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Fast algorithm for periodic density fitting for
Bloch waves∗

Jianfeng Lu
†
and Lexing Ying

‡

We propose an efficient algorithm for density fitting of Bloch waves
for Hamiltonian operators with periodic potential. The algorithm
is based on column selection and random Fourier projection of the
orbital functions. The computational cost of the algorithm scales as
O

(
NgridN

2+NgridNK log(NK)
)
, where Ngrid is number of spatial

grid points, K is the number of sampling k-points in first Brillouin
zone, and N is the number of bands under consideration. We val-
idate the algorithm by numerical examples in both two and three
dimensions.
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1. Introduction

Consider a Hamiltonian operator with periodic potential

(1) H = −1

2
Δ + V.

For simplicity of notation, we assume without loss of generality that V is
periodic with respect to Zd, where d is the spatial dimension: i.e., V (x+ei) =
V (x) for {ei, i = 1, . . . , d} the set of standard Cartesian basis vectors of Rd.
From the standard Bloch-Floquet theory (see e.g., [15]), the spectrum of
the operator H is given by the Bloch eigenvalue problem on the unit cell
Γ = [0, 1)d: (

− 1

2
Δ + V

)
ψn,k = En,kψn,k, on Γ;(2a)
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e−i(k·x)ψn,k(x) is periodic on Γ.(2b)

Here k ∈ Γ∗ = [−π, π)d is known as the crystal momentum, where Γ∗ is
called the first Brillouin zone (FBZ), which is the unit cell of the reciprocal
lattice. The eigenfunction ψn,k for n ∈ N and k ∈ Γ∗ are called Bloch waves.
We extend them from Γ to the whole R

3 using the Bloch-periodicity (2b).
It would be convenient to introduce the periodic part of the Bloch function,
denoted as

(3) un,k(x) = e−i(k·x)ψn,k(x), x ∈ R
d.

By definition, un,k is periodic with respect to Z
d.

In this work, we are interested in the pair density sun,k(x)um,l(x) for
n,m ∈ N, k, l ∈ Γ∗, and x ∈ Γ. In particular, we aim at an approximation of
the pair density of the type

(4) sun,k(x)um,l(x) ≈
∑
μ

sCμ
n,kC

μ
m,lPμ(x),

where {Pμ} is a set of auxiliary basis functions we use to expand the pair
density and Cμ

n,k gives the expansion coefficients. In terms of the Bloch
waves, the approximation is then

(5) sψn,k(x)ψm,l(x) ≈
∑
μ

sCμ
n,kC

μ
m,lPμ(x)e

i(l−k)·x.

The approximation of pair density in the form of

(6) sun,k(x)um,l(x) ≈
∑
μ

Tμ
nk,mlPμ(x)

is known as periodic density fitting or density fitting for crystals in the liter-
ature [12, 10, 8]. Note that the approximation (4) is a special form, in which
the expansion coefficient Tμ

nk,ml =
sCμ
n,kC

μ
m,l has a separable structure. The

periodic density fitting is a generalization of the conventional density fitting
for molecules (see e.g., [16, 2, 17, 20, 21, 22]), which has wide applications
in electronic structure calculations. In density fitting, the pair density for a
set of orbital functions {ψn} (without the k-dependence) is approximated
as

(7) sψn(x)ψm(x) ≈
∑
μ

Tμ
nmPμ(x).
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Here with slight abuse of notation, we use again T to denote the expansion
coefficients.

Conventionally in density fitting, a set of auxiliary functions Pμ(x) are
chosen, for example as Gaussian functions or atom centered orbital func-
tions, the expansion coefficients T are obtained using least square fitting
with respect to a suitable metric (L2 or Coulomb metric, see Section 3 be-
low). The computational cost to obtain these coefficients scales as O(N4),
where N is the total number of orbital functions. Moreover, the conven-
tional procedure does not yield the separable structure, which is useful to
reduce the computational cost for electronic structure calculations, see e.g.,
[6, 5, 13, 14, 19, 18].

In our previous work [11], we developed a O(NgridN
2 logN) scaling al-

gorithm for density fitting without the k point dependence, where Ngrid is
number of spatial grids and N is the number of orbital functions. The nov-
elty is to recast the density fitting problem as a column selection procedure:
Instead of fixing the auxiliary basis functions and compute the expansion
coefficients, we look for a collection of grid points {xμ} that well represent
the pair densities, such that the auxiliary basis functions follow as a least
square fitting.

(8) sψm(x)ψn(x) ≈
∑
μ

sψm(xμ)ψn(xμ)Pμ(x).

