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Dimensionality reduction of parameter-dependent
problems through proper orthogonal decomposition
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The numerical solution of partial differential equations (PDEs) de-
pending on parametrized or random input data is computationally
intensive. Reduced order modeling techniques, such as the reduced
basis methods, have been developed to alleviate this computational
burden, and are nowadays exploited to accelerate real-time anal-
ysis, as well as the solution of PDE-constrained optimization and
inverse problems. These methods are built upon low-dimensional
spaces obtained by selecting a set of snapshots from a parametri-
cally induced manifold. However, for these techniques to be effec-
tive, both parameter-dependent and random input data must be
expressed in a convenient form. To address the former case, the
empirical interpolation method has been developed. In the latter
case, a spectral approximation of stochastic fields is often gener-
ated by means of a Karhunen-Loève expansion. In all these cases,
a low dimensional space to represent the function being approxi-
mated (PDE solution, parametrized data, stochastic field) can be
obtained through proper orthogonal decomposition. Here, we re-
view possible ways to exploit this methodology in these three con-
texts, we recall its optimality properties, and highlight the common
mathematical structure beneath.

Keywords and phrases: Reduced order modeling, proper orthogonal
decomposition, empirical interpolation, Karhunen-Loève expansion.

1. Introduction

The development of efficient numerical methods for differential problems
is of paramount importance in scientific computing. Being able to solve a
partial differential equation (PDE) using a handful of degrees of freedom –

instead of a huge amount like in classical full-order techniques – is manda-
tory to speedup the repeated solution of the problem e.g. for a huge number

of system configurations, operating conditions, or realizations when dealing
with uncertain features. All these inputs can be related to physical coef-
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ficients, source terms, boundary/initial conditions, or even to the spatial
domain Ω ⊂ Rd, d = 1, 2, 3, wherein the PDE has to be solved.

In turn, these quantities can be (i) known parameter-dependent func-
tions expressed in terms of deterministic input parameters, or (ii) mod-
eled through random input parameters. In the former case, we denote by
μ ∈ Pμ ⊂ RP a vector of P deterministic input parameters; in the latter
case, we denote by ψ ∈ Pψ ⊂ RQ a vector of Q random input parameters,
by assuming that we can parametrize random fields by a finite number of
random variables. Here Pμ,Pψ denote parameter spaces – usually, closed,
bounded subsets of RP ,RQ, respectively. For instance, consider the parame-
trized PDE

(1)

{
−div(ν(x;ω)∇u(x;μ)) = f(x;μ) in Ω

u(x;μ) = h(x;μ) on ∂Ω,

where μ ∈ P is a vector of deterministic input parameters, f(x;μ) and
h(x;μ) are μ-dependent functions, and ν = ν(x;ω) is a (positive) random
field, that is, (i) for a fixed point x ∈ Ω, ν(x; ·) is a random variable over
the outcome space Θ; (ii) for a fixed ω ∈ Θ, ν(·;ω) is a realization of the
random field in Ω. In many contexts, problem (1) has to be efficiently solved
for many input parameter values: this might be required, e.g, for the sake of
sensitivity analysis, PDE-constrained optimization (where e.g. f and/or h
are unknown functions to be determined in order to reach some prescribed
target) and in any case when the PDE depends on some random input data
– for instance, when using the stochastic collocation method, see e.g. [4]. At
least three needs arise when dealing with (1).

First of all, even in the case where ν = ν(x) is not a random quantity,
the numerical approximation of problem (1) for any new μ usually entails
the solution of a linear system of large dimension Nh×Nh. This latter stems
from the discretization of the PDE according to standard techniques such
as the Galerkin-finite element method, to which we refer to as high-fidelity
technique (or full-order model), meaning that we assume that the prob-
lem can be solved up to any desired accuracy level. The Reduced Basis (RB)
method [41] replaces the high-fidelity problem by a reduced problem of much
smaller dimension, by seeking in a subspace of lower dimension N � Nh an
approximate solution expressed as a linear combination of suitable, problem-
dependent, basis functions φ1, . . . , φN . The latter are generated from a given
set of ns solutions {uh(μ1), . . . , uh(μ

ns)}, ns ≥ N , of the high-fidelity prob-
lem, called snapshots, corresponding to a suitably chosen set of parameter
values. Once a reduced basis has been built, the RB solution is expressed as
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a linear combination of the basis functions,

uN (x;μ) =

N∑
j=1

uj(μ)φj(x), μ ∈ Pμ.

The components of the RB solution uN (μ) are determined by requiring that
a suitable (geometric) orthogonality criterion is fulfilled – this yields a linear
system of N equations to be solved, the RB system.

At the same time, assembling for any new value of μ the RB system
efficiently – that is, purely relying on arrays of small dimension N – re-
quires to represent the μ-dependent data in a suitable form, fulfilling the
so-called affine parametric dependence. By this latter, we mean that we can
approximate, e.g. f(x;μ), by

fM (x;μ) =

M∑
j=1

γj(μ)ρj(x), μ ∈ Pμ,

where ρ1, . . . , ρM are pre-selected, linearly independent basis functions. The
coefficients γ1, . . . , γM are obtained by requiring that the approximation is
exact at a finite set of M (interpolation) points.

Finally, for the sake of computational convenience, we assume that the
random field ν(x;ω) can be expressed as an infinite sum of uncorrelated ran-
dom variables {ψj(ω)}∞j=1, for a given set of real-valued functions {νj(x)}∞j=1.
Since only few modes are usually relevant, a low-dimensional representation
of a random field is obtained by truncating the infinite sum and retaining a
(hopefully small) finite number Q of terms:

νQ(x;ω) =

Q∑
j=1

ψj(ω)νj(x),

provided the variables ψ1, ψ2, . . . are uncorrelated. These variables can thus
play the role of random input parameters ψ = (ψ1, . . . , ψq) ∈ Pψ.

Proper orthogonal decomposition (POD) can be exploited to obtain a
low-dimensional representation of data in each of these contexts.

The strong development that reduced order modeling, low rank tensor
approximations and problems involving PDEs depending on (possibly ran-
dom) input parameters have undergone in these last two decades motivates
the investigation of POD as dimensional reduction technique at least for two
reasons: (i) a better understanding of the common mathematical structure
beneath the three contexts above, as well as the optimality results they rely
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on, can provide better insights also in view of developing efficient computa-

tional techniques; (ii) the need of reduction is nowadays shared by several

applications involving large scale data and/or PDE problems, thus motivat-

ing a strong interplay among techniques historically developed to address one

of the three goals. For instance, sampling techniques (such as sparse grids)

mandatory to deal with PDEs depending on random input data prove to

be extremely useful also when constructing a reduced basis space to better

explore the solution manifold. POD can thus be exploited within:

1. the Reduced Basis method for the solution of a parametrized PDE;

2. the Empirical Interpolation method (EIM), and its discrete variant,

for the affine approximation of a parameter-dependent function;

3. the Karhunen-Loève (KL) expansion1 (or transformation) for the pa-

rametrization of a stochastic field.

For the sake of generality, we denote by τ any kind of parameter vector,

and by g : P → V a generic function for which we seek a low-dimensional

approximation, being V a Hilbert space; for any τ , g = g( · ; τ ) is a spatial

field over the domain Ω. The problem we focus on is thus related with the

construction of low dimensional spaces for simultaneously approximating all

the elements belonging to a parameter-dependent family

(2) M = {g( · ; τ ) , τ ∈ P} ⊂ V,

where g = u, g = f or g = ν in cases 1, 2, and 3, respectively. Hence:

• first, we determine a basis {ζi}Ni=1 – fulfilling a suitable optimality

criterion – to represent all the elements of M. This stage may require

the sampling of snapshots from M (e.g. in the cases 1 and 2);

• once the basis has been computed, we express each element of M as

(3) g(x; τ ) ≈ gN (x; τ ) =

N∑
i=1

ζi(x)βi(τ ).

