3 and 4. We now show that
the second term is small on the same event. Note that the following identity
holds:
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1

H

H∑
h=1

∣∣∣Xj
h

∣∣∣ ∣∣∣sign(βj)X
j
h − sign(βk)X

k
h

∣∣∣
=

1

H

H∑
h=1

∣∣∣∣m− 1

m
X

j
h,1:(m−1) +

1

m
Xj

h,m

∣∣∣∣ ∣∣∣∣sign(βj)X
j
h −

m− 1

m
sign(βj)μ

j
h

+
m− 1

m
sign(βk)μ

k
h − sign(βk)X

k
h

∣∣∣∣ .
Thus on the event ẼSβ

:

1

H

H∑
h=1

∣∣∣Xj
h

∣∣∣ ∣∣∣sign(βj)X
j
h − sign(βk)X

k
h

∣∣∣
≤ 1

H

H∑
h=1

(
μh + η +

1

m

∣∣∣Xj
h,m

∣∣∣)(2η +
1

m

∣∣∣Xj
h,m

∣∣∣+ 1

m

∣∣∣Xk
h,m

∣∣∣) ,

where μh = |μj
h| = |μk

h|, and we used that m−1
m < 1, and the fact that on

ẼSβ
we have |Xj

h,1:(m−1)−μj
h| ≤ η and similarly |Xk

h,1:(m−1)−μk
h| ≤ η. Next

we have:

1

H

H∑
h=1

(
μh + η +

1

m

∣∣∣Xj
h,m

∣∣∣)(2η +
1

m

∣∣∣Xj
h,m

∣∣∣+ 1

m

∣∣∣Xk
h,m

∣∣∣)

≤ 2
η

H

H∑
h=1

μh +
1

mH

H∑
h=1

{(μh + η)(|Xj
h,m|+ |Xk

h,m|) + 2η|Xj
h,m|}+ 2η2+

+
1

m2H

H∑
h=1

(Xj
h,m)2 +

1

2m2H

H∑
h=1

(Xj
h,m)2 +

1

2m2H

H∑
h=1

(Xk
h,m)2,

where we used the simple inequality ab ≤ (a2+b2)/2. Luckily we have already
controlled all of the above quantities. Using Lemma 4 and (25) we get:

1

H

H∑
h=1

∣∣∣Xj
h

∣∣∣ ∣∣∣sign(βj)X
j
h − sign(βk)X

k
h

∣∣∣
≤ 2

η

H
B3 +

2
√
2 + τ√
m

√
2η2 + 2

B2

H
+ 2η2 + 2

η
√
2 + τ√
m

+ 2
2 + τ

m
,

where we heavily relied on the fact that on
˜̃
E Sβ

we have 1
mH

∑n
r=1(X

j
r)

2 ≤
2 + τ , the rest of the bounds can be seen in the proof of Lemma 4. (For
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the term note 1
mH

∑H
h=1 |X

j
h,m| ≤ 1

m

√∑H
h=1

(Xj
h,m)2

H ≤ 1√
m

√∑n
r=1

(Xj
r)

2

mH ).

Finally noting that 2η
√
2+τ√
m

≤ η2 + 2+τ
m gives the desired result.

Lemma 8. Let N be a s× s symmetric “noise” matrix satisfying:

‖N‖max ≤ CV

40s
.(53)

Then the following occurs:

(a) Let γ1 be the maximum eigenvalue of ṼSβ,Sβ
= CV

2 βSβ
βᵀ
Sβ

+ N, i.e.

γ1 := λmax(ṼSβ,Sβ
). Then we have |γ1 − CV

2 | ≤ CV

40 ; Furthermore if

γ2 is the second largest in magnitude eigenvalue of ṼSβ,Sβ
, we have

|γ2| ≤ CV

40 , and hence γ1 > |γ2|.
(b) The corresponding principal eigenvector of ṼSβ,Sβ

— z̃Sβ

4 satisfies the
following inequality: ∥∥∥z̃Sβ

− βSβ

∥∥∥
∞

≤ 1

2
√
s
.

Proof. This Lemma is a re-statement of Lemma 6 from [1], the difference
being that we require precise bounds, rather than considering simply the
asymptotics. To see part (a), observe that (53) implies:

‖N‖2,2 = sup
‖v‖2=1

|vᵀNv| ≤ ‖v‖21‖N‖max ≤ CV

40
.(54)

Hence by Weyl’s inequality we have that:

|γ1 −
CV

2
| ≤ CV

40
, |γ2 − 0| ≤ CV

40
,

which is exactly part (a). For the second part observe that

‖N‖∞,∞ = max
i

∑
j

|Nij | ≤ s
CV

40s
=

CV

40
.(55)

The proof of part (b) can then be seen as in Lemma 6 of [1], by carefully
exploiting (54) and (55).

