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COORDINATES ADAPTED TO VECTOR FIELDS III: REAL
ANALYTICITY*

BRIAN STREETT

Abstract. Given a finite collection of C! vector fields on a C? manifold which span the tangent
space at every point, we consider the question of when there is locally a coordinate system in which
these vector fields are real analytic. We give necessary and sufficient, coordinate-free conditions
for the existence of such a coordinate system. Moreover, we present a quantitative study of these
coordinate charts. This is the third part in a three-part series of papers. The first part, joint with
Stovall, lay the groundwork for the coordinate system we use in this paper and showed how such
coordinate charts can be viewed as scaling maps for sub-Riemannian geometry. The second part dealt
with the analogous questions with real analytic replaced by C* and Zygmund spaces.
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1. Introduction. Let X1,..., X, be C! vector fields on a C? manifold M, which
span the tangent space at every point of M. In this paper, we investigate the following
three closely related questions:

(i) When is there a coordinate system near a fixed point xo € M such that the

vector fields X7, ..., X, are real analytic in this coordinate system?

(i) When is there a real analytic manifold structure on M, compatible with its C?
structure, such that Xy, ..., X, are real analytic with respect to this structure?
When such a structure exists, we will see it is unique.

(ili) When there is a coordinate system as in how can we pick it so that
X1,..., X, are “normalized” in this coordinate system in a quantitative way
which is useful for applying techniques from analysis?

We present necessary and sufficient conditions for and and under these
conditions give a quantitative answer to This is the third part in a three
part series of papers. In the first two parts [SS18| [Str21], the same questions were
investigated where “real analytic” was replaced by Zygmund spaces.

The first paper in the series [SS18], joint with Stovall, was based on methods
from ODEs, while the second paper [Str21] sharpened the results from the first paper
using methods from PDEs. In this paper, we take the results from the first paper as a
starting point, and use additional methods from ODEs to answer the above questions.
Thus, this paper does not use any methods from PDEs.

The coordinate charts from can be viewed as scaling maps in sub-Riemannian
geometry. When viewed in this light, these results can be seen as a continuation
of results initiated by Nagel, Stein, and Wainger [NSW85] and C. Fefferman and
Sénchez-Calle [ESC86|, and furthered by Tao and Wright [TWO03] and the author
[Str1d]. See Sections[1.1and [5| for a description of this.
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1030 B. STREET

This paper is a continuation of the first part of the series [SSI8]. That paper
contains several applications and motivations for the types of results described in
this paper. It also contains a more leisurely introduction to some of the definitions
and results in this paper, though we include all the necessary definitions so that the
statement of the results is self-contained.

1.1. The role of real analyticity. Two important ways the main results of this

paper can be used are:
e They give necessary and sufficient, coordinate free, conditions on a collection of
C'! vector fields, which span the tangent space, for there to exist a coordinate
system in which these vector fields are real analytic.
e They give scaling maps adapted to real analytic sub-Riemannian geometries,
which are useful for questions from harmonic analysis.
The first way seems to be new. The second way has a long history and similar results
have been used in several areas of harmonic analysis. We now turn to describing some
of this; see also Section [5.1.2

Real analytic vector fields have important applications in several types of questions
from harmonic analysis. Since the original work of Hormander [Hor67], C*° vector
fields satisfying Hoérmader’s conditiorﬂ have played a central role in several areas. Nagel,
Stein, and Wainger [NSW85|] developed a quantitative theory of the sub-Riemannian
geometries induced by Hérmander vector fields. In particular, they introduced scaling
maps adapted to Hormander vector fields which allowed the use of many techniques
from harmonic analysis to be generalized to the setting of sub-Riemannian manifolds.
These ideas have been used in many different ways, including applications to partial
differential equations defined by vector fields and singular Radon transforms. See the
notes at the end of Chapter 2 of [Str14] for a history of some of these ideas.

A finite collection of real analytic vector fields does not necessarily satisfy
Hoérmander’s condition; however, it does satisfy a generalization of this condition:
the C*° module generated by the vector fields and their commutators of all orders is
locally finitely generated (as a C° module). This was first noted by Lobry [Lob70]
and is a simple consequence of the Weierstrass preparation theorem (see Section E[)
Because of this, it is possible to generalize the quantitative theory of Nagel, Stein,
and Wainger to a setting which applies to any finite collection of real analytic vector
fields, whether or not they satisfy Hérmander’s condition. The techniques required for
this generalization use ideas of Tao and Wright [TWO03] and the author [Str1I]. In the
context of the quantitative theory of sub-Riemannian geometry applied to questions in
analysis, this seems to have been first explicitly used by the author and Stein [SS12]
to study singular Radon transforms.

Thus, real analytic vector fields hold a special place: the quantitative scaling
techniques used to study Hormander vector fields can often be applied to real analytic
vector fields, whether or not they satisfy Hormander’s condition. For many such
applications, the scaling maps developed in [Str1l] are sufficient; however, in the
context of real analytic vector fields, the theory from that paper has several deficiencies
which are fixed in this paper. One major deficiency is that if one starts with real
analytic vector fields, the scaling theorems from [Str1I] only guarantee quantitive
bounds on the C" norms of the rescaled vector fields and no estimates on their real
analyticity. Thus, when one applies the results from [Strll] to a real analytic setting,

1A finite collection of vector fields satisfies “Hérmander’s condition” if the Lie algebra generated
by the vector fields spans the tangent space at every point.
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the real analyticity is destroyed. In this paper, we show the rescaled vector fields are
real analytic and give appropriate quantitative control of this fact. This is described
in Section [5.1.2]

REMARK 1.1. The results from this paper are useful even when considering
some very classical settings. Indeed, suppose Vi,...,V, are real analytic vector
fields on an open set 2 C R™. The classical Frobenius theorem applies to foliate
Q into leaves; each leaf is a real analytic, injectively immersed sub-manifold (see
[Her63l, [Nag66l, Lob70l [Sus73]). This may be a singular foliation: the various leaves
may have different dimension. Near a point where the dimension changes (a “singular
point”), classical proofs do not give good quantitative control on the real analytic
coordinate systems which define the leaves: classical proofs “blow up” near a singular
point. Our methods give useful, uniform quantitative control near such a singular
point and avoid this blow up, in a certain sense. See Remark

Outline of the paper: In Section[2] we present the function spaces we use. There
are two types of function spaces: the standard ones on Euclidean space described
in Section and analogs on a C? manifold endowed with a finite collection of C!
vector fields described in Section In Section [3] we describe the main results of
this paper, starting with the qualitative results in Section (i.e., and from
the beginning of the introduction), and then turning to the quantitative results in
Section (i.e., . In Section M| we further study the function spaces introduced
in Section In Section [5| we describe how the quantitative results can be seen as
scaling maps in sub-Riemannian type geometries. In Section [6] we describe the results
we use from [SS18]. In Section [7| we prove the main results of this paper. In Section
we describe the special case of some of our results when working on Euclidean space
with Lebesgue measure (which is the most common application). Finally, in Section |§|
we prove the results concerning scaling from Section

2. Function Spaces. Before we can state our main results, we need to introduce
the function spaces we use. As described in [SS18], we make a distinction between
function spaces on subsets of R” and function spaces on a C? manifold M. On R"
we use the standard coordinate system to define the usual function spaces. On an
abstract C? manifold M, we do not have access to any one natural coordinate system
and so it does not make sense to discuss, for example, real analytic functions on M.
However, if M is endowed with C! vector fields X7, ..., X,, we are able to define what
it means to be real analytic with respect to these vector fields, and that is how we
shall proceed. The notion of a function being real analytic with respect to a finite
collection of vector fields is a special case of a general notion due to Nelson [Nel59].
Throughout the paper, B"(4) denotes the ball of radius § > 0, centered at 0, in R™.

2.1. Function Spaces on Euclidean Space. Let ) C R" be an open set. We
have the usual Banach space of bounded, continuous functions on €2:

C(Q):={f:Q— C| f is continuous and bounded}, | f|lc(q) := sup |f(z)|.
e

We next define two closely related spaces of real analytic functions on R™. For r > 0
let B"(r) be the ball of radius r in R™, centered at 0. We define /™" to be the space
of those f € C(B™(r)) such that f(t) = Cat® Yt € B™(r), where

pde'n
aeN"? o

C
£l armr =" L‘j'ﬂal < o0.
.
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For Q C R™ open, we let f € C“"(Q) consist of those f € C°(Q) such that

192 fllc@) o
[fllcmriay = > =kl < oo (2.1)

aeNn

For the relationship between @™" and C*"({2) see Lemma [£.2] We set

ce Q) = cvr@).

r>0

We say f € C2.(Q) if for all x € Q, there exists an open neighborhood U C Q of z,
with f|U € C¥(U). It is easy to see that C{_(£2) is the usual space of real analytic
functions on .

If 2 is a Banach space, we define the same spaces taking values in 2" in the obvious
way, and denote these spaces by C(2; £7), ™" (Z), C¥"(Q; Z"), and C¥ (% Z).
When we have a vector field X on €, we identify X = 2?21 a; (x)a%,» with the
function (ay,...,a,) : @ — R™. It therefore makes sense to consider quantities like
[ X Nl cer (@m)-

2.2. Function Spaces on Manifolds. Let Xi,..., X, be C! vector fields on
a connected C? manifold M. Define the Carnot-Carathéodory ball associated to
X1,...,Xg, centered at x € M, of radius 6 > 0 by

Bx (x,0) := {y eM ‘ Fy:[0,1] = M,5(0) = z,y(1) = y,7'(t) = Zaj(tﬁXj(v(t)),

. (2.2)
a; ELOO([O, 1]), Z\a]—|2 < 1},
Jj=1 Lo
and for y € M set
p(xz,y) =inf{d > 0:y € Bx(z,9)}. (2.3)

p is called a sub-Riemannian distance. See Remark for the precise definition of
7'(t) used in (2.2).

We use ordered multi-index notation X“. Here o denotes a list of elements of
{1,...¢} and || denotes the length of the list. For example, X Z131) = X, X X3 X
and [(2,1,3,1)| = 4.

We have the usual Banach space of bounded continuous functions on M:

C(M):={f: M — C| f is continuous and bounded}, |[f|lcar) := sup |f(x)].
reM

Next, we introduce what it means to be real analytic with respect to Xi,...,X,.
Following the setting in R™, we introduce two versions of this. Given zy € M and
r > 0 we define @7{*" to be the space of those f € C(M) such that

h(tyy... tg) = g it HaXagy) € o7t

here we are assuming "1 X1+ +taXa g, exists for (¢1,...,¢,) € BI(r) (see Definition [3.5).
We define || f[| ;7z0- := [|h[[za.r. Note that || f|| ;z0.» depends only on the values of f(y)

t1 Xa+-Ftg X

where y = ¢ axo and (t1,...,t,) € BI(r); thus this is merely a semi-norm.
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For r > 0 we define C'y" (M) to be the space of those f € C(M) such that X f
exists and is continuous for all ordered multi-indices o and such that

oo

r’m o
I fllewran = Z oo} Z 1 X fllear < oo. (2.4)

m=0 : la]=m

We set

CR(M) = | cyr ().

r>0
The norm || f||¢w.(ar) was originally introduced by Nelson [Nel59] in greater generality.

REMARK 2.1. When we write V f for a C! vector field V and f : M — R, we
define this as V f(x) := %|t20f(etxx). When we say V f exists, it mean that this
derivative exists in the classical sense, Vz. If we have several C! vector fields Vi, ..., Vg,
we define V1V --- Vi f := Vi (Va(--- VL(f))) and to say that this exists means that at
each stage the derivatives exist.

Note that if V denotes the list of vector fields V = (6%1, ceey %) and 2 C R" is

open, we have
dg" = /™" and O (Q) = C¥"(Q),

with equality of normsﬂ For more details on these spaces, see Section
Throughout the paper if we claim || f[|ce:r(ar) < 00 it means f € Cy" (M), and
similarly for any other function space. We refer the reader to [SS18] for a more detailed
discussion of the above definitions.
An important property of the above spaces and norms is that they are invariant
under diffeomorphisms.

