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Convergence of stochastic interacting particle
systems in probability under a Sobolev norm

Jian-Guo Liu and Yuan Zhang

In this paper, we consider particle systems with interaction and
Brownian motion. We prove that when the initial data is from the
sampling of Chorin’s method, i.e., the initial vertices are on lattice
points hi ∈ R

d with mass ρ0(hi)h
d, where ρ0 is some initial density

function, then the regularized empirical measure of the interact-
ing particle system converges in probability to the corresponding
mean-field partial differential equation with initial density ρ0, un-
der the Sobolev norm of L∞(L2)∩L2(H1). Our result is true for all
those systems when the interacting function is bounded, Lipschitz
continuous and satisfies certain regular condition. And if we further
regularize the interacting particle system, it also holds for some of
the most important systems of which the interacting functions are
not Lipschitz continuous. For systems with repulsive Coulomb in-
teraction, this convergence holds globally on any interval [0, t]. And
for systems with attractive Newton force as interacting function,
we have convergence within the largest existence time of the regu-
lar solution of the corresponding Keller-Segel equation.

AMS 2000 subject classifications: Primary 35Q70, 60K35; secondary
65M75.
Keywords and phrases: Interacting particle system, martingale method,
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1. Introduction

In this paper we consider the N−particle system of many indistinguishable
individuals interacting with each other following the same physical laws.
To be specific, we consider {Xi(t)}Ni=1 ∈ R

d as the trajectories of the N
particles at time t. Suppose all particles have the same “weight”, with certain
initial data {Xi(0)}Ni=1, those trajectories following the stochastic differential
equations as follows:

(1) Xi(t) = Xi(0) +
1

N

N∑
j=1

F0

(
Xi(s)−Xj(s)

)
ds+ σBi(t)
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where {Bi(t)}Ni=1 are independent standard d−dimensional Brownian mo-
tions. We show that, as N → ∞ and under proper assumption of the initial
data, the regularized empirical measure of the interacting particle system
converges in probability to the solution of the corresponding partial differen-
tial equation (PDE) as follows, which is also called the mean-field equation:

(2)

⎧⎪⎪⎨
⎪⎪⎩

∂ρ

∂t
(x, t) =

1

2
Δρ−∇ · (ρF (x, t))

F (x, t) =

∫
Rd

F0(x− y)ρ(y, t)dy.

The interest on such convergence was raised from the study of propagation of
chaos, which was originated by Kac [15]. It is of interest since that to prove
the propagation of chaos, one need to prove that the empirical measure
of the particle system converges in law to the solution of the mean-field
PDE with a proper initial condition. See the review by Sznitman [31] for
reference.

Following this method, the propagation of chaos has been proved for dif-
ferent types of systems since the 1970s. McKean [24] proved the propagation
of chaos when the interacting function F0 is smooth. He also conjectured that
when F0(x) = δ(x), the one dimensional mean-field equation is the Burgers
equation. This conjecture was proved [4, 13, 25, 32]. More cases when F0 is
no longer smooth has been studied. For d = 2 and the interacting force given
by F0(x) = −∇⊥Φ(x) where ∇⊥ = ( ∂

∂x2
, ∂
∂x1

) and Φ(x) = −1
2 ln |x|, then

the mean-field equation becomes the incompressible Navier-Stokes equation.
When σ = 0, it is the incompressible Euler equation. The mean-field limits
of this type of system have been studied in [23] and [26], with or without
cut-off parameters. And when d = 3, the three dimensional Navier-Stokes
equation and path-wise convergence rate with the stochastic vortex method
have also been studied in a more recent work of [10]. And more recently, for
the system with Newton/Coulomb interaction, i.e., when F0(x) = ±∇Φ(x),
∀x ∈ R

d − {0}, where

Φ(x) =

⎧⎪⎨
⎪⎩

− 1

2π
ln |x|, d = 2

Cd

|x|d−2
, d ≥ 3

where Cd = 1
d(d−2)αd

and αd = πd/2

Γ(d/2+1) , the mean-field limit and propaga-

tion of chaos was proved by Liu and Yang, [18, 19, 20]. We refer readers to
[1, 2, 11, 27, 29] for more instances of the study of propagation of chaos. And
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we also refer to [7] for recent progress on a blob method for the aggregation
equation.

However, the mean-field limit results that the interacting particle sys-
tem converges to the solution of the corresponding PDE, in the study of
propagation of chaos, are usually obtained in a relatively weak sense, where
the distance between two density functions are defined as Wasserstein dis-
tance. In this paper, we are, to our knowledge, for the first time to prove the
convergence of the regularized empirical measure of such interacting parti-
cle system to the corresponding mean-field PDE under a stronger, Sobolev
distance. Our result is generally true for all F0 that is bounded, Lipschitz
continuous and satisfies a regularity condition that will be specified in (9).
And when F0 is the Newton/ Coulomb interaction, it is also true when the
interacting particle system is further regularized. For the Coulomb interac-
tion when there is a repulsive interaction, our result remains true on any
interval [0, t], while when F0 is the gradient of Newton potential, since the
system now has a attractive interacting force, we have convergence within
the largest existence time of the regular solution of the corresponding Keller-
Segel equation.

To specify the interacting particle system we study in this paper pre-
cisely, we first need to determine the initial data. Majorly speaking, there are
two ways to set up the initial data. On one hand, some previous researches
like [12, 18, 23, 26] took the initial positions as independent identically dis-
tributed random variables with common density ρ0. This approach is also
known as the Monte Carlo sampling. However, this method is often inef-
ficient in the computation. On the other hand, in [5], where Chorin first
introduced the vortex method in 1973, initial positions of the vertices are
assumed to be on the lattice points hi ∈ R

2 with a weight function ρ0(hi)h
2

determined by the initial density. This way of sampling has been used in
[22] and more recently, in [14], and it will be the initial condition we use in
this paper.

To be specific, let ρ0(x), x ∈ R
d be the initial density that satisfies the

followings:

• ρ0(x) is compact supported with a compact setD ⊂ R
d. And ρ0(x) ≥ 0

for all x ∈ D.
•
∫
D ρ0(x)dx = 1.

• ρ0 is a Lipschitz continuous function with Lipschitz constant Lρ0
.

• ρ0(x) ∈ Hk(Rd) for some k ≥ 3
2d+ 2.

For each h > 0. Let set Θh ⊂ Z
d be defined as follows:

(3) Θh = {θ : θ ∈ Z
d, hθ ∈ D}.
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For each θ ∈ Θh, let

C(θ, h) = hθ +

[
−h

2
,
h

2

]d
.

And it is east to see that {C(θ, h)}θ∈Θh
is a family of non-overlapping boxes

and

D ⊂
⋃

θ∈Θh

C(θ, h).

Let Nh = card(Θh), i.e., the number of elements in Θh. Then by definition
it is easy to check that

(4) LD =

∫
D
1dx ≤ hdNh ≤

∫
D1

1dx = UD

for all h < 1, where D1 = {x ∈ R
d : infy∈D |x − y|∞ ≤ 1}. And as h → ∞,

we have

lim
h→0

hdNh =

∫
D
1dx.

Remark. In this paper, we will use ‖ · ‖ for the L2 norm of a function or

vector valued function. I.e., for any f(x), x ∈ R
d

‖f(x)‖2 =
∫
Rd

|f(x)|2dx

and similar for the Lp norm ‖ · ‖p. And we will use | · | for the L2 norm of a
vector. I.e., for any vector x = (x1, x2, · · · , xn) ∈ R

d,

|x|2 = x21 + x22 + · · ·+ x2d

and similar for the Lp norm | · |p.
For each h > 0, since Θh is finite, we can have all its elements ordered

under a natural ordering:

Θh = {θh,1, θh,2, · · · , θh,Nh
}

and have the initial point of the ith particle to be θh,ih, i = 1, 2, · · · , Nh.

With the initial data specified, we now formally introduce the stochastic
interacting particle system in our paper:
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When F0 is bounded and Lipschitz continuous, let Xh(t) = {Xh,i(t)}Nh

i=1
be the interacting particle system determined by the following system
of SDE:

Xh,i(t) = θh,ih+

∫ t

0

⎛
⎝ Nh∑

j=1

F0

(
Xh,i(s)−Xh,j(s)

)
ρ0(θh,jh)h

d

⎞
⎠ ds(5)

+Bi(t), i = 1, 2, · · · , Nh.

Noting that F0 is bounded and Lipschitz continuous, the SDE in (5) always
has a unique strong solution.

When F0 is not bounded and Lipschitz continuous, in order to have a
SDE with a unique strong solution, we need to define Xh,δh(t) =

{Xh,i,δh(t)}Nh

i=1 to be the regularized interacting particle system as
follows:

Xh,i,δh(t) = θh,ih+

∫ t

0

⎛
⎝ Nh∑

j=1

F0,δh

(
Xh,i,δh(s)−Xh,j,δh(s)

)
ρ0(θh,jh)h

d

⎞
⎠ ds

(6)

+Bi(t)

for i = 1, 2, · · · , Nh, where

F0,δh = F0 ∗ ψδh , ψδh(x) = δ−d
h ψ(δhx)

and

ψ(x) =

{
C(1 + cosπ|x|)d+2, |x| ≤ 1

0, |x| > 1

with C such that
∫
Rd ψ(x)dx = 1. Here δh is some number goes to 0 as

h → 0. It will be specified later in (18).
With the (regularized) interacting particle system determined, we define

the regularized empirical measure as follows: consider a function ϕ(x) ∈
C∞
0 (Rd) of which the support is {|x| ≤ 1/2} such that

• ϕ(x) ≥ 0.
•
∫
|x|∞≤1 ϕ(x) = 1.

And for εh = hq0 where q0 is to be specified later in Theorem 1, let

ϕεh(x) =
1

εdh
ϕ

(
x

εh

)
.
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Then for the interacting particle system when F0 is bounded and Lipschitz
continuous, the regularized empirical measure of Xh(t) is defined as

(7) ρh(x, t) =

Nh∑
i=1

hdρ0(θh,ih)ϕεh (x−Xh,i(t)) .

And the regularized empirical measure of Xh,δh(t) is similarly defined as

(8) ρh,δh(x, t) =

Nh∑
i=1

hdρ0(θh,ih)ϕεh (x−Xh,i,δh(t)) .

The use of the such regularized empirical measure as above is important
in computation and the regularized kernel ϕ is known as a blob function
in the vortex method. Pioneered by Chorin in 1973 [5], the random vertex
blob method is one of the most successful computational methods for fluid
dynamics and other related fields. The success of the method is exempli-
fied by the accurate computation of flow past a cylinder at the Reynolds
numbers up to 9500 in the 1990s [17]. The convergence analysis for the ran-
dom vortex method for the Navier-Stokes equation is given by [12, 22, 23]
in the 1980s. We refer to the book [6] for theoretical and practical use of
vortex methods, refer to Goodman [12] and Long [22] for the convergence
analysis of the random vortex method to the Navier-Stokes equation. We
also hoped that the estimation in this paper can be adapted to do numerical
analysis.

With the regularized empirical measure defined, we need to add one
more regularity condition on F0 which assumes the existence of a constant
UF < ∞ such that

(9) ‖F0‖L1∩H2d+2(Rd) ≤ UF .