The vector of coefficients β(τ ) ∈ RN is determined in different ways

(e.g., by means of projection or interpolation) depending on the case.

1This is the way POD is called in the context of stochastic processes. In multivari-
ate statistics, instead, POD goes under the name of principal component analysis,
where the POD modes are called principal components.
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Ideally, for a given tolerance ε > 0, the dimension N should be chosen
such that ∥∥∥∥∥g(x; τ )−

N∑
i=1

ζi(x)βi(τ )

∥∥∥∥∥ ≤ ε ∀τ ∈ P .

In this paper, the basis {ζi}Ni=1 is systematically constructed through
POD. This is not, of course, the only available option: greedy algorithms
are for instance largely used in the construction of low-dimensional approxi-
mations, both in the EIM for approximating parameter-dependent functions
[6] and in the RB method for parametrized PDEs [40, 39], relying in this
latter case on (computable) a posteriori error estimations. Two additional
techniques – indeed quite close to POD – for generating reduced spaces
are the Centroidal Voronoi Tessellation [11, 12] and the Proper General-
ized Decomposition (see for instance [37]). Another technique which can
be used to parametrize random fields is polynomial chaos expansion, which
exploits polynomial expansions in terms of independent random variables,
see e.g. [51]. Both KL and polynomial chaos expansion have been widely
used together with stochastic Galerkin approximations [22, 5] or collocation
methods [4] for solving PDEs with random input data.

For the sake of notation, hereon we consider a discretized version of any
quantity depending on spatial coordinates. In this respect, we introduce a
discretized version of the spatial domain, made by Nh degrees of freedom
– these latter might be related to a set of quadrature points defined over
a triangulation Ωh of Ω, to the vertices (or to the centers) of the elements
whose union gives Ωh. Hence, all the spatially dependent quantities are ex-
pressed by (parameter-dependent) vectors in RNh . For instance, a random
field ν(x;ω) turns hereon into a random vector ν(ω), meaning that for any
ω ∈ Θ we deal with the evaluation of ν(·;ω) into Nh degrees of freedom, thus
yielding a vector ν ∈ RNh . We denote by V a generic functional space – re-
markable examples are V = L2(Ω) in the case of random fields, V ⊆ H1(Ω)
in the case of the solution of second-order elliptic PDEs, V = C0(Ω̄) in
the case of function interpolation. Moreover, Vh ⊂ V denotes any finite-
dimensional subspace of V , of dimension Nh, and {ϕj}Nh

j=1 an orthonormal
basis of Vh; a one-to-one map holds between the components of a vector
v = (v1, . . . , vNh

) ∈ RNh and the corresponding function v ∈ Vh, that is,
v(x) =

∑Nh

j=1 vjϕj(x).
The paper is organized as follows. We provide a continuous description of

POD in Sect. 2, then we introduce the (more common) method of snapshots
in Sect. 3. We show how to exploit this procedure to devise a RB method
for solving parameter-dependent PDEs in Sect. 4 and a discrete version of
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the empirical interpolation method for approximating parameter-dependent

functions in Sect. 5, respectively. Then, we illustrate the Karhunen-Loève

expansion for stochastic fields in Sect. 6. Finally, in Sect. 7 we present some

numerical results dealing with the approximation of a parametrized elliptic

PDE describing a stationary advection-diffusion problem.

2. POD on parametrized manifolds

Proper orthogonal decomposition is, in a very broad sense, a technique for

reducing the dimensionality of given data by representing them onto an

orthonormal basis which is optimal in a least-squares sense. The original

variables are transformed into a new set of uncorrelated variables (called

POD modes), the first few N modes ideally retaining most of the energy

present in all of the original variables.

Let us suppose that gh(τ ) ∈ L2(P ;RNh), i.e.
∫
P ‖gh(τ )‖22 dτ < ∞

(that is, gh(τ ) is a Hilbert-Schmidt kernel) and denote by VN = {W ∈
RNh×N : WTW = IN} the set of all N -dimensional orthonormal bases. To

find a POD basis of dimensionN that approximates the parameter-dependent

family M = {gh(τ ) : τ ∈ P} ⊂ RNh , we have to determine

(4) min
W∈VN

∫
P
‖gh(τ )−WWTgh(τ )‖22 dτ .

The solution of this nonconvex optimization problem is due to E. Schmidt

[46] (see also [48]), who first showed how to obtain an optimal low-rank

approximation to a (compact) integral operator; this is indeed related to an

infinite-dimensional analogue of the singular value decomposition (SVD) of

a matrix.

Let us denote by T : L2(P) → RNh the operator defined as

(5) Tf =

∫
P
gh(τ )f(τ ) dτ ∀f ∈ L2(P);

similarly, its adjoint T ∗ : RNh → L2(P) is given by

(f, T ∗w)L2(P) = (Tf,w)2 ∀f ∈ L2(P),w ∈ RNh ,

that is,

(6) T ∗w = (gh(τ ),w)2 ∀w ∈ RNh ,
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Note that both T and T ∗ depends on τ ; however, we omit the dependence
on τ wherever it is clear from the context. Note also that Tf ∈ RNh and
rank(T ) = r ≤ Nh, while T

∗w = T ∗w(τ ) ∈ L2(P). Since gh(τ ) is a Hilbert-
Schmidt kernel, T is a Hilbert-Schmidt, and thus compact, operator [45, 18].
Moreover, the Hilbert-Schmidt norm2 of T coincides with the norm of its
kernel (see e.g. [44]), i.e.

‖T‖2HS = ‖gh‖2L2(P;RNh).

Since T is compact, K = TT ∗ : RNh → RNh and C = T ∗T : L2(P) →
L2(P) are self-adjoint, non-negative, compact operators, given by

(7) Cf =

∫
P
(gh(τ ),gh(τ

′))2f(τ
′) dτ ′ ∀f ∈ L2(P),

Kw =

∫
P
gh(τ )(gh(τ ),w)2 dτ ∀w ∈ RNh ,

respectively. Actually, since K is a linear map from RNh to RNh , it is repre-
sented by the Nh ×Nh symmetric positive definite matrix

(8) K =

∫
P
gh(τ )g

T
h (τ ) dτ

whose eigenvalues λ1 ≥ · · · ≥ λr ≥ 0 and associated orthonormal eigenvec-
tors ζi ∈ RNh satisfy

(9) Kζi = λiζi, i = 1, . . . , r.

Moreover, also the operator C admits an eigendecomposition

Cψi = γiψi, i = 1, . . . , r

where the eigenvalues γi are indeed equal to the eigenvalues λi of K, whereas
the eigenvectors ψi ∈ L2(P) are related to those of K as follows

(10) ψi =
1√
λi

T ∗ζi, i = 1, . . . , r.

2If {en}∞n=1 is an orthonormal basis for V and L ∈ L(V,W ), the Hilbert-Schmidt

(HS) norm of L is ‖L‖HS =
(∑∞

n=1 ‖Len‖2W
)1/2

. The HS norm of a compact oper-

ator L ∈ L(V,W ) is given by ‖L‖HS =
(∑∞

n=1 σn(L)
2
)1/2

, being {σn(L)}∞n=1 the
singular values of L, and is indeed similar to the Frobenius norm for matrices.
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Indeed, thanks to (9)–(10)
(11)

Cψi = C
1√
λi

T ∗ζi = T ∗T

(
1√
λi

T ∗ζi

)
=

1√
λi

T ∗Kζi =
√

λiT
∗ζi = λiψi.