PROPOSITION 2.2. Let N be another C? manifold, let ® : M — N be a C?
diffeomorphism, and let ®,.X denote the list of vector fields ®,X1,...,®.X,. Then
the map f — fo® is an isometric isomorphism between the following spaces: C(N) —

C(M), CLT(N) = C" (M), and g 7 — A2
Proof. This is immediate from the definitions. O

REMARK 2.3. In (and in the rest of the paper), 7/(¢) is defined as
follows. In the case that M is an open subset Q@ C R™ and v : [a,b] — Q,
Y (t) = 325 a;(t)X;(~(t)) is defined to mean (t) = y(a) + f; > ai(8)X;(v(s)) ds;
note that this definition is local in ¢ (equivalently, we are requiring that - be ab-
solutely continuous and have the desired derivative almost everywhere). For an
abstract C? manifold, this is interpreted locally. Le., if v : [a,b] — M, we say
¥ (t) = ?:1 a; () X;(y(t)) if Vto € [a,b], there is an open neighborhood N of
v(to) and a C? diffecomorphism ¥ : N — €, where Q C R” is open, such that
(T o) (t) =329, a;j(t)(W.X;) (W or(t)) for t near to (t € [a,b]).

2Notice that ([2.1)) uses regular multi-indicies, while (2.4)) uses ordered multi-indicies. Once this is
taken into account, proving the two norms are equal when X =V is straightforward.
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3. Results. We present the main results of the paper. We separate the results
into the qualitative results (i.e., and from the introduction) and quantitative
results (i.e., [(iii)]). The qualitative results are a simple consequence of the quantitative
results, and the quantitative results are useful for proving results in analysis (see

Section .

3.1. Qualitative Results. Let Xi,..., X, be C! vector fields on a C? manifold
M. For x,y € M, let p(x,y) denote the sub-Riemannian distance associated to
X1,...,Xq on M defined by [2.3). Fix zg € M and let Z := {y € M : p(xg, y) < oo}.
p is a metric on Z, and we give Z the topology induced by p (this is ﬁnerﬂ than the
topology as a subspace of 9t and may be strictly finer). Let M C Z be a connected
open subset of Z containing xo. We give M the topology of a subspace of Z. We begin
with a classical result to set the stage.

PROPOSITION 3.1. Suppose [X;, X;] = > {_; cﬁij, where cﬁj : M — R are
locally bounded. Then, there is a C? manifold structure on M (compatible with its
topology) such that:

e The inclusion M — M is a C? injective immersion.

o X1,...,X, are C! vector fields tangent to M.

o Xi,..., X, span the tangent space at every point of M.
Furthermore, this C? structure is unique in the sense that if M is given another C?
structure (compatible with its topology) such that the inclusion map M — O is a C?
injective immersion, then the identity map M — M is a C? diffeomorphism between
these two structures.

For a proof of Proposition (which is standard), see [SS18, Appendix A].
Henceforth, we assume the conditions of Proposition so that M is a C? manifold
and Xq,..., X, are C' vector fields on M which span the tangent space at every point.
We write n := dimspan{Xi (zo), ..., X4(z0)} so that dim M = n.

REMARK 3.2. If X1(z),..., Xq(x0) span Ty O, then M is an open submanifold
of M. If Xy,..., X, span the tangent space at every point of 9t and 91 is connected,
one may take M = IN.

THEOREM 3.3 (The Local Theorem). The following three conditions are equivalent:
(i) There exists an open neighborhood V.C M of xo and a C? diffeomorphism
®:U — V where U CR" is open, such that ®*X;,...,0*X, € C¥(U;R").
(ii) Reorder the vector fields so that Xi(xo), ..., Xn(zo) are linearly independent.
There exists an open neighborhood V. C M of xy such that:
o [Xi, Xl =20 10 Xe, 1<4,j <n, where & ; € CY(V).
e Forn+1<j<gq X;=5,_, bek, where bf € CY(V).
(i1i) There exists an open neighborhood V. C M of zo such that [X;, X;] =
iy cﬁij, 1 <14, <gq, where cﬁj e CY (V).

THEOREM 3.4 (The Global Theorem). The following two conditions are equivalent:

(i) There is a real analytic atlas on M, compatible with its C? structure, such
that X1,..., X4 are real analytic with respect to this atlas.

(ii) For each xo € M, any of the three equivalent conditions from Theorem
hold for this choice of x.

3See [SS18, Lemma A.1] for a proof that this topology is finer than the subspace topology.
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Furthermore, under these conditions, the real analytic manifold structure on M induced
by the atlas in is unique, in the sense that if there is another real analytic atlas
on M, compatible with its C* structure and such that X1,...,X, are real analytic
with respect to this second atlas, then the identity map M — M is a real analytic
diffeomorphism between these two real analytic structures on M.

3.2. Quantitative Results. Theorem [3.3] gives necessary and sufficient condi-
tions for a certain type of coordinate chart to exist. For applications in analysis, it is
essential to have quantitative control of this coordinate chart. By using this quantita-
tive control, these charts can be seen as generalized scaling maps in sub-Riemannian
geometry—see Section [5| and [SS18| Section 7] for more details. We now turn to these
quantitative results, which are the heart of this paper.

Let Xi,...,X, be C! vector fields on a C? manifold 90.

DEFINITION 3.5. For x € 9, n > 0, and U C 9, we say the list X = X3,..., X,
satisfies C(zg,n, U) if for every a € B(n) the expression

ea1X1+~~-+aqux0

exists in U. More precisely, consider the differential equation

%E(r) = X1 (E(r)) + -+ agX4,(E(r), E(0)=wo.

We assume that a solution to this differential equation exists up tor =1, E': [0,1] — U.
We have E(r) = er@iXittraqXag,

For 1 <n <gq, we let

I(n,q) = {(ir. iz, in) 145 € {1, g}y = (1., @)™

For J = (j1,...,Jn) € Z(n,q) we write X for the list of vector fields X;,,..., X}, .
We write A Xy :=X;, AXj, A---ANX,.

Fix zg € M, £ > 0, ¢ € (0,1], and set n = dimspan{X;(xo), ..., Xq(x0)}. We
assume for 1 < j, k < g,

q
[Xja Xk] = Z Cé',k:Xla C;,k: € O(BX(‘TOa 6))7
=1

where Bx (xg,§) is defined via and is given the metric topology induced by p
from . Proposition applies to show that By (g, ) is an n-dimensional, C?,
injectively immersed submanifold of M. X7,..., X, are C' vector fields on Bx (o, &)
and span the tangent space at every point. Henceforth, we treat Xi,..., X, as vector
fields on Bx(zg,&).

Let Jy € Z(n,q) be such that A X, (z¢) # 0 and moreover

A X5 (20)

max [T < ¢ 3.1

JeZ(n,q) /\on(l’()) - C ( )

where % is defined as follows. Let A : A" Ty, Bx (20,£) — R be any nonzero
0

linear functional; then

AXs(@o) _ AMAXy(20))
A Xgo(z0) = AMA X (20))

(3.2)
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Because A" T,,Bx(xo,&) is one dimensional, (3.2) is independent of the choice of
A; see [SS18|, Section 5] for more details. Notice that a Jy € Z(n, q) satisfying
always exists-one can pick Jy so that holds with ¢ = 1; however it is important
for some applicationsﬁ that we have the flexibility to choose ¢ < 1. Without loss of
generality, reorder X,..., X, so that Jo = (1,...,n).

e Let n > 0 be such that X j, satisfies C(xq,n, ).

e Let dp > 0 be such that for ¢ € (0, do] the following holds: if z € By, (o,§)
is such that X, satisfies C(2,d, Bx,, (0,€)) and if t € B"(9) is such that
elrXitFtaXn s — 2 and if X;(2),...,X,(2) are linearly independent, then
t=0.

REMARK 3.6. Because X1,..., X, are C!, such an n > 0 and dp > 0 always exist;
see Lemma and Remark However, in general one can only guarantee that
n, 6o are bounded below in terms of the C' norms of X1, ..., X, in some coordinate
system—and this is not a diffeomorphic invariant quantity. Thus, we state our results
in terms of dp and 7 to preserve the diffeomorphic invariance. See [SS18] Section 4.1]
for a further discussion on 7 and dg.

Key Assumption: We assume ¢}, € szf;ig’, 1< 4,k 1<q.

REMARK 3.7. The assumption cék S ﬂ;‘;ﬂ” can be replaced with the stronger

assumptioﬂcéjC € C;‘é;; (Bx,, (20,€)). Indeed, Lemmashows C;J(Z] (Bx,, (20,§)) C
E‘Z{zo,min{ﬁ,n
Jo :
DEFINITION 3.8. We say C is a 0-admissible constant if C' can be chosen to
depend only on upper bounds for ¢, ¢~%, €71, and ||c§ kHC(BxJ (z0,6))> L < g, k1 < q.
b 0 4

DEFINITION 3.9. We say C'is an admissible constant if C' can be chosen to depend
on anything a 0-admissible constant can depend on, and can also depend on upper
bounds for n~!, §;*, and \|c§_k||ﬂ;o,n (1<j4,k1<q).

: o

We write A <o B for A < CB where C' is a positive 0-admissible constant, and
write A =g B for A <o B and B <9 A. We write A < B for A < CB where C is a
positive admissible constant, and write A ~ B for A < B and B < A.

For t € B™(n) set

B(t) = el X tHinXn g (3.3)
Let no := min{n, {} so that ® : B"(n) — Bx,, (0,§) € Bx (0,§).

THEOREM 3.10 (The Quantitative Theorem). Fiz xo € M and let &, ¢, n, Jo, 1,
and &g be as above, and suppose the Key Assumption is satisfied. Then, there exists a
0-admissible constant x € (0,&] such that:

(a) Vy € BXJU ($07X)7 /\XJO<y) 7é 0.
(b) Yy € Bx,, (0, x),

AXs(y)

‘ =0 1.

/\ XJD (y)

sup
JEI(n,q)

4For example, it will be essential that we may take ¢ < 1 in an upcoming work on similar questions
with complex vector fields [Str20].

5A priori, BXJo (z0,&) is not necessarily a manifold. Nevertheless, C;’Jno (BXJ0 (z0,&)) can be

defined with the same formulas. For further details on this, see [SS18| Section 2.2.1].
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(¢) VX" € (0,x], Bx,,(%0,X’) is an open subset of Bx(xo,€) and is therefore a
submanifold.
There exist admissible constants n1,&1,&s > 0 such that:
(d) ®(B"(m)) is an open subset of Bx, (zo,X) and is therefore a submanifold of
Bx(.ro,f).
(e) ®: B"(m) — ®(B"(m)) is a C* diffeomorphism.
(f) Bx(z0,&2) € Bx,, (z0,&) € ©(B"(m)) € Bx,, (0, Xx) € Bx(20,¢).
Let Y; = ®*X; and write Y, = (I + A)V, where Yy, denotes the column vector of
vector fields Yy, = [Y1,Ya,...,Y,]", V denotes the gradient in R™ thought of as a
column vector, and A € C(B™(n); M) [7
(9) A(0) =0 and A € @™ (M"™*™) with ||A|| grnm qunxny < %
(h) For1<j<gq,Y; € ™M (R") and ||} grnm @ny S 1.

REMARK 3.11. The main results of this paper (including Theorem are
invariant under arbitrary C? diffeomorphisms. This is true quantitatively—all of the
estimates are unchanged when pushed forward under an arbitrary C? diffeomorphism;
this is a consequence of Proposition See [SSI§| for more details.

3.2.1. Densities. As in [SS18] [Str21], we describe how to study densities in the
coordinate system given by Theorem We refer the reader to Section [5| and [SS18|
Section 7] for a further discussion of how these estimates can be used.

We take the same setting as in Theorem Let x € (0,€] be as in that theorem
and let v be a C* density on Bx,_ (o, ). Suppose

EXjV:ij7 ]-S]Snv fj GC(BXJO(I'O,X)),

where Lx, denotes the Lie derivative with respect to X;. We refer the reader to
[Gui0g] for a quick and easy to read introduction on the basics of densities (see also
[NicO7] where densities are called 1-densities). We assume that there exists r > 0 such
that f; € «/¢".

DEFINITION 3.12. We say C is a 0; v-admissible constant if C' is a 0-admissible
constant which is also allowed to depend on upper bounds for [|f;ll¢(
1<j<n.

Bx , (z0:x))

DEFINITION 3.13. We say C is a v-admissible constant, if C' is an admissible
constant which is also allowed to depend on upper bounds for =1 and || fillgzzor,
Jo

1<j<n.

We write A <p.,, B for A < CB where C is a 0; v-admissible constant, and write
A =g, B for A 5o B and B Sop A. We similarly define <, and ~,.