Proof of Proposition 2. The proof is based on an application of Fano’s in-
equality, which in turn is a standard approach for showing minimax lower

4Here we mean the principal eigenvector oriented so that z̃ᵀ
Sβ

βSβ
≥ 0.
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bounds (e.g. see [12, 33, 34, 35] among others). In particular we base our
proof on ideas from [1, 33].

For two probability measures P and Q, which are absolutely continuous
with respect to a third probability measure μ define their KL divergence
by D(P‖Q) =

∫
p log p

qdμ, where p = dP
dμ , q = dQ

dμ . We proceed with the
following lemma:

Lemma 9. Let us have n observations from a SIM Y = f(Xᵀβ, ε),X ∼
Np(0, Ip). Assume that for any fixed u, v ∈ R the following regularity condi-
tion holds for the random variables f(u, ε) and f(v, ε):

D(p(f(u, ε))‖p(f(v, ε))) ≤ exp(Ξ(u− v)2)− 1,(56)

where Ξ is a positive constant. Then if

n <
s log(p− s+ 1)

8Ξ
,

and s ≥ 8Ξ, any algorithm recovering the support in our model will have
errors with probability at least 1

2 asymptotically.

To finish the proof simply apply Example 3 with P (x) = x/(2σ2) and
G = h = Id.

Proof of Lemma 9. For simplicity of the exposition we will assume that the
vector β has only non-negative entries (i.e. all non-zero entries are 1√

s
). The

proof extends in exactly the same way in the case when the entries of β are
not restricted to be positive.

Let S ⊂ 2[p], the set of all subsets of [p] with s elements. Clearly, |S| =
(
p
s

)
.

Let Ŝ : (Rp+1)n → S be any potentially random function, which is used to
recover the support of β, based on the sample {(Yi,X i)}ni=1. Under the 0-1
loss the risk equals the probability of error:

1(
p
s

) ∑
Sβ∈S

PSβ
(Ŝ �= Sβ),(57)

where by PSβ
we are measuring the probability under a dataset generated

with supp(β) equal to the index of the measure PSβ
.

Instead of directly dealing with the sum above, we first consider the
p − s + 1 element set S̃ = {S ∈ S : [s − 1] ⊂ S, |S| = s}, and we bound the
probability of error, on any function Ŝ (even if given the knowledge that the

true support is drawn from S̃). Let J be a uniformly distributed in S̃. By
Fano’s inequality that:
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P(error) ≥ 1− I(J ; (Y,X)n) + log(2)

log |S̃|
,(58)

where I(J ; (Y,X)n) is the mutual information between the sample J and
the sample (Y,X)n. Note now that for the mutual information we have

I(J ; (Y,X)n) = I(J ; (f(Xᵀβ, ε),X)n)

≤ nH((f(Xᵀβ, ε),X))− nH((f(Xᵀβ, ε),X)|J), 5

where the last inequality follows from the chain inequality of entropy. We
therefore need an upper bound on the last expression.

Let i ≥ s and set βi := (βi
1, β

i
2, . . . , β

i
p)

ᵀ the vector such that that

βi
j = 1(j∈[s−1])+1(j=i)√

s
. When J is unknown the distribution is a mixture,

and hence due to the convexity of − log we have the following inequality:

H((f(Xᵀβ, ε),X))−H((f(Xᵀβ, ε),X))|J)

≤ 1

(p− s+ 1)2

∑
i,j≥s

p((f(Xᵀβi, ε),X)) log
p(f(Xᵀβi, ε),X)

p(f(Xᵀβj , ε),X)

=
p− s

p− s+ 1
D(p((f(Xᵀβs, ε),X))‖p((f(Xᵀβs+1, ε),X))),

where the last equality follows by a symmetric argument. Since the KL
divergence is invariant under changing variables, setting U = Xᵀβs, V =
Xᵀβs+1 and W = P{βs,βs+1}⊥X, where P{βs,βs+1}⊥ denotes the orthogonal

projection on the space span{βs,βs+1}⊥. We get:

H((f(Xᵀβ, ε),X))−H((f(Xᵀβ, ε),X))|J)

≤ p− s

p− s+ 1
D(p((f(U, ε), U, V ))‖p((f(V, ε), U, V ))),

where we used the fact that W is independent of U, V, ε. Applying assump-
tion (56) we get:

D(p((f(U, ε), U, V ))‖p((f(V, ε), U, V ))) ≤ E exp(Ξ(U − V )2)− 1

=

√
s

s− 4Ξ
− 1 ≤ 4Ξ

s
.

