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Self-adjointness of the Dirac Hamiltonian for a class
of non-uniformly elliptic boundary value problems∗
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We consider a boundary value problem for the Dirac equation
in a smooth, asymptotically flat Lorentzian manifold admitting a
Killing field which is timelike near and tangential to the boundary.
A self-adjoint extension of the Dirac Hamiltonian is constructed.
Our results also apply to the situation that the space-time includes
horizons, where the Hamiltonian fails to be elliptic.
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1. Introduction

Let (M , g) be a smooth, oriented and time-orientated Lorentzian spin man-
ifold of dimension d ≥ 3 with boundary ∂M . Moreover, we make the fol-
lowing assumptions:

(i) The manifold (M , g) is asymptotically flat with one asymptotic end.
(ii) There is a Killing field K which is tangential to and timelike on ∂M .
(iii) The integral curves of K, defined by the differential equation

γ̇(t) = K
(
γ(t)

)
,

exist for all t ∈ R.
(iv) There exists a spacelike hypersurface N with compact boundary ∂N

with the property that every integral curve γ in (iii) intersects N
exactly once.

These assumptions imply that M and its boundary ∂M have the product
structures

(1) M = R× N and ∂M = R× ∂N .
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Note that our assumptions also imply that the metric g is smooth up to

the boundary ∂M , thus inducing on ∂N a (d−2)-dimensional Riemannian

metric.

For clarity, we now mention two well-known special cases. If ∂N is

empty and N is complete, the product structure (1) implies that (M , g)

is globally hyperbolic. Moreover, if K is timelike in the asymptotic end, the

manifold is stationary. However, we point out that we merely assume that

the Killing field K is timelike on the boundary ∂M , but it does not need to

be timelike everywhere.

In order to get a better geometric understanding of the above setting, we

now construct a convenient coordinate system. Choosing the parametriza-

tion of each curve γ such that γ(0) ∈ N , we obtain a global coordinate

function T defined by

(2) T : M → R with T
(
γ(t)

)
= t .

The level sets of this time function give rise to a foliation Nt := T−1(t) by

spacelike hypersurfaces with N0 = N . Moreover, the integral curves give

rise to isometries

Φt : N → Nt , Φt

(
γ(0)

)
= γ(t) .

Choosing coordinates x on N , the mapping x◦Φ−1
t gives coordinates on Nt.

Complementing this coordinate system by the function t = T , we obtain

coordinates (t, x) with t ∈ R and x ∈ N such that K = ∂t. In these

coordinates, the line element takes the form

ds2 = gij dx
i dxj = a(x) dt2 + bα(x) dt dx

α −
(
gN (x)

)
αβ

dxα dxβ ,

where a and bα are smooth functions, and gN is the induced Riemannian

metric on N . Here we denote the space-time indices by latin letters i, j ∈
{0, 1, 2, . . . , d−1}, whereas spatial indices are denoted by greek letters α, β ∈
{1, 2, . . . , d−1}. This coordinate system can be understood as describing an

observer who is co-moving along the flow lines of the Killing field. We note

that in the regions where K is timelike, the function a(x) is positive, and

the metric is stationary. This is the case if x is near the boundary ∂N .

However, away from ∂N , the function a(x) could be negative, in which case

the metric is not stationary, and t is not a time coordinate. This situation is

illustrated in the following example.
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Example 1.1. (Kerr geometry in Eddington-Finkelstein-type coor-
dinates) In the recent paper [11], horizon-penetrating Eddington-Finkel-
stein-type coordinates

(τ, r, θ, φ) with τ ∈ R, r ∈ R
+, θ ∈ (0, π), φ ∈ (0, 2π)

are introduced in the four-dimensional non-extreme Kerr geometry. In these
coordinates, the line element takes the form

ds2 =

(
1− 2Mr

Σ

)
dτ2 − 4Mr

Σ

(
dr − a sin2 θ dφ

)
dτ

−
(
1 +

2Mr

Σ

)(
dr − a sin2 θ dφ

)2 − Σ dθ2 − Σsin2 θ dφ2 ,

where Σ = r2 + a2 cos2 θ. Moreover, M and aM denote the mass and the
angular momentum of the black hole, respectively. The surfaces r± = M ±√
M2 − a2 are the event horizon and the Cauchy horizon of the black hole.