Then we can have our main result of this paper, which sates that the regu-
larized empirical measure of the interacting particle system converges to the
solution of the PDE. It is presented in the following theorem:

Theorem 1. Suppose F0(x) is a bounded and Lipschitz continuous in R
d,

where the Lipschitz constant of F0(x) is given by LF . And suppose that F0

satisfies condition (9). Let Xh(t) be the interacting particle system defined
in (5) and ρh be the constructed regularized empirical measure (7) with reg-
ularized parameter εh = h1/6d. Let ρ be the solution of the corresponding
mean-field equation (2) with initial density ρ0. Then, there is a positive
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function c(t) (will be specified in (110)) dependent only on t, ϕ, LF , UF and
ρ0, and a h0 > 0, such that

P
(

sup
s∈[0,t]

(
‖(ρ− ρh)(·, s)‖2 +

∫ s

0
‖∇(ρ− ρh)(·, q)‖2 dq

)
< c(t)h1/12d

)
(10)

≥ 1− c(t)h1/12d

for all 0 < h ≤ h0.

1.1. Outline of the proof

Most of the rest of the paper will be devoted to the proof of Theorem 1.
The key idea of the proof is to introduce an intermediate system of self-
consistent process X̂h(t) = {X̂h,i(t)}Nh

i=1 defined by

(11) X̂h,i(t) = θh,ih+

∫ t

0
F
(
X̂h,i(s), s

)
ds+Bi(t), i = 1, · · · , Nh

where {Bi(t)}Nh

i=1 are the same family of standard Brownian motions as in
(5), and F (x, t) is defined in (2). The first thing we note is that F (x, t) is a
bounded and Lipschitz function against x with Lipschitz constant less than
or equal to LF . First for any x and t,

|F (x, t)| ≤
∫
Rd

|F0(x− y)|ρ(y, t)dy.

Noting that ρ is a probability density function on R
d, we have

|F (x, t)| ≤ sup
x∈Rd

|F0(x)| < ∞.

And similarly, for any t ≥ 0 and x1, x2 ∈ R
d, we have

|F (x1, t)− F (x2, t)| ≤
∫
Rd

|F0(x1 − y)− F0(x2 − y)|ρ(y, t)dy

≤ sup
y∈Rd

|F0(x1 − y)− F0(x2 − y)|

≤ |x2 − x1|LF .

Thus, X̂h(t) is a family of independent strong solutions the same SDE with
the same initial values as the interacting particle system. Then consider the
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similar regularized empirical measure:

(12) ρ̂h(x, t) =

Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(t)

)
.

If we can estimate both the distances between ρh(x, t) and ρ̂h(x, t), and the
distance between ρ̂h(x, t) and ρ(x, t), we will be able to prove Theorem 1.

I. Control the distance between ρh(x, t) and ρ̂h(x, t)

To estimate the distance between the regularized empirical measure con-
structed from the interacting particle system and that constructed from
the self-consistent process, we use a recent proved result by Huang and
Liu [14] that estimates the lph norm of X̂h(t) − Xh(t). For any vector �x =
(x1, x2, · · · , xdNh

) and p ≥ 1, its lph norm is defined as

(13)
∣∣�x∣∣

lph
=

(
hd

dNh∑
i=1

|xi|p
) 1

p

.

According to Theorem 6.1 in [14], there exist a p > 1 such that for all
0 < h ≤ h0 with h0 sufficiently small, there exists two positive constants C
and C ′ depending on t, p, d, UF , ρ0 and the diameter of D. The following
estimate holds true:

(14) P

(
max
0≤s≤t

∣∣X̂h(s)−Xh(s)
∣∣
lph
< Λh| lnh|

)
≥ 1− hCΛ| lnh|

for all Λ ≥ C ′. Then under the high probability event

Eh =

{
max
0≤s≤t

∣∣X̂h(s)−Xh(s)
∣∣
lph
< C ′h| lnh|

}
,

we can use the lph norm of X̂h(s)−Xh(s) to estimate the distance between
the empirical measures ρh(x, t) and ρ̂h(x, t). Details of this part can be found
in Section 2.

II. Control the distance between ρ(x, t) and ρ̂h(x, t)

In this second step we estimate the distance between the empirical measure
ρ̂h(x, t) constructed from the self-consistent process and the solution of the
PDE. To estimate this distance, we have a theorem as follows:
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Theorem 2. Let X̂h(t) be the self-consistent system and ρ̂h(x, t) be the
constructed regularized empirical measure with regularized parameter εh =
h1/6d. Let ρ be the solution of the corresponding mead field equation (2) with
initial density ρ0. Then, there is a positive function c1(t), t > 0 (will be
specified in (109)) dependent only on t, ϕ, and ρ0, such that

P
(

sup
s∈[0,t]

(
‖(ρ− ρ̂h)(·, s)‖2(15)

+

∫ s

0
‖∇(ρ− ρ̂h)(·, q)‖2 dq

)
≤ c1(t)h

1/12d
)
≥ 1− c1(t)h

1/12d

where C0 = 2dLF and LF is the Lipschitz constant of F0.

The proof of Theorem 2 is similar to the one reported recently in the
authors’ conference note [21], where some preliminary work of this paper is
reported with a much simplified system with only drift and diffusion but no
interactions. In that case, the mean-field PDE is the Fokker-Planck equation
and there are no mass function on each data points in the empirical measure.
Here we generalized the proof and make it adapted to the new definition of
empirical measure in this paper and to the self-consistent system. To prove
this theorem, we take the following steps:

(1) First we use Ito’s formula to decompose the L∞(L2) ∩ L2(H1) norm
of the difference between ρ(x, t) and ρ̂h(x, t). Here we will have a term
that is from the free energy estimation of PDE, a term of initial error,
a term of truncation error, and a term of martingale error. Details can
be found in Section 3.

(2) Second, we prove a proposition on the separation of the self-consistent
system which shows that for the self-consistent system X̂h(t), there can-
not be too many particles stay too close with each other. To prove this
separation problem, we use Girsanov Theorem to reduce it to a separa-
tion problem of standard Brownian motions. The proof of the Brownian
motion case is technical, where cases for d = 2, d = 2 or d ≥ 3 will be
proved differently. Details can be found in Section 4.

(3) Then we estimate the term of truncation error. We are able to use the
result we proved in the proposition of separation and the fact that ϕεh

is supported on {x : |x|∞ < εh} to bounded the truncation error under
a high probability event. Details can be found in Section 5.

(4) Since the empirical measure is rescaled by hd, we can use standard
stochastic differential equation argument to estimate the martingale er-
rors in the estimation. Details can be found in Section 6.
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(5) Note that ϕ ∈ C∞
0 and that the initial density ρ0 is Lipschitz continuous.

We can estimate the initial error using standard calculations. Details can
be found in Section 7.

(6) After we have estimated the initial, truncation and the martingale errors,
we can use Gronwall’s inequality to estimate the distance between the
empirical measure ρ̂h(x, t) and the solution of the PDE and finish the
proof. Details can be found in Section 8.

Combining Part I and Part II, we finish the proof of Theorem 1.

1.2. Newton and Coulomb interactions

With Theorem 1 holds true, when the interacting function F0 is not bounded
and Lipschitz continuous, this convergence result may remain hold. The in-
tuition behind this generalization is that, though F0 itself is not bounded and
Lipschitz continuous, the function F defined in (2) may still be bounded and
Lipschitz continuous (in a certain interval). Thus the SDE of self-consistent
system in (11) is still well defined and has a unique strong solution. Note
that the proof of Theorem 2 depends only on the fact that F rather than
F0 is bounded and Lipschitz continuous against x. We are still able to esti-
mate the distance between the regularized empirical measure ρ̂h(x, t) of the
self-consistent system, and the solution of the PDE.

Thus, to show the convergence result in Theorem 1, it suffices to esti-
mate the distance between the regularized empirical measure ρ̂h(x, t) of the
self-consistent system and the regularized empirical measure ρh,δh(x, t) of
the regularized interacting particle system. Fortunately, the results recently
proved in [14] give us exactly the same estimation as in (14), between of the
lph distance between X̂h(s) and Xh,δh(s), when the function F0 is Coulomb
or Newton Interactions. Thus exactly the same argument as in Section 2 will
finish the proof for those systems.

Newton interaction. In this case, the aggregation function is given by
F0(x) = ∇Φ(x), ∀x ∈ R

d − {0}, where

Φ(x) =

⎧⎪⎨
⎪⎩

− 1

2π
ln |x|, d = 2

Cd

|x|d−2
, d ≥ 3.

And the mean-field PDE is the Keller-Segel equation. Noting that ρ0(x) ∈
Hk(Rd) for some k ≥ 3

2d + 1, this implies the existence of the unique local
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solution to the Keller-Segel equation with the follow regularities

(16) ‖ρ‖L∞(0,T,Hk(Rd)) ≤ C(‖ρ0‖Hk(Rd))

and

(17) ‖∂tρ‖L∞(0,T,Hk−2(Rd)) ≤ C(‖ρ0‖Hk(Rd))

where T > 0 depends only on ‖ρ0‖Hk(Rd). Denote Tmax to be the largest exis-
tence time such that (16) and (17) is valid. According to Sobolev imbedding
theorem, one has ρ(x, t) ∈ Ck−d/2−1 for any t ∈ [0, T ]. And for

F (x, t) =

∫
Rd

F0(x− y)ρ(y, t)dy

using the Sobolev imbedding theorem again gives us

‖F‖L∞(0,T,W k−d/2−2,∞(Rd)) ≤ C‖F‖L∞(0,T,Hk+1(Rd)) ≤ C(‖ρ0‖Hk(Rd))

and

‖∂tF‖L∞(0,T,W k−d/2−2,∞(Rd)) ≤ C(‖ρ0‖Hk(Rd)).

Thus for any T < Tmax, F (x, s) is a bounded and Lipschitz continuous on
R
d × [0, T ], with Lipschitz constants uniformly bounded. Thus, Theorem 2

in this paper holds for the regularized empirical measure ρ̂h(x, t) of the
self-consistent system, and the solution of the corresponding Keller-Segel
equation.

With the distance between the self-consistent system and the mean-field
PDE estimated, let

(18) δh = hκ

where κ ∈ (1/2, 1). Then according to Theorem 1.1 in [14], we have for
p > d/(1−κ), and h sufficiently small, there exists two positive constants C
and C ′ depending on Tmax, p, d and ρ0 and the diameter of D. The following
estimate holds true:

P

(
max
0≤s≤t

∣∣X̂h(s)−Xh,δh(s)
∣∣
lph
< Λh| lnh|

)
≥ 1− hCΛ| lnh|

for all Λ ≥ C ′. Noting that the inequality above has the same form as (14),
then the argument in Section 2 gives the estimation between X̂h(s) and
Xh,δh(s) and gives us the following corollary on the convergence of system
with Newton interaction:
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Corollary 1. For any t < Tmax, suppose F0(x) is given by the Newton
Interaction. Let Xh,δh(s) be the regularized interacting particle system de-
fined in (6) with δh defined in (18), and ρh,δh be the constructed regularized
empirical measure (8) with regularized parameter εh = h1/6d. Let ρ be the
solution of the corresponding Keller-Segel equation with initial density ρ0.
Then, there is a positive function c(t) (will be specified in (110)) dependent
only on t, ϕ, LF and ||ρ0||, and a h0 > 0, such that

P
(

sup
s∈[0,t]

(
‖(ρ− ρh,δh)(·, s)‖2(19)

+

∫ s

0
‖∇(ρ− ρh,δh)(·, q)‖2 dq

)
< c(t)h1/12d

)
≥ 1− c(t)h1/12d

for all 0 < h ≤ h0.