Finally, since the ζi’s form an orthonormal basis for RNh , gh(τ ) admits the
expansion

(12) gh(τ ) =

r∑
i=1

ζi(gh(τ ), ζi)2 =

r∑
i=1

√
λiζiψi(τ ),

and the following decomposition holds for T

(13) T =

r∑
i=1

√
λi ζi (ψi, ·)L2(P).

Moreover, it can be easily proved that

(14) ‖T‖L(L2(P),RNh) =
√

λ1, ‖T‖HS =

√√√√ r∑
i=1

λi;

furthermore, by truncating the sum (13) to the first N terms we obtain the
best rank N approximation to the operator T , according to the following

Theorem 2.1 (Schmidt). The operator TN : L2(P) → RNh defined by

(15) TN =

N∑
i=1

√
λi ζi (ψi, ·)L2(P), 0 ≤ N < r,

satisfies the following optimality property

(16) ‖T − TN‖HS = min
B∈BN

‖T −B‖HS =

√√√√ r∑
i=N+1

λi,

where BN = {B ∈ L(L2(P),RNh) : rank(B) ≤ N}.

See, e.g., [41, Theorem 6.2] for the proof. Theorem 2.1 hence provides a
solution to the minimization problem (4), as stated in the following Propo-
sition.
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Proposition 2.1. The POD basis V = [ζ1 | . . . | ζN ] ∈ RNh×N is such that

(17)

∫
P
‖gh(τ )− VVTgh(τ )‖22 dτ = min

W∈VN

∫
P
‖gh(τ )−WWTgh(τ )‖22 dτ .

Moreover

(18)

∫
P
‖gh(τ )− VVTgh(τ )‖22 dτ =

r∑
i=N+1

λi.

Proof. Since ψi =
1√
λi
T ∗ζi, thanks to the definition of T ∗ we express TN as

TNf =

N∑
i=1

√
λiζi(ψi(τ ), f(τ ))L2(P) =

∫
P
(gh(τ ), ζi)2ζi f(τ ) dτ

=

∫
P
VVTgh(τ )f(τ ) dτ ∀f ∈ L2(P).

Then

‖T − TN‖2HS = ‖T − VVTT‖2HS =

∫
P
‖gh(τ )− VVTgh(τ )‖22 dτ .

Since ‖T −TN‖2HS = minB∈BN
‖T −B‖2HS ≤ minW∈VN

‖T −WWTT‖2HS and
TN = VVTT , we conclude that

‖T − VVTT‖2HS = min
W∈VN

‖T −WWTT‖2HS .

3. POD by the method of snapshots

From a practical standpoint, generating the POD basis by solving problem
(9) requires to form the operator K. This is clearly unfeasible since it would
require the knowledge of g(τ ) for any τ ∈ P – as well as the possibility to
evaluate the integral in (8); note that this operation is indeed made possible
in the case of the KL expansion once the covariance function of the random
field is known analytically.

The method of snapshots, introduced by Sirovich [47] is a way of deter-
mining the POD basis without explicitly calculating the operator K. To this
end, consider a set Ξs = {τ 1, . . . , τns} of ns parameter samples and the cor-
responding set of snapshots {gh(τ 1), . . . ,gh(τ

ns)}; we denote the snapshot
matrix S ∈ RNh×ns by
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S = [g1 | . . . |gns
],

where gi = gh(τ
i) ∈ RNh , 1 ≤ i ≤ ns. We denote by r ≤ min(Nh, ns) the

rank of S, which is strictly smaller than ns if the snapshot vectors are not
all linearly independent. The matrix

(19) K =

ns∑
i=1

gig
T
i = SST ∈ RNh×Nh

is the P-discrete approximation of the one defined in (8) – note that in (19)
the integral over P has been replaced by a sum over the set of snapshots –
and its eigenvectors are such that

SST ζi = λiζi, i = 1, . . . , r.

Similarly, the matrix

C = STS ∈ Rns×ns

is the P-discrete approximation of the operator C introduced in (7); the
eigenpairs of C

STSψi = γiψi

are related to those of K as follows: γi = λi and

(20) ζi =
1√
λi
Sψi, 1 ≤ i ≤ r.

In fact, similarly to (11),
√
λiψi = ST ζi, so that

Cψi = STSψi = STS
1√
λi
ST ζi =

√
λiS

T ζi = λiψi.

Equation (20) is the P-discrete counterpart of (10). Note also that λi, i =
1, . . . , r are the nonzero eigenvalues of both matrices STS and SST , listed in
nondecreasing order.

Similarly to Proposition 2.1, the following result characterizes the POD
basis obtained through the method of snapshots: starting from the snapshots
collected in the matrix S ∈ RNh×ns , for any N ≤ ns the POD basis V ∈
RNh×N of dimension N is defined as the set of the first N eigenvectors of K.

Proposition 3.1. Let VN = {W ∈ RNh×N : WTW = IN} be the set of all N -
dimensional orthonormal bases. The POD basis V = [ζ1 | . . . | ζN ] ∈ RNh×N
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is such that

(21)

ns∑
i=1

‖gi − VVTgi‖22 = min
W∈VN

ns∑
i=1

‖gi −WWTgi‖22.

Moreover,

(22)

ns∑
i=1

‖gi − VVTgi‖22 =
r∑

i=N+1

λi.

By construction, the POD basis is orthonormal. Moreover, it minimizes,
over all possible N -dimensional orthonormal bases W = [w1 | . . . | wN ] ∈
RNh×N , the sum of the squares of the errors between each snapshot vector
ui and its projection onto the subspace spanned by W.

From a practical standpoint, whenever the number ns of snapshots is
smaller than their dimension Nh it is worth computing the eigenvectors of
the matrix C, and then obtain the POD basis through the relation (20).

3.1. The relationship with singular value decomposition

The POD obtained by the method of snapshots is very closely related to the
singular value decomposition (SVD) of the snapshots matrix. Since SST and
STS are symmetric matrices, the left (resp. right) singular vectors of S turn
out to be the eigenvectors of SST (resp. STS). The singular values of S and
the eigenvalues of STS and SST are such that

σi(S) =
√

λi(STS), i = 1, . . . , r

so that if S = UΣZT , being U = [ζ1 | . . . | ζNh
] ∈ RNh×Nh and Z =

[ψ1 | . . . | ψns
] ∈ Rns×ns orthogonal matrices, and Σ = diag(σ1, . . . , σr) ∈

RNh×ns with σ1 ≥ σ2 ≥ . . . ≥ σr, then

(23) Sψi = σiζi and ST ζi = σiψi, i = 1, . . . , r.

Hence, the POD basis V of dimension N , N ≤ nS , is realized by picking
the first N columns of the matrix U.

Proposition 3.1 also provides a practical criterion to select the minimal
POD dimension N ≤ r such that the projection error is smaller than a
desired tolerance εPOD> 0. In fact, from (22), it follows that the error in
the POD basis is equal to the sum of the squares of the singular values
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corresponding to the neglected POD modes. Indeed, it is sufficient to choose
N as the smallest integer such that

(24) I(N) =

∑N
i=1 σ

2
i∑r

i=1 σ
2
i

≥ 1− ε2POD,

that is the energy retained by the last r−N modes is equal or smaller than
ε2POD. I(N) represents the percentage of energy of the snapshots captured
by the first N POD modes, and it is referred to as the relative information
content of the POD basis.