Note that these coordinates are regular on and across the horizons. The
two Killing fields describing the stationarity and axisymmetry of the Kerr
geometry are ∂τ and ∂φ.

We choose a radius r0 < r− inside the Cauchy horizon and let

M = {r > r0} , N = {τ = 0, r > r0} and ∂M = {r = r0} .

Direct computation shows that the Killing field ∂τ is not everywhere timelike
on ∂M (due to an ergo-like region inside the Cauchy horizon). But taking K
as a suitable linear combination of ∂τ and ∂φ,

K = ∂τ + b ∂φ

with a real constant b = b(r0) �= 0, it turns out that K is a Killing field
which satisfies all the above assumptions. This Killing field is spacelike near
spatial infinity. ♦

We next formulate the Dirac equation. To this end, we choose an arbi-
trary spin structure and let SM be the corresponding spinor bundle. It is
a vector bundle with fibers SpM 	 Cf , f ∈ M , where the dimension f is
given by f = 2[d/2] (where [.] is the lower Gauss bracket; thus f = 4 in di-
mensions d = 4 or 5). Each fiber is endowed with an indefinite inner product
of signature (f/2, f/2), referred to as spin scalar product and denoted by

≺.|.�p : SpM × SpM → C .
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The geometric Dirac operator D takes the form

(3) D = iγj∇j ,

where the Dirac matrices γj are related to the metric by the anti-commuta-
tion relations {

γj , γk
}
= 2 gjk 1SpM ,

and∇ is the metric connection on the spinor bundle (for more details see [9]).
In order to allow for an external potential (like for example an electromag-
netic potential), instead of (3) we shall consider the more general Dirac
operator

(4) D = iγj∇j +B ,

where B is a smooth matrix-valued potential which we assume to be sym-
metric with respect to the spin scalar product, i.e. ≺φ|Bψ� = ≺Bφ|ψ�.

We are interested in solutions ψ of the Dirac equation of mass m

(5) (D −m)ψ = 0 ,

with the Dirac operator according to (4). In order to analyze the dynamics
of Dirac waves, it is useful to write the Dirac equation in the Hamiltonian
form

(6) i∂tψ = Hψ ,

where H is the Dirac Hamiltonian given by

(7) H = −
(
γt

)−1(
iγα∇α +B−m

)
.

Taking the domain of definition

D(H) = C∞
0

( ◦
N , SM

)
,

where
◦

N = N \ ∂N denotes the interior of N , this Hamiltonian is indeed
symmetric (i.e. formally self-adjoint) with respect to the scalar product

(ψ|φ)N =

ˆ
N

≺ψ|/νφ�x dμN (x) ,

where ν is the future-directed normal on N and dμN is the volume form
on (N , gN ). This can be verified with the following computation. Using
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current conservation together with the fact that the metric coefficients do
not depend on the coordinate t, we obtain

0 = ∂t
(
ψ(t)

∣∣φ(t))
N

= (ψ̇|φ)N + (ψ|φ̇)N
=

(
(−iHψ)

∣∣φ)
N

+
(
ψ

∣∣(−iHφ)
)
N

= i
(
(Hψ|φ)N − (ψ|Hφ)N

)
.

In order to pose the Cauchy problem for the Dirac equation (5), one
needs to specify initial and boundary conditions. We choose initial data
which is smooth and compactly supported,

(8) ψ|N = ψ0 ∈ C∞
0 (N , SM ) .

Moreover, we impose the boundary conditions

(9) (/n− i) ψ|∂M = 0 ,

where the slash denotes Clifford multiplication, and n is the inner normal
on ∂M (meaning that for every p ∈ ∂M there is a curve c : [0, δ) → M
with c(0) = p and ċ(0) = n(p)). Clearly, the initial data must be compati-
ble with the boundary conditions, meaning that (/n − i) ψ0|∂M = 0. These
boundary conditions, which are very similar to those introduced in [5, Sec-
tion 2], have the effect that Dirac waves are reflected on ∂M . They can also
be understood in analogy to the chiral boundary conditions in [3, 7]. The
difference is that, instead of the intrinsic Dirac operator on the hypersur-
face, we here consider the Hamiltonian obtained from the Dirac operator
in space-time by separating the t-dependence. This gives rise to the addi-
tional factor (γt)−1 in (7). Our boundary conditions (9) can be understood
as an adaptation of the chiral boundary conditions in [3, 7] to the Hamilto-
nian (7).