Coulomb Interaction. In this case, the interaction function is given by
F0(x) = −∇Φ(x), ∀x ∈ R

d − {0}, where

Φ(x) =

⎧⎪⎨
⎪⎩

− 1

2π
ln |x|, d = 2

Cd

|x|d−2
, d ≥ 3.

And the mean-field PDE is the drift-diffusion equation. Thus again let Tmax

be the same largest existence time of a regular solution. According to [20],
Tmax = ∞ So again using Sobolev embedding theorem on

F (x, t) =

∫
Rd

F0(x− y)ρ(y, t)dx

we have that for any t > 0, F (x, s) is bounded and Lipschitz continuous on
R
d × [0, t], with Lipschitz constants uniformly bounded. Thus, Theorem 2

in this paper holds for the regularized empirical measure ρ̂h(x, t) of the
self-consistent system, and the solution of the corresponding drift-diffusion
equation.

Moreover, according to exactly the same argument, see Remark 1.1 in
[14], let δh be the same as defined in (18), there is a p > d/(1 − κ), and h
sufficiently small, there exists two positive constants C and C ′ depending
on Tmax, p, d and ρ0 and the diameter of D. The following estimate holds
true:

P

(
max
0≤s≤t

∣∣X̂h(s)−Xh,δh(s)
∣∣
lph
< Λh| lnh|

)
≥ 1− hCΛ| lnh|
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for all Λ ≥ C ′. Thus we have the following corollary on the convergence of
system with Coulomb interaction:

Corollary 2. For any t > 0, suppose F0(x, s) is given by the Coulomb In-
teraction. Let Xh,δh(s) be the regularized interacting particle system defined
in (6) with δh defined in (18), and ρh,δh be the constructed regularized empir-
ical measure (8) with regularized parameter εh = h1/6d. Let ρ be the solution
of the corresponding drift-diffusion equation with initial density ρ0. Then,
there is a positive function c(t) (will be specified in (110)) dependent only
on t, ϕ, LF and ||ρ0||, and a h0 > 0, such that

P
(

sup
s∈[0,t]

(
‖(ρ− ρh,δh)(·, s)‖2(20)

+

∫ s

0
‖∇(ρ− ρh,δh)(·, q)‖2 dq

)
< c(t)h1/12d

)
≥ 1− c(t)h1/12d

for all 0 < h ≤ h0.

2. The L∞(L2) ∩ L2(H1) distance between ρh(x, t) and
ρ̂h(x, t)

According to Theorem 6.1 in [14], it has been proved that let Xh(t) and
X̂h(t) be the original interacting particle system and the self-consistent sys-
tem with initial values of {θh,ih}Nh

i=1, which are specified in (5) and (11),
then there exist a p > 1 such that for all 0 < h ≤ h0 with h0 sufficiently
small, there exists two positive constants C and C ′ depending on t, p, d and
ρ0 and the diameter of D. The following estimate holds true for all Λ > C ′:

P

(
max
0≤s≤t

∣∣X̂h(s)−Xh(s)
∣∣
lph
< Λh| lnh|

)
≥ 1− hCΛ| lnh|

where the lph norm is defined in (13). Then under the high probability event

Eh =

{
max
0≤s≤t

∣∣X̂h(s)−Xh(s)
∣∣
lph
< C ′h| lnh|

}
,

we will use the estimation of the distance between Xh(s) and X̂h(s) to
estimate the distance between the two empirical measures constructed from
them. We have the theorem as follows:

Theorem 3. Let Xh(t) be the interacting particle system defined in (5) and
X̂h(t) be the self-consistent system defined in (11). ρh(x, t) and ρ̂h(x, t) be
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the constructed regularized empirical measure respectively, with regularized
parameter εh = h1/6d. Then, there is a positive function c0(t), t > 0 (will be
specified in (31)) dependent only on t, ϕ, UF , LF , and ρ0, such that

P
(

sup
s∈[0,t]

(
‖(ρh − ρ̂h)(·, s)‖2(21)

+

∫ s

0
‖∇(ρh − ρ̂h)(·, q)‖2 dq

)
< c0(t)h

1/12d
)
≥ 1− c0(t)h

1/12d.

Proof. Recall that

ρh(x, s) =

Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x−Xh,i(s)

)

and

ρ̂h(x, s) =

Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(s)

)
.

Then for any s ∈ [0, t], the L2 norm of the difference is given by

‖ρh(x, s)− ρ̂h(x, s)‖(22)

≤
Nh∑
i=1

hdρ0(θh,ih)
∥∥∥ϕεh

(
x−Xh,i(s)

)
− ϕεh

(
x− X̂h,i(s)

)∥∥∥
=

Nh∑
i=1

hdε−d
h ρ0(θh,ih)

∥∥∥∥∥ϕ
(
x−Xh,i(s)

εh

)
− ϕ

(
x− X̂h,i(s)

εh

)∥∥∥∥∥ .
Note that since ϕ ∈ C∞

0 , for any i, according to mid-value theorem∣∣∣∣∣ϕ
(
x−Xh,i(s)

εh

)
− ϕ

(
x− X̂h,i(s)

εh

)∣∣∣∣∣
≤ cd

∣∣∣∣∣Xh,i(s)− X̂h,i(s)

εh

∣∣∣∣∣ max
k=1,··· ,d

∥∥∥∥ ∂ϕ

∂xk

∥∥∥∥
∞

where cd is some constant that depends only on d, and that∣∣∣∣∣ϕ
(
x−Xh,i(s)

εh

)
− ϕ

(
x− X̂h,i(s)

εh

)∣∣∣∣∣ ≡ 0
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for all x /∈ Ui = {y :
∣∣y −Xh,i

∣∣ ≤ εh/2} ∪ {y :
∣∣y − X̂h,i

∣∣ ≤ εh/2}. Thus∥∥∥∥∥ϕ
(
x−Xh,i(s)

εh

)
− ϕ

(
x− X̂h,i(s)

εh

)∥∥∥∥∥(23)

≤ cd

∣∣∣∣∣Xh,i(s)− X̂h,i(s)

εh

∣∣∣∣∣ max
k=1,··· ,d

∥∥∥∥ ∂ϕ

∂xk

∥∥∥∥
∞

√∫
Ui

dx

≤ 2cd

∣∣∣∣∣Xh,i(s)− X̂h,i(s)

εh

∣∣∣∣∣ max
k=1,··· ,d

∥∥∥∥ ∂ϕ

∂xk

∥∥∥∥
∞
ε
d/2
h .

Plugging (23) in (22) and noting that ρ0 is Lipschitz continuous and thus

bounded, we have

(24)

‖ρh(x, s)− ρ̂h(x, s)‖ ≤ 2cd‖ρ0‖∞ max
k=1,··· ,d

∥∥∥∥ ∂ϕ

∂xk

∥∥∥∥
∞
ε
−d/2−1
h

∣∣X̂h(s)−Xh(s)
∣∣
l1h
.

Noting that according to Jensen’s inequality, for any �x ∈ R
Nh and p ≥ 1 we

always have (∑Nh

i=1 |xi|p
Nh

) 1

p

≥
∑Nh

i=1 |xi|
Nh

.

Combining this with (4), we have

∣∣X̂h,i(s)−Xh,i(s)
∣∣
l1h
≤
(
hdNh

)1−p−1∣∣X̂h(s)−Xh(s)
∣∣
l1h

(25)

≤ UD

∣∣X̂h(s)−Xh(s)
∣∣
l1h
.

Plugging this inequality to (24) and according to the definition of Eh, we

have under event Eh:

(26)

‖ρh(x, s)− ρ̂h(x, s)‖ ≤ 2cd‖ρ0‖∞ max
k=1,··· ,d

∥∥∥∥ ∂ϕ

∂xk

∥∥∥∥
∞
ε
−d/2−1
h UDC

′h| lnh|

≤ 2cd‖ρ0‖∞ max
k=1,··· ,d

∥∥∥∥ ∂ϕ

∂xk

∥∥∥∥
∞
ε
−d/2−1
h UDC

′h2/3

when h is sufficiently small. Noting that εh = h1/6d, we have

ε
−d/2−1
h h2/3 = h7/12−1/6d < h1/12d.
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Combining this observation with the fact that (26) holds true for all s ∈ [0, t],
we have

(27) sup
s∈[0,t]

‖ρh(x, s)− ρ̂h(x, s)‖ ≤ 2cd‖ρ0‖∞ max
k=1,··· ,d

∥∥∥∥ ∂ϕ

∂xk

∥∥∥∥
∞
UDC

′h1/12d.

Then similarly for any s ∈ [0, t] consider

‖∇ρh(x, s)−∇ρ̂h(x, s)‖ ≤
d∑

k=1

∥∥∥∥∂ρh(x, s)∂xk
− ∂ρ̂h(x, s)

∂xk

∥∥∥∥ .
Then for each i we can similarly we have∥∥∥∥∂ρh(x, s)∂xk

− ∂ρ̂h(x, s)

∂xk

∥∥∥∥
≤

Nh∑
i=1

hdρ0(θh,ih)

∥∥∥∥∥∥
∂ϕεh

(
x−Xh,i(s)

)
∂xk

−
∂ϕεh

(
x− X̂h,i(s)

)
∂xk

∥∥∥∥∥∥
=

Nh∑
i=1

hdε−d−1
h ρ0(θh,ih)

∥∥∥∥∥ ∂ϕ

∂xk

(
x−Xh,i(s)

εh

)
− ∂ϕ

∂xk

(
x− X̂h,i(s)

εh

)∥∥∥∥∥ .
Again according to mid-value theorem, we have∣∣∣∣∣ ∂ϕ∂xk

(
x−Xh,i(s)

εh

)
− ∂ϕ

∂xk

(
x− X̂h,i(s)

εh

)∣∣∣∣∣
≤ cd

∣∣∣∣∣Xh,i(s)− X̂h,i(s)

εh

∣∣∣∣∣ max
j,k=1,··· ,d

∥∥∥∥ ∂2ϕ

∂xj∂xk

∥∥∥∥
∞

and ∣∣∣∣∣ ∂ϕ∂xk

(
x−Xh,i(s)

εh

)
− ∂ϕ

∂xk

(
x− X̂h,i(s)

εh

)∣∣∣∣∣ ≡ 0

for all x /∈ Ui = {y :
∣∣y −Xh,i

∣∣ ≤ εh/2} ∪ {y :
∣∣y − X̂h,i

∣∣ ≤ εh/2}. Thus∥∥∥∥∥ ∂ϕ

∂xk

(
x−Xh,i(s)

εh

)
− ∂ϕ

∂xk

(
x− X̂h,i(s)

εh

)∥∥∥∥∥
≤ 2cd

∣∣∣∣∣Xh,i(s)− X̂h,i(s)

εh

∣∣∣∣∣ max
j,k=1,··· ,d

∥∥∥∥ ∂2ϕ

∂xj∂xk

∥∥∥∥
∞
ε
d/2
h
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which implies that

(28)

∥∥∥∥∂ρh(x, s)∂xk
− ∂ρ̂h(x, s)

∂xk

∥∥∥∥
≤ 2cd‖ρ0‖∞ max

j,k=1,··· ,d

∥∥∥∥ ∂2ϕ

∂xj∂xk

∥∥∥∥
∞
ε
−d/2−2
h UDC

′h2/3

when h is sufficiently small. Again noting that εh = h1/6d, we have

ε
−d/2−2
h h2/3 = h7/12−1/3d < h1/12d.