5Here we use H to denote the entropy, not to be confused with the number of
slices H.
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where the first inequality can be obtained by conditioning on U, V , in the
equality we used the fact that U − V ∼ N(0, 2s ), and we assume that the
value of s is large enough so that s ≥ 8Ξ. The inequality in the preceding
display helps us to conclude that for large values of s:

I(J ; (Y,X)n) ≤ 4Ξ(p− s)n

s(p− s+ 1)
<

4Ξn

s
.

Consequently by (58) if n < s log(p−s+1)
8Ξ we will have errors with probability

at least 1
2 , asymptotically. To finish the conclusion, note that the sum (57),

can be split into
(

p
s−1

)
terms, by the following operation:

1. Repeat each set in S — s times, and denote this superset by s× S

2. For each S of the
(

p
s−1

)
, subsets of [p] with s − 1 elements, collect

p− s+ 1 distinct elements of s× S containing S
3. Apply the 1

2 error bound obtained from above to this local sum.

In the end we get that the probability of error by selecting S ⊂ S uni-

formly is at least: 1
s

( p

s−1)
(ps)

(p− s+ 1)12 = 1
2 .

Appendix B. SIM examples

In this section we look into models of the type Y = G(h(Xᵀβ)+ε) and show
that under certain sufficient conditions they belong to a class FA for some
A. In addition, we provide a sub-class of these models, in which support
recovery is impossible with probability at least 1

2 when Γ is small.

Example 1. For SIM Y = G(h(Xᵀβ)+ ε) with strictly monotone h and G
there exists A > 0 (depending on h,G) such that Var(E[Xᵀβ|Y ]) ≥ A > 0.

Proof. We will show more generally that if Y = f(Xᵀβ, ε), where f, ε satisfy
the condition that the function g(z) = E[f(Z, ε)|Z = z] is strictly monotone,
we have: Var(E[Z|f(Z, ε)]) > 0.

Note that the condition ∃A > 0 : Var(E[Z|f(Z, ε)]) ≥ A is equivalent
E[Z|f(Z, ε)] to not being a constant. We argue that the latter is clearly
implied if, for example, E[Zf(Z, ε)] �= 0. To see this assume the contrary,
i.e. E[Z|f(Z, ε)] = 0 a.s., but E[Zf(Z, ε)] �= 0. Then we have E[Zf(Z, ε)] =
E[E[Z|f(Z, ε)]f(Z, ε)] = 0, which is a contradiction.

Next we show that our condition implies E[Zf(Z, ε)] �= 0. WLOG assume
that g is strictly increasing. Observe that since Z ∼ N(0, 1) is a continuous
random variable, by Chebyshev’s association inequality [3] we have:

E[Zf(Z, ε)] = E[Zg(Z)] > E[Z]E[g(Z)] = 0,
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and hence as we argued earlier it follows that Var(E[Z|f(Z, ε)]) > 0. Due
to the independence of X and ε models with a coordinate-wise monotone f
function (strictly monotone in the first coordinate) belong to this class.

Example 2. Let Y = G(h(Xᵀβ) + ε), where G, h are strictly monotone
continuous functions. Furthermore let ε be such that the function m(y) is
continuous and monotone in y. We argue that such models are sliced stable
in the sense of Definition 1.

Proof. Since m is a continuous and monotone function in y, it follows that
it is of bounded variation on any closed interval, which in turn implies (5).
Furthermore, by Example 1, we are guaranteed that

√
Var(mj(Y ))s = CV

for some CV > 0. Notice also that in the case of a continuous and monotone
m one can take m̃(y) := |m(y)−m(−y)| < |m(y)|+|m(−y)|, for y > 0. Finally
we need to show that E[|m̃(|Y |)|(2+ξ)] is finite. Due to the last inequality it
suffices to control:

C2+ξ
V E|m̃(Y )|2+ξ ≤ s(2+ξ)/2

E|E[Xj |Y ]|2+ξ = s(2+ξ)/2
E|E[s−1/2Xᵀβ|Y ]|2+ξ

≤ s(2+ξ)/2s−(2+ξ)/2
EE[|Xᵀβ|2+ξ|Y ] = E|Z|2+ξ < ∞,

where Z ∼ N(0, 1) and in the first equality we used the fact that Xj −
s−1/2Xᵀβ ⊥⊥ Xᵀβ and hence E[Xj−s−1/2Xᵀβ|Y ] = E[Xj−s−1/2Xᵀβ] =
0. This completes the proof.