The boundary conditions (9) must be incorporated in the functional
analytic setting. To this end, one extends the domain of definition to

(10) D(H) =
{
ψ ∈ C∞

0 (N , SM ) with (/n− i) ψ|∂N = 0
}
.

Then the operator H is again symmetric, as the following consideration
shows. First, we rewrite the scalar product (ψ|Hφ)N in a more convenient
form. Applying the relations (γt)2 = gtt1SxM and /ν = γt/

√
gtt, we obtain

/ν(γt)−1 =
1

gtt
/ν γt =

1SxM√
gtt

.
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Making use of the form of the Hamiltonian (7), this leads to

(ψ|Hφ)N = −i

ˆ
N

≺ψ|γα∇αφ�x
1√
gtt

dμN (x) + (lower order terms) .

Now a direct computation of the boundary terms yields

(ψ|Hφ)N − (Hψ|φ)N = i

ˆ
∂N

≺ψ|/nφ�x
1√
gtt

dμ∂N (x)

(we note that the angular derivatives do not give rise to boundary terms

because ∂N is compact without boundary). Using the boundary conditions

in (10), for all x ∈ ∂N we obtain

i≺ψ|φ�x = ≺ψ|/nφ�x = ≺/nψ|φ�x = −i≺ψ|φ�x ,

proving that the boundary values indeed vanish. This shows that H is sym-

metric.

In order to solve the Cauchy problem and to analyze the long-time be-

havior of its solutions, it is of central importance to construct a self-adjoint

extension of H. Namely, with such a self-adjoint extension at hand, the solu-

tion of the Cauchy problem for the Dirac equation (5) with initial values (8)

and boundary conditions (9) can be expressed using the spectral theorem

for self-adjoint operators as

ψ(t) = e−itH ψ0 =

ˆ
σ(H)

e−iωt dEω ψ0 .

This formula is also the starting point for a detailed analysis of the long-

time behavior of ψ using spectral methods, similar as carried out in the

exterior region of Kerr geometry in [5, 4]. In the present paper, we succeed

in constructing a self-adjoint extension:

Theorem 1.2. The Dirac Hamiltonian (7) with domain of definition

D(H) =
{
ψ ∈ C∞

0 (N , SM ) with(11)

(/n− i)
(
Hpψ

)∣∣
∂N

= 0 for all p ∈ N0

}

is essentially self-adjoint.

Note that the domain (11) is smaller than (10). This is preferable because

we want that the Cauchy problem has a global solution in C∞
0 (N , SM )

(see the strategy of our proof as described at the end of this section).
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We conclude this section by putting our result into the context of pre-
vious work, and explaining the strategy of our proof. The Cauchy problem
and the problem of constructing a self-adjoint extension of the Dirac Hamil-
tonian have been studied in several simpler situations:

(i) If N is a complete manifold without boundary, the Cauchy problem
can be solved using the theory of symmetric hyperbolic systems (see
for example [8, 13]). In this construction, one works with local charts
with local time functions. Since the resulting local solutions coincide
in the regions where the charts overlap, this procedure gives rise to a
unique, global smooth solution in M . Then, restricting this solution to
the spacelike hypersurfaces of constant t, one obtains a family of time
evolution operators

Ut′,t : C∞(
{t} × N , SM

)
→ C∞(

{t′} × N , SM
)
,

which form a group. This makes it possible to apply [2] to conclude that
the Hamiltonian is essentially self-adjoint on C∞(N , SM ).

(ii) In the ultrastatic situation

ds2 = dt2 −
(
gN

)
αβ

dxα dxβ ,

the Hamiltonian can be written as

H =

(
0 DN

DN 0

)
,

where DN is the intrinsic Dirac operator on N . This makes it possible
to apply the results in the Riemannian setting as worked out in detail
in [1].

(iii) In the static situation

ds2 = a(x) dt2 −
(
gN

)
αβ

dxα dxβ ,

the Hamiltonian can be written as

H =
√

a(x)

(
0 DN

DN 0

)
+ (zero-order terms) .