And note that (28) holds for all k = 1, 2, · · · , d. Thus for any s ∈ [0, t],
(29)

‖∇ρh(x, s)−∇ρ̂h(x, s)‖ ≤ 2dcd‖ρ0‖∞ max
j,k=1,··· ,d

∥∥∥∥ ∂2ϕ

∂xj∂xk

∥∥∥∥
∞
UDC

′h1/12d

and ∫ t

s=0
‖∇ρh(x, s)−∇ρ̂h(x, s)‖ ds(30)

≤ 2dtcd‖ρ0‖∞ max
j,k=1,··· ,d

∥∥∥∥ ∂2ϕ

∂xj∂xk

∥∥∥∥
∞
UDC

′h1/12d.

Let

c0(t) = 2dtcd‖ρ0‖∞ max
j,k=1,··· ,d

∥∥∥∥ ∂2ϕ

∂xj∂xk

∥∥∥∥
∞
UDC

′(31)

+ 2cd‖ρ0‖∞ max
k=1,··· ,d

∥∥∥∥ ∂ϕ

∂xk

∥∥∥∥
∞
UDC

′ + 1.

It is easy to see that

hΛC
′| lnh| < h1/12d < h1/12dc0(t)

when h is sufficiently small. Thus the proof is complete.

3. Decomposition of errors

Since we have estimated the distance between the empirical measures con-
structed from the interacting particle system and the self-consistent system.
The remainder of the paper will mostly devote to the proof of Theorem 2.
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First, as described in the outline of the proof, we use Ito’s formula to sepa-
rate this distance into a term of the free energy estimation of PDE, a term
of initial error, a truncation error and a martingale error. To be precise, we
have a proposition as follows:

Proposition 1. For the difference between the PDE density ρ and the em-
pirical measure ρ̂h constructed from the self-consistent system, we have for
any s ∈ [0, t]

(32)

‖(ρ− ρ̂h)(·, s)‖2 = ‖(ρ− ρ̂h)(·, 0)‖2 −
∫ s

0
‖∇(ρ− ρ̂h)(·, q)‖2 dq

−
∫ s

0

∫
Rd

∇ · F (x, q)(ρ− ρ̂h)
2(x, q) dxdq

+ Tr(s) + M̄s

where ‖(ρ− ρ̂h)(·, 0)‖2 is the initial error and the term of

−
∫ s

0
‖∇(ρ− ρ̂h)(·, q)‖2 dq −

∫ s

0

∫
Rd

∇ · F (x, q) ((ρ− ρ̂h)(x, q))
2 dxdq

gives the free energy estimation. M̄s = Ms+M̃s is the martingale error from
Ito’s formula, where Ms is defined by Ms =

∑Nh

i=1 ρ0(θh,ih)M
i
s with

(33) M i
s = 2hd

∫ s

0

∫
Rd

ρ(x, q)∇ϕεh

(
x− X̂h,i(q)

)
dx · dBi(q),

and M̃s =
∑Nh

i=1 ρ0(θh,ih)M̃
i
s with M̃ i

s equals to

2h2d
∫ s

0

∫
Rd

ϕεh(x)

⎛
⎝ i−1∑

j=1

ρ0(θh,jh)∇ϕεh

(
x+ X̂h,i(q)− X̂h,j(q)

)
(34)

−
Nh∑

j=i+1

ρ0(θh,jh)∇ϕεh

(
x+ X̂h,j(q)− X̂h,i(q)

)⎞⎠ dx · dBi(q).

And Tr(s) is the term of truncation error which is defined as

Tr(s)

= 2

∫ s

0

∫
Rd

[
Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)(
F (x, q)− F

(
X̂h,i(q), q

))]
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· ∇(ρ− ρ̂h)(x, q) dxdq + h2ds‖∇ϕεh‖2
Nh∑
i=1

ρ0(θh,ih)
2.

Proof. To prove the proposition, first note that for any h,

‖(ρ− ρh)(·, s)‖2 = ‖ρ(·, s)‖2 − 2

∫
Rd

ρ(x, s)ρ̂h(x, s) dx+ ‖ρ̂h(·, s)‖2.

First for the deterministic part of ‖ρ(·, t)‖2, we have
(35)∫

Rd

ρ(x, s)2 dx

=

∫
Rd

ρ(x, 0)2 dx+

∫ s

0

∫
Rd

ρ(x, q) (Δρ(x, q)− 2∇ · (ρF )(x, q)) dxdq

=

∫
Rd

ρ(x, 0)2 dx−
∫ s

0
‖∇ρ‖2dq + 2

∫ s

0

∫
Rd

ρ(x, q)F (x, q) · ∇ρ(x, q)dxdq.

Then for the second part which equals to

−2hd
∫
Rd

ρ(x, s)

Nh∑
i=1

ρ0(θh,ih)ϕεh

(
x− X̂h,i(s)

)
dx,

note that for each i, by Ito’s formula, we have

(36)

ρ(x, s)ϕεh

(
x− X̂h,i(s)

)
= ρ(x, 0)ϕεh

(
x− X̂h,i(0)

)
+

∫ s

0

∂ρ(x, q)

∂t
ϕεh

(
x− X̂h,i(q)

)
dq

−
∫ s

0
ρ(x, q)∇ϕεh

(
x− X̂h,i(q)

)
· F

(
X̂h,i(q), q

)
dq

−
∫ s

0
ρ(x, q)∇ϕεh

(
x− X̂h,i(q)

)
· dBi(q)

+
1

2

∫ s

0
ρ(x, q)Δϕεh

(
x− X̂h,i(q)

)
dq.

Note that for the second term in the right hand side of the sum above,
according to the definition of our PDE,∫ s

0

∂ρ(x, q)

∂t
ϕεh

(
x− X̂h,i(q)

)
dq
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=

∫ s

0

(
1

2
Δρ(x, q)−∇ ·

(
ρ(x, q)F (x, q)

))
ϕεh

(
x− X̂h,i(q)

)
dq.

Then integrate it over x ∈ R
d, we have

(37)

∫ s

0

∫
Rd

∂ρ(x, q)

∂t
ϕεh

(
x− X̂h,i(q)

)
dxdq

=− 1

2

∫ s

0

∫
Rd

∇ρ(x, q) · ∇ϕεh

(
x− X̂h,i(q)

)
dxdq

+

∫ s

0

∫
Rd

ρ(x, q)F (x, q) · ∇ϕεh

(
x− X̂h,i(q)

)
dxdq.

Then integrating the third term in (36) over x ∈ R
d we have by divergence

theorem that

(38)

−
∫ s

0

∫
Rd

ρ(x, q)∇ϕεh

(
x− X̂h,i(q)

)
· F

(
X̂h,i(q), q

)
dxdq

=

∫ s

0

∫
Rd

ϕεh

(
x− X̂h,i(q)

)
F (X̂h,i(q), q) · ∇ρ(x, q) dxdq.

Combining (36), (37) and (38) we have
(39)∫

Rd

ρ(x, s)ϕεh

(
x− X̂h,i(s)

)
dx

=

∫
Rd

ρ(x, 0)ϕεh

(
x− X̂h,i(0)

)
dx

−
∫ s

0

∫
Rd

∇ρ(x, q) · ∇ϕεh

(
x− X̂h,i(q)

)
dxdq

+

∫ s

0

∫
Rd

ρ(x, q)F (x, q) · ∇ϕεh

(
x− X̂h,i(q)

)
dxdq

+

∫ s

0

∫
Rd

ϕεh

(
x− X̂h,i(q)

)
F (X̂h,i(q), q) · ∇ρ(x, q)dxdq − h−d

2
M i

s

where M i
s is a martingale given in (33), i.e.,

M i
s = 2hd

∫ s

0

∫
Rd

ρ(x, q)∇ϕεh

(
x− X̂i(q)

)
dx · dBi(q).

Summing up and taking the weighted average over i = 1, 2, · · · , Nh, we have

− 2

∫
Rd

ρ̂h(x, s)ρ(x, s) dx
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= −2

∫
Rd

ρ̂h(x, 0)ρ(x, 0) dx+ 2

∫ s

0

∫
Rd

∇ρ(x, q) · ∇ρ̂h(x, q) dx dq

− 2

∫ s

0

∫
Rd

ρ(x, q)F (x, q) · ∇ρ̂h(x, q) dx dq(40)

− 2

∫ s

0

∫
Rd

hd
Nh∑
i=1

ρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)
F
(
X̂h,i(q), q

)

· ∇ρ(x, q) dx dq +Ms.

Lastly, we look at the part of ‖ρ̂h(·, s)‖2 which equals to
(41)

h2d
∑

i,j=1,2,··· ,Nh

ρ0(θh,ih)ρ0(θh,jh)

∫
Rd

ϕεh

(
x− X̂h,i(s)

)
ϕεh

(
x− X̂h,j(s)

)
dx.

For each i, j ∈ {1, 2, · · · , Nh}, if i = j, we have directly from change of
variables that∫

Rd

ϕεh

(
x− X̂h,i(s)

)
ϕεh

(
x− X̂h,i(s)

)
dx = ‖ϕεh‖2.

And if i �= j, say without loss of generality i < j again by change of variables
we have ∫

Rd

ϕεh

(
x− X̂h,i(s)

)
ϕεh

(
x− X̂h,j(s)

)
dx

=

∫
Rd

ϕεh (x)ϕεh

(
x+ X̂h,j(s)− X̂h,i(s)

)
dx.

Then we can again apply Ito’s formula on ϕεh

(
x+ X̂h,j(s)− X̂h,i(s)

)
and

have it equals to:

(42)

ϕεh

(
x+ X̂h,j(0)− X̂h,i(0)

)
+

∫ s

0
Δϕεh

(
x+ X̂h,j(q)− X̂h,i(q)

)
dq

+

∫ s

0
∇ϕεh

(
x+ X̂h,j(q)− X̂h,i(q)

)
·
(
F
(
X̂h,j(q), q

)
− F

(
X̂h,i(q), q

))
dq

+

∫ s

0
∇ϕεh

(
x+ X̂h,j(q)− X̂h,i(q)

)
·
(
dBj(q)− dBi(q)

)
.
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Integrating the first and second terms over x, we have∫
Rd

ϕεh(x)ϕεh

(
x+ X̂h,j(0)− X̂h,i(0)

)
dx

=

∫
Rd

ϕεh

(
x− X̂h,i(0)

)
ϕεh

(
x− X̂h,j(0)

)
dx

and ∫ s

0

∫
Rd

ϕεh (x)Δϕεh

(
x+ X̂h,j(q)− X̂h,i(q)

)
dxdq

= −
∫ s

0

∫
Rd

∇ϕεh

(
x− X̂h,i(q)

)
· ∇ϕεh

(
x− X̂h,j(q)

)
dxdq.