THEOREM 3.14. Define h € CY(B™(n1)) by ®*v = horen, where oLe, denotes the
Lebesgue density on R™. Then,
(a) h(t) =0, v(X1,...,Xpn)(x0), YVt € B"(m). In particular, h(t) always has the
same sign, and is either never zero, or always zero.
(b) Set s := min{m,r}, where 11 is as in Theorem[3.10, Then, h € &/™* and
Wl S [9(X0, - - X (o).

SHere, and in the rest of the paper, M"*™ denotes the Banach space of n X n real matrices
endowed with the usual operator norm.
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COROLLARY 3.15. Let & be as in Theorem [3.10. Then,
v(Bx,, (70,§2)) = v(Bx (20,&2)) = v(X1, ..., Xn)(Z0), (3.4)
and therefore,

[v(Bx,, (20, &2))

~, [v(Bx(zo,&2))]
~y |Z/(X1,...,Xn)(.’£0)‘ (35)

~0 max (X, X5, (o)

Jisesdn€{1,..,q}

4. Function Spaces Revisited. In this section, we present the basic results we
need concerning the function spaces defined in Section [2} Let M be a C? manifold and
let Xi,...,X, be C! vector fields on M and let X denote the list X = X;,...,X,.
Let  C R™ be an open set.

LEMMA 4.1. The spaces C*"(Q), /™", Cy" (M), and &/5°" are Banach algebras.
In particular, if % denotes any one of these spaces and if v,y € ¥, then ||zy|o <
x|l |lyller. More generally, the same holds for the analogous spaces of functions
taking values in a Banach algebra.

Proof. We prove only the result for functions taking values in C; the same proof
proves the more general result for functions taking values in a Banach algebra.
We begin with proof for &/™". Suppose f,g € &™". Then if f(t) = > cxn 5t

and g(t) = 3 e 25t, we have f(t)g(t) = > a.Benn %ta"'ﬂ, and therefore,

lcadp| |a lcal 1a |ds|
1 fgllamr < > o(jliﬁﬁ'r‘ MRS DY OT"'T\ N 57?74&

a,BENn aEeNn BENT

= [l £z lgllrmer

completing the proof for &™". The result for «7¢"" follows immediately from the
result for o747,

Next we consider C'y"(M). For this, we need some notation from [Nel59]-we refer
the reader to that reference for more detailed information on these definitions. Let
% be a Banach space and let O(#) denote the set of all (bounded or unbounded)
operators on . For A € O(%'), we write |A| for the set consisting of A alone. Let
|O(Z)| be the free abelian semigroup with the set of all |A|, A € O(#), as generators.
Let o, 8 € |O(%)] so that a = |A1| +--- + |A], B =|B1]| + -+ + |Bm| (where these
are formal sums). We define aff = 22:1 > [AiBs| € |O(Z)].

Let A;1,..., A4, € O(%), and set a = |A1| + -+ + |A;|. For y € # in the domains
of Ai,..., A;, we define |lay|| == A1yl +- -+ || Awlla. For f=(fi,..., fm) €Z™,
with each f; in the domains of Ay, ..., A;, define Af := (4; fi)1<j<i1<k<m € ™.
Note that ||az|| = || Az|4:, and more generally, |[a™z| = ||[A™x| 4. Here we are
giving ™ the norm | fllym = S0 1f;lls

Now suppose % is a Banach algebra, and suppose Aj,...,A; € O(%) satisfy
Aj(zy) = (Aj(x))y + 2(A;(y)) (and the domains of Ay, ..., A; are algebras). For f =
(fio-- s fmy) €Z™ and g = (g1, -+, 9ms) € @2 set fg = (fjgr)1<i<mi,1<k<ms €
@mm2 - We then have, for z,y € # (and z and y in the domains of the appropriate
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operators),
k k k1 ko
Afzy) = g | (A7) (A™y),
kythka=k N1
and in particular

k
la* @)l = [ A @)y < 3 (,ﬁ)nA’ﬁxn@lkl A2y

ki1+ko=k

k
= 2 (el

ki1+ko=k

(4.1)

We now specialize to the case # = C(M) and a = | Xq| + | Xo| + - - + [ X |. We
have, using (4.1) and the definition of || - [[cw.r,

> <1 k
1£gllcsroary = Z ()l ZH <k1>||ak1f||||ak29||rk1rkz
k= O k=0 k1+ko=k
= (Z ,ﬁllla’“lflr“) (Z MIIa’”gIIr’”) = [ fllesr anllgllesr -
k1=0 ko=0

This completes the proof for CY"(M). Since C¥"(Q) = Cy" () (with equality of
norms), the result for C*"(Q) follows as well. O

The spaces Cy" (M), and @7/y°" are closely related as the next three results show.

LEMMA 4.2.
(Z) Cw’r(Bn(T)) C ™" and ||f||g¢nr < ||f||Cw,T‘(Bn(T)).
(ii) ™" C C2(B™(r/2)) and || fllcw.rr2mn(rjzy < |1f Lo

Proof. is a special case of Lemma [4.3] below, so we only prove We use
the identity, for multi-indices oo € N,

()=

B<La

where the sum is taken over all 8 € N™ with 38; < «; for all j.

Suppose f € ™. Then, f(t) = cyn S5t with || fllamr = > cnm ‘2“,'7“'“‘ <
00. Set r; = r/2. We have

B\
C
Ifllcers (B (ra)) = ||a Fllon ) = sup _fa _ja-p
1 ﬂ%ﬂ A ' %:n B! teBr(r) azw(oé*ﬂ)!
7'1 2|a|7~‘a|
<Y gyl = X |ca|Z( )= % E = Il
BEN™ o> a€ENn ! B<a aeNn

completing the proof. O

LEMMA 4.3. Suppose X = Xy,..., X, satisfies C(xo,r,M). Then, C3" (M) C
A" and || fl| ggzor < | fllowr
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Proof. We will show, for f € C¢" (M) that

(X1 4+t X )™
f(6t1X1+”.+thql'0) — Z (1 X1 + + 'q q) f)(@o) =:h(t), teBir). (4.2)
m!

m=0
The result will follow since the hypothesis f € C3" (M) implies that the sum in (4.2)
converges absolutely for [t| <7, and |[f| g zor = [|hllorar < || fllowran-
Fix t € Bi(r). For § > 0 small (depending on t) and for s1,s2 € (-1 — 0,1+ 9)
define

oo Sm
g(s1,52) Z ﬁ X1+ -+, X)) (esQ(thl"'"""t"X‘J)xo) . (4.3)

m=0

Since X satisfies C(zg,r, M), for s5 € (=1 —6,1+46) we have e*2(tXit+taXa)gg € M|
and therefore the sum in (4.3) converges absolutely by the hypothesis that f € Cy" (M)
(here we are taking ¢ small, depending on t). Hence g(s1, s2) is defined for s1,s2 €

(=1-=14,1+9).
We have,
9 = sT" m+1 s2(t1 X1+ FtqXq)
87819(81, Sg) = Z 7' ((thl + -+ thq) f) (6 JZQ)
m=0 :
= 87829(31752)-

We conclude ¢(s,0) = ¢g(0,s) for s € (=1 — 4,1+ §). In particular, ¢g(1,0) = g(0,1),
which is exactly (4.2]), completing the proof. O

Unlike the Euclidean case in Lemma the reverse containment to Lemma
is a more involved and requires more hypotheses. In fact, we see it as a corollary of
Theorem [3.10}

COROLLARY 4.4. We take all the same hypotheses and notation as in Theorem[3.10]
and define admissible constants as in that theorem. Fix r € (0,m1] (where m is as
in Theorem . Then, there is an admissible constant s = s(r) > 0 such that
A" C O (®(B"(r/2)). Moreover, there is an admissible constant C' = C(r) such
that

[fllcws @B (r/2))) < Clfllapzor- (4.4)
Jo

REMARK 4.5. Notice that Hf”%wo » < |[fl| o720 and so one may replace X, with
X throughout Corollary [£.4]

Proof of Corollary |4./} . Let ®(t) = elXat+aXng) be as in Theorem
Suppose [ € %wo’ ; so that, by the definition of ,;a/;gg , Df € g™ Wlth

19" fllarmr = ||f|\g¢10’" By Lemma L ©*f € Cv/*(B"(r/2)) with
19" fllcw.rr2(Bn(r/2)) < ||ng¢zov Letting Y; = ®*X; as in Theorem we have

that Yy, ... ,Y c og™mm (Rn) - Cw nl/z(Bn(nl/Q),Rn) with HY ||Cw,n1/2(Bn(n1/2);]Rn) <
1Yl ormom )y S 1 (Where we have again used Lemma .
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Proposition (below) shows that there exists an admissible s = s(r) > 0 such
that ®* f € C*"/2(B"(r/2)) = Cy*(B"(r/2)) and

12" fllows (Br(r/2)) < ClI®" fllcw.r/2(Br(r/2)) < C”f”d;‘}(’;’

where C is as in the statement of the corollary. Because ®.Y; = X;, Proposi-

tion 2.2/ implies f € C*(®(B"(r/2)) with || fllcw @(Br(r/2))) = 19" fllcws (Brr2)) <
C\f 720, completing the proof. O

Jo

LEMMA 4.6. For any s € (0,r), X; : CY" (M) — CY°(M). Furthermore, for
fe Cm (M), 1X5flless any < (5uPmen(s/m)™ ()1 fll o ar) -

Proof. Let f € Cy" (M), and consider

oo

s™ o
X fllowsan = 3 — > IXX flleon
m=0 la|=m
= I N
< (s/r) P ] > IX*flleon
m=0 |a]=m+1
m+1
< (s mT o
< (s s/ Ul o <

where in the last inequality, we have used s < r. The result follows. O

4.1. Comparison with Euclidean function spaces and a result of Nelson.
Let © C R™ be an open set. If Y7,...,Y; are real analytic vector fields on Q which
span the tangent space at every point, it is a result of Nelson [Nel59, Theorem 2] that
being real analytic with respect to Y7,...,Y, is the same as being real analytic in the
classical sense. We state a quantitative version of this.

PROPOSITION 4.7. Fizr >0, and let Y1,...,Y, € C*"(;R™).

(i) There exists s > 0 such that C*7(Q) C Cy°(Q) and ||fllces) <
Cllfllcery, Vf € C"(Q), where s and C' can be chosen to depend only on
upper bounds for q, n, v, and 1Yillcor@mrny (157 <q).

(i) Suppose, in addition, that for 1 < j <mn, 1 <k < g, there exists bf e Cvr(Q)
such that % =37 bfYk. For all 1 > 0, there exists s' > 0 such that
Oy (Q) € C=(Q) and || fllgw.sr ) < Cllfllozm y, VI € CY ™ (R), where
s’ and C can be chosen to depend only on upper bounds for q, r—!, rfl

[Yillcwr@rny (1 <7 <q), and [[bF]lceori)y 1 <j<n, 1<k<q)

7

Proof. This follows from a straightforward modification of the proof of |[Nel59,
Theorem 2] and we leave the details to the reader. O

REMARK 4.8. In the sequel, we only use of Proposition

5. Sub-Riemannian Geometry and Scaling. One of the main applications
of results like Theorem [3.10]is as scaling maps for sub-Riemannian geometries. Such
scaling maps were first introduced by Nagel, Stein, and Wainger [NSWS5], and were
further studied by many other authors including Tao and Wright [TWO03], the author
[Str11], Montanari and Morbidelli [MM12], and most recently in the first two parts
of this series [SS18| [Str21]. Since Nagel, Stein, and Wainger’s results, these ideas
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have been used in a wide variety of problems. For a description of some of these
applications, see the notes at the end of Chapter 2 of [Str14].

Nagel, Stein, and Wainger’s results worked in the smooth categoryﬂ The later
papers either worked in the smooth category, or with a finite level of smoothness.
Thus, if one starts with a sub-Riemannian geometry based on real analytic vector
fields, the results in these works do not yield appropriate quantitative control in the
real analytic setting and therefore these results destroy the real analytic nature of the
problem under consideration. Theorem fixes this issue.

Furthermore, when dealing with real analytic vector fields, one does not need to
assume Hormander’s condition on the vector fields. See Section [5.1.21

We present such results, here.

5.1. Classical Real Analytic Sub-Riemannian Geometries. In this section,
we describe a real analytic version of the foundational work of Nagel, Stein, and Wainger
INSWR5], and see how it is a special case of Theorem This is the simplest non-
trivial setting where the results in this paper can be seen as providing scaling maps
adapted to a sub-Riemannian geometry.