Introducing a suitable scalar product on the Dirac wave functions, this
Hamiltonian is again symmetric, making it possible to again apply the
results of [1].
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In the situation under consideration here, there is the major complication
that the Hamiltonian is in general not uniformly elliptic, so that the methods
in [1] no longer apply. In order to explain the problem, we now consider the
principal symbol of the Dirac Hamiltonian. According to (7), the principal
symbol takes the form

P (x, ξ) = −i
(
γt

)−1
γα ξα .

The ellipticity condition states that the principal symbol should be bounded
from below by ∥∥P (x, ξ)

∥∥ ≥ δ ‖ξ‖2

for a suitable constant δ > 0 (for basics on the principal symbol and the
connection to ellipticity see for example [12, Section 5.11]). In order to verify
whether this condition holds, it is most convenient to compute the determi-
nant of the principal symbol. Namely,

detP (x, ξ) = det
(
(γt)−1

)
det

(
γα ξα

)
,

and using that

(γt)−1(γt)−1 =
1SxM

gtt
, γα ξα γβ ξβ = gαβ ξα ξβ 1SxM ,

we obtain

detP (x, ξ) =

(
gαβ ξα ξβ

gtt

)f/2

.

This computation shows that the Hamiltonian fails to be elliptic if gαβ ξα ξβ =
0 for a non-zero ξ. In the example of the Kerr metric in Eddington-Finkel-
stein-type coordinates [11], this is the case precisely on the event and Cauchy
horizons. More generally, the points where the Hamiltonian fails to be ellip-
tic can be used as the definition of the horizons of our space-time. Thus we
face the major problem that the Hamiltonian is not elliptic on the horizons.

Our strategy to solve this problem is to split up the solution of the
Cauchy problem into two separate problems: Near the boundary, we rewrite
the problem in a form where the results in [1] apply. Away from the bound-
ary, however, we use the theory of symmetric hyperbolic systems. Making
essential use of finite propagation speed, adding the two solutions gives rise
to a unique solution of our boundary value problem for small times. By
iterating the procedure, we get unique global, smooth solutions, making it
possible to proceed as in (i) above by applying [2].
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2. A double boundary value problem

As a technical tool for the proof of Theorem 1.2, we need to show that the
Cauchy problem (5), (8) with boundary conditions (9) has global smooth
solutions. Our method is to split up the Cauchy problem into two sepa-
rate problems near and away from the boundary. In preparation, we now
introduce additional boundary conditions on a suitable surface Y near ∂M .
We work in Gaussian normal coordinates in a tubular neighborhood in N
of ∂N . Thus for any p ∈ ∂N , we let cp(r) for 0 ≤ r < rmax(p) be the
geodesic in N with the initial conditions

cp(0) = p and c′p(0) = u ,

where u ∈ TpN is the inner normal to ∂N . Since ∂N is compact, we can
choose rmax > 0 independent of p to obtain a mapping

c : [0, rmax)× ∂N → N , c(r, p) = cp(r) .

Applying the implicit function theorem, possibly by decreasing rmax, we can
arrange that c is a diffeomorphism. We introduce the sets obtained from ∂N
by the geodesic flow by

∂N (r) = c(r, ∂N ) .

Choosing coordinates Ω = (ϑ1, . . . , ϑd−2) on ∂N gives a corresponding co-
ordinate system (r,Ω) on N . In these coordinates, the metric on N takes
the form

(12) (gN )αβ =

(
1 0
0 g∂N (r)

)
and thus (gN )αβ =

(
1 0

0
(
g∂N (r)

)−1

)
.

Taking again t as the time coordinate, we obtain a coordinate system (t, r,Ω)
with t ∈ R, r ∈ [0, rmax) of M which describes a neighborhood of ∂M .

We now introduce the following new boundary value problem. Let X be
the space-time region

X =
{
(t, r,Ω)

∣∣ 0 ≤ r ≤ rmax/2
}
.