Moreover, for the third term we have that∫ s

0

∫
Rd

ϕεh(x)∇ϕεh

(
x+ X̂h,j(q)− X̂h,i(q)

)
· F

(
X̂h,j(q), q

)
dxdq

=

∫ s

0

∫
Rd

ϕεh

(
x− X̂h,j(q)

)
F
(
X̂h,j(q), q

)
· ∇ϕεh

(
x− X̂h,i(q)

)
dxdq

and that∫ s

0

∫
Rd

ϕεh(x)∇ϕεh

(
x+ X̂h,j(q)− X̂h,i(q)

)
· F (Xh,i(q), q) dxdq

=

∫ s

0

∫
Rd

ϕεh

(
x− X̂h,j(q)

)
F
(
X̂h,i(q), q

)
· ∇ϕεh

(
x− X̂h,i(q)

)
dxdq

= −
∫ s

0

∫
Rd

ϕεh

(
x− X̂h,i(q)

)
F
(
X̂h,i(q), q

)
· ∇ϕεh

(
x− X̂h,j(q)

)
dxdq

by divergence theorem. We also note that

(43)

∫
Rd

ϕεh

(
x− X̂h,i(s)

)
∇ϕε

(
x− X̂h,i(s)

)
· F

(
X̂h,i(s), s

)
dx ≡ 0.

So after we sum up over all the i, j and have the weighted average, for
combinations of the initial values for i �= j and the constant values for i = j
we have

2
∑

i<j∈{1,2,··· ,Nh}
h2dρ0(θh,ih)ρ0(θh,jh)

∫
Rd

ϕεh

(
x− X̂h,i(0)

)
ϕεh

(
x− X̂h,j(0)

)
dx

(44)
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+

Nh∑
i=1

h2dρ0(θh,ih)
2‖ϕεh‖2 =

∫
Rd

ρ̂h(x, 0)
2dx = ‖ρ̂h(·, 0)‖2 .

Then summing up the integration over x of the second term in (42), we have

(45)

− 2
∑

i<j∈{1,2,··· ,Nh}
h2dρ0(θh,ih)ρ0(θh,jh)

∫ s

0

∫
Rd

∇ϕεh

(
x− X̂h,i(q)

)

· ∇ϕεh

(
x− X̂h,j(q)

)
dxdq

= −
∫ s

0
‖∇ρ̂h(·, q)‖2 dq + h2ds‖∇ϕεh‖2

Nh∑
i=1

ρ0(θh,ih)
2.

Then summing up the integration over x of the third term in (42) and note

that we can add the zero terms in (43) for each i in the weighted average,

we have

(46)

2
∑

i<j∈{1,2,··· ,Nh}
h2dρ0(θh,ih)ρ0(θh,jh)

∫ s

0

∫
Rd

ϕεh(x)

· ∇ϕεh

(
x+ X̂h,j(q)− X̂h,i(q)

)
·
(
F
(
X̂h,j(q), q

)
− F

(
X̂h,i(q), q

))
dxdq

= 2

∫ s

0

∫
Rd

Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)
F
(
X̂h,i(q), q

)
· ∇ρ̂h(x, q) dxdq.

And lastly, if we sum up the last term in (42) for all the i, j’s, we just get

M̃s =
∑Nh

i=1 ρ̃0(θh,ih)M̃
i
s with M̃ i

s defined in (34). Thus combining (44)–(46),

(47)

‖ρ̂h(·, s)‖2 = ‖ρ̂h(·, 0)‖2 −
∫ s

0
‖∇ρ̂h(·, q)‖2 dq

+ 2

∫ s

0

∫
Rd

Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)
F
(
X̂h,i(q), q

)
· ∇ρ̂h(x, q) dxdq

+ M̃s + h2ds‖∇ϕεh‖2
Nh∑
i=1

ρ0(θh,ih)
2.
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At this point, we can combine (35), (40) and (47) and have

(48)

‖(ρ− ρ̂h)(·, s)‖2 = ‖(ρ− ρ̂h)(·, 0)‖2 −
∫ s

0
‖∇(ρ− ρ̂h)(·, q)‖2 dq + M̄s

+ h2ds‖∇ϕεh‖2
Nh∑
i=1

ρ0(θh,ih)
2

+ 2

∫ s

0

∫
Rd

Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)
F
(
X̂h,i(q), q

)
· ∇ρ̂h(x, q) dxdq

+ 2

∫ s

0

∫
Rd

ρ(x, q)F (x, q) · ∇ρ(x, q)dxdq

− 2

∫ s

0

∫
Rd

ρ(x, q)F (x, q) · ∇ρ̂h(x, q) dx dq

− 2

∫ s

0

∫
Rd

Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)
F
(
X̂h,i(q), q

)
· ∇ρ(x, q) dx dq.

Then plus and minus the term

(49) 2

∫ s

0

∫
Rd

Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)
F (x, q)·∇(ρ−ρ̂h)(x, q) dxdq

we have
(50)

‖(ρ− ρ̂h)(·, s)‖2 = ‖(ρ− ρ̂h)(·, 0)‖2 −
∫ s

0
‖∇(ρ− ρ̂h)(·, q)‖2 dq + Tr(s) + M̄s

+ 2

∫ s

0

∫
Rd

(ρ− ρ̂h)(x, q)F (x, q) · ∇(ρ− ρ̂h)(x, q) dxdq.

By Green’s theorem,

2

∫ s

0

∫
Rd

(ρ− ρ̂h)(x, q)F (x, q) · ∇(ρ− ρ̂h)(x, q) dxdq

= −
∫ s

0

∫
Rd

∇ · F (x, q) (ρ− ρ̂h)
2(x, q) dxdq.

We have verified (32) and the proof of Proposition 1 is complete.
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4. Estimation on the separation

With Proposition 1 decomposing the distance between ρ and ρ̂h as the sum

of several different error terms with different physical and mathematical

meanings, we will estimate those error terms one by one. But first, we prove

an estimation of separations which shows that, with our initial data, the in-

dependent solutions of the self-consistent SDE with high probability cannot

be too close to each other. To be specific, we use

(51) Ej(t) =
1

Nh

∑
i≤Nh:i 	=j

∫ t

0
P (|X̂h,i(s)− X̂h,j(s)| ≤ 2εh) ds

to measure the separation of the self-consistent system. Intuitively, we can

see Ej(t) as the sum of the average length of time for each particle that is

within a distance of 2εh from particle j. And we have the following proposi-

tion showing that Ej(t) is small, which implies that, with high probability,

the path of different particles in the self-consistent system cannot be too

close to each other. The reason we want to first prove the proposition can

be seen later in (90).

Proposition 2. There exist some constants C1(t) and C2(t) depends only

on t, d and F0 such that

(52) Ej(t) ≤ C1(t)ε
d−1
h + C2(t)

1

Nhεh

for all j = 1, 2, · · · , Nh, when h is sufficiently small.

Proof. For any h and j ≤ Nh, Fix i �= j, i ≤ Nh, and let {Ω,F i,j
t , P} be

our probability measure space where ,F i,j
t is the natural filtration generated

by B∗
i,j(t) = [Bi(t), Bj(t)], which is a 2d-dimensional Brownian motion. Let

Gi,j(s) = −
(
F (X̂h,i(s), s), F (X̂h,j(s), s)

)
be the integrand and consider the

adapted measurable process

(53) Γs =

∫ s

0
Gi,j(q) · dB∗

i,j(q).

Note that for any s ≥ 0,

(54) |Gi,j(s)|2 ≤ 2d ‖F0‖2∞.
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Thus the Novikov condition (see page 198 of [16] for details) is satisfied, i.e.,

E

[
exp

(
1

2

∫ s

0
|Gi,j(q)|2 dq

)]
≤ exp(sd ‖F0‖2∞) < ∞,

by Girsanov Theorem (see Theorem 3.5.1 of [16]) we can define a probability
measure Q in our probability space with Radon-Nikodym derivative

(55)
dQi,j

dP

∣∣∣∣Fs = Es = exp

[
Γs −

1

2

∫ s

0
|Gi,j(q)|2 dq

]
.

Then we have[
X̂h,i(s)− X̂h,i(0)

X̂h,j(s)− X̂h,j(0)

]
=

[
Bi(s) +

∫ s
0 F (X̂h,i(q), q)dq

Bj(s) +
∫ s
0 F (X̂h,j(q), q)dq

]

is a standard 2d-dimensional Brownian motion under probability measure
Qi,j . Thus by Radon-Nikodym Theorem we have

(56)

∫
|X̂h,i(s)−X̂h,j(s)|≤2εh

EsdP = P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh)

where γi,j = h(θh,j − θh,i). Moreover,

P
(
|X̂h,i(s)− X̂h,j(s)| ≤ 2εh

)
≤ P (Es < ε

1/2
h ) + P

(
|X̂h,i(s)− X̂h,j(s)| ≤ 2εh ∩ {Es ≥ ε

1/2
h }

)
and for the first part we have,

(57)

P (Es < ε
1/2
h )

≤ P

(
exp

[∫ s

0
(−Gi,j(q)) · dB∗

i,j(q)

]
> ε

−1/2
h exp(−sd ‖F0‖2∞)

)
.

To control the right hand side of the inequality above, we consider the L4d

norm:

(58)

E

[(
exp

[∫ s

0
(−Gi,j(q)) · dB∗

i,j(q)

])4d
]

= E

(
exp

[∫ s

0
(−4dGi,j(q)) · dB∗

i,j(q)

])
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and note that again by Girsanov Theorem,

E ′
s = exp

[∫ s

0
(−4dGi,j(q)) · dB∗

i,j(q)

]
exp

(
−8d2

∫ s

0
|Gi,j(q)|2 dq

)

is again a Radon-Nikodym derivative. Thus we have

E(E ′
s) = 1

which combining with (54), implies

(59) E

(
exp

[∫ s

0
(−4dGi,j(q)) · dB∗

i,j(q)

])
≤ exp(16d3s ‖F0‖2∞) < ∞.

Combining (57), (59) and Chebyshev’s Inequality gives us

(60) P (Es < ε
1/2
h ) ≤ ε2dh exp

(
(4d2 + 16d3)s ‖F0‖2∞

)
.

Then for the second part, according to (56) we have∫
|X̂h,i(s)−X̂h,j(s)|≤2εh ∩{Es≥ε1/2h }

EsdP ≤ P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) .

And thus

(61)
P
(
|X̂h,i(s)− X̂h,j(s)| ≤ 2εh ∩ {Es ≥ ε

1/2
h }

)
≤ ε

−1/2
h P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) .

Combining the two inequalities above, we have
(62)

P
(
|X̂h,i(s)− X̂h,j(s)| ≤ 2εh

)
≤ ε2d exp

(
(4d2 + 16d3)s ‖F0‖2∞

)
+ ε

−1/2
h P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh)

for any s ≥ 0. Integrating (62) on [0, t] and averaging over all i �= j, i ≤ Nh,
we have

(63)

Ej(t) ≤
ε2dh

(4d2 + 16d3) ‖F0‖2∞
exp

(
(4d2 + 16d3)t ‖F0‖2∞

)
+

1

Nhε
1/2
h

∑
i:i 	=j,i≤Nh

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds.
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According to (63) to proof Proposition 2 it is sufficient to have the following

lemma for standard Brownian motions:

Lemma 4.1. For any t ≥ 0, there is some constant C∗
1 (t) and C∗

2 (t) that

depends only on t such that

(64)
1

Nh

∑
i:i 	=j,i≤Nh

[∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

]
≤ C∗

1 (t)ε
d
h + C∗

2 (t)
1

Nh
.