Remark 3.1. Computing the POD basis by solving an eigenvalue problem
for the matrix C = STS yields inaccurate results for the modes associated
to small singular values. This is due to the roundoff errors introduced while
constructing C and the fact that κ(C) = (κ(S))2. In such cases it is recom-
mended to construct the POD basis by means of stable algorithms for the
computation of the so-called thin SVD, see e.g. [23].

3.2. Snapshots selection: how to sample the parameter space?

The POD basis is, among all basis of dimension N < ns, the one which
best approximates the set of solution snapshots {gh(τ 1), . . . ,gh(τ

ns)}. We
still have to discuss how to select the parameter samples Ξs = {τ 1, . . . , τns}
so that the corresponding snapshots set is sufficiently representative of the
solutions set M. The key is to regard the discrete minimization problem
(21) as an approximation of the continuous minimization problem (4). To
this end, it is useful to introduce a suitable quadrature formula

(25)

∫
P
f(τ ) dτ ≈

ns∑
i=1

wif(τ
i),

to approximate the integrals over P , for any continuous function f : P → R,
where wi > 0 and τ i are suitable quadrature weights and quadrature points,
respectively. Then,

(26)

∫
P
‖gh(τ )−WWTgh(τ )‖22 dτ ≈

ns∑
i=1

wi ‖gh(τ i)−WWTgh(τ
i)‖22.

More in general, the parameter samples location are defined by a suitable
quadrature formula in the parameter space. Indeed, the right-hand side of
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(26) differs from (21) only by the weighting coefficients wi. However, by
defining D = diag(w1, . . . , wns

) ∈ Rns×ns ,

(27)

ns∑
i=1

wi ‖gh(τ i)−WWTgh(τ
i)‖22 = ‖SD1/2 −WWTSD1/2‖2F .

The POD basis associated to the snapshots set Ms
h = {gh(τ 1), . . . ,gh(τ

ns)}
is given by V = [ζ1 | . . . | ζN ], with ζi =

1
σs
i
SD1/2ψ̃i and

S̃T S̃ψ̃i = σs
i ψ̃i, with S̃ = SD1/2.

Remark 3.2. For the sake of simplicity, we have addressed the method of
snapshots by considering constant weights wi = 1 when performing approxi-
mation (26) – see equation (21). This indeed corresponds to choose D = I.

Let us now denote by V∞ the POD basis solution of the continuous
minimization problem (17) and by Vns the POD basis minimizing (27);
moreover we define

E(W) =

∫
P
‖gh(τ )−WWTgh(τ )‖22 dτ ,

Es(W) =

ns∑
i=1

wi‖gh(τ i)−WWTgh(τ
i)‖22.

Thanks to the optimality result (17) it follows that E(V∞) ≤ E(Vns). Fur-
thermore,

(28) E(Vns) ≤ |E(Vns)− Es(Vns)|+ Es(Vns) ≤ Es +

r∑
i=N+1

(σs
i )

2,

where Es denotes the quadrature (or sampling) error. We remark that:

• the retained energy criterion (24) can serve as a reliable estimate of
the projection error E(Vns), provided an appropriate sampling of the
parameter space is performed. In fact, if Es is smaller than the trun-
cation error (i.e. the second term) in (28), then

E(Vns) �
r∑

i=N+1

(σs
i )

2
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and therefore
E(Vns)

‖gh‖2L2(P;RNh)

� ε2POD;

• the quadrature error Es depends on: (i) the quadrature formula cho-
sen, (ii) the number of quadrature points, (iii) the smoothness of the
integrand, (iv) the dimension P of the parameter space. Moreover,
suitable estimates of Es are available depending on the quadrature
formula used;

• different sampling strategies can be employed depending on the di-
mension of the parameter space. While tensorial (also called full fac-
torial) sampling is suitable for low-dimensional problems (typically for
P ≤ 3), statistical methods like random (Monte Carlo) or latin hy-
percube (LHS) sampling (see, e.g., [16, 32]) and sparse grids (see, e.g.,
[21, 10]) are recommended as soon as the dimension of the parameter
space gets large.

Remark 3.3. Note that in the case of time-dependent PDEs, we might
be interested in using POD to compress the trajectory M = {uh(t), t ∈
[t0, tf ]}, for which τ = t. For this (indeed, very relevant) case, the snapshots
are naturally selected among the solutions uh(t

n) computed at each time step
tn = t0 + nΔt.

4. Reduced basis approximation of parametrized PDEs

Proper orthogonal decomposition provides a well-known tool for construct-
ing a reduced order model for a PDE problem. Here we focus on the case
of parametrized PDEs, although in the context of reduced-order modeling
POD has been mostly used – in conjunction with (Petrov-)Galerkin projec-
tion methods – to build reduced-order models of time-dependent problems
[29, 30, 35, 43]. Only recently POD has been exploited in the context of para-
metrized systems [15, 8, 9, 27, 49, 3]; see, e.g., [38, 50] for further details. We
also highlight that former applications of POD in scientific computing were
concerned with the simulation of turbulent flows [33], and the extraction
of (both spatial and temporal) coherent structures appearing in turbulent
flows [1, 2, 19]; further details can be found, e.g., in [7, 26, 28].

To better highlight the most relevant features of the reduced basis (RB)
method, we restrict ourselves to the case of steady, linear PDE problems,
although the described techniques have been generalized in many ways to
several nonlinear (possibly unsteady) PDEs. Further details can be found,
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e.g., in [41]. Let us denote by τ = μ ∈ P ⊂ RP a vector of parameters and
by gh(τ ) = uh(μ) the solution of the following high-fidelity system

(29) Ah(μ)uh(μ) = fh(μ),

where Ah(μ) ∈ RNh×Nh , fh(μ) ∈ RNh are the μ-dependent stiffness matrix
and the right-hand side vector, respectively. Such a system can be obtained
by discretizing problem (1) with (for instance) the finite element method,
see e.g. [42] for further details.

The idea of the RB method is to generate an approximate solution to
problem (29) under the form VuN (μ), i.e. as a linear combination of the
RB functions represented by the columns of the matrix V ∈ RNh×N . To
build this latter, POD can be performed starting from a set of ns snap-
shots {uh(μ

1), . . . ,uh(μ
ns)}, corresponding to a set of ns selected parame-

ters Ξs = {μ1, . . . ,μns} ⊂ P .
Once a N -dimensional basis has been built, the coefficients uN (μ) are

determined through a projection process leading to the solution of a linear
system of dimension N . To begin with, let us define the residual of the
high-fidelity problem

rh(vh;μ) = fh(μ)− Ah(μ)vh ∀vh ∈ RNh ,

so that the vector

(30) rNh = rh(VuN ;μ)

can be regarded as the residual of the high-fidelity problem computed on
the RB solution. A classical criterion to obtain the RB solution is to force
the residual (30) to be orthogonal to the subspace VN generated by the
columns of V

(31) VT (fh(μ)− Ah(μ)VuN (μ)) = 0,

that is, to require that the orthogonal projection of (30) onto VN is zero.
This is the reason why RB methods can be regarded as projection-based
methods. For any given μ ∈ P , (29) is thus replaced by the RB problem

(32) AN (μ)uN (μ) = fN (μ),

where uN (μ) ∈ RN is the reduced vector of degrees of freedom. AN (μ) ∈
RN×N and fN (μ) ∈ RN×N are related to the arrays of the high-fidelity
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problem (29) through the following identities

(33) AN (μ) = VTAh(μ)V, fN (μ) = VT fh(μ).