This is a Lorentzian manifold whose boundary ∂X consists of ∂M as well
as the (d− 1)-dimensional surface

Y :=
{
(t, rmax/2,Ω)

}
.
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Possibly by decreasing rmax, we can arrange thatK is timelike inX, implying
that Y is a timelike surface. The inner normal on Y is again denoted by n.
We consider the initial value problem

(13) (D −m)ψ = 0 in X , ψ|N = ψ0 ∈ C∞(N ∩X,SM ) ,

with the boundary conditions

(14) (/n− i)ψ|∂X = 0 ,

where ∂X = ∂M ∪ Y now has two components. It is again useful to rewrite
the Dirac equation in the Hamiltonian form (6) with the Hamiltonian (7).
In order to take into account the boundary conditions, we now choose the
domain of definition as the Sobolev space

(15) D(H) =
{
ψ ∈ W 1,2(X ∩ N , SM )

∣∣ (/n− i) ψ|∂X∩N = 0
}
.

The next proposition gives a spectral decomposition of H.

Proposition 2.1. There is a countable orthonormal basis (ψn)n∈N, ψn ∈
D(H), of eigenfunctions of H.

Proof. Our method is to apply the abstract spectral theorem given in [1,
Theorem 4.1]. The task is to verify the spectral conditions (C0)–(C4), which
in our setting are stated as follows:

(C0) H : D(H) → L2(X) is linear and bounded in the W 1,2-topology
on D(H).

(C1) The G̊arding inequality holds: There exists a constant C such that for
all ψ ∈ D(H),

‖ψ‖2W 1,2(X∩N )(16)

≤ C

ˆ
X∩N

(≺Hψ|/νHψ�x +≺ψ|/νψ�x) dμN (x) .

(C2) Weak solutions are strong solutions (“elliptic regularity”): If φ ∈
L2(X ∩ N ) satisfies

ˆ
X∩N

≺Hψ|/νφ�x dμN (x) = 0 for all ψ ∈ D(H) ,

then φ ∈ D(H).
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(C3) H is symmetric, i.e. for all ψ, φ ∈ D(H),

ˆ
X∩N

≺ψ|/νHφ�x dμN (x) =

ˆ
X∩N

≺Hψ|/νφ�x dμN (x) .

(C4) D(H) is dense in L2(X ∩ N ).

The validity of condition (C0) follows immediately from the fact that H is
a differential operator of first order. The symmetry property (C3) was veri-
fied after (10). The denseness property (C4) is obvious. In order to verify the
G̊arding inequality (C1), we exploit the specific form of the Hamiltonian (7).
The contribution to ≺Hψ|/νHψ�x involving first derivatives squared is es-
timated by

≺(γt)−1γα∇αψ | /ν (γt)−1γβ∇βψ�x ≥ c gαβN ‖∇αψ‖ ‖∇βψ‖

(for a suitable constant c > 0), where we used that the inner product ≺.|/ν.�
is positive definite and that the matrices (γt)−1 and γα are uniformly

bounded on X. Introducing the notation ‖∇ψ‖2 = gαβN ‖∇αψ‖ ‖∇βψ‖ and
estimating the coefficients of the lower order terms by suitable constants d1,
d2 > 0, we obtain the estimate

≺Hψ|/νHψ�x ≥ c ‖∇ψ‖2 − d1 ‖∇ψ‖ ‖ψ‖ − d2 ‖ψ‖2

≥ c

2
‖∇ψ‖2 −

(
d21
2c

+ d2

)
‖ψ‖2 .

Hence

‖ψ‖2W 1,2(X∩N ) =

ˆ
X∩N

(
‖∇ψ‖2 + ‖ψ‖2

)
dμN (x)

≤
ˆ
X∩N

(
2

c
≺Hψ|/νHψ�x +

2

c

(
d21
2c

+ d2

)
‖ψ‖2 + ‖ψ‖2

)
dμN (x) .

This shows that condition (C1) holds.
It remains to derive the regularity condition (C2). This consists of two

parts: the interior regularity and the regularity at the boundary. For the
interior regularity, we need to show that the operator H is uniformly elliptic
(see [1, Theorem 3.7]). To this end, we make use of the fact that the Killing
field K is timelike in X. As a consequence, we can use it to define a norm
on the spinors by

‖ψ(x)‖2x := ≺ψ|γt /Kγtψ�x .
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Using this norm, we have∥∥ξα (
(γt)−1γα

)
ψ(x)

∥∥2

x
= ξα ξβ ≺(γt)−1γαψ | γt /Kγt (γt)−1γβψ�x

= ξαξβ ≺γαψ | /Kγβψ�x .