This work extends our approach to periodic density fitting of Bloch
waves. In order to further reduce the computational cost, we use a more
efficient scheme for random projection based on the tensor product struc-
ture of the pair density ρ. Our resulting density fitting scheme scales as
O

(
NgridN

2 + NgridNK log(NK)
)
, where Ngrid is number of spatial grid

points, K is the number of k-points in first Brillouin zone, and N is the
number of bands under consideration. Recall that in the periodic case, the
total number of Bloch waves is given by NK. Note that if we take K = 1
so that we go back to the situation considered in [11], our current algorithm
costs as O(NgridN

2) and is hence more efficient than our previous algorithm.
Moreover, the computational cost scales almost linearly with respect to the
increase of K, with a “quadratic” coefficient O(NgridN); in fact, in practice,
the actual running time is dominated by the O(NgridN

2) term, independent
of K.

2. Algorithms

Let us consider a set of given orbitals un,k(x) for n = 1, . . . , N , k ∈ K a
discretization of the first Brillouin zone with |K | = K, and x ∈ X a grid
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in the unit cell with |X | = Ngrid. Similar to our previous work [11], the
basic idea is to select a suitable subset of grid points to represent the pair
densities ρnkml(x) = sun,k(x)um,l(x).

(9) ρnkml(x) ≈
∑
μ

ρnkml(xμ)Pμ(x) =
∑
μ

sun,k(xμ)um,l(xμ)Pμ(x).

After the grid points {xμ} are determined, the auxiliary basis functions Pμ

follow from a least square fitting.

Note that if we view ρ as a matrix of dimension N2K2 × Ngrid with
(nkml) being the row index and x being the column index, the choice of
xμ amounts to select a sub-collection of the columns to represent all the
matrix columns. One immediate approach for the column selection is to use
a pivoted QR algorithm [3] on ρ. For completeness, we recall the column
selection algorithm based on pivoted QR algorithm here.

Algorithm 1: Column selection based on pivoted QR

Input : m× n matrix M , error tolerance tol
Output: An m×Ncol submatrix M̃ of M and an Ncol × n matrix P ,

such that M ≈ M̃P
1 Compute the pivoted QR decomposition [Q,R,E] = qr(M), so that

QR = ME,

where E is an n× n permutation matrix, Q is an m×m unitary
matrix and R is an m× n upper triangular matrix with diagonal
entries in decreasing order;

2 Set Ncol such that

RNcol,Ncol
≥ tol ·R1,1 > RNcol+1,Ncol+1;

3 Set M̃ = (ME):,1:Ncol
, the first Ncol columns of ME, where Matlab

notations are used for submatrices. Note that ME amounts to a
permutation of the columns of M .

4 Compute P = R−1
1:Ncol,1:Ncol

R1:Ncol,:E
−1.

The computational cost of directly applying Algorithm 1 on the matrix
ρ is however prohibitively expensive, since the computational complexity of
the QR step scales as O(NgridN

4K4) (recall that the matrix ρ has dimension
N2K2 ×Ngrid).

In order to reduce the complexity, it is thus crucial to apply a random
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projection on the matrix ρ, in the spirit of the pioneering works [9, 23].
The idea is to find an alternative representation of the column space of ρ
by “compressing” the size of the matrix for the pivoted QR algorithm. In
our previous work [11], we apply a random Fourier projection on ρ, which
amounts to taking a sample of random linear combinations of rows of the ρ
matrix:

(10) �ξ(x) =
∑
γ

e−i2πγξ(N2K2)−1

ηγργ(x)

for random samples of ξ ∈ {1, . . . , N2K2} of total number proportional to
N and ηγ being random unit complex number for each γ. Here, we have
used γ ∈ {1, . . . , N2K2} to denote the row index (nkml) for simplicity
of notations. Fixing ξ, �ξ is a random linear combination of the rows ργ .
Thus, important columns of ρ remains important columns of � with high
probability.

The total size of the sample ξ to guarantee successful identification of
important columns is O(N) and is much smaller than the original number of
rows of ρ, and hence the cost of the pivoted QR algorithm is much reduced.
The computational cost is dominated by using FFT to compute (10), and
is hence O

(
Ngrid(NK)2 log(NK)

)
.