Let X1,...,X4 be real analytic vector fields on an open set 2 C R"; we assume
X1,...,X, span the tangent space at every point of 2. To each X; assign a formal
degree d; € [1,00). We assume Vz € ) there exists an open neighborhood U, C € of
x such that:

lx l,x w
(X5 Xel = Y GiXi, e Ce(Uy). (5.1)
dlgd_7+dk

We write (X, d) for the list (X1,d1),..., (X, dy) and for § > 0 write 62X for the
list of vector fields 6% X1, ..., 5d‘1Xq. The sub-Riemannian ball associated to (X, d)
centered at xy € 2, of radius & > 0 is defined by
Bx,ay(w0,0) := Bsax (20, 1),

where the later ball is defined by (2.2). B(x 4)(20,9) is an open subset of Q. It is easy
to see that the balls B(x q)(z,d) are metric balls.
Define, for z € Q, § € (0,1],

Az, 0) := max }|det(5dklxk1 ()] [6%n Xy, ()]

Jis-in€{l,.q
For each « € Q, § € (0,1], pick j1 = ji(x,0),...,4n = jn(x,d) so that
‘det(zsdjl X, ()] |5d-7'"Xjn (a:))| = A(z,9).
For this choice of j1 = ji(x,0),...,jn = jn(x,0), define
Dps(try .y ty) = exp(t109 X, + -+ - 4+ 1,0% X, ).
We let o161, denote the usual Lebesgue density on Q.

THEOREM 5.1. Fix a compact set K € QE| In what follows, we write A < B for
A < CB where C is a positive constant which may depend on IC, but does not depend
on the particular points x € K or u € R™, or the scale § € (0,1]; we write A~ B for
A < B and B < A. Under the above described hypotheses, there exists n1,& =~ 1, such
that YV € IC,

"More precisely, the quantitative estimates they proved involved C™ norms, for various m € N.
8We write A € B to mean A is a relatively compact subset of B.
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(Z) ULeb(B(XVd)(.’L',(s)) ~ A(.%‘,(S), Vo € (0,50}.
(i) O'Leb(B(X’d)(.Z‘,Q(S)) < ULeb(B(X,d) (x,0)), Vo € (0,&/2].
(i11) Y6 € (0,1], ®,.5(B"(m)) C Q is open and @45 : B™(m1) = Dy 5(B"(m)) is a
real analytic diffeomoprhism.
(iv) Define hy s(t) by hy s0Leb = P} s0Len- Then, hes(t) = A(z,d), Vt € B™(m1),
and there exists s &= 1 with ||hy s||ame S Az, 0).
(v) B(x,a)(@,£00) € Pu5(B"(m)) € B(x,a)(,9), V6 € (0,1].
(vi) Let sz“s = @;v(sddin, 1<j<gq, so that Yf’é is a real analytic vector field
on B™(n1). We have

x,0 .
||}/] ’ ||'Q{n-,ﬂ1 (R™) S 1, 1 < ] < q. (52)

Finally, ch"s(u)7 ... ,qu"s(u) span T, B™(n1), uniformly in x, §, and u, in the
sense that

det (Y,fl’é(u)| . \Yk””f(u))‘ ~1.  (5.3)

max inf
ki,...,kn€{1,....q} u€B™(n1)

REMARK 5.2. If real analytic was replaced in this entire section with C*° (and
the estimates in were replaced with appropriate estimates of C"™ norms), then
Theorem is the main result, in a slightly different language, of Nagel, Stein, and
Wainger’s work [NSW85|-see [SS18, Section 7.1] for a further discussion. A main
consequence of the results of this paper is that one can obtain good estimates on the
real analyticity of the vector fields Yf"s, e Y:f"sfsee .

Proof. By a simple partition of unity argument, we may write

(X5, Xl = > daXi, e ().
dy <dj+dy

Using this, most of Theorem is contained in [SS18, Section 7.1]; the only parts
which are not are those which relate to real analyticity. In particular, [(i)l (i)} |(iii)|
(with real analytic replaced by C'*), and are all explicitly stated in [SS18|
Section 7.1]. Furthermore, since X7, ..., X, are real analytic, ®, s is real analytic (by
classical theorems), so follows. Thus, the new parts are and . These
are simple consequences of Theorem and Theorem [3.10] respectively, though we
will see them as part of a more general theorem: Theorem [5.7] below.

Hence, to complete the proof, we show how Theorem [5.7] applies to this setting.
Without loss of generality, we may shrink each U, so that U, &€ 2. Set

di+d,—d; 1
b . olitdr=dict, dy < dj + di,
Ik 0, otherwise,

so that
1 l,x,0
(X2, X7 => &5 X7, on U,
=1

We let X° denote the list X?,... ,Xg. Fix an open set Q' with K € ' € Q and set
K1 := €, so that K1 € Q is compact. Take s; > 0 so that Xi,..., X, € C**1(Q;R").
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By the Phragmen-Lindel6f principle, we may take & > 0 so small that Bx (z,£) C
OV C Ky, Ve e K. {U,:x €Ky} is an open cover for K1 and we extract a finite sub-
cover Uy, ,...,Uz,. The balls Bx(x,d) are metric balls and the topology induced by
these balls is the same as the usual topology on Q. Let £ € (0, min{¢’, 1}] be less than
or equal to the Lebesgue number for the cover Uy, , ..., U, of K1, with respect to the
metric associated to the balls Bx (z,d). Thus, since £ <&, Vz € K, Ir € {1,..., R}
with Bx(z,€) = Bx(z,§) N K1 C U,,. For this choice of r, set cé-”g,i’é = éé-”g,i“‘s.
Take s > 0 so that Vrr € {1,..., R}, ciﬁ € C¥*(U,,.). By Proposition (using
Xi,...,X, € C¥*1(QY;R™)), there exists s ~ 1 with cé.’ji”‘ € 0Y°(Us,), 1 <r <R,
1 <4,k 1 <gq, and

La, L, )
e leesw,. )y Sleji lewsvw,,) S, 1<r<R1<j4,k1<q.

Thus, by tracing through the definitions we have, for z € K, § € (0,1], cé.’,”,i’& €
Cy5 (Bxs(x,&)) and

l,z,0 . Lz, s <
2‘612 ||Cj,k ”C;"(’;(Bx(;(x,g)) < lglrlgRHCj,k Hcgy U, S 1
6€(0,1]

Define f;s by foLeb = EX;(TLeb; ie., fj‘.s = 5djfj, where f; :== V- X;. By our
hypotheses, we have f; € C12.(R2), 1 < j < g. It follows that there exists s3 > 0 with
fi € C¥*3(Q), 1 < j < q. By Proposition[L.7] (using that X1,..., X, € C**1(Q;R")),
there exists r ~ 1 with f; € CY"(€Y'). Directly from the definitions, we now have

)
sup ||f5llcry < Ifillewr @y S 1.
56(011]\\ il < lfillegr@)

Using the above remarks, the result now follows directly from Theorem ]

REMARK 5.3. The most important part of Theorem is |(vi); which allows us to
think of ®, s as a scaling map. Indeed, one thinks of the vector fields §% X1, ..., 8% X,
as being “small” (for § small). However, ®, 5 gives a coordinate system in which these
vector fields are unit size. Indeed, the vector fields ch’é, ceey Yqz"s are the vector fields
§4X1,...,6% X, written in the coordinate system given by @, 5. These vector fields
are real analytic uniformly in z and § (i.e., (5.2)) and span the tangent space uniformly
in z and § (i.e., ) Thus, we have “rescaled” the vector fields to be unit size.

5.1.1. Hormander’s condition. The main way that Theorem arises is via
vector fields which satisfy Hormander’s condition. Suppose V1, ..., V, are real analytic
vector fields on an open set 2 C R™. We assume Vi,...,V, satisfy Hormander’s
condition of order m on €. Le., we assume that the finite list of vector fields

Vieooo s Voo IV V5 oo [V, [V VAL - - - ., commutators of order m,

span the tangent space at every point of .

To each Vi,...,V,, we assign the formal degree 1. If Z has formal degree e, we
assign to [V}, Z] the formal degree e+ 1. Let (X1, d,), ..., (Xq,dq) denote the finite list
of vector fields with formal degree d; < m. Hérmander’s condition implies X1,..., X,
span the tangent space at every point of (2.
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We claim (5.1)) holds, and therefore Theorem applies to (X1,d1), ..., (Xy, dy).
Indeed, if d; + di, < m we have

[XJ'?Xk] = Z cé’,lea

d; :dj +d

where c . are constants by the Jacobi identity. If d; + dy > m, then since Xi,..., X,
are real analytlc and span the tangent space at every point, we have Vx € Q there
exists a neighborhood U, C € of x such that

q
l,x l,x w
(X5, Xk =D i Yoo dix, & e CUn).

=1 dy <dj+dy

Thus, holds and Theorem applies.

Let K € Q be a compact set. Applying Theorem|[5.1]for § € (0,1], z € K, we obtain
m > 0and ®,5: B"(n) = Bix,q(x,d) as in that theorem. Set ij’é =@ 50V;. If
dr =1, then

Xy = [an [ij T 7[ij,—1vvjzmv
and so

(I);,J(Sdek = (I);,é[dvju [5V]'2a T [5ij—1 ) 5‘/};]]] = [V]‘f,év [ng,(S? R [V'm’é V"T’é]]]'

J2 Ji—1? "]

Theorem implies the vector fields @ 55dj X are real analytic and span the tangent

space, uniformly for z € K, § € (0,1]. We conclude that the vector fields Vll"s, el Vq’”’5
are real analytic and satisfy Hérmander’s condition, uniformly for « € K and § € (0, 1].
In short, the map @} ; takes 6V4,...,4dV; to VI ' .., V®9 which are real analytic
and satlsfy Hormander s condition * umformly 1t takes the case of § small and
rescales it to the case § = 1, while preserving real analyticity in a quantitative way.

5.1.2. Beyond Hoérmander’s condition. Let Vi, ...V, be real analytic vector
fields defined on an open set 2 C R”. It turns out that the main conclusions of
Section [5.1.1 hold without assuming Vi,. .., V, satisfy Hormander’s condition, so long
as one is willing to work on an injectively immersed submanifold. We describe this
here—many of these methods appeared in [SS12] and are based on an idea of Lobry
[Lob70].

Fix a large integer m to be chosen later and a compact set K € €. Assign to
each V1,...,V, the formal degree 1. If Z has formal degree e, we assign to [V}, Z]
the formal degree e + 1. Let (X1,d1),...,(Xq,dy) denote the finite list of vector
fields with formal degree d; < m. The results that follow are essentially independent
of m, provided m is chosen sufficiently large; how large m needs to be depends on
Vi,..., V. and K. As above, for § € (0,1], we let §4X denote the list of vector fields
§MXq,...,6%X,. Wesometimes identify 62X with the nx g matrix (69 X1]- - - [0 X,,).
Set B(x,aq)(z,0) := Bsax(x,1), where the later ball is defined in .

The classical Frobenius theorem applies to the involutive distribution generated by
Vi,...,V; (see [Her63l Nag66] [Lob70, [Sus73]) to see that the ambient space is foliated
into real analytic leavesﬂ Let L, denote the leaf passing through x. Vi, ..., V, satisfy

9The various leaves may have different dimensions; i.e., this may be a singular foliation. See
Romark for further comments.
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Hormander’s condition on each leaf. If m is sufficiently large and €)' is an open set
with K € Q' € Q, then V4, ..., V, satisfy Hormander’s condition of order at most m
on L, N, Vx € K. Therefore X3, ..., X, span the tangent space at every point of
L, N, Vo € K, and B(x q)(7,0) is an open subset of L,. Let v, denote the induced
Lebesgue density on the leaf passing through x. For an n x ¢ matrix A, and for
no < min{n, ¢}, let det,,xn, A denote the vector consisting of the determinants of the
ng X ng submatricies of A-the order of the components does not matter.