Since /K = γt, this matrix anti-commutes with the matrices γβ. Therefore,∥∥ξα (
(γt)−1γα

)
ψ(x)

∥∥2

x
= −ξα ξβ ≺γβγαψ | /Kψ�x

= −gαβ ξα ξβ ≺ψ | /Kψ�x = −gαβ ξα ξβ
∥∥(γt)−1ψ

∥∥2

x
,

showing explicitly that H is uniformly elliptic. To see that the matrix (γt)−1

is uniformly bounded, we note that, using Cramer’s rule,

(
(γt)−1

)2
=

1SxM

gtt
= −det gαβ

gtt
= −det gαβ

〈K,K〉 ,

which is indeed bounded because K is timelike in X.
The remaining proof of the boundary regularity is a subtle point, which

we now treat in detail. We first note that, by localizing with a test function
and using the interior regularity, it suffices to consider weak solutions whose
support is in a small neighborhood of ∂N or Y ∩ N . Since both cases
can be treated in the same way, we may assume that the solution vanishes
identically outside a small neighborhood of ∂N . Our goal is to apply [1,
Theorem 5.11]. Simplifying the statement of this theorem and adapting it
to our setting, this theorem gives boundary regularity for boundary value
problems of the form

Lu = f(17)

Pu|∂N = 0 .(18)

Here P is a projection operator on L2(∂N ). Moreover, L is the differential
operator

L = ∂r +A+B ,

where the operators A and B are of the following form. The operator A :
W 1,2(∂N ) → L2(∂N ) is an angular differential operator which is indepen-
dent of r and satisfies again the above spectral conditions (C0)–(C4). The
operator B : W 1,2(X ∩ N ) → L2(X ∩ N ), on the other hand, should be
such that its first-order terms vanish on ∂N .

The first step is to rewrite the Dirac equation and the boundary con-
ditions in the required form. Suppose that ψ is a weak solution of the in-
homogeneous equation Hψ = f satisfying the boundary conditions (14).
Moreover, assume that ψ and f are supported in a small neighborhood
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of ∂N . In order to implement the boundary conditions on ∂N , we choose
the projection operator P as

P =
1

2

(
i/n+ 1

)
.

Next, using (7), one can write the differential equation (17) as

(
∂r + (γr)−1

(
γϑ1∂ϑ1

+ · · ·+ γϑd−2∂ϑd−2

)
+ E

)
ψ = i(γr)−1γtf ,

where (ϑa)a=1,...,d−2 are again coordinates on ∂N , and E is a zero-order
operator. We choose

A = (γr)−1
(
γϑa∂ϑa

)∣∣
∂N

+ Z(19)

B = (γr)−1
(
γϑa∂ϑa

)
+ E −A ,(20)

where Z is a zero-order operator on ∂N to be determined below.

The crucial point is to show that by a suitable choice of the scalar prod-
uct and the zero-order operator Z, we can arrange that the operator A is
symmetric. We choose the scalar product as

(21) 〈.|.〉∂N =

ˆ
N

≺ . | /K .�x dμ∂N

(since K is timelike near ∂N , this inner product is indeed positive definite).
Using the form of the metric (12) in our Gaussian normal coordinate system,
the following anti-commutation relations hold,

{ /K, γr} = 2 g r
t = 2 δrt = 0 , { /K, γϑa} = 0 , {γr, γϑa} = 0 .

As a consequence, the matrices (γr)−1γϑa are anti-symmetric with respect
to the scalar product (21). Thus, setting

Z = −1

2

(
A0 −A∗

0

)
with A0 := (γr)−1

(
γϑa∂ϑa

)∣∣
∂N

,

where the star denotes the formal adjoint with respect to the scalar prod-
uct (21), the operator Z is indeed a multiplication operator. Moreover, using
the above formulas for Z and A0 in (19), one sees that A = (A0 + A∗

0)/2,
which is obviously symmetric. Finally, it is clear by construction that the
restriction of B to ∂N is a multiplication operator.
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From this construction, it is obvious that the operator A has the above
properties (C0), (C3) and (C4). In order to prove the G̊arding inequality (C1)
and the elliptic regularity (C2), we make use of the anti-commutation rela-
tions

{
(γr)−1 γϑa , (γr)−1 γϑb

}
= − 1

grr
{
γϑa , γϑb

}
= −2

gϑaϑb

grr
.