Proof. We first note that for any s and i, j, Bi(s) − Bj(s) + γi,j has a d-

dimensional normal distribution with mean γi,j and covariance matrix 2sId,

where Id is the d−dimensional identity matrix. So we have

(65)

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

=

∫ t

0

∫
|x|≤2εh

1

(4πs)d/2
exp

(
−|γi,j − x|2

4s

)
dxds

=

∫
|x|≤2εh

∫ t

0

1

(4πs)d/2
exp

(
−|γi,j − x|2

4s

)
dsdx.

To deal with equation (65), we need to separate the case of d = 1, d = 2

and d ≥ 3.

Case 1: d = 1. In this case we simply use the bound

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

≤
∫ 2εh

−2εh

∫ t

0
s−1/2 dsdx = 8εh

√
t.

Averaging over m gives us the desired result.

Case 2: d = 2. In this case we have∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

=

∫
|x|≤2εh

∫ t

0

1

4πs
exp

(
−|γi,j − x|2

4s

)
dsdx.
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If |γi,j | ≥ 1, then for all εh < 1/4 and |x| < 2εh we have

∫
|x|≤2εh

∫ t

0

1

4πs
exp

(
−|γi,j − x|2

4s

)
dsdx

≤
∫
|x|≤2εh

∫ t

0

1

s
exp

(
− 1

16s

)
dsdx(66)

≤ 16ε2h

∫ t

0

1

s
exp

(
− 1

16s

)
ds.

When |γi,j | < 1 taking h = |γi,j−x|2
4s , we have

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

=

∫
|x|≤2εh

∫ t

0

1

4πs
exp

(
−|γi,j − x|2

4s

)
dsdx

=

∫
|x|≤2εh

∫ ∞

|γi,j−x|2/4t

1

4πh
exp(−h) dhdx.

Note that h−1 exp(−h) < h−1 and h−1 exp(−h) ≤ exp(−h) when h ≥ 1. We

have

(67)

∫ ∞

|γi,j−x|2/4t
h−1 exp(−h) dh ≤

∫ 1

|γi,j−x|2/4t
h−1dh+

∫ ∞

1
e−hdh

≤ 2| log(|γi,j − x|)|+ | log t|+ 1 + log 4.

Moreover, let δ1 = CN
−1/2
h , where C = L

1/d
D , δ2 = δ1+4εh andM = [δ−1

2 ]+1.

For all k = 0, 1, · · · ,M consider the following sets

(68) Ak :=
{
i : kδ2 ≤ |γi,j | < (k + 1)δ2

}
.

By definition, it is easy to see that when Nh is large and εh is small

(69)

M⋃
k=0

Ak ⊃
{
i : |γi,j | < 1

}
.

If we first look at A0, according to that h ≥ CN
−1/2
h , the little balls

{N(γi,j , δ1)}i≤Nh,i 	=j (where N(x, y) is the neighborhood of x with radius
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y) have no intersections with each other. And for all i ∈ A0,

N(γi,j , δ1) ⊂ N(0, δ1 + δ2).

This immediately implies that

card(A0) ≤
(
δ1 + δ2

δ1

)2

=

(
2 +

4εh
C

N
1/2
h

)2

≤ 8 +
32ε2h
C2

Nh,

since the sum of areas of disjoint disks with radius δ1 in A0 cannot be larger
than the area of A0 itself. Thus we have

(70)

1

Nh

∑
i∈A0

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds ≤

t

Nh
card(A0)

≤ 8t

Nh
+

32ε2ht

C2
.

Similarly, for each k ≥ 1 and i ∈ Ak,

N(γi,j , δ1) ⊂
{
y : (k − 1)δ2 ≤ |y| < (k + 2)δ2

}
which implies that

card(Ak) ≤
[(k + 2)2 − (k − 1)2]δ22

δ21
≤ 9k

(
1 +

4εhN
1/2
h

C

)2

.

Noting that for all i ∈ Ak and |x| ≤ 2εh

| log(|γi,j − x|)| ≤ max{log 2, | log(|kδ2 − 2εh|)|} ≤ log 2 + | log(kδ2)|,

according to (67) and the inequality above

1

Nh

∑
i∈Ak

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

(71)

≤ 1

Nh

∑
i∈Ak

[∫
|x|≤2εh

| log t|+ log 4 + 1 + 2| log(|γi,j − x|)| dx
]

≤ 1

Nh

∑
i∈Ak

[∫
|x|≤2εh

| log t|+ log 16 + 1 + 2| log(kδ2)| dx
]
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≤
[

1

Nh

∑
i∈Ak

16(| log t|+ log 16 + 1)ε2h

]
+

288ε2hk
(
1 +

4εhN
1/2
h

C

)2
Nh

| log(kδ2)|

=

[
1

Nh

∑
i∈Ak

16(| log t|+ log 16 + 1)ε2h

]
+

288ε2h
C2

δ2 [kδ2| log(kδ2)|] .

Summing over k = 0, 1, · · · ,M we have

(72)

1

Nh

∑
i:|γi,j |<1

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

≤ 8t

Nh
+

32ε2ht

C2
+ 16(| log t|+ log 16 + 1)ε2h

+
288ε2h
C2

[δ−1
2 ]+1∑
k=1

δ2 [kδ2| log(kδ2)|] .

Note that the last term in the inequality above is a Riemann sum of function
x| log x| and the fact that x| log x| ≤ max{log 2, e−1} < 1 on [0, 2].

[δ−1
2 ]+1∑
k=1

δ2 [kδ2| log(kδ2)|] ≤
∫ 2

0
dt = 2.

So we have

(73)

1

Nh

∑
i:|γi,j |<1

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

≤ 8t

Nh
+

32ε2ht

C2
+ 16(| log t|+ log 16 + 1)ε2h +

576ε2h
C2

.

Combining (73) and (66), and letting
(74)

C∗
1 (t) := 16

∫ t

0

1

s
exp (−1/16s) ds+

32t

C2
+ 16(| log t|+ log 16 + 1) +

576

C2

C∗
2 (t) := 8t

we finally get

1

Nh

∑
i:i 	=j,i≤Nh

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds ≤ C∗

1 (t)ε
d
h + C∗

2 (t)
1

Nh
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when d = 2, and the proof for case 2 is complete.

Case 3: d ≥ 3. The proof in this case is similar but simpler than the case
of d = 2. Again we have∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

=

∫
|x|≤2εh

∫ t

0

1

(4πs)d/2
exp

(
−|γi,j − x|2

4s

)
dsdx.

If |γi,j | ≥ 1, then for all εh < 1/4 and |x| < 2εh we have

(75)

∫
|x|≤2εh

∫ t

0

1

(4πs)d/2
exp

(
−|γi,j − x|2

4s

)
dsdx

≤
∫
|x|≤2εh

∫ t

0

1

sd/2
exp

(
− 1

16s

)
dsdx

≤ 22dεdh

∫ t

0

1

sd/2
exp

(
− 1

16s

)
ds.

When |γi,j | < 1 taking h = |γi,j−x|2
4s , we have

(76)

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

=

∫
|x|≤2εh

∫ t

0

1

(4πs)d/2
exp

(
−|γi,j − x|2

4s

)
dsdx

< Cd

∫
|x|≤2εh

|γi,j − x|−d+2dx.

where constant

Cd := 24d
∫ ∞

0
h−2+d/2 exp(−h)dh.

Then again we can define δ1 = CN
−1/d
h , where C = L

1/d
D , δ2 = δ1 + 4εh and

M = [δ−1
2 ] + 1. For all k = 0, 1, · · · ,M consider the following sets

(77) Ak :=
{
i : kδ2 ≤ |γi,j | < (k + 1)δ2

}
which satisfy

M⋃
k=0

Ak ⊃
{
i : |γi,j | < 1

}
.
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Then similarly, we have

card(A0) ≤
(
δ1 + δ2

δ1

)d

=

(
2 +

4εh
C

N
1/d
h

)d

≤ 22d−1 +
23d−1εdh
Cd

Nh

and

card(Ak) ≤
[(k + 2)d − (k − 1)d]δd2

δd1
≤ 3dkd−1

(
1 +

4εhN
1/d
h

C

)d

.

Thus

(78)

1

Nh

∑
i∈A0

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds ≤

t

Nh
card(A0)

≤ 22d−1t

Nh
+

23d−1tεdh
Cd

and
(79)

1

Nh

∑
i∈Ak

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

≤ Cd

Nh

∑
i∈Ak

∫
|x|≤2εh

|γi,j − x|−d+2dx

≤ Cd

Nh
3dkd−1

(
1 +

4εhN
1/d
h

C

)d

(22dεdh)×
(
2d[k(CN

−1/d
h + 2εh)]

−d+2
)
.

Summing over k = 0, 1, · · · ,M ,

(80)

1

Nh

∑
i:|γi,j |<1

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

≤ 22d−1t

Nh
+

23d−1tεdh
Cd

+ Cd

(
24

C

)d

εdh

[δ−1
2 ]+1∑
k=1

[(kδ2)δ2].

Again for the last term we have

[δ−1
2 ]+1∑
k=1

[(kδ2)δ2] ≤
∫ 2

0
tdt = 2.
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Thus

(81)

1

Nh

∑
i:|γi,j |<1

∫ t

0
P (|Bi(s)−Bj(s) + γi,j | ≤ 2εh) ds

≤ 22d−1t

Nh
+

23d−1tεdh
Cd

+ 2Cd

(
24

C

)d

εdh.

Then combining (75) and (81), and letting

(82)
C∗
1 (t) := 22d

∫ t

0

1

sd/2
exp

(
− 1

16s

)
ds+

23d−1t

Cd
+ 2Cd

(
24

C

)d

C∗
2 (t) := 22d−1t.

We complete the proof of case 3.

With Lemma 4.1 proved, then according to (63), let

(83)
C1(t) =

1

(4d2 + 16d3) ‖F0‖2∞
exp

(
(4d2 + 16d3)t ‖F0‖2∞

)
+ C∗

1 (t)

C2(t) = C∗
2 (t).

Then the proof of Proposition 2 is complete.

5. Estimation of the truncation error

Back on estimating the errors times, we will first estimate the term Tr(s)

of the truncation error and have the proposition as follows:

Proposition 3. For Tr(s) be the truncation error which is defined as

Tr(s) = 2

∫ s

0

∫
Rd

[
Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)

·
(
F (x, q)− F

(
X̂h,i(q), q

))]
· ∇(ρ− ρ̂h)(x, q) dxdq

+ h2ds‖∇ϕεh‖2
Nh∑
i=1

ρ0(θh,ih)
2
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in Proposition 1. Then we have when h is sufficiently small,

(84)

E

(
max

{
sup
s≤t

{
Tr(s)− 1

2

∫ s

0
‖∇(ρ− ρ̂h)(·, q)‖2 dq

}
, 0

})

≤ hdtε−d−2
h ‖∇ϕ‖2‖ρ0‖2∞UD + 2U2

DL
2
F ‖ϕ‖2‖ρ0‖2∞

·
[

t

Nhε
d−2
h

+ C1(t)εh + C2(t)
1

Nhε
d−1
h

]

where C1 and C2 are the constants in Proposition 2.