Remark 3. To see that the monotonicity condition on m(y) is not vacuous,
we give concrete examples of SIM satisfying it, which include the simple
linear regression model (8) as a special case. Consider the models from Ex-
ample 2 and let ε have a density function satisfying pε(x) ∝ exp(−P (x2)),
where P is any nonzero polynomial with non-negative coefficients such that
P (0) = 0. To see that m is monotonic and continuous, we start by obtaining
a precise expression of m. It is simple to see that:

m(y) =
E[Z|h(Z) + ε = G−1(y)]√

Var(mj(Y ))s
,

for almost every y ∈ supp(Y ). By Example 1, we have that
√

Var(mj(Y ))s =
CV for some CV > 0. Next we argue that y �→ m(y) is monotone. This
is equivalent to showing that m(G(y)) is monotone. To this end we apply
Lemma A.2 of [15], which implies that it suffices for the random variable
h(Z) + ε|Z to have a monotone likelihood ratio in order for m(G(y)) to be
monotone. Since the family of random variables h(z)+ε is a location family,
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the normalizing constants of their densities do not change with z. This in
conjuction with the fact that h is increasing, implies that the monotonicity
of the likelihood ratio will be implied if we show that the function x �→
P (x2) − P ((x − c)2) is increasing in x for any fixed c > 0. Notice that
since P (x2) is a differentiable convex function by construction, we have that

P (x2) − P ((x − c)2) ≥ cdP (y2)
dy |y=x−c > 0. It is worth noting that the same

argument applies more generally to the case where ε is a log-concave random
variable (i.e. pε(x) = exp(−ϕ(x)) where ϕ is a convex function). The fact
that m is continuous follows by the continuity of G and h.

Finally, with the help of Lemma 9 we demonstrate that some models
discussed in Remark 3 meet the information theoretic barrier described in
Proposition 2, and hence their support cannot be recovered by any algorithm
unless Γ is large enough.

Example 3. Let Y = G(h(Xᵀβ) + ε), where G, h are strictly monotone
continuous functions and in addition h is an L-Lipschitz function. Further-
more let ε has a density as specified in Remark 3, i.e. pε(x) ∝ exp(−P (x2)),
where P is any nonzero polynomial with non-negative coefficients such that

P (0) = 0. Then if n < s log(p−s+1)
C for some constant C > 0 (depending on

P,G, h) and s sufficiently large, any algorithm recovering the support in our
model will have errors with probability at least 1

2 asymptotically.

Proof. Note that all moments of the random variable ε exist. Next we verify
that condition (56) holds in this setup. Since G is 1-1 and KL divergence
is invariant under changes of variables WLOG we can assume our model is
simply Y = h(Xᵀβ) + ε or in other words f(u, ε) = h(u) + ε. This is a
location family for u ∈ R and thus the normalizing constant of the densities
will stay the same regardless of the value of u. Direct calculation yields:

D(p(f(u, ε))‖p(f(v, ε))) = E[P ((ξ + h(u)− h(v))2)− P (ξ2)]

= P̃ ((h(u)− h(v))2),

where ξ has a density pξ(x) ∝ exp(−P (x2)), and P̃ is another nonzero

polynomial with nonnegative coefficients, with P̃ (0) = 0 of the same degree
as P . The last equality follows from the fact that all odd moments of ξ are
0, since ξ is a symmetric about 0 distribution. Since h is L-Lipschitz we
conclude that:

D(p(f(u, ε))‖p(f(v, ε))) ≤ P̃ (L2(u− v)2).

The last can be clearly dominated by exp(C(u− v)2)− 1 for a large enough
constant C.
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Appendix C. Extra numerical studies figures

Figure 4: Efficiency Curves for DT-SIR, s = log p, Γ = n
s log(p−s) ∈ [0, 30].
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Figure 5: Efficiency Curves for SDP, s = log p, Γ = n
s log(p−s) ∈ [0, 40].
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Figure 6: Efficiency Curves for DT-SIR, s =
√
p, Γ = n

s log(p−s) ∈ [0, 30],

β = β̃/‖β̃‖2 according to (17).
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Figure 7: Efficiency Curves for SDP, s =
√
p, Γ = n

s log(p−s) ∈ [0, 40], β =

β̃/‖β̃‖2 according to (17).
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