Hence the operator A2 is of the form

A2 =
1

grr
ΔSd−2 + (lower order terms) .

This is an elliptic operator on a bounded domain. Standard elliptic theory
implies (C1) and (C2).

The spectral decomposition of Proposition 2.1 implies that the mixed
initial/boundary value problem (13), (14) has a unique weak solution in
W 1,2(X ∩ N , SM ) given by

(22) ψ(t, x) =

∞∑
n=1

cn e
−iωntψn(x) with cn =

ˆ
X∩N

≺ψn|/νψ0�ydμN (y),

where ωn is the eigenvalue of ψn. In order to apply [2], we want a solution
which is smooth for all times. We now state the corresponding necessary
and sufficient conditions.

Lemma 2.2. Suppose that ψ0 satisfies the conditions

(23) (/n− i)
(
Hpψ0

)∣∣
∂N

= 0 for all p ∈ N0 .

Then the solution ψ of the mixed initial/boundary value problem (13), (14) is
in the class C∞

sc (M , SM ), where the index “sc” denotes solutions of space-
like compact support (i.e. suppψ(t, .) is a compact subset of N for all t ∈
R). Conversely, if a solution of the mixed initial/boundary value problem is
smooth, then ψ0 satisfies the conditions (23).

Proof. Let ψ be the solution of the mixed initial/boundary value prob-
lem (13), (14) for ψ0 satisfying (23). In order to show that ψ is smooth,
it clearly suffices that all time derivatives of ψ exist and are smooth in x.
To this end, we consider the partial sums of (22)

ψN (t, x) =

N∑
n=1

cn e
−iωnt ψn(x)
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for given N ∈ N. Differentiating p times with respect to t gives

(i∂t)
pψN (t, x) =

N∑
n=1

ωp
ncn e

−iωnt ψn(x) .

Furthermore,

ωp
ncn =

ˆ
X∩N

≺Hpψn|/νψ0�y dμN (y) =

ˆ
X∩N

≺ψn|/ν
(
Hpψ0

)
�y dμN (y) ,

where we iteratively integrated by parts and used the boundary condi-
tions (23). Since the function ψ̃0 := Hpψ0 is again in D(H) given by (15),
we can take the limit N → ∞ to conclude that

(i∂t)
pψ(t, x) =

∞∑
n=1

c̃n e
−iωntψn(x) with c̃n =

ˆ
X∩N

≺ψn|/νψ̃0�y dμN (y) .

This shows that ψ is indeed a smooth solution.
Assume conversely that ψ is a smooth solution to the mixed initial/boun-

dary value problem (13), (14). Then (/n − i)ψ(t)|∂N = 0 for all t. Differen-
tiating p times with respect to t gives

0 = (i∂t)
p
(
(/n− i)ψ(t)|∂N

)∣∣∣
t=0

= (/n− i)
(
Hpψ0

)∣∣
∂N

,

proving (23).

3. Solution of the Cauchy problem

We now return to the Cauchy problem (5), (8) with boundary conditions (9).
Thus we seek for solutions of the Dirac equation in the Hamiltonian form

(24) i∂tψ = Hψ in M ,

with initial and boundary values

(25) ψ|N = ψ0 and (/n− i) ψ|∂M = 0 ,

where the initial data is in D(H) as given in (11), i.e.

ψ0 ∈
{
ψ ∈ C∞

0 (N , SM ) with(26)

(/n− i)
(
Hpψ

)∣∣
∂N

= 0 for all p ∈ N0

}
.
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Lemma 3.1. There is ε > 0 such that the mixed initial/boundary value
problem (24)–(26) has a unique solution ψ in the class

{
ψ ∈C∞

0 ([0, ε)×N , SM ) with (/n−i)(Hpψ)|[0,ε)×∂N =0 for all p ∈ N0

}
.