More general strategies (like Petrov-Galerkin methods) require

WT (fh(μ)− Ah(μ)VuN (μ)) = 0

instead of (31), yielding

AN (μ) = WTAh(μ)V, fN (μ) = WT fh(μ)

instead of (33), and are obtained by imposing that the residual (30) is or-
thogonal to the subspace WN generated by the columns of a matrix W �= V.

The 2-norm of the error between the high-fidelity solution uh(μ) and the
RB approximation VuN (μ) can be bounded in terms of the residual (30) as
follows

‖uh(μ)− VuN (μ)‖2 ≤
1

σmin(Ah(μ))
‖rh(VuN ;μ)‖2,

where σmin(Ah(μ)) denotes the smallest singular value of Ah(μ); a very
similar result indeed holds for the V -norm of the error, see, e.g. [41].

For the sake of computational efficiency, both the assembling and the
solution of the RB system must be performed independently of the high-
fidelity problem dimension Nh. This is achieved provided the high-fidelity
arrays in (29) are expressed under the separable form

(34) Ah(μ) =

Qa∑
q=1

θqa(μ)A
q
h, fh(μ) =

Qf∑
k=1

θkf (μ)f
k
h

where θqa, θkf : P ⊂ Rp → R areQa, Qf scalar functions and {Aq
h}

Qa

q=1, {fkh}
Qf

k=1

are μ-independent matrices (respectively, vectors). By virtue of this affine
parametric dependence of Ah(μ) and fh(μ), by inserting (34) in (33) we
obtain

AN (μ) =

Qa∑
q=1

θqa(μ)A
q
N , fN (μ) =

Qf∑
k=1

θkf (μ)f
k
N .

The arrays A
q
N = VTA

q
hV ∈ RN×N , fkN = VT fkh ∈ RN can be computed

and stored once (and for all) during a possibly expensive offline stage, thus
enabling a Nh-independent assembling of the system (33) during the online
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stage, for any given μ ∈ P . In this respect, EIM (or its discrete version) is

essential to recover a separable expansion like (34) in all those cases where

such a property is not built-in. A recent matrix version of the discrete EIM

bypassing the interpolation of functions and acting directly on matrices has

been recently proposed in [36].

5. (Discrete) EIM for parameter-dependent functions

We now turn to the approximation of a family of parameter-dependent func-

tions M ⊂ C0(Ω̄) through the EIM, [6, 34]; see also [24]. The key idea is to

determine, for any τ , an interpolant of gh(τ ) on a set of basis functions built

by sampling gh at a suitably selected set of points in P , instead than using

predefined basis functions; and to choose interpolation points adaptively,

through an iterative procedure, again depending on the function being in-

terpolated and the domain Ω where the problem is set. The key idea is to

construct an interpolant of gh(τ ) built upon (i) a set of basis functions ob-

tained by sampling gh at a suitably selected set of points in P , (rather than

a predefined basis functions); (ii) a set of interpolation points adaptively

chosen through an iterative procedure.

EIM indeed allows to recover a very fast rate of convergence of the ap-

proximation with respect to N , relying on ad hoc selection of basis functions

and interpolation points. These two operations can be performed at the same

time – performing a greedy algorithm, as in what is usually referred to EIM

[6, 34] – or in two subsequent stages. In this latter case, the construction

of the basis functions is performed before the selection of the interpolation

points, for instance by operating a proper orthogonal decomposition on a

set of ns snapshots {gh(μ1), . . . ,gh(μ
ns)} obtained by evaluating gh for a

suitably chosen set of parameter values. We refer to this approach as to

discrete EIM (DEIM, [13]). Similarly to EIM, DEIM thus approximates a

nonlinear function gh : μ ∈ P ⊂ RP → gh(μ) ∈ RNh by projection onto a

low-dimensional subspace spanned by a basis Q,

(35) gh(μ) ≈ QγM (μ),

where Q = [ρ1, . . . ,ρM ] ∈ RNh×M and γM (μ) ∈ RM is the corresponding

vector of coefficients, with M � Nh. The difference lies in the construction

of the basis Q, that is obtained operating a POD on a set of snapshots

S = [gh(μ
1
DEIM ) | . . . | gh(μns

DEIM )],
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instead of being embedded in the EIM greedy algorithm. Note that for both
EIM and DEIM the interpolation points are iteratively selected with the
same greedy algorithm. DEIM thus requires to:

(i) construct a set of snapshots obtained by sampling gh(μ) at values
μi
DEIM , i = 1, . . . , ns and apply POD to extract a M -dimensional

basis ρ1, . . . ,ρM , M ≤ ns;
(ii) select iteratively M indices I ⊂ {1, · · · , Nh}, |I| = M from the basis

Q using a greedy procedure, which minimizes at each step the inter-
polation error over the snapshots set measured in the maximum norm.
This operation is indeed the same as for the selection of the EIM magic
points, see [6, 34];

(iii) given a new μ, in order to compute the coefficients vector γ(μ), in-
terpolation constraints are imposed at the M points corresponding to
the selected indices, thus requiring the solution of the linear system

(36) QI γM (μ) = gI(μ),

where QI ∈ RM×M is formed by the I rows of Q and gI(μ) ∈ RM is
obtained by evaluating gh(μ) in the same selected indices.

We point out that the 2-norm of the error between gh and its DEIM
approximation gM can be bounded as

(37) ‖gh(μ)−QγM (μ)‖2 ≤ ‖Q−1
I

‖2 ‖(I−QQT )gh(μ)‖2,

with

(38) ‖(I−QQT )gh(μ)‖2 ≈ σM+1,

being σM+1 the first discarded singular value of the matrix S when selecting
M basis through the POD procedure. This approximation holds for any
μ ∈ P provided a suitable sampling in the parameter space has been carried
out to build the snapshot matrix S; see e.g. [14] for further details.

6. Karhunen-Loève expansion for stochastic fields

In the last decade, the development of numerical techniques for the solu-
tion of PDEs depending on random input data has undergone an incredible
expansion. This has gone with the widespread of applications in the huge
realm of uncertainty quantification (UQ), including e.g. parameter estima-
tion, uncertainty propagation, model calibration, and many other aspects.
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See, e.g., [31, 25] for further details. In all these cases, probabilistic meth-
ods involve a statistical characterization of uncertain inputs. In the simplest
case, the mathematical model depends on a set of (say, physical) uncer-
tain parameters τ = ψ ∈ RQ that may be represented as a random vector
ψ(ω) = (ψ1(ω), . . . , ψQ(ω)) ∈ RQ for any outcome ω ∈ Θ, with a given joint
probability distribution; here Θ denotes the outcome set and ψ : Θ → RQ

denotes a generic Q-dimensional random vector.
In more complex situations, input data might be spatially-dependent (or

time-dependent) random quantities, meaning that they may vary randomly
from one point of the physical domain Ω to another (or from one time
instant to another), so that input uncertainty has to be described in terms
of random fields. Focusing on the spatially-dependent, scalar case, a random
field ν = ν(x;ω) is a stochastic process taking values in R for any x ∈ Ω,
for any outcome ω ∈ Θ, meaning that (i) for a fixed point x ∈ Ω, ν(x; ·) is
a random variable over Θ; (ii) for a fixed ω ∈ Θ, ν(·;ω) is a realization of
the random field in Ω. A more convenient finite dimensional representation
of a random field in terms of Q (possibly uncorrelated) random variables
that indeed play the role of parameters can be obtained by means of a
Karhunen-Loève (KL) expansion.