For each z € € set ng(z) := dimspan{X;(x),...,X,(x)} = dimL,. For each
r€Q, 6 € (0,1], pick j1 = j1(2,0), ..., Jng(z) = Jno(x) (¥, ) so that

dor (5 X @) 500 X, 0)| =

no(x) Xno(z)

det )5dX’ .

no(z)xno(z

For this choice of j1 = j1(%,6), ..., Jng(x) = Jno(z)(T,0) set (writing ng for ng(x)):

By 5(te, ... tny) = exp (tlédh X, 4+ by 6%m0 Xjno)g;. (5.4)

THEOREM 5.4. Fiz a compact set K € Q and x € K, take m sufficiently large
(depending on K and Vi,...,V,), and define (X1,d1),...,(Xq,dq) as above. Define
no(z), Ve, and ®p5(ty, ...ty () as above. We write A < B for A < CB where C
is a positive constant which may depend on IC, but does not depend on the particular
points © € K and v € R™®) ynder consideration, or on the scale § € (0,1]; we write
A~ B for AS B and B S A. There exists m,& ~ 1 such that Yz € K,

(Z) VI(B(X,d) (1‘76)) ~ ‘detno(I)X’ng(I) (SdX(.Z‘)’OO, Vo € (O,fo].

(it) va(B(x,a)(%,20)) S va(B(x,a)(2,0)), V6 € (0,&/2].

(iii) V5 € (0,1], @, 5(B™®) () C L, is open and @, 5 : B"(n1) — ®,5(B" (1))

s a real analytic diffeomorphism.

(iv) For 6 € (0,1], define hys(t) on B™@) () by hes0Leh = @) svz. Then,
hays(t) = |detn0($)xn0($) 5dX(x)|oo, vt € B™®) (), and there exists s ~ 1
with ||h1’6||§{no(z),s < ‘detno(z)xno(z) (5dX(x)’OO.

(v) Bix,a)(,&00) C ®u5(B™@) (1)) € Bix,a)(x,6), V6 € (0,1].

(vi) Foré € (0,1], z € K, let YJIT’(S = @;56de]-, so that ij’é s a real analytic
vector field on B™®) (1;). We have

0 :
||ij ||d"o<w>)m(Rn) 5 1, 1<j<q

Finally, 1/1”“"5(u)7 ... ,Yq’”"s(u) span T, B™®) (ny), uniformly in x, 5, and u, in
the sense that

max inf
k1yeoskng (@) €{1s---,q} u€B™0(*) (1)

det(ykﬁ=5(u)\-.- Yoo (u))‘ ~ 1.

REMARK 5.5. See Section [0.1] for a generalization of Theorem [5.4] to the “multi-
parameter” setting.

For the proof of Theorem [5.4] see Section [9]

REMARK 5.6. Theorem is useful even when restricting attention to § = 1.
Indeed, the leaves L, are real analytic manifolds, and account for the foliation of €2
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associated to the real analytic vector fields V7, ..., V,.. This may be a singular foliation:
dim L, may not be constant in x. Suppose xy € K is a singular point; i.e., dim L, is
not constant on any neighborhood of xy. Then, the usual constructions of the real
analytic coordinate systems on L, “blow up” as x approaches xq; one does not obtain
a useful quantitative control of these charts. One can think of the map ®,; from
Theorem as a real analytic coordinate system near the point x. The conclusions of
Theorem amount to a quantitative control of this chart, which is uniform in x. A
similar sort of uniform control was an important ingredient in [SS12], and will likely
be useful in other questions from analysis regarding real analytic vector fields.

5.2. Generalized Sub-Riemannian Geometries. The results described in
Section concern the classical setting of sub-Riemannian geometry; which arises
in many questions, including in the study of “maximally hypoelliptic” differential
equations (see [Str14l Chapter 2| for details). In [SSI8| Section 7.3], this setting was
generalized to account for certain situations which arise for some partial differential
equations which are not maximally hypoelliptic. With the results of this paper in hand,
the results from [SSI8| Section 7.3] transfer to the real analytic setting. We present
these results here (with a few slight modifications from the setting in [SS18, Section
7.3]). One important thing to note is that, in this section (and unlike the settings
described above) we do not require that the vector fields be a priori real analytic. We
only require them to be C', along with certain estimates which allow us to construct
a coordinate system in which they are real analytic.

Let M be a connected n dimensional C? manifold and for each ¢ € (0,1], let
X=X, ... ,Xg be a list of C! vector fields on €2 which span the tangent space at
every point. For z € Q, 6 € (0,1] set B(z,0) := Bxs(x,1), where Bxs(x,1) is defined
by . Let v be a C' density on M. Our goal is to give conditions under which the
balls B(z,d) when paired with the density v give a real analytic space of homogeneous
type. Some of the conditions we give can be thought of as analogs of the axioms of a
space of homogeneous type, while others can be thought of as endowing this space of
homogeneous type with an adapted real analytic structure. In what follows, we write
X9 as the column vector of vector fields [X?,... ,Xg]T. Because of this, if we are
given a matrix A : M — M9%? it makes sense to consider A(x)X?® which again gives
a column vector of vector fields. It also makes sense to consider the space L (M),
which can be defined with any strictly positive density on M—all such densities give
the same space and norm.

We assume the following, which are a real analytic version of the assumptions in
[SS18, Section 7.3]:

(I) V6 € (0,1], z € M, we have span{X?{(z),..., X)(z)} = T, M.

(IT) X9,... ,Xg are uniformly C? in the following sense. For every x € M, there

exists an open set U C R™ and a diffeomorphism ¥ : U — V| where V is a
neighborhood of = in M, such that

sup ||\II*X]‘-SHC1(U;R”) < 0.
6€(0,1]

(I11) Xj‘«; — 0 and 6 — 0, uniformly on compact subsets of M. More precisely,
for every & € M, there exists an open set U C R" and a diffeomorphism
U :U — V, where V is a neighborhood of x in M, such that

. * v O _
Lim [[7 X7 cowmn) = 0.
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(IV) YO < 61 < 0y < 1, X% = Ty, 5,X%2, where Ty, 5, € L=(M;M?*?) with
T, 5, || oo (arspaaxay < 1.

(V) 3By, By € (1,00), by, by € (0,1) such that ¥§ € (0,1/B,], 3Ss € L>°(M; M%)
and V6 € (0,1/Bs], 3Rs € L>=(M;M9%9) with SsX P10 = X RsX°® = XB29,
and

sup |15l oo (arinaaxay < bu, sup || Rs|l oo (arpaxay < byt
0<6<1/By 0<8<1/Bs

(VI) For every compact set K € M, there exists £ € (0,1] and s > 0 such that
V6 € (0,1] and z € K, [X?, X)) =31, c;’fc"le‘s on Bys(x,€), where
l,x,0
c

sup H N
zek,0€(0,1]

Q.

<
C28 (Bys (2.6)

(VII) We assume Lysv = fJ‘-SV, for 1 < j <gq, ¢ € (0,1], where for every relatively
J
compact open set ' € M, there exists s > 0 with

5
Suopl £ ||c;v;(n') < 00.

)

Fix ¢ € (0,1] (we take ¢ = 1 for many applications). For each z € M, ¢ € (0, 1],
ple jl = jl(ﬂ?, 6)7 s 7jn = jn(x7 6) S {17 e 7Q} so that

X2, (2) A A XD (@)

max
klwu,knE{ln“:q} X]61 (l') TARRERA X.;Sn (x)

<¢n

For this choice of j; = j1(x,9), ..., jn = jn(z,d), define
Dys(t,. .. tn) == exp(t1 X + -+, X0 )z
Define, for x € M, ¢ € (0,1]

A(z,0) = kl,.i.,lg,lg?l,...,q} v (Xkyy- ooy Xk, ) ()]

THEOREM 5.7.
(Z) B(x761) g B(x752)7 Vz € M7 0< 61 S 62 S 1.
(it) Nse(o,1) B(,6) = {a}, Vo € M.
(iii) B(z,8) N B(y,d) # 0 = B(y,d) C B(x,C6), Vs € (0,1/C], where C = BY
and k is chosen so that b’f < %

Fiz a compact set K € M. In what follows, we write A < B for A < CB where C is a
positive constant which may depend on K, but does not depend on the particular point
x € K or on the scale § € (0,1]. We write A~ B for AS B and B S A. There exist
m, & =~ 1 such that Yz € K:

(iv) v is either everywhere strictly positive, everywhere strictly negative, or every-
where 0.

(v) v(B(x,0)) =~ V(Xj‘.sl(w,é),...,Xil(ﬂé))(x) and |v(B(z,9))| ~ A(z,d), V§ €
(0750]‘
(vi) [v(B(x,20))| < |[v(B(x,6))|, V6 € (0,60/2].
(vii) V& € (0,1], @, 5(B"(m)) € M is open and @, 5 : B"(m) — @, 5(B"(m)) is
a C? diffeomorphism.
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(viii) Define hy 5 € C(B™(m)) by hys50Leb = @7 sv. Then,

has(t) = Z/(X;-Sl(xﬁé), . ngi(x,&))(x) and |hy 5(t)| = Az, d), Yt e B"(m).

Also, hy s € ™M and ||hg 5|l ormm S Az, 0).

(iz) B(z,&0) € ®a6(B"(m)) € B(z,d), V6 € (0,1].

(z) Let Yf’é = @:’5XJ‘-5, 1< j <gq, so that Yf’é is a vector field on B™(ny). Then,
sz"s e ™M and

s .
Y gmm@ny S1, 1<j<q.

Furthermore, Ylm’é(u), cee Yqz";(u) span T, B™(n1), uniformly in x, 6, and u
in the sense that

max inf
ki,....kn€{l,....q} u€B™ (1)

det (Y,fl"s(u)| . |Y,gjf(u)) ] ~1.

Proof. and all follow just as in the corresponding results in
[SS18, Theorem 7.6]. For the remaining parts, the goal is to apply Theorem

Theorem and Corollary to the vector fields X7, ... ,Xg, for § € (0,1] and
for each base point xg € K (uniformly for § € (0, 1], zy € K)—we use the choice of £
and v from above, and take ¢ = 1.

By the Picard—Lindel6f theorem, we make take n € (0,1] depending on K and
the bounds from so that Vo € K, § € (0,1], X9,... 7Xg satisty C(z,n, M). Take
dg > 0 as in Lemma when applied to X?¢,. .. ,Xg. It can be seen from the proof
of Lemma (which can be found in [SS18|, Proposition 4.14]) that dy can be chosen
independent of ¢ € (0,1] (this uses m In light of (see, also, Remark ,
Theorem Theorem and Corollary apply to the vector fields X9,..., X g
for each ¢ € (0,1] and each base point x € K (with 5 replaced by min{#, s}). Each
constant which is 0-admissible, admissible, v-admissible, or 0; v-admissible in these
results can be chosen independent of z € K and 6 € (0,1]. Let &,&2,m1 > 0 be as in
Theorem so that &1, &, and 7 can be chosen independent of z € K and § € (0, 1].
The map @, s is precisely the map ¢ from Theorem when using the base point x
and the vector fields X7, ... ,Xg.

[(vii)| follows from Theorem [3.10] @ and @ follows from Theorem
and Corollary [3.15] |(viii)| implies that on a neighborhood of each point, v is either
strictly positive, strictly negative, or identically 0. Since M is connected, it follows that
v is either everywhere strictly positive, everywhere strictly negative, or everywhere 0;
ie., holds. By multiplying v by +1, we may henceforth assume (without loss of
generality) that v is everywhere non-negative—and is either identically 0 or everywhere
strictly positive.

Theorem gives & ~ 1 ({2 < 1) such that
BX‘s (x7§2) - ¢L7§(Bn(n1)) c BX‘S(:E’&.) C BXE('T7 1) = B(JZ‘,(S)

Thus, to prove [(ix), we wish to show 3¢y =~ 1 with
B(x7€05) c BX‘S(xagQ)' (55)

This follows just as in [SSI8, Theorem 7.6], where it is shown that we may take
€0 = By*, where k is chosen so that b¥ < &.
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We claim, for 1 < d9 < 1,
A(z,61) S Az, 02), (5.6)
where the implicit constant can be chosen to depend only on ¢. Indeed,

Az, 01) =

= Ts, 5. X%)kr oo, (Ts, 5, X% )
klw.),glg?lwq}!l/(( 50,02 X % ks -+ (15,5, X%k, ) ()|

V(X X ) ()

Since ||T5, 5, || o (ar;maxay < 1, the right hand side is v evaluated at a linear combination,

with (variable) coefficients bounded by 1, of the vector fields sz, e ,XgQ. Using the
properties of densities, it follows that

|V((T51,52X62)k1" s (T51752X62)kn)($){ S, A(JZ, 52)7

(5.6) follows.