Proof. Near ∂N , we again choose the Gaussian normal coordinate system
where the metric takes the form (12). Moreover, we choose ε so small that
the future development J∨ of initial data sets has the properties

J∨
({

(0, r,Ω)
∣∣ r < rmax/4

})
∩

(
{ε} × N

)
⊂

{
(ε, r,Ω)

∣∣ r < rmax/2
}

(27)

J∨
({

(0, r,Ω)
∣∣ r > rmax/8

})
∩

(
{ε} × N

)
⊂

{
(ε, r,Ω)

∣∣ r > 0
}
.(28)

We next decompose the initial data into a contribution ψB
0 near the

boundary ∂N and a contribution ψI
0 supported in the interior of N ,

ψ0 = ψB
0 + ψI

0 .

To this end, we let η ∈ C∞
0

(
(−rmax/4, rmax/4)

)
be a test function with

η|[0,rmax/8] ≡ 1 and set (see Figure 1)

ψB
0 := η(r)ψ0 and ψI

0 := ψ0 − ψB
0 .

We take ψI
0 as initial value for the Dirac equation without boundary

conditions,

i∂tψ
I = HψI in

◦
M , ψI|N = ψI

0 .

Using the theory of symmetric hyperbolic equations (see [8, Section 5.3], [13,
Section 16], [10, Section 7] or [6, Chapter 5]), this initial value problem has
a unique solution ψI in the class C∞

sc

(
[0, ε)×N ) (just as explained in (i) on

page 307). Note that, due to finite propagation speed and (28), the solution
vanishes identically near ∂M (see the top picture in Figure 1).

Next we take ψB
0 as initial value for the double boundary value problem,

i.e.

(29) i∂tψ
B = HψB in X , ψB|N = ψB

0 , (/n− i) ψB|∂M∪Y = 0 .

According to Lemma 2.2, this mixed initial/boundary value problem has a
smooth solution which satisfies the initial and boundary conditions in (29)
pointwise (this solution even satisfies the stronger boundary conditions in
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Figure 1: Decomposition of the solution of the Cauchy problem.

(23)). Moreover, due to finite propagation speed and (27), we know that the
solution ψB vanishes near the boundary {r = rmax/2}, i.e.

suppψB(t, .) ⊂ [0, rmax/2)× ∂N for all t ∈ [0, ε)

(see the bottom picture in Figure 1). Therefore, extending ψB by zero, we
obtain a global solution in all M .

The function ψ = ψB + ψI is the desired solution of our mixed ini-
tial/boundary value problem. Uniqueness follows immediately from stan-
dard energy estimates for symmetric hyperbolic systems (see for example [8,
Section 5.3]).

Corollary 3.2. The mixed initial/boundary value problem (24)–(26) has a
unique global solution ψ in the class of smooth wave functions with spatially
compact support,

{
ψ ∈ C∞

sc (M , SM ) with (/n− i)
(
Hpψ

)∣∣
∂M

= 0 for all p ∈ N0

}
.

The resulting time evolution operator is unitary with respect to the scalar
product
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(30) (ψ|φ)N =

ˆ
N

≺ψ(t, x) | /ν(t, x) φ(t, x)�x dμN (x) .

Proof. Since the existence time ε in Lemma 3.1 does not depend on the

initial data, we can iterate the procedure to obtain smooth solutions for

arbitrarily large times. Moreover, solving backwards in time, one can also

obtain smooth solutions for arbitrarily large negative times. We thus obtain

global smooth solutions ψ ∈ C∞
sc (M , SM ). The symmetry of H (as shown

after (10)) implies that the scalar product (30) is preserved under time

evolution. Therefore, the time evolution operator is unitary.

4. Self-adjointness of the Dirac Hamiltonian

We now give the proof of Theorem 1.2. Let H be the Dirac Hamiltonian with

domain D(H) given by (11). Corollary 3.2 shows that the time evolution

operator for the mixed initial/boundary value problem (25), (26) defines

a one-parameter group acting on D(H). Moreover, it is obvious that the

domain is invariant under the action of H. Therefore, we can apply the

result by Chernoff [2, Lemma 2.1] to conclude that H is essentially self-

adjoint on D(H). This completes the proof of Theorem 1.2.
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