While the efficiency is much improved by using the algorithm in [11], it is
still expensive in the current context due to the large number of rows of the
matrix ρ. Our key observation to further reduce the computational cost is
that ρ given by ρnkml(x) = sun,k(x)um,l(x) has the tensor product structure,
in the sense that the row index (nkml) is naturally separated into two groups
(nk) and (ml). We may explore this structure by taking the random Fourier
projection on u following [1, 4] instead, which has a much smaller dimension
than ρ, and hence makes the row projection more efficient. More concretely,
we consider instead a projection of the type (cf. (10))

(11) Mij(x) =
∑
α

ei2παξi(NK)−1

sηαsuα(x)
∑
β

e−i2πβξj(NK)−1

ηβuβ(x)

for {ξi} ⊂ {1, . . . , NK} and α, β ∈ {1, . . . , NK} being the row index of u,
viewed as a (NK)×Ngrid matrix. Note that we can rewrite (11) as

Mij(x) =
∑
α,β

ei2π(αξi−βξj)(NK)−1

sηαηβsuα(x)uβ(x)(12)

=
∑
α,β

ei2π(αξi−βξj)(NK)−1

sηαηβραβ(x).
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and hence this still corresponds to a random linear combination of the rows

of ρ, and hence could be still used to select important columns of ρ to

represent the column space. The details of the algorithm are described in

Algorithm 2.

Algorithm 2: Density fitting via random Fourier projection and col-
umn selection
Input : Orbitals unk(x)
Output: Selected grids xμ and auxiliary basis functions Pμ(x), such

that sun,k(x)um,l(x) ≈
∑

μ sun,k(xμ)um,l(xμ)Pμ(x)

1 Reshape unk(x) into an (NK)×Ngrid matrix Uα(x) where
α = 1, . . . , NK is the row index;

2 Compute the discrete Fourier transform of U left multiplied by a
random diagonal matrix:

Ûξ(x) =
∑
α

e−i2παξ(NK)−1

ηαUα(x),

where ηα is a random unit complex number for each α;
3 Choose a submatrix U of Û by randomly choosing r = c

√
N rows.

4 Construct a r2 ×Ngrid matrix M

Mij(x) = ĎUi(x)Uj(x), i, j = 1, . . . , r,

where we view (ij) as the row index of M .
5 Apply column selection Algorithm 1 on the r2 ×Ngrid matrix M to
find selected Ncol columns {xμ} and auxiliary basis functions Pμ(x).

The computationally costly steps in Algorithm 2 are:

1. Step 2 requires FFT of vectors of length (NK) for Ngrid times, and

hence has computational cost O
(
NgridNK log(NK)

)
;

2. Step 4 scales as O(r2Ngrid) = O(NNgrid) by the choice of r = c
√
N ;

3. Step 5 requires pivoted QR algorithm applied on a N ×Ngrid matrix,

and hence has cost O(N2Ngrid), which dominates the other steps in

Algorithm 1.

Therefore, the total computational cost of the algorithm scales as

O
(
NgridN

2 + NgridNK log(NK)
)
. In practice, the prefactor of the FFT is

much smaller than the one of the pivoted QR factorization. As a result, the

O
(
NgridN

2
)
part dominates the actual running time.
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3. Numerical examples

In this section, we consider a few model examples to demonstrate the effec-
tiveness of the algorithms proposed above. In order to measure the error of
the density fitting, two metrics can be used. The error in L2 metric mea-
sures

(13) ‖ρnkml − ρ̃nkml‖2,

for ρ̃nkml =
∑

μ
sCμ
nkC

μ
mlPμ, while the error in Coulomb metric is given

by

‖ρnkml − ρ̃nkml‖C

(14)

=

(∫∫
Γ×Γ

(
ρnkml − ρ̃nkml

)
(x)G(x− y)

(
ρnkml − ρ̃nkml

)
(y) dx dy

)1/2

,

where G is the periodic Coulomb kernel, solving

(15) −ΔG(· − y) = 4π(δy − 1)

with periodic boundary condition on Γ = [0, 1]d and
∫
ΓG = 0.

The Coulomb metric is a good measure of the error since density fitting
is often used in approximating electron repulsion integral tensor, such as
(16)

Enkml =

∫∫
Γ×Γ

sψn,k(x)ψm,l(x)G(x− y) sψm,l(y)ψn,k(y) dx dy

=

∫∫
Γ×Γ

sun,k(x)um,l(x)G(x− y)sum,l(y)un,k(y)e
−i(k−l)·(x−y) dx dy.

Using the density fitting (4), we get the approximation
(17)

Ẽnkml=
∑
μν

∫∫
Γ×Γ

sCμ
n,kC

μ
m,lPμ(x)G(x− y) sCν

m,lC
ν
n,kPν(y)e

−i(k−l)·(x−y) dx dy

=
∑
μν

sCμ
n,kC

μ
m,l

sCν
m,lC

ν
n,k

∫∫
Γ×Γ

Pμ(x)G(x− y)Pν(y)e
−i(k−l)·(x−y) dx dy.