Next we claim, for ¢ > 0 fixed,
A(z,cd) =~ A(x,0), d,¢0 € (0,1], (5.7)

where the implicit constant depends on ¢, but not on x or ¢. It suffices to prove (5.7))
for ¢ < 1. By (5.6)), it suffices to prove (5.7) for ¢ = By " for some k. We have

B 5 5
A(z,6) = kl,“.,krilg?l,-wQ}|V(Xkl’ L XR ) (@)

= cd cd
o k1,4..,k1112i(1,_“7q}|1/((AX )kl PRI (AX )kn) (1’)‘7

(5.8)

where A(z) = RBz—lé(fE)RBQ—26(Q_’:) . -~RB;k5($). Since sup, ey || A() |lyaxa < 03" S 1
(where the implicit constant depends on k), it follows that the right hand side of
is v evaluated at linear combinations, with (variable) coefficients which have absolute
value < 1, of the vectors X¢°,..., X 55. It follows from the properties of densities that

[V ((AX )y (AX ), ) ()] S Az, ).

We conclude A(z,d) < A(x,¢d). Combining this with (5.6) proves (5.7)).
Corollary and using that we have (without loss of generality) assumed v is
non-negative, shows

V(BX5('I7€2)) %A(.CL‘,(S) (59)
Combining with and shows
v(B(x,£00)) < v(Byxs(z,&2)) = Az, d) ~ Az, &0). (5.10)

Conversely, using again, we have
A(z,0) = v(Bxs(2,82)) < v(Bxs(z,1)) = v(B(z,0)). (5.11)

Combining (5.10) and (5.11) proves |v(B(z,d))| =~ A(z,d), Vo € (0,&]. Since we have
assumed v is everywhere non-negative, follows from this and Corollary

follows from and (5.7)). follows from Theorem |
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6. Results from the first paper. In this section, we describe the main results
needed from [SS18]. We do not require as detailed information as is discussed in that
paper, and so we instead state an immediate consequence of the results in that paper.

We take the same setup and hypotheses as in Theorem [3.10} and define 0-admissible
constants and admissible constants as in that theorem. We take ®(t) as in (3.3). We
separate the results we need into two parts.

PROPOSITION 6.1. There exists a 0-admissible constant x € (0,&] such that:

(a) Yy € Bx, (z0,x), N X7 (y) # 0.
(b) Yy € Bx,, (z0,X),

AXi(y)
/\XJO (y)

(¢) VX" € (0,x], Bx,,(w0,X') is an open subset of Bx(xo,€) and is therefore a
submanifold.

sup
JEI(n,q)

‘%01.

Proof. This is contained in [SS18| Theorem 4.7]. O

PROPOSITION 6.2. In the special case n = q (so that X5, = X ), there exists an
admissible constant 1) € (0,n9] such that:

(a) ®(B™(1})) is an open subset of Bx(xg,&), and is therefore a submanifold.

(b) ®: B™(f) — ®(B™(%))) is a C? diffeomorphism.
LetY; = ®* X and write Y = (I + A)V, where Y denotes the column vector of vector
fields Y = [Y1,...,Y,|T, V denotes the gradient in R"™ thought of as a column vector,
and A € C(B™ (7 ) M”X”)

(c) A(0) =
For t € B"(ﬁ), let C(t) denote the n x n matriz with j,k component given by
Sy tlc;“?’l(q)(t)). For t € B™(7) write t in polar coordinates t = r6.

(d) A satisfies the differential equation

%TA(TG) = —A(r)* — C(ro) A(ro) — C(r0). (6.1)

Proof. All of the results except @ are contained in [SSI18| Proposition 9.26].
[SS18, Proposition 9.26] uses the notion of a 1’-admissible constant, which involves
bounds on ||¢} ;. 0 ®[|c1(Bn (ny))- Our assumptions imply ||c! ; 0 ®||o7nm0 < 1; this does
not quite imply Cé‘,k o® € CY(B"(no)) (the problem is that while c ro®is Ct, its
first derivatives might not be bounded on B™(1y)). Instead, we proceed as follows. By
defining 7 := 19/2, we do have ||cé-’k o ®|lcr (B S ||c % © @llrmmo S 1. Applying
[SS18, Proposition 9.26] with n replaced by 7 yields all of the above except @

is an immediate consequence of [SS18| Proposition 9.1]. O

7. Proofs. In this section, we prove the main results of this paper; namely,
Theorems [3.3] 3-4] B.10] and [3.14] In Section [7.1] we describe the main way we show
functions are real analytic. Namely, we prove the function in question satisfies an
appropriate real analytic ODE, which forces it to be real analytic; Section contains
several quantitative instances of this. In Section we prove the main quantitative
theorem: Theorem In Section we study densities and prove Theorem
Finally, in Section we prove the qualitative results (Theorems and , which
are simple consequences of Theorem [3.10}
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7.1. Real Analytic Functions and ODEs. At various points, we will need to
prove functions are real analytic. The way we will do this is by showing the functions
satisfy a ODE which depends real analytically on the appropriate parameters. We
begin with a simple and classical version of this where we deduce the solutions to a
certain real analytic PDE are real analytic, by reducing it to a real analytic ODE.

PROPOSITION 7.1. Let Q C R™ be an open set and f € C1(Q;R™) satisfy
0
%f(t):F](t,f(t)), VtEQ,lgjgn,
J

where F; is real analytic in both variables. Then, f is real analytic.

Proof Sketch. Fix s € Q. We will show f is real analytic near s. Set g(e,t) :=
f(et +s). Then, we have

0 " of -
oulet) = ;fja*tj(et +5) = ;thAet +s, f(et+5)) =t Gs(e, t, (e, 1),
where Gy is analytic in all its variables. Also, ¢(0,t) = f(s) (which is constant in t).
Hence, g(¢,t) satisfies a real analytic ODE, and classical results show g is real
analytic for € and ¢ small. Since g(e,t) = f(et + s), this shows that f is real analytic
near s, completing the proof. O

7.1.1. A Particular ODE. Fix D,/) > 0 and for 1 < j < n, let C; €
dn,n(Man) With E;‘lzl ||Cj||g{n,ﬁ(Man) S D. Set C(t) = Z?:l tjCj(t). FOI‘
t € B™(7), we write ¢ in polar coordinates t = rf. We consider the differential
equation, defined for functions A(t) taking values in M™*"  given by

%7&4(7‘0) = —A(r0)* — C(r0)A(ro) — C(r), A(0) =0. (7.1)

PROPOSITION 7.2. Let my € (0,min{7n,5/8D}]|. There exists a solution A €
/™M (MPX1Y) to , Moreover, this solution satisfies || Al| gn.m nxny < 1. Finally,
this solution is unique in the sense that if B(t) € C(B™(0); M™*"™) is another solution

to (7.1)), then A(t) = B(t) for |t| < min{8,m}.

The rest of this section is devoted to the proof of Proposition Following
the proof in [SS18, Proposition 9.4], we introduce the map 7 : /™M (M"*") —
/™M (M"*"™) given by

T(A)(z) := —/0 A(sz)? + C(sx)A(sz) + C(sx) ds.

Using that &/™™ (M"*") is an algebra (Lemma it is immediate to verify T :
M (M) — /™ (M™*™). A simple change of variables shows, for r > 0,

T(A)(rf) = i/()r —A(s0)? — C(s0) A(s0) — C(s0) ds.

Thus, A is a solution to (7.1)) if and only if T(A) = A and A(0) = 0. We will prove
the existence of such a fixed point by using the contraction mapping principle.

LEMMA 7.3. Let A € /™™ (M"*™) satisfy A(0) =0. For s € [0,1] set As(z) =
A(sz). Then, ||As|larnm @unxny < S|l Allazmn anxn).
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Proof. This is immediate from the definitions. O

LEMMA 7.4. For s € [0,1], set Cy(t) = C(st). Then, ||Cs||ormm qunxny < msD.

Proof. Let Cj(t) = 3 enn “ott®. Then, Cs(t) = X enn 2j—1 S glal+ly ge
Thus,

[reA [y ey < Z Z ||ca7j||M”X" \a|+1 |a|+1 < sm Z Z I a,a“M"X" 1a

j=1 aeNn j=1 aeNn

n
= S Z ||Cng{n,nl (Mrnxn) S S’IhD,
j=1

completing the proof. O
Define

1
M= {A € @™ (M) : A(0) =0 and ||AH’Q{n,7]1(Mn><n) < 2}.

We give M the induced metric as a subset of &/™ (M"™*"). With this metric, M is a
complete metric space.

LEMMA 7.5. Form € (0, min{7,5/8D}], T : M — M and is a strict contraction.

P’I“OOf Using that ||BlB2||£¢n 1 (MmX ™) S ||Bl‘|Q¢n n1 (M xn) ||B2||%n 1 (MmX ™)
(Lemma [4.1)) and Lemmas [7.3| and [7.4] we have, for A € M,

[T (A armm S/O [A(s ) |armom + [C(s) A(s) |agmm + [|C () |agmm ds

1
11 Dy 1 D
g/o PIAR s + (D) Allagnn + Dips ds < 5+ 1+ —b o =+ 2
1 2 1 25 1
— 4D <4222
ptgPMm=1t3 573

Clearly, since A(0) = 0 and C(0) = 0, we have 7 (A)(0) = 0. We conclude 7 : M — M.
For A, B € M, we have using A — B = 1(A+ B)(A— B) + 3(A— B)(A+ B),

1
IT(4) = T(B)lorrm < / JA(s") + B(s) s [ A(s) — B(5:)]| g
IO s [A(s) — B(5:) g ds
1
< / P4~ Bl + Dmus?| A — Bl ds
0

< 1+D771

|4~ Bllonm < 2|4~ Blloam,

completing the proof. O

Proof of Proposztwn. 7.2 Uniqueness for (7.1)) was established in [SSIS Proposition
9.4]; and the same proof yields the claimed uniqueness in Proposmon For existence,
Lemma shows that the contraction mapping principle applies to T : M — M to
show that there is a unique fixed point, A € M, of T. As described above, this A
is a solution to and clearly satisfies || Al o qunxn) < 3 (since A € M). This
completes the proof. O
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7.1.2. Identifying Real Analytic Functions I: Euclidean Space. In Propo-
sition we showed how to prove a function was real analytic by introducing a new
variable and proving the function satisfied an ODE in this new variable. In this section,
we present a quantitative version of a similar argument. We make no effort to state
the result in the greatest generality, and instead focus on the setting needed for this
paper.

Fix n,N,L € N and r > 0. We consider functions F(t) = (Fy(t),...,Fn(t)) €
C(B"(r); RY) satisfying a certain ODE. For each 1 <I < N, 1<j <n, and a € NV
with |a| < L (o a multi-index), let a, ;; € &#™". For 1 <1 < N, fix F; o € R. We
consider the following system of differential equations for 1 <1 < N:

0
a—Fl (et) E g tiaa,ji(et)F(et)*, Fi(0) = Fyp. (7.2)
J=1 aent
lo|<L

Fix D such that

[Frol, [laa,jillenr <D, 1<j<n1<I<N,|af <L

PROPOSITION 7.6. Set v’ := min{r, D(n2L(L + 1)V (max{1, D})L*1)~1 (n(L +
DN (max{1, D})E2E)=1}. Suppose F € C(B™(r);RY) satisfies . Then,
F|B"(r/) c ™" (RN). Moreover, for each 1 <1< N, |F}|| yn.» < 2D.

To prove Proposition we prove a more general auxiliary result where we
separate et into two variables (e,¢). To this end, set

' = min{r, D(n2%(L 4+ 1) (max{1, D}~ (n(L + 1)V (max{1, D})F2F)~1}.

(7.3)
We will consider functions F(e,t) : [0,1] x B"(r') — R, and we will think of these as
functions F(e,t) € @™ (C([0,1];RN)). Le.,

BEN"
where ¢z € C([0,1];RY) and
~ )18l
| F [l v (c(f0,1:mN)) = Z 3l lleslleqo,a:mmy-
BeN™ ’

For 1 <j<n,1<I<N,and a € N¥ with |a| < L, let @4 .(¢,t) € ™" (C([0,1])).
For 1 <l < N, fix a constant Fj o € R. We consider the following system of differential
equations for 1 <[ < N:

9 ~ - ~
a—Fg €, t) Z Z tiGa,j1(€ 1) (e,t)o‘, Fi(0,t) = Fi 0. (7.4)
J=1 aeN¥
la|<L

We suppose:

oy <D, 1<j<n1<I<N,|al<L.
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PROPOSITION 7.7.  Let 1’ be given by . There exists Fl(e,t) €
A" (C([0,1);RY)) satisfying . This solution satisfies
< . .
max, IE v (0,173 < 2D (7.5)
Finally, this solution is unique in the sense that if for some § > 0, ﬁ(e, t) € C([0,1] x
B™(8); RN) is another solution to , then F'(e,t) = F(e,t) for [t| < min{d, '} and
e €[0,1].
The rest of this section is devoted to the proofs of Propositions [7.6 and [7.7] We

begin with Proposition [7.7] the existence portion of which we will prove using the
contraction mapping principle.