Let us denote by (Θ,Σ, P ) a complete probability space where Θ is the
outcome set, Σ is a σ-algebra of events and P : Σ → [0, 1] is a probability
measure. Let us denote by ν : Θ → RNh a random field on the probability
space (Θ,Σ, P ) with finite second order moments, that is, ν ∈ L2

P (Θ;RNh);
alternatively, ν is said to be a second-order stochastic process; here

L2
P (Θ;RNh) =

{
v : Θ → RNh : v measurable,

∫
Θ
‖v(ω)‖22 dP (ω) < +∞

}
.

The subscript P indicates that the integrals are weighted with respect to the
probability measure P . The expectation of the random field ν(ω) is

(39) ν = E[ν(·)] =
∫
Θ
ν(ω) dP (ω),

while its covariance matrix K ∈ RNh×Nh is given by

(K)ij = E [(νi(·)− νi(·))(νj(·)− νj(·))]
= E [(ν(·,xi)− ν(·,xi))(ν(·,xj)− ν(·,xj))] .

Equivalently,

K =

∫
Θ
(ν(ω)− ν)(ν(ω)− ν)T dP (ω).
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The covariance is a two-point statistics that models the spatial correlation of
the stochastic field between two points xi,xj ∈ Ωh. Moreover, the covariance
matrix is symmetric and semi-positive definite; indeed,

xTKx =

∫
Θ

(
xT (ν(ω)− ν)

)2
dP (ω) ≥ 0 ∀x ∈ RNh .

Therefore, K has Nh non-negative real eigenvalues λ1 ≥ · · · ≥ λNh
≥ 0 and

corresponding eigenvectors ζi ∈ RNh such that

K ζi = λiζi, i = 1, . . . , Nh.

Since the ζi’s form an orthonormal basis for RNh , ν(ω) admits the following
expansion

(40) ν(ω) = ν +

Nh∑
i=1

√
λiζiψi(ω),

where the random variables ψi(ω) are defined as

ψi(ω) =
1√
λi

(ν(ω)− ν, ζi)2.

These latter are uncorrelated random variables with zero mean and unit
variance:

E[ψi(·)] =
1√
λi

∫
Θ
(ν(ω)− ν, ζi)2 dP (ω) =

1√
λi

(ν − ν, ζi)2 = 0,

E[ψi(·)ψj(·)] =
1√
λiλj

∫
Θ
ζTi (ν − ν)(ν − ν)Tζj dP (ω) =

1√
λiλj

ζTi K ζj

=
1√
λiλj

ζTi λj ζj =
λj√
λiλj

δij .

The expression (40) is referred to as the Karhunen-Loève (KL) expan-
sion of the random field ν(ω). It is a series expansion involving deterministic
functions (the eigenvectors ζi) and random variables (the ψi). The determin-
istic functions are fixed by the form of the covariance of the random field,
whereas the joint probability law of the ψi’s remains unknown in the absence
of information other than the second-order properties of the process. A con-
venient (and indeed very common) situation arises when the random field
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is Gaussian, leading to significant simplifications. Indeed, the KL expansion
of a Gaussian field involves random variables ψi(ω) which are not only un-
correlated, but also independent. The latter is a useful property in practical
applications, since it makes the KL expansions very useful for generating
samples of Gaussian stochastic processes; for instance, is is extensively used
in the stochastic Galerkin and collocation methods for SPDEs.

The most remarkable property of the KL decomposition is its optimal-
ity in the mean square sense. Indeed, when considering the truncated KL
expansion νQ(ω) consisting of the first Q modes,

(41) νQ(ω) = ν +

Q∑
i=1

√
λi ζi ψi(ω)

the following result holds (see Proposition 2.1):

min
ν̂

E [‖ν(·)− ν̂(·)‖2] = E [‖ν(·)− νQ(·)‖2] ,

where ν̂ denotes any approximation of ν(·) in the form of a series expansion
involving a finite number of random variables. Moreover, the mean square
truncation error decreases monotonically with Q, at a rate that depends on
the decay of the spectrum of the matrix K.

7. A numerical example

In this section we solve a parametrized elliptic PDE describing a station-
ary advection-diffusion problem, in which (i) the diffusion coefficient is a
stochastic field, and (ii) the parametrized source term features a nonaffine
parametric dependence. We show how POD can be exploited to obtain a
low-dimensional representation of these two quantities, as well as of the so-
lution of the problem. In spite of its simplicity, this example allows us to
highlight those (indeed, far from trivial) aspects involved in the construc-
tion of a reduced-order model in the case of a moderately large number of
parameters and a complex parametric dependence.

For the sake of illustration, we consider a simple mass transfer problem
describing e.g. the behavior of pollutant emissions released by an industrial
chimney into the atmosphere. The evolution of the pollutant concentration
can be modeled by the following advection-diffusion-reaction equation on
the (parameter-independent) domain Ω = (0, 1)× (0, 0.5),

(42)

{
−div(0.25ν(x;ω)∇u+ b(μ3) · ∇u+ a0u = f(x;μ) in Ω

ν(x;ω)∇u · n = 0 on ΓN = ∂Ω,
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where u = u(μ) is the unknown pollutant concentration, a0 > 0 represents
the intensity of reaction processes,

(43) f(x;μ) = exp

(
−(x1 − μ1)

2 + (x2 − μ2)
2

0.22

)
describes the pollutant emission, characterized in terms of its position
(μ1, μ2), and b(μ3) is a (constant in space) advection field,

(44) b(μ3) = [cos(μ3) sin(μ3)]
T

representing e.g. the wind speed (see, e.g., [20] for a similar application).
The molecular diffusivity of the chemical species is modeled as a random
field, in order to account for its spatial heterogeneity and lack of precise
knowledge. In particular, we assume that:

• ν(x, ω) : Ω×Θ → R is a Gaussian field, given in our case by ν(x, ·) ∼
N (m,σ2) ∀x ∈ Ω, where N (m,σ2) denotes a Gaussian probability
distribution with expected value m and variance σ2. For the case at
hand, we set σ2 = 1 and m = 4, to ensure that the diffusivity takes
positive values almost everywhere3;

• ν(x, ω) : Ω×Θ → R is such that for x,x′ ∈ Ω the covariance function
Cν(x,x

′) = Cov[ν(x, ·)ν(x′, ·)] only depends on the distance ‖x−x′‖ –
that is, ν is a second-order, isotropic stationary field – and Cν(x,x

′) =
Cν(‖x−x′‖) is a Lipschitz continuous, positive definite function. Here
we consider a simple Gaussian covariance function,

Cν(‖x− x′‖) = σ2 exp

(
−‖x− x′‖2

Lc

)
where Lc > 0 denotes the correlation length; for the case at hand,
σ2 = 1 and L2

c = 0.05. Other choices for the correlation function are
possible, depending on the application.

For the sake of simplicity, here we assume that randomness only affects
the diffusion coefficient and not the forcing term f . However, this is the

3Clearly, this is not rigorous, since the support of the normal distribution is R.
However, by taking m = 4, we have that S(x) = {ω ∈ Θ : ν(x, ω) > 0} is such that
P(S(x)) = 0.9999683 for any x ∈ Ω. A check to avoid realizations of the Gaussian
field yielding to negative pointwise values is performed. To ensure the positivity of
the diffusion coefficient, a better option would be to define ν̃(x, ω) = eν(x,ω), with
ν(x, ·) denoting a Gaussian random variable.
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most interesting case, since the solution u depends nonlinearly on ν and
linearly on f and the boundary data. Other similar situations are related
to groundwater flows modeling in hydrology, where the diffusion coefficient
describes the permeability of a porous medium, the subsoil.