Proof. First for the constant term, noting that ρ0 is a bounded function and

that

‖∇ϕεh‖2 = ε−2d−2
h

∫
Rd

∣∣∣∣∇ϕ

(
x

εh

)∣∣∣∣
2

dx = ε−d−2
h ‖∇ϕ‖2,

and that εh = h1/6d, we have for any s ∈ [0, t]

(85) sh2d‖∇ϕεh‖2
Nh∑
i=1

ρ0(θh,ih)
2 ≤ thdε−d−2

h ‖∇ϕ‖2‖ρ0‖2∞UD

when h is sufficiently small. Thus, we will concentrate on the non-constant

part in the truncation error. By Cauchy-Schwarz inequality,

2

∫ s

0

∫
Rd

[
Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)(
F (x, q)− F

(
X̂h,i(q), q

))]

· ∇(ρ− ρ̂h)(x, q) dxdq

≤ 2

∫ s

0

∫
Rd

∣∣∣∣∣
Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)

·
(
F (x, q)− F

(
X̂h,i(q), q

))∣∣∣2 dxdq
+

1

2

∫ s

0
‖∇(ρ− ρ̂h)(·, q)‖2dq.
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Let

(86)

Res(s) =

∫ s

0

∫
Rd

∣∣∣∣∣
Nh∑
i=1

hdρ0(θh,ih)ϕεh

(
x− X̂h,i(q)

)

·
(
F (x, q)− F

(
X̂h,i(q), q

)) ∣∣∣∣∣
2

dxdq.

Then by definition in order to show Proposition 2 it is sufficient to prove

that

(87)

E

(
sup
s≤t

Res(s)

)
≤ U2

DL
2
F ‖ϕ‖2‖ρ0‖2∞

[
t

Nhε
d−2
h

+ C1(t)εh + C2(t)
1

Nhε
d−1
h

]

when h is sufficiently small. To show this, first It is easy to see that we can

rewrite the integrand of Res(s) as

∑
i,j=1,2,··· ,Nh

h2dρ0(θh,ih)ρ0(θh,jh)Ri,j(x, q)

where

Ri,j(x, q) = ϕεh

(
x− X̂h,i(q)

)(
F (x, q)− F

(
X̂h,i(q), q

))
· ϕεh

(
x− X̂h,j(q)

)(
F (x, q)− F

(
X̂h,j(q), q

))

Note that for any i, j ≤ Nh, Ri,j(x, q) ≡ 0 when |Xj(q)−Xi(q)| > 2εh. And

when |Xi(q)−Xj(q)| ≤ 2εh, noting that F is Lipschitz continuous with the

Lipschitz constant less than or equal to LF ,

|Ri,j(x, q)| ≤ L2
F ε

2
h

∣∣∣ϕεh

(
x− X̂h,i(q)

)
ϕεh

(
x− X̂h,j(q)

)∣∣∣ .
Thus for all i, j ≤ Nh, we have the spatial integral

(88)

∫
Rd

|Ri,j(x, q)| dx ≤ ε2−dL2
F ‖ϕ‖2�|X̂h,i(q)−X̂h,j(q)|≤2εh

.
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Thus we have for any s ∈ [0, t],
(89)

Res(s) ≤ R∗(s) = h2dε2−d
h L2

F ‖ϕ‖2

·
∑

i,j=1,2,··· ,Nh

ρ0(θh,ih)ρ0(θh,jh)

∫ s

0
�|X̂h,i(q)−X̂h,j(q)|≤2εh

dq

and note that R∗(s) is monotonically increasing over s. Thus to prove Propo-
sition 2, it suffices to show that

E[R∗(t)] ≤ U2
DL

2
F ‖ϕ‖2‖ρ0‖2∞

[
t

Nhε
d−2
h

+ C1(t)εh + C2(t)
1

Nhε
d−1
h

]

when h is sufficiently small. Noting that X̂h,i(s)− X̂h,j(s) is continuous and
adaptable to FN

t (which implies progressive), �|X̂h,i(s)−X̂h,j(s)|≤2εh
×�0≤s≤t

is measurable on [0, t] × Ω and bounded and thus integrable. By Fubini’s
Theorem,

(90)

E[R∗(t)] = h2dε2−d
h L2

F ‖ϕ‖2

·
( ∑

i=1:Nh

ρ0(θh,ih)
2t +

∑
i 	=j=1,2,··· ,Nh

ρ0(θh,ih)ρ0(θh,jh)

·
∫ t

0
P
(
|X̂h,i(s)− X̂h,j(s)| ≤ 2εh

)
ds

)

≤ hdUDε
2−d
h L2

F ‖ϕ‖2‖ρ0‖2∞

⎡
⎣t+ Nh∑

j=1

Ej(t)

⎤
⎦

where for any j = 1, 2, · · · , Nh, Ej(t) is the separation term defined in (51)
in Section 4. With Proposition 2 proved, then combining (52), (87), (89),
and (90) we have the inequality in Proposition 3.

6. Estimation of the martingale error

In this section, we estimate the martingale error M̄s = Ms + M̃s. Out first
result is about Ms:

Lemma 6.1. For all s ∈ [0, t], we have the second moment control

(91) E
(
M2

s

)
≤ 4hdUD

εd+2
‖∇ϕ‖2‖ρ0‖2∞

∫ s

0
‖ρ(·, q)‖2 dq.
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Proof. Here and in Lemma 6.2, we will use the natural filtration FNh
s , which

is generated by the Brownian motions B1(s), · · ·BNh
(s). Note that Ms =∑Nh

i=1 ρ0(θh,ih)M
i
s where

M i
s = 2hd

∫ s

0

∫
Rd

ρ(x, q)∇ϕεh

(
x− X̂h,i(s)

)
dx · dBi(q) =

d∑
k=1

M i,k
s ,

and

M i,k
s = 2hd

∫ s

0

∫
Rd

ρ(x, q)
∂ϕεh

(
x− X̂h,i(q)

)
∂xk

dx dB
(k)
i (q).

The B
(k)
i (s) in the equation above is the kth coordinate of the Brownian

motion Bi(s) and it is itself a one dimension Brownian motion and a square

integrable martingale under filtration FNh
s noting that B

(k)
i (s) is indepen-

dent to B
(h)
j (s) for all h �= k, or i �= j. For each i and k we have the

integrand

Yi,k(q) =

∫
Rd

ρ(x, q)
∂ϕεh

(
x− X̂h,i(q)

)
∂xk

dx

continuous and adapted to filtration FNh
q . Moreover

|Yi,k(q)| =

∣∣∣∣∣∣
∫
Rd

ρ(x, q)
∂ϕεh

(
x− X̂h,i(q)

)
∂xk

dx

∣∣∣∣∣∣ ≤
∥∥∥∥∂ϕεh

∂xk

∥∥∥∥× ‖ρ(·, s)‖ < ∞.

Thus by Theorem 5.2.3 in [8], for all i ∈ {1, 2, · · · , N} and k ∈ {1, 2, · · · , d},
M i,k

s is a square integrable martingale with
(92)

E[(M i,k
s )2] = 4h2dE

(∫ s

0
Yi,k(q)

2dq

)
≤ 4h2d

∥∥∥∥∂ϕεh

∂xk

∥∥∥∥
2 ∫ t

0
‖ρ(·, s)‖2ds.

And for all (i, k) �= (j, h) we have that

(93)

〈M i,k
s ,M j,h

s 〉 = 〈Yi,k ·B(k)
i (s), Yi,h ·B(h)

j (s)〉

=

∫ s

0
Yi,k(s) · Yj,h(q) d〈B(k)

i (q), B
(h)
j (q)〉

=

∫ s

0
Yi,k(s) · Yj,h(q) d0 = 0,
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since 〈B(k)
i (s), B

(h)
j (s)〉 ≡ 0 for two independent Brownian motions, where

〈Xs, Ys〉 is the quadratic covariance between the two processes Xs and Ys,
defined by

〈Xs, Ys〉 =
1

2
(〈Xs + Ys〉 − 〈Xs〉 − 〈Ys〉).

Noting that M i,k
s and M j,h

s are both square integrable martingales, (93)
implies that

(94) E
(
M i,k

s M j,h
s

)
≡ 0.

Combining (92) and (94) immediately gives us

E[(M i
s)

2] =

d∑
k=1

E[(M i,k
s )2] ≤ 4h2d‖∇ϕεh‖2

∫ s

0
‖ρ(·, q)‖2 dq

and

E(M i
sM

j
s ) = 0

which implies that

(95)

E
(
(Ms)

2
)
=

Nh∑
i=1

ρ0(θh,ih)
2E[(M i

t )
2]

≤ 4hdUD

εd+2
‖∇ϕ‖2‖ρ0‖2∞

∫ s

0
‖ρ(·, q)‖2 dq.

Then we estimate the second part of the martingale error and have a
lemma as follows:

Lemma 6.2. For all s ∈ [0, t], we have the second moment control

(96) E
(
(M̃s)

2
)
≤ 4hdU3

D

ε2d+2
‖ϕ‖2‖∇ϕ‖2‖ρ0‖4∞s.

Proof. Again note that M̃s =
∑Nh

i=1 ρ0(θh,ih)M̃
i
s with

M̃ i
s =

d∑
k=1

M̃ i,k
s
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where

M̃ i,k
s =

∫ s

0
Zi,k(q)dB

(k)
i (q)

and

(97)

Zi,k(q) = 2h2d
∫
Rd

ϕεh(x)

i−1∑
j=1

ρ0(θh,jh)
∂ϕεh

(
x+ X̂h,i(q)− X̂h,j(q)

)
∂xk

dx

− 2h2d
∫
Rd

ϕεh(x)

Nh∑
j=i+1

ρ0(θh,jh)
∂ϕεh

(
x+ X̂h,i(q)− X̂h,j(q)

)
∂xk

dx.

It is easy to see that the integrand Zi,k(q) is continuous and adapted to FNh
q

and that

(98) |Zi,k(q)| ≤ 2hdUD‖ϕεh‖ ·
∥∥∥∥∂ϕεh

∂xk

∥∥∥∥ · ‖ρ0‖∞.

Then again accordion to Theorem 5.2.3 in [8] we have for all i ∈ {1, 2, · · · , Nh}
and k ∈ {1, 2, · · · , d}, M i,k

s is a square integrable martingale with that

(99) E[(M̃ i,k
s )2] = E

(∫ s

0
Zi,k(q)

2dq

)
≤ 4h2dU2

D‖ϕεh‖2 ·
∥∥∥∥∂ϕεh

∂xk

∥∥∥∥
2

· ‖ρ0‖2∞s

and that for all (i, k) �= (j, h) we have that

(100)

〈M̃ i,k
s , M̃ j,h

s 〉 = 〈Zi,k ·B(k)
i (s), Zi,h ·B(h)

j (s)〉

=

∫ s

0
Zi,k(q) · Zj,h(q) d〈B(k)

i (q), B
(h)
j (q)〉

=

∫ s

0
Zi,k(q) · Zj,h(q) d0 = 0,

which implies that

(101) E
(
M̃ i,k

s M̃ j,h
s

)
≡ 0.