LEMMA 7.8. For f(e,t) € @™ (C([0,1])), set g(e,t) = Jo f(€,t) de'. Then,
ge o™ (C([0,1])) and

191l ez (c0,11)) < Wm0,

Proof. This is immediate from the definitions. O

For F(e,t) = (Fi(e,t),...,Fx(et)) € @™ (C([0,1;RY)) and 1 < < N, set

Tl(ﬁ)(e,t)zﬁl,ﬁ/ Z S Gt sa(e, DE(E 0 | de'

J=1 qeNN
|la|<L

and set T(F) := (Ti(F),...,Tn(F)). meg that /™" (C([0,1])) is an algebra
(Lemma [4.1), ' < r, and Lemma [7.8) we have T @™ (C([0,1]; RM)) —
2™ (C([0,1];RY)). Furthermore, F solves if and only if T(F) = F.

Set

/

M= {ﬁ = (P, Fx) € ™7 (C(0,1RY)) < |1 Fill o oy < 2D51 <1< N}.
We give M the metric p(F, F) := maxi<i<ny | Fy — EHMH,W(C([OJ])). With this metric,
M is a complete metric space.

LEMMA 7.9. T : M — M and is a strict contraction.

Proof. For Fe M, |a| < L,1<j<n,and 1 <1< N, we have by Lemma

1ty oy < Wil Nl ez (oo,17) (2D)
< p2lel plel+l < /9l (max{1, D})F+1.

Thus, by Lemma

I TE(E) | oy o)) S <|Fol +Z Z r'2" (max{1, D})**!

j=1|a|<L
< D+ r'n2%(L 4 1) (max{1, D})**! < 2D,

where the last inequality follows from the choice of /. It follows that 7 : M — M.
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Again using Lemma we have for ﬁ,ﬁ eM, |lal <L 1<j<n,and
1<I<N,
[tja, 0 (F* = F) oo (c0,1))
< il grmre ||&a,j,l||5z¢"wr’(C([0,1]))|O“(2D)|a| ! X 1Py — Fk||g¢w’(0([o,1]))
< p2lel=1plel|g|p(F, F) < 28 (max{1, D})*Lp(F, F).

Thus, by Lemma

ITi(F) = Tl mr oy < Z > w2t (max{1, D)) Lo(F. F)

Jj=1]a|<L

—_

n(L+ )M r28 max{1, DY) p(F, F) < Sp(F.F),

where the last inequality follows from the choice of /. It follows that p(T(F), T (F)) <
ip(F, F), and therefore T : M — M is a strict contraction. 0

Proof of Proposition[7.3} Lemma shows that the contraction mapping principle
applies to T : M — M to yleld a unique fixed pomt F € M of T. This fixed pomt
is the desired solution to . Since F' € M, follows. Finally, since
is a standard ODE, standard uniqueness theorems (using, for example, Gr('jnwall’s
inequality) give the claimed uniqueness. O

Proof of Pmposztwn. Suppose F' € C(B"(r); RN) satisfies (7.2). Set F(e,t) =
F(et), an ji(€,t) = aa,ji(et), and Fl 0 := Fj 0. Then, F satisfies 1.) The uniqueness

from Proposmon shows that F is the solution described in that result, and therefore
F(e,t) € ™ (C([0,1];RN)) and holds. Since F(t) = F(1,t), the result follows.
|

7.1.3. Identifying Real Analytic Functions II: Manifolds. Let X,..., X,
be C! vector fields on a C? manifold M. Fix zo € 9 and suppose X7, ..., X, satisfy
C(zo,n, M) for somen > 0. Fix N,L e N,£>0. For 1 <I<N,1<j<g,let P ;bea
polynomial of degree L, in N indeterminates, with coefficients in @75°""NC(Bx (o, €)):

}%J x y ZE: bOJJ y

aeNN
la|<L

where ba 1 ; € /""" N C(Bx(x0,§)). Fix D > 0 with [[ba, ;]| zom < D, Ve, j, 1.

PROPOSITION 7.10. Suppose G = (G1,...,Gy) € C(Bx(wo,&);RYN) satisfies, for
1<j<q1<I<N,
X;Gi(z) = Pj(z, G(x)).
Then, 3’ € (0,7] with G € d;o’rl (RN). Furthermore, Gl e < C where C and r’
pe
can be chosen to depend only on upper bounds for ¢, n=1, €1, D, L, N, and |G(z0)].

Proof. Let U(t1,...,tq) = exp(t1.X1 + -+ + t4X,)x0, and set F(t) := G(¥(¢)).
The goal is to show F € /%" (RY) with | F|| ora.r (gvy < €, where r’ and C are as in
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the statement of the result. Note that F' satisfies

q q
—Fl et) = ti(X;F)(Uet) =D D tibau o D(et)F(et)”.
Jj=1 J=1 aenNl

la| <L

By hypothesis, b, ; 0 ¥ € &7 with ||baj © U||erem < D. From here, the result
follows immediately from Proposition (with n = ¢ and » = min{n,&}). O

7.2. The Quantitative Theorem. In this section, we prove Theorem [3.10]
which is the main theorem of this paper. We separate the proof into two parts: when
the vector fields are linearly independent at xg (i.e., when n = ¢) and more generally
when the vector fields may be linearly dependent at x¢ (i.e., when ¢ > n).

7.2.1. Linearly Independent. In this section we prove Theorem [3.10]in the
special case when n = ¢; so that we have X = X ;,. By Proposition X1,..., X,
span the tangent space at every point of Bx(zo,§). Since we know Bx (¢, &) is an
n-dimensional manifold, we have that Xi,..., X, form a basis for the tangent space
at every point of Bx (z¢,&). Taking x = &, Theorem [3.10] [(a)} [(b)] and follow
immediately.

We apply Proposition to obtain 7 € (0,79] as in that proposition; so that
® : B"() — Bx(w0,&) and is a C? diffeomorphism onto its image. We let Y; = ®* X,
and define A as in Theorem by Y = (I + A)V. Our main goal is to show that A
is real analytic; this will imply that Y7,...,Y,, are real analytic as well.

We have assumed ¢}, € &/¢*" with ||} || zzom < 1. Thus, by the definition of
A", we have ¢ o ® € /™" with ||¢} o@”gfwn < 1. We conclude ¢ o ® € &/
with ch’k o <I)||dn,1, <1

For 1 <[l < n, define an n x n matrix Cj(t) by letting the j, k component
of Ci(t) equal cﬁl o®. Thus, C; € o™ ﬁ(M"X”) with [[Ch]| grnamanxny S 1. Set
C(t) :== >, t41Ci(t). By Proposition [6.2) ., A(0) =0, and by Proposition
A satisfies the differential equation (6.1)).

Proposition shows that there is an admissible constant 7; € (0, 7] such that
has a solution A € &/ (M™*™) with || Al| o7n.m (Mnxny < 5. By the uniqueness of

this solution described in Proposition A| Brim) = A. This establishes Theorem

Theorem is an immediate consequence of (since Y = Y, when
n=q).

Proposition [6.2] [(a)] shows ®(B"(1))) is an open subset of Bx (z¢, &) and Proposi-
tlonE @ShOWS ® : B"()) — ®(B"(7)) is a C? diffeomorphism. Since 1y < 7, we
see ®(B" (1)) is an open subset of Bx (zg,&) and ® : B™(n;) — ®(B™(ny)) is a C?
diffeomorphism. This establishes Theorem @ and @

Finally, we prove Theorem We have already taken x = &, and we have
®(B™(m)) € Bx(xo,&). Thus it suffices to prove the existence of &; and &;. Since
X, = X, we may take £ = £, and therefore we only need to prove the existence of
&1. This follows just as in [SS18, Lemma 9.23].

7.2.2. Linearly Dependent. In this section we prove Theorem [3.10] in the
general case, ¢ > n. As in [SS1§| the goal is to reduce the problem to the case ¢ = n.
Set

To(n,q) :=={(i1,. - ,in) €EZ(N,q) : 1 <y <ig < -+ < iy < g}
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LEMMA 7.11. For J € Z(n,q), 1 <j<mn,
Lx, NX;= > 95 N\Xk, onBx, (0,9),

KeZIp(n,q)
where ||931‘,(J||C(Bx10(wo,§)) <o 1 and HngHd;olm < 1. Here, Lx; denotes the Lie
<0
derivative with respect to X;.

Proof. Let J = (j1,...,jn). By the definition of Lx, (see [SSI8, Section 5] for
more details), we have

Lx, \Xs=Lx, (Xj ANXjy Ao A X))

=Y X AKX A AXG AKX XA X

Ji+1
=1

A AX

But, [X;, X;,] = Xk, by assumption. Thus,

kljjz

k
EXJ./\XJ:ZZCj,jZle/\XjQ/\ ANXj  AXe AXj o A AXG,
=1 k=1

The result now follows from the anti-commutativity of A and the assumptions on ci—f ;-

Take x € (0,£] to be the 0-admissible constant given by Proposition With
this choice of y, Theorem @, @ and follow immediately. In particular,
N\ X1, (y) # 0 for y € Bx(x0,&). It therefore makes sense to consider //\\))((JJO((Z’;) for any
J € I(n,q) and y € Bx, (o, X)-

LEMMA 7.12. For J €Z(n,q), 1 <j<mn,

X_/\XJi Z ;(J;\\XK Z ok AXs ANXk

JRACL AN
A X, K€To(n,q)

where ng are the functions from Lemma ,
Proof. We use the identity
X, AXs _ Lx, NX; 3 NXs EX]»/\XJO7
N X, N X, NXs  AXy,
which is proved in [SS18, Lemma 5.1]. From here, the result follows immediately from
Lemma [T11] O
LEMMA 7.13. For J € I(n,q) we have ))((0 C(Bx,, (w0, X)) and

Izs

KeZIop(n,q)

So L.
C(Bx , (z0,x))

Proof. This is just a restatement of Theorem [(b)} which we have already
shown. O

LEMMA 7.14. There exists an admissible constantn’ € (0,n] such thatVJ € Z(n,q),

A X xo,n’
AXoo X0 and

<1

Irx

'TO 77
XJ
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Proof. Set N := |Zy(n,q)| and let G(x) € C(Bx,, (z0,x);RY) be given by
Gy(z) = //\\));JJ((?), for J € Zy(n,q). Lemma|7.12{shows that Proposition [7.10[applies to
0
G (with € = x, X = X,, ¢ =n, L =2, D an admissible constant, and |G (z¢)| < ¢71).
Here we taken 1’ to be r’ from that result. The lemma follows. O

LEMMA 7.15. For1 <k <gq, 1< <n, there exist 52 € C(Bx,, (w0, x)) ﬂﬂ;%’?'
such that

X, = Z bl X (7.6)
=1

Furthermore, ||bk||c (Bx 5, (z0,%)) <o 1 and ||bl || 0.’ r S L
XJo

Proof. For1 <k <q,1<l<n,set J(I,k)=(1,2,...,1-1,k,14+1,...,n) € Z(n,q)
and define

B AXsap
/\ X1
Cramer’s rule shows ([7.6) (see [SS18| Section 5] for more comments on this application

of Cramer’s rule). The desired estimates follow from Lemmas and [7.14} completing
the proof. O

LEMMA 7.16. For 1 <1i,5,k <mn, there exist éfj € C(Bx,, (%0,x)) N Jz/;‘;o" such
that

(X, X;] Zc”Xk (7.7)

w0’ S 1.
CE

Furthermore, ||c”||C(BXJ (z0x)) So 1 and ||C”||

Proof. For 1 <1i,j <n we have using Lemma [7.15

(Xi, X;] ZchXk _Z (chbl>xl

1=1 \k=1

Setting éi =31 ¢ bfc, follows. We have ||Ci‘€,j||C(BxJO(mO,§)) <o 1 and

[|ck kllazon S 1, by the definition of admissible constants. Combining this with
’ Jo

Lemma m the fact that |fgllc(sx, @) < Ifllemx,, @ooildlless,, @oe)

(which is immediate from the definition), and ||fg|| 2. ,7/ < ||f|| = W ||g|| 2o 2 (see
Lemma B the desired estimates follow. O

In hght of Lemma [7.16] - the case n = ¢ of Theorem [3.10] (which we proved in

Section applies to X1,...,X,, with 7 replaced by 7’ and ¢ replaced by xB
yielding admissible constants n; € (0 7'l and & > 0 as in that theorem. This establishes

[(d@)] [(e)} (except the existence of &), and [(h)]for 1 < j < n. Since we have
already shown |(a)] [(b)] and all that remains to show is the existence of &5 as in

10When n = ¢, we proved Theorem with x = €.
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and for n+1 < j < q. The existence of & follows directly from [SSI8, Lemma
9.35].
All that remains is for n +1 < j < g. Lemma [7.15| shows HB%HVQ{IO,U/ <1.