We are interested in evaluating suitable statistics of the PDE solution,
such as its average or moments, as well as moments of other quantities of
interest expressed by proper functionals of the solution. We will not further
elaborate on numerical methods to deal with these issues; we only men-
tion that the simplest approach would consist in employing a Monte Carlo
method combined with a deterministic solver of the PDE, thus entailing: (i)
the generation of many samples of the input random field; (ii) correspond-
ingly, the approximation of the PDE solution for each sample and, finally,
(iii) the evaluation of the expected value of the quantity of interest by sam-
ple average. Since a huge number of samples is required when employing
Monte Carlo methods, replacing a high-fidelity solver with a reduced-order
approximation such as the one based on POD would yield remarkable overall
computational speedups.

For the case at hand, this requires to parametrize the random field by
expressing it under the form (41), and to express the parametric depen-
dence of the source term so that the resulting right-hand side vector of the
linear system features a separable form. It is worth noting that a similar
separable form is then obtained, by applying the KL expansion, on the dif-
fusion coefficient as well4 and that the number Q of selected modes (see
(41)) yields the same amount of additional parameters μ4, . . . , μ3+Q on the
problem (42).

Here we report the numerical results obtained by applying the three main
techniques discussed in the paper – the RB method, the discrete EIM and the
KL expansion – on problem (42). As high-fidelity approximation we consider
the finite element method with linear finite elements over a triangular mesh
yielding Nh = 5305 degrees of freedom. We rely on the redbKIT package [41]
for performing EIM and POD, whereas we take advantage of the random

field simulation package [17] for performing the KL expansion.
First, we perform the KL expansion of the random field ν(x, ω); see

Sect. 6. Note that for the case at hand the spatial correlation K is a pre-
scribed matrix of dimension Nh × Nh, so that we can directly compute its
eigendecomposition; the first Q = 9 modes ζ1, . . . , ζ9 of the KL expansion
of the random field are reported in Fig. 1, whereas the eigenvalues of the

4Note that if the diffusion coefficient is modeled through a lognormal (instead
than a Gaussian) field ν̃ = eν , the affine parametric dependence of the stiffness
matrix has to be restored by further applying DEIM on the function ν̃.
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Figure 1: KL expansion of the diffusivity field: first Q = 9 modes ζ1, . . . , ζ9.

Figure 2: KL expansion of the diffusivity field. Left: eigenvalues of the
spatial correlation matrix K. Right: relative L2(Ω) errors ‖ν(x, ω) −
νQ(x, ω)‖L2(Ω)/‖ν(x, ω)‖L2(Ω) for increasing values of Q, averaged over a
sample of 50 randomly selected realizations. The levels of accuracy corre-
sponding to Q = 9 and Q = 150 are reported in both plots.

matrix K are reported in Fig. 2, left. Moreover, in our case the random vari-

ables ψ1, . . . , ψQ appearing in (41) are independent, following a standard

Gaussian distribution N (0, 1).
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Table 1: KL expansion of the diffusivity field. Relative L2(Ω) errors
‖ν(x, ω) − νQ(x, ω)‖L2(Ω)/‖ν(x, ω)‖L2(Ω) for Q = 3, 6, 9, 150, averaged over
a sample of 50 random realizations

Q = 3 Q = 6 Q = 9 Q = 150
0.1334 0.0856 0.0524 0.0251

As a matter of fact, the additional parameters μ4, . . . , μ3+Q are sam-
pled from standard Gaussian distributions; nevertheless, for the sake of the
subsequent sampling of the (augmented) parameter space P ⊂ RQ+3, in
view of the construction of a reduced model for the parametrized PDE on
a closed and compact parameter space, we restrict ourselves to retain only
those samples such that −4 ≤ μi ≤ 4, i = 4, . . . , Q+ 3. Hereon, we consider
the cases Q = 0, 3, 6, 9, in order to deal with (i) a constant diffusivity field,
and (ii) random fields obtained with KL expansions of increasing accuracy,
yet keeping the dimension of the parameter space relatively small; this latter
ranges from P = 3 to P = 12 in the cases Q = 0, Q = 9, respectively.

The accuracy of the KL expansion for increasing values of Q has been
evaluated over a sample of 50 realizations; the average relative L2(Ω) errors
‖ν(x, ω) − νQ(x, ω)‖L2(Ω)/‖ν(x, ω)‖L2(Ω) between the random field and its
KL expansion are then reported in Fig. 2, right. Obviously, the error and the
computed eigenvalues of K decays at a similar rate; for Q = 9 the relative
error is about 0.05, whereas it falls below 0.025 for Q = 150; see also Table 1.
Some realizations of the random field ν and of its KL expansions obtained
for Q = 3, 6, 9, 150 are reported in Fig. 3.

We now turn to the approximation of the function f(x;μ) defined in
(43) representing the distributed source for the advection-diffusion-reaction
problem (42). The presence of the exponential function yields a nonaffine
dependence of f(x;μ) on the parameters μ1, μ2, thus requiring to rely on
DEIM to approximate the family of parameter-dependent functions

M = {f(x;μ1, μ2) , (μ1, μ2) ∈ [0.3, 0.7]× [0.15, 0.35]};

we recall that μ3, μ4, . . . , μQ+3 do not affect f(x;μ).
Following the procedure detailed in Sect. 5, we select ns = 1000 param-

eter points obtained by latin hypercube sampling, get the corresponding
snapshots by evaluating f for the selected parameter points, perform POD
on this set of snapshots and select a basis of dimension M = 62 by impos-
ing a tolerance εPOD = 10−4 in the criterion (24). Afterwards, we select
a set I ⊂ {1, · · · , Nh} of indices, |I| = 62, by running a greedy algorithm
to determine the interpolation points, obtaining the distribution of points
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Figure 3: KL expansion of the diffusivity field. Different realizations of
ν(x, ω), ω = ωi, i = 1, . . . , 4 randomly selected, with increasing levels
Q = 3, 6, 9, 150 (from top to bottom). Left: realization of the random
field; middle: KL expansion with Q terms; right: discrepancy ν(x, ωi) −
νQ(x, ωi).

reported in Fig. 5. Note that the construction of an affine approximation
fM (μ) is independent on the already performed KL expansion on the ran-
dom diffusivity field. We report the decay of both the singular values of
the snapshot matrix S and the errors ‖f(μ) − fM (μ)‖2 evaluated on a test
sample of 50 randomly selected couples (μ1, μ2) in Fig. 4; some instances of
affine approximations fM for increasing values of M = 10, 20, 60, and the
corresponding errors f(μ)− fM (μ) are then shown in Fig. 6.

The decay of both the singular values of S and of the approximation
errors ‖f(μ)− fM (μ)‖2, is fast, even if a moderately large number of terms
M is necessary to keep the approximation errors under a threshold of about
10−4. This is due to the fact that the dependence on the parameters μ1, μ2

of the function f localizes the peak of the function on the spatial domain,
thus making the approximation of any f(x;μ) by a linear combination of
elements extracted from M intrinsically difficult.
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Figure 4: DEIM approximation of source term. Left: singular values of
the snapshot matrix S obtained by selecting ns = 1000 points (μ1, μ2) ∈
[0.3, 0.7] × [0.15, 0.35]. Right: errors ‖f(μ) − fM (μ)‖2 for increasing values
of M = 1, . . . , 62, averaged over a sample of 50 randomly chosen parameter
points.

Figure 5: DEIM approximation of the source term: interpolation points.