A simple calculation gives

|Enkml − Ẽnkml|

(18)
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=

∣∣∣∣∣
∫∫ (

ρnkml(x)sρnkml(y)− ρ̃nkml(x)sρ̃nkml(y)
)

×G(x− y)e−i(k−l)·(x−y) dx dy

∣∣∣∣∣
≤

∣∣∣∣∣
∫∫ (

ρnkml(x)− ρ̃nkml(x)
)

sρnkml(y)G(x− y)e−i(k−l)·(x−y) dx dy

∣∣∣∣∣
+

∣∣∣∣∣
∫∫

ρ̃nkml(x)
(

sρnkml(y)− sρ̃nkml(y)
)
G(x− y)e−i(k−l)·(x−y) dx dy

∣∣∣∣∣
≤ C‖ρnkml − ρ̃nkml‖C

(
‖ρnkml‖C + ‖ρ̃nkml‖C

)
,

where the last step uses the Fourier representation and the Cauchy-Schwartz
inequality.

3.1. 2D examples

We consider two examples in two dimensions. In both examples, the periodic
model potential V (x) is given by

V (x) =
∑
n1∈Z

∑
n2∈Z

Vc(x− n1e1 − n2e2)

where Vc is a localized potential centered at the origin and e1 and e2 are the
unit Cartesian basis vectors. This is a simple square lattice and the Brillouin
zone is also a square. The potential Vc(·) is chosen to be centered at the origin
and spherically symmetric. The unit cell [0, 1)2 is discretized with Ngrid = 48
points in each dimension. In each example, we consider up to N = 41 bands
and the Brillouin zone [−π, π)2 is sampled with up to K = 16 points per
dimension. The band structure and the eigenfunctions are computed with
spectral discretization for high order accuracy and the resulting discrete
eigenvalue problem for each k point is solved using LOBPCG [7] with the
simple inverse Laplacian preconditioning. The prescribed accuracy for the
column selection algorithm is set to be of order 10−5.

In the first example, the potential Vc(x) is given by a Gaussian profile

(19) Vc(x) = −144 exp

(
−‖x‖2

2σ2

)
with σ = 0.1333. Figure 1 summarizes the results for this first example.
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Figure 1: Results of the first 2D example. (a) the potential Vc in unit cell. (b)
the band structure plotted along the Γ−X−M path. (c) Ncol as a function
N (the number of bands) for different values of K (the number of k points).
(d) The time used by the column selection algorithm in seconds. (e) The
relative error measured in the L2 metric. (f) The relative error measured in
the Coulomb metric.

• Figure 1(a) shows the potential profile in the unit cell [−1/2, 1/2)2.
• Figure 1(b) gives the band structure along the standard Γ − X −M
path in the Brillouin zone for simple square lattice.

• Figure 1(c) plots the dependence of Ncol (the number of auxiliary
basis) as a function of N (the number of bands) for different choices of
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Figure 2: Comparison of Algorithm 2 (solid line) and Algorithm 1 (dotted
line) for the first 2D example. (a) Ncol as a function N (the number of bands)
for different values of K (the number of k points). (b) The time used by the
column selection algorithm in seconds. (c) The relative error measured in
the L2 metric. (d) The relative error measured in the Coulomb metric.

K (the number of k-point samples in each dimension) at the targeted
accuracy level 10−5. From this plot, one can clearly see that Ncol grows
roughly linearly with respect to N and that it depends only mildly on
the number of k point samples.

• The time for performing the column selection in seconds is given in
Figure 1(d) as a function of N for different values of K. This plot
shows that the complexity depends quadratically on N but only grows
mildly with K.

• Finally, Figures 1(e) and (f) give the relative errors in the L2 metric
and the Coulomb metric, respectively. These two plots show that the
estimated relative errors are bounded by a small constant times the
prescribed accuracy level.

In order to demonstrate the effectiveness of Algorithm 2, a comparison
study for Algorithm 1 and Algorithm 2 is performed using this example and
the results are summarized in Figure 2. Since Algorithm 1 is quite time-
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consuming, a lower resolution study is adopted here with Ngrid = 24 and

smaller values for both N and K. The plots in Figure 2 clearly show that

Algorithm 2 is much more efficient while at the same time maintains the

same level of accuracy.

In the second example, the potential Vc(x) is chosen to be

(20) Vc(x) = −144 exp

(
−max(‖x‖ − 1/4, 0)2

2σ2

)
with σ = 0.0667. The results for this example are summarized in Figure 3.

The results show similar characteristics as the previous example.