Thus we immediately have

E[(M̃ i
s)

2] ≤ 4h2dU2
D‖ϕεh‖2 · ‖∇ϕεh‖2 · ‖ρ0‖2∞s
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and E
(
M̃ i

s M̃
j
s

)
= 0 for all i �= j. Thus

(102)

E
(
(M̃s)

2
)
=

Nh∑
i=1

ρ0(θh,ih)
2E

(
(M̃ i

s)
2
)

≤ 4hdU3
D

ε2d+2
‖ϕ‖2‖∇ϕ‖2‖ρ0‖4∞s.

7. Estimation of the initial error

To estimate the distance between the initial empirical density

ρh(x, 0) =

Nh∑
i=1

hdρ0(θh,ih)ϕεh (x− θh,ih)

and ρ0(x), we have a lemma as follows:

Lemma 7.1. For Sufficiently small h,

∥∥ρh(x, 0)− ρ0(x)
∥∥2 ≤ ε

1/2
h .

Proof. To prove this lemma, we introduce the following intermediate density
function

(103) ρ̃h(x, 0) = ρ0(x)

[
Nh∑
i=1

hdϕεh (x− θh,ih)

]
.

To estimate the distance between ρ̃h(x, 0) and ρh(x, 0), we have for any
x ∈ D1,

∣∣ρh(x, 0)− ρ̃h(x, 0)
∣∣ ≤ Nh∑

i=1

hd|ρ0(θh,ih)− ρ0(x)|ϕεh (x− θh,ih)

=
∑

|x−θh,ih|∞≤εh

hd|ρ0(θh,ih)− ρ0(x)|ϕεh (x− θh,ih) .

Noting that ρ0 is a Lipschitz continuous function with Lipschitz constant
Lρ0

, and that

ϕεh(x) =
1

εdh
ϕ

(
x

εh

)
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we have∣∣ρh(x, 0)− ρ̃h(x, 0)
∣∣ ≤ ∑

|x−θh,ih|≤εh

hd|ρ0(θh,ih)− ρ0(x)|ϕεh (x− θh,ih)

≤ Lρ0
‖ϕ‖∞

∑
|x−θh,ih|∞≤εh

hd

εd−1
h

.

Recalling by definition εh = h1/6d � h, when h is sufficiently small, we have

(104)
∣∣ρh(x, 0)− ρ̃h(x, 0)

∣∣ ≤ Lρ0
‖ϕ‖∞3dεh.

And for any x ∈ Dc
1

ρ̃h(x, 0) = ρh(x, 0) = 0.

And for the distance between ρ̃h(x, 0) and ρ0(x), we first note that for any
x ∈ D

ρ̃h(x, 0) = ρ0(x)

⎡
⎣ ∑
i≤Nh,|x−θh,ih|≤εh

hdϕεh (x− θh,ih)

⎤
⎦ .

Then for any x ∈ D and i such that |x− θh,ih| ≤ εh,∣∣∣∣∣hdϕεh (x− θh,ih)−
∫
C(x−θh,ih,h)

ϕεh(y)dy

∣∣∣∣∣ ≤ hd+1ε−d−1
h ‖∇ϕ‖∞.

Summing up over all such neighborhood of size h centered at x − θh,ih, we
have

ρ̃h(x, 0) ≥ ρ0(x)

[∫
{|x−y|∞≤εh}∩{y∈D}

ϕεh(x− y)dy

−
∫
|x−y|∞≤2εh

hε−d−1
h ‖∇ϕ‖∞dy

]

= ρ0(x)

[∫
{|x−y|∞≤εh}∩{y∈D}

ϕεh(x− y)dy − 4dhε−1
h ‖∇ϕ‖∞

]
,

and

ρ̃h(x, 0) ≤ ρ0(x)

[∫
|x−y|∞≤2εh

ϕεh(x− y)dy +

∫
|x−y|∞≤2εh

hε−d−1
h ‖∇ϕ‖∞dy

]
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= ρ0(x)
[
1 + 4dhε−1

h ‖∇ϕ‖∞
]
.

Thus for any x such that d(x,Dc) > εh, noting that {|x− y|∞ ≤ εh} ⊂ {y ∈
D}, we have

(105)
∣∣ρ̃h(x, 0)− ρ0(x)

∣∣ ≤ 4dhε−1
h ‖∇ϕ‖∞‖ρ0‖∞ = 4dε5d−1

h ‖∇ϕ‖∞‖ρ0‖∞.

And for any x such that d(x,Dc) ≤ εh, we have

0 ≤ ρ0(x) ≤ Lρ0
εh,

and

0 ≤ ρ̃h(x, 0) ≤ ρ0(x)
[
1 + 4dhε−1

h ‖∇ϕ‖∞
]
.

Thus

(106)
∣∣ρ̃h(x, 0)− ρ0(x)

∣∣ ≤ Lρ0
εh

[
1 + 4dhε−1

h ‖∇ϕ‖∞
]
.

Combining (105) and (106), we have that when h is sufficiently small, for
any x ∈ D

(107)
∣∣ρ̃h(x, 0)− ρ0(x)

∣∣ ≤ 2Lρ0
εh.

And for any x ∈ Dc

ρ̃h(x, 0) = ρ0(x) = 0.

Thus combining (104) and (107), we have for any x ∈ D1,

(108)
∣∣ρh(x, 0)− ρ0(x)

∣∣ ≤ Lρ0

(
2 + 3d‖ϕ‖∞

)
εh

and for any x ∈ Dc
1

ρh(x, 0) = ρ0(x) = 0.

Thus

∥∥ρh(x, 0)− ρ0(x)
∥∥2 = ∫

D1

∣∣ρh(x, 0)− ρ0(x)
∣∣2dx

≤ UDL
2
ρ0

(
2 + 3d‖ϕ‖∞

)2
ε2h ≤ ε

1/2
h .

The Proof of Lemma 7.1 is complete.
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8. Proof of Theorem 2 and Theorem 1

In this section, we will put all the estimations we have on different error

terms together to finish the proof of Theorem 2 and then Theorem 1. First

since that in (84) we have

E

(
max

{
sup
s≤t

{
Tr(s)− 1

2

∫ s

0
‖∇(ρ− ρ̂h)(·, q)‖2 dq

}
, 0

})

≤ hdtε−d−2
h ‖∇ϕ‖2‖ρ0‖∞UD + 2U2

DL
2
F ‖ϕ‖2‖ρ0‖2∞

·
[

t

Nhε
d−2
h

+ C1(t)εh + C2(t)
1

Nhε
d−1
h

]

≤ C2
truncate(t)εh

since that εh = h1/6d, where

Ctruncate(t) =
√

‖∇ϕ‖2‖ρ0‖∞UDt+ 2U2
DL

2
F ‖ϕ‖2‖ρ0‖2∞[t+ C1(t) + C2(t)].

Thus according to Chebyshev inequality, letting event

AT =

{
sup
s≤t

{
Tr(s)− 1

2

∫ s

0
‖∇(ρ− ρ̂h)(·, q)‖2 dq

}
≤ Ctruncate(t)ε

1/2
h

}
,

we have P (AT ) ≥ 1− Ctruncate(t)ε
1/2
h .

Similarly, in Lemma 6.1 we have that Ms is a L2 integrable martingale

and for any s ≤ t,

E
(
M2

s

)
≤ 4hdUD

εd+2
‖∇ϕ‖2‖ρ0‖2∞

∫ s

0
‖ρ(·, q)‖2 dq.

Since F is Lipschitz continuous from R
d → R

d, it is also differentiable almost

everywhere by Rademacher’s theorem, see Theorem 3.1.6 of [9]. Thus for any

x such that F is differentiable, we have ||∇ ·F ||L∞ ≤ dLF , which, according

to (35), implies that ||ρ(·, s)||2 ≤ eC0 s||ρ0||2 where C0 = 2dLF ≥ 2||∇·F ||L∞ .

So we have

E
(
M2

t

)
≤ 4hdUDe

C0t

εd+2
h C0

‖∇ϕ‖2‖ρ0‖2∞ ≤ 4UDe
C0t

C0
‖∇ϕ‖2‖ρ0‖2∞ε3h
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since εh = h1/6d. By Doob and Chebyshev inequality, letting

CM (t) =

(
16UDe

C0t

C0
‖∇ϕ‖2‖ρ0‖2∞

)1/3

and event

AM =

{
sup
s∈[0,t]

|Ms| ≤ CM (t)εh

}

we have P (AM ) ≥ 1−CM (t)εh. Similarly, according to Lemma 6.2, M̃s is a
L2 integrable martingale and

E
(
(M̃t)

2
)
≤ 4hdU3

D

ε2d+2
h

‖ϕ‖2‖∇ϕ‖2‖ρ0‖4∞t ≤ 4U3
D‖ϕ‖2‖∇ϕ‖2‖ρ0‖4∞tε2h

for εh = h1/6d. Then let

CM̃ (t) =
(
16U3

D‖ϕ‖2‖∇ϕ‖2‖ρ0‖4∞t
)1/3

and event

AM̃ =

{
sup
s∈[0,t]

|M̃s| ≤ CM̃ (t)ε
2/3
h

}
.

We have again by Doob and Chebyshev inequality, P (AM̃ ) ≥ 1−CM̃ (t)ε
2/3
h .

Finally note that in Lemma 7.1, the initial error is bounded by

‖ρ0 − ρ̂h(·, 0)‖ ≤ ε
1/2
h

when h is sufficiently small. Then under the event

A = AT ∩AM ∩AM̃

such that

P (A) ≥ 1− Ctruncate(t)ε
1/2
h − CM (t)εh − CM̃ (t)ε

2/3
h

≥ 1− [Ctruncate(t) + CM (t) + CM̃ (t)]ε
1/2
h ,

we have for any s ∈ [0, t],

‖(ρ− ρ̂h)(·, s)‖2 +
1

2

∫ s

0
‖∇(ρ− ρ̂h)(·, q)‖2 dq
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≤ ε
1/2
h −

∫ s

0

∫
Rd

∇ · F (x, q)[ρ(x, q)− ρ̂h(x, q)]
2dxdq

+ [Ctruncate(t) + CM (t) + CM̃ (t)]ε
1/2
h .

Noting that the inequality above holds for all s ∈ [0, t] and that ε
1/2
h = h1/12d,

then let

(109) c1(t) = 2eC0t[1 + Ctruncate(t) + CM (t) + CM̃ (t)].

Gronwall’s inequality finishes the proof of Theorem 2.
With Theorem 2 proved, combining it with the result of Theorem 3 and

let

(110) c(t) = c0(t) + c1(t).

The proof of Theorem 1 is complete.
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Stat. 33 (1997), 753–796. MR1484540

[29] T. Shiga and H. Tanaka, Central limit theorem for a Markovian system

of particles in mean-field interaction, Zeitschrift für Wahrscheinlichkeit-

stheorie und verwandte Gebiete 69 (1985), 439–459. MR0787607

[30] A. Stevens, The derivation of chemotaxis equations as limit dynam-

ics of moderately interacting stochastic many-particle systems, SIAM

J. Appl. Math. 61 (2000), 183–212. MR1776393

[31] A. S. Sznitman, Topics in propagation of chaos, In Ecole d’Eté de Proba-
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