Finally, we build a reduced-order model for efficiently evaluating the so-
lution of problem (42) relying on the Galerkin-RB method, thus resulting
in a KL-DEIM-G-RB approximation. We employ POD to construct the RB
space, once the diffusivity field and the distributed source have been approx-
imated by using KL and DEIM, respectively, in order to recover an affine
parametric dependence. We perform the construction of a RB space in four
different cases, taking into account a constant diffusivity field (case Q = 0
KL modes, yielding P = 3 parameters) or random diffusivity fields (cases
Q = 3, 6, 9 KL modes, yielding P = 6, 9, 12 parameters, respectively).
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Figure 6: DEIM approximation of the source term. Evaluation of f(μi) and
fM (μi) for μ = μi, i = 1, . . . , 3 randomly selected, with increasing DEIM
dimensionM = 10, 20, 60 (from top to bottom). Left: evaluation of f ; middle:
DEIM approximation fM with M terms; right: error f(μi)− fM (μi).

In all these cases we rely on the procedure detailed in Sect. 4: starting
from ns snapshots of the affine approximation of the high-fidelity problem,
we then select N modes by imposing a tolerance εPOD = 10−6 on the POD
algorithm. The number of snapshots is increasing with the dimension of Q,
ranging from ns = 1, 000 to ns = 10, 000 when passing from Q = 0 to Q = 9,
to take into account the increasing parameter dimension P = Q+3. Because
of the variability induced by the increasing number of KL modes, we obtain
RB spaces of increasing dimension N by keeping εPOD constant, ranging
from N = 42 to N = 1357 when passing from Q = 0 to Q = 9.

The singular values of the snapshot matrices obtained in the four cases
Q = 0, 3, 6, 9, as well as the decay of the error ‖uh(μ) − VuN (μ)‖V with
respect to the dimension N of the RB space, are reported in Fig. 7. The
decay rate of both these quantities indicates that the problem becomes more
hardly reducible when the dimension P = Q + 3 of the parameter space
increases.

We report the RB approximation uN (μ) of the problem (42), as well as
the error uh(μ) − uN (μ) between the FE and the RB approximation, for
different values of μ and Q, keeping N and M fixed, in Fig. 8. Note that by
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Figure 7: RB approximation of the PDE solution. Left: singular values of
the snapshot matrix S obtained by selecting ns = 1000, 4000, 7000, 10000
snapshots for Q = 0, 3, 6, 9 KL modes. Right: errors ‖uh(μ) − VuN (μ)‖V
for increasing values of N , averaged over a sample of 50 randomly chosen
parameter points. In this case M = 62 DEIM terms have been selected.

taking a0 = 1 and the advection field (44) – with μ3 ∈ [0, 180◦] – advection
or reaction are not dominating the diffusion, thus yielding a non-negligible
role to the presence of a random diffusivity field. This can also be seen by
the decay of the singular values of the correlation matrices S built over the
solution snapshots, showing a slower decay for larger values of Q. On the
other hand, limiting ourselves to (relatively) few KL modes is crucial to limit
the size of the parameters space; in turn, this yields less fluctuating random
fields showing a higher spatial regularity.

Similarly, we report in Fig. 9 the RB approximations obtained for dif-
ferent RB space dimensions N , keeping both Q and M fixed, for randomly
selected parameter values. Obviously, the accuracy of the RB approximation
improves when the the dimension of the RB space increases, as predicted by
the decay of the singular values of the snapshot matrix (see Fig. 7).

Finally, we investigate the role of the DEIM approximation on the accu-
racy of the RB approximation. We report in Fig. 10 the errors between the
KL-DEIM-G-RB solution uN (μ) and the FE approximation uh(μ) involv-
ing the same KL expansion of the random field, evaluated for different RB
space dimensions N and number of DEIM terms M , averaged over a sample
of 50 parameter values randomly selected. From this error analysis it fol-
lows that a sufficiently large number of both DEIM terms and RB functions



370 Andrea Manzoni et al.

Figure 8: RB approximation of the PDE solution. Left: RB approximation
uN (μ); center: error uh(μ) − uN (μ) between the FE and the RB approx-
imation; right: KL expansion of the diffusivity field. From top to bottom
Q = 0, 3, 6, 9 KL modes have been considered. Different parameter values
have been selected for each case.

has to be considered to achieve a good accuracy with respect to the high-

fidelity approximation. Moreover, the DEIM accuracy must be higher than

the RB accuracy to avoid that the DEIM approximation errors dominate –

as, e.g., in the case it happens, for instance, when only M = 10, 20 terms

are selected.

We conclude this section by highlighting some remarkable computational

facts; see Tab. 2 for further details. Since the size of the high-fidelity problem

is quite small (only Nh = 5375 degrees of freedom), the CPU time5 required

to evaluate the KL expansion of the random field and the DEIM approx-

imation of the source term is of 28.79 s and 160.12 s, respectively. These

operations have to be performed only once, as well as the assembling of the

5All the computations have been performed on a single core of a 2,8 GHz Intel
Core i5 processor, with 16 GB RAM. All the linear systems (for both FE and RB
problems) are solved using the direct solver provided by Matlab.
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Figure 9: RB approximation of the PDE solution. Left: RB approximation
uN (μ); center: FE approximation uh(μ); right: error uh(μ)−uN (μ) between
the FE and the RB approximation. The same number Q = 9 of KL modes
has been selected. A RB space of dimension N = 50, 250, 750, 1357 (from
top to bottom) has been considered.

parameter-independent FE arrays Aq
h, q = 1, . . . , Qa and fkh , k = 1, . . . , Qf ,

which in our case requires 13.34 s. Once this pre-processing stage is per-
formed, we construct the RB space; the CPU time tofflineFE required by the
construction of the RB space (and related arrays) increases for growing P ,
because of the larger amount of snapshots to be computed and the larger
SVD decomposition (23) to be determined in order to find the POD basis
functions. The CPU time tonlineRB entailed by the solution of the RB problem
(32) also increases for larger RB dimensions N , thus yielding smaller and
smaller computational speedups. Nevertheless, in any case the RB problem
requires between 0.0025 and 0.607 seconds to be solved, whereas the cor-
responding FE problem takes about 1 second to be solved. When moving
to problems on a larger scale regarding the dimension of the high-fidelity
approximation, the computational speedup shall become even larger, thus
making the use of reduced order models essential to perform many-query
problems.
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Figure 10: RB approximation of the PDE solution. Online convergence (with
respect to N) of the error between the KL-DEIM-G-RB and the FE approx-
imation for different values of M in the case Q = 3, averaged over a sample
of 50 randomly chosen parameter points.

Table 2: Computational details. RB spaces have been built using POD with
a tolerance εPOD = 10−6, starting from a high-fidelity FE approximation of
dimension Nh = 5375. In addition to tofflineFE , also the time to evaluate the
KL expansion of the random field (28.79 s), to perform DEIM approximation
of the source field (160.12 s) and to assemble the high-fidelity arrays (13.34
s) must taken into account. The number Qf of affine terms at the right-hand
side refers to the case where all the M = 62 DEIM terms are considered

Q = 0 Q = 3 Q = 6 Q = 9
# parameters P 3 6 9 12

# affine terms lhs Qa 4 7 10 13
# affine terms rhs Qf 62 62 62 62
# POD snapshots ns 1000 4000 7000 10000

RB space dimension N 42 658 1296 1314
RB evaluation tonlineRB (s) 2.50 · 10−3 8.28 · 10−2 4.21 · 10−1 6.07 · 10−1

RB construction tofflineFE (s) 19.58 145.27 441.97 1105.25
Dofs ratio Nh/N 128 8 4 4
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