3.2. 3D examples

For the 3D case, we consider two similar examples. In each example, the

periodic model potential V (x) is given by

V (x) =
∑
n1∈Z

∑
n2∈Z

∑
n3∈Z

Vc(x− n1e1 − n2e2 − n3e3)

where Vc is a localized potential centered at the origin and e1, e2, and e3 are

the unit Cartesian basis vectors. This is a simple cubic lattice and the Bril-

louin zone is also a cube. The potential Vc(·) is again chosen to be centered

at the origin and spherically symmetric. The unit cell [0, 1)3 is discretized

with Ngrid = 24 points in each dimension. In each example, we consider up to

N = 41 bands and the Brillouin zone [−π, π)3 is sampled with up to K = 12

points per dimension. Similar to the 2D examples, the band structure and

the eigenfunctions are computed with pseudo-spectral discretization for high

order accuracy and the resulting discrete eigenvalue problem for each k point

is solved using LOBPCG with simple inverse Laplacian preconditioning. The

prescribed accuracy for the column selection algorithm is set to be of order

10−5.

The potential Vc(x) in the first example is given by (19) but now in 3D

and with σ = 0.1667. Figure 4 summarizes the results for this examples. The

meaning of each plot is similar to the ones of the 2D examples, except that

• Figure 4 (a) is the cross-section of the potential Vc(x) taken at the

plane x3 = 0;

• Figure 4 (b) gives the band structure along the standard Γ−X−M −
Γ−R−X|M−R path in the Brillouin zone for the simple cubic lattice.
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Figure 3: Results of the second 2D example. (a) the potential Vc in unit cell.
(b) the band structure plotted along the Γ − X − M path. (c) Ncol as a
function N (the number of bands) for different values of K (the number of k
points). (d) The time used by the column selection algorithm in seconds. (e)
The relative error measured in the L2 metric. (f) The relative error measured
in the Coulomb metric.
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Figure 4: Results of the first 3D example. (a) the cross-section of the poten-
tial Vc in unit cell taken at x3 = 0. (b) the band structure plotted along the
Γ−X −M −Γ−R−X|M −R path. (c) Ncol as a function N (the number
of bands) for different values of K (the number of k points). (d) The time
used by the column selection algorithm in seconds. (e) The relative error
measured in the L2 metric. (f) The relative error measured in the Coulomb
metric.
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Figure 5: Results of the second 3D example. (a) the cross-section of the
potential Vc in unit cell taken at x3 = 0. (b) the band structure plotted
along the Γ −X −M − Γ − R −X|M − R path. (c) Ncol as a function N
(the number of bands) for different values of K (the number of k points).
(d) The time used by the column selection algorithm in seconds. (e) The
relative error measured in the L2 metric. (f) The relative error measured in
the Coulomb metric.
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Figure 6: Results of the graphene sheet example. (a) the cross-section of the
potential Vc through the atom centers. (b) the band structure plotted along
the Γ − X − M path. (c) Ncol as a function N (the number of bands) for
different values of K (the number of k points). (d) The time used by the
column selection algorithm in seconds. (e) The relative error measured in
the L2 metric. (f) The relative error measured in the Coulomb metric.
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Similar to the results from the 2D examples, we can draw the following
conclusions:

• Ncol depends roughly linearly on N but is almost independent of K;
• the time of the column selection algorithm grows quadratically in N
but is almost independent of K;

• the relative errors of the algorithm are bounded by a small factor times
the accuracy level used in the column selection algorithm both in the
L2 metric and the Coulomb metric.

In the second example, the potential Vc(x) given by (20) but again inter-
preted in 3D and with σ = 0.0833. The results are summarized in Figure 5.

3.3. Graphene sheet

Finally, we consider the graphene sheet, a three dimensional system with two
dimensional periodic structure, with the results summarized in Figure 6. We
calculate the Bloch functions for an effective potential obtained from a Γ-
point calculation using KSSOLV [24], a Matlab toolbox for the Kohn-Sham
equations. This example is significantly more challenging that the previous
example since the potential profile in the unit cell has more structure. As a
result, the number of auxiliary basis Ncol is significantly increased, but it is
still much smaller compared to the number of grid points. The results for
the running times and relative errors are qualitatively similar to the ones of
the previous examples.

4. Conclusion

We present and demonstrate an efficient algorithm for periodic density fit-
ting for Bloch waves. The proposed algorithm is based on randomized piv-
oted QR algorithm with a choice of random projection adapted to the tensor
product structure of the matrix. The resulting algorithm is validated in sev-
eral numerical examples in two and three dimensions.
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