X

J
Thus, by the definition of .;zf;‘;(;”/7 we have [|b}, o ®||nn < 1. Pulling back | via
®, we have for n +1 < k <gq,

Yk:zﬂ:(égm)m.

=1

Since we already know ||Y;|| gn.m mny S 1 (1 <1< n) it follows that |[Yg|| onm @n) S 1.
Here, we have used that 27" is a Banach algebra (Lemma 4.1)). This completes the
proof.

7.3. Densities. In this section, we prove Theorem and Corollary We
take the same setting and notation as in that Section [3.2.1] In particular, we have
all of the conclusions of Theorem |3.10, and take 7, x, and ® as in that theorem. In
addition, we have a density v on By, (2o, Xx) (where x is as in Theorem [3.10)). Let
f; be as in Section As in Theorem m we (without loss of generality) take
Jo = ( . ,n).

Following [SS18], we introduce an auxiliary density on B X1, (0, x) given by

ZyNZy N+ NZy

Lyeniy L) =
Yo(Z1s+ - Zn) XiNXogN---

(7.8)

Since X1 AXoA---AX, is never zero on BX, (0, x) (Theorem 3 @7 Vg is defined
on BXJO (20, x) and is clearly a density. Note that v (X7, .. =1, so that vy is
nonzero everywhere on By, (7o, X)-

LEMMA 7.17. For1<j<n, Lx,vy = fJQV(), where fJQ € ,;af)?i(’)m NC(Bx,, (0, X))
and Hfflly;g;)m S 1 lles,, @) So 1-

Proof. The function f was computed in the proof of [SSI8, Lemma 9.38]. There
it is shown

NX
fJO == Z g]Jo/\XK

KeZo(n,q)

where g, is the function from Lemma We have by Lemma [7.11}
K K K K
19550 llerzerm < Ngj.s0 e S 1o 195000 0B, o) < 9500 e, (wo.60) S0 1-

Also, by Lemma and Lemma

H/\XK N Xk

H <1
A Xgollargom = 1A K50

~

C(Bx 5, (%0,X))

o |as

zon

where we have used that 1’ from the proof of Theorem satisfies ' > ;. Using
the above, the result follows from Lemma [£.1] O



COORDINATES ADAPTED TO VECTOR FIELDS III 1061
Define hy € C(B™(n1)) by ®*vg = hooren, Where ore, denotes the Lebesgue
density on R”.

LEMMA 7.18. hy(t) = det( + A(t))~! where A is the matriz from Theorem 3.1/
Furthermore, ho(t) ~¢ 1, Vt € B™(n1), and hg € ™™ with ||ho||ernm So 1.

Proof. Because sup;cpgn ) |A(t) [lngnxn < |A]| grnm nxny < & (by Theorem
, we have |det(I + A(t))~!| = det(I + A(t)) %, for all t € B"(n1). Thus,

ho(t) = < aty’ Oty af)

= (@*u0) (1) (I + A@®)~ 1Y1<> (T4 AW®) (D)
= [ det(I + A1) (@ 1) (B (Vi(D), .., Ya (1))
— det(I + AD) " o(@(0) (X2 (D). ... Xa(®(1))
= det(T + A(t))™"

That ho(t) =~ 1, ¥t € B™(n1), now follows from the above mentioned fact that
SUPse g () 1A g < 5

Since &/™"M (M"*") is a Banach algebra (Lemma and since [|Alf g7nn (nxny <
1, it follows that I+ A is invertible in .&/™ (M"*"™) with ||(I + A) | grn.m nxny < 2.
We conclude Hh()”g{nml = || det(I—|— A)ilngjn,nl 50 1.0

Since vy is an everywhere nonzero density, there is a unique g € C(Bx, (0, X))
such that vy = gv.

LEMMA 7.19. For 1 < j < n, Xjg = (f; — f)g, and g(x) ~o. g(xo) =
v(wo)(X1(w0), - .-, Xn(w0)) for all v € Bx, (o, X)-

Proof. See [SS18|, Section 9.4]. O

LEMMA 7.20. Set s := min{n,r}. Then, g € ,Qf/;ios and ”g”d;?fos <,
lv(X1,. .., Xn)(x0)].

Proof. Set B(t) := g o ®(t). The result can be rephrased as saying B € &/™° with
1Bl o [B(O)] = lg(z0)| = [W(X1,. .., X)(z0)|. We have, using Lerma

%B(et) = (X1 + e+ 1 X)) (@(et)

= Zt fio®(et) ffo@(et))go@(et)

th fi 0 ®(et) — f o D(et))Blet).

Solving the linear ODE (7.9)) we have

B(t) = efo Tty (fjoP(et)— foo<I>(et))deB(0)

Since ||fjHQ{zo,r <, 1, by assumption, and ||fQ||ﬂzo,n1 <, 1 by Lemma 7.17, we have

[fjo®—f)o (I>||£W s <, 1. By Lemma (7.8} if F(¢ fo i ti(fj o ®(et) — 0o
D (et)) de, then | F|| a7 <o 1. Finally, since d"’g isa Banach algebra (by Lemma,
||6F||a¢n,s < ellFllorm s ,S,, 1. We conclude || B||gn.« S |B(0)], completing the proof. O
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Proof of Theorem[3.1]} We have
hULeb =P¢*y = ‘I)*gllo = (g o (I?’)(I’*VO = (g o] (I))hQO'Leb,
and therefore h = (g o ® ho @ follows by combmmg the fact that g =~

v(Xq1,..., Xn)(zo) (Lemma and ho ~ 1 (Lemma[7.18)
Since ||g o ®||gn.s ||ngI()S < |V(X1,...,X )(mo (Lemma |7 and

hollezns < [[hollarmm So (Lemma [7.18), [(b)] follows by the formula h = (g o ®)hy
and Lemma 4] O

Having proved Theorem we turn to Corollary To facilitate this, we
introduce a corollary of Theorem [3.10]

COROLLARY 7.21. Let ny,&1,&2 > 0 be as in Theorem [3.10, Then, there exist
admissible constants ny € (0,1m1], 0 < &4 < &5 < & such that
B(zo,€4) € Bx,, (%0,€3) € ®(B"(n2)) € Bx,, (z0,&2) € Bx(o,&2)
C Bx,, (z0,&1) € ®(B"(n2)) € Bx,, (0, x) € Bx (w0, ¢).
Proof. After obtaining 71,1, &2 from Theorem apply Theorem [3.10] again
with & replaced by & to obtain 72, &3, and &4 as in the statement of the corollary. O
Proof of Corollary[3.15 We have

v(Bx,, (%0,€2)) :/ V:/ *v
Bx 5, (x0,€2) @1 (Bx 5, (%0,€2))

(7.10)
- / B(t) dt ~om oven (@ (B, (20, £))W(X1, -, X)(20),
Y(Bx; (x0,£2))

where o1, denotes Lebesgue measure, and we have used Theorem @ By
Corollary and the fact that 11,12 > 1 are admissible constants, we have

1% oLen(B"(n2)) < oLen(®~(Bx,, (20,&2)) < oLen(B™(m)) ~ 1. (7.11)

Combining (7.10) and (7.11) proves v(Bx, (zo,&2)) =y v(X1,..., Xn)(20). The same
proof works with Bx,, (zo, &) replaced by Bx(xo,&2), which completes the proof of

Ed).
To prove (3.5)), all that remains is to show

|I/(X1,...,Xn)(1'0)| =0 max |I/(Xj1,...,Xjn)(£L'o)| (712)
Jiyedn€{l,...q}

Note that

1=|vo(Xq,...,Xn)(x0)] < max V0 (X -, Xi, ) (@0) < ¢C71 S0 1,
kly--~7kne{17"'7q}

by the definition of (. We conclude

Xe,.... X ~g 1.
kl,..‘ﬁ?ﬁ,...,q}'”‘)( ks e Xk, ) (T0)] A0
Thus,
(X1, .., Xn)(2o)| = [9(z0)vo(X1, - - -, Xn)(20)| = [9(z0)]
~ D. . ¢
0 \9($0)|kl’w]g}gﬁwq}|Vo( k1> ) kn)(xo)|
= max v(Xkys ooy Xk, ) (o))

k17 Skn€{l,....q}
This establishes (7.12]) and completes the proof. O
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7.4. Qualitative Results. In this section, we prove the qualitative results; i.e,
Theorems [3.3] and [3:4 These are simple consequences of Theorem [3 We begin
with Theorem For this we recall [SS18| Proposition 4.14].

LEMMA 7.22 (Proposition 4.14 of [SS18]). Let X1,...,X, be C* vector fields on
a C? manifold M.
(i) Let I € 9 be a compact set. Then In > 0 such that Vxo € K, X1,..., X,
satisfy C(xo,n, M).
(ii) Let K € M be a compact set. Then, there exists 5o > 0 such that V0 € S1~1
if © € K is such that 01 X1 (x) + - - + 0,X,(x) # 0, then ¥r € (0, do],

€T01X1+~~-+7"9<IXQ:L, 7& .

Comments on the proof. In [SS18, Proposition 4.14], |(i)| was only stated for a
fixed ¢ € M and not “uniformly on compact sets.” However, the same proof yields
indeed, it is an immediate consequence of the Picard-Lindelof theorem. is
stated directly in [SS18, Proposition 4.14]. O

REMARK 7.23. Lemma [7.22] shows that we always have 1 and &, as in the
assumptions of Theorem [3.10] Thus, if we wish to apply Theorem [3.10] to obtain a
qualitative result, we do not need to verify the existence of n and dg.

LEMMA 7.24. Let X1,..., X, be C! vector fields on an n-dimensional C? manifold
M. Let V.C M be open, let U C R™ be an open neighborhood of 0 € R™, and
let ® : U — V be a C%-diffeomorphism. Fiz r > 0 so that B"(r) C U and set
xo = ®(0). SetY; = ®*X; and suppose Y; € 7™ (R™), 1 < j <gq, and for some jo, ko
Yo, Yiol = Y04 éo koYl, where ¢ c ko € 42/” . Then there exists a neighborhood V'
of xg and s > 0 such that [Xj,, X,) = Y[_, ¢ . Xy where &, € CY*(V') and

J
l ) —1
Coko = Co,ko © o

Proof. Since cl ko EZ™M and Yy € ™ (R") (1 < j <g), Lemma 4 Hshows
é . eCw T/Q(BH(T/2)) and Y; € C*"/2(B"(r/2); R"). Proposition [4.7[shows that

o, ko €

there exists s > 0 with c]O ko € Cy°(B™(r/2)), where Y denotes the list of vector
fields Y1,...,Y;. Set cm ko = ~§»07k0 o®~1 and V' := ®(B"(r/2)). Proposition
shows ¢, € CY*(V') and pushing the formula [Y;,, Vi, = Y[, & , Vi forward

via ® shows [ X, X,] = >, cé-okaXl. This completes the proof. O

Proof of Theorem[3.3 [ Let U, V, ®, and zo be as in By the
definition of C¥(U;R™), there exists an r > 0 such that ®*X;,..., ®*X, € C¥"(U;R").
Without loss of generality, assume 0 € U and ®(0) = zp. Reorder X;,..., X,
so that Xi(x¢),...,X,(zo) are linearly independent and let Y; := ®*X}, so that
Y; € C¥7(U;R™). Note that Y7(0),...,Y,(0) span the tangent space ToU. Take
r1 € (0,7] so small B"(r1) CU. By Lemmau [D)} Y; € @™ (R™), 1 < j < q. Since
Y1,...,Y, are real analytic and form a basis for the tangent space near 0, there exists
r9 > 0 such that

17 ] 201]Yk7 65‘7] G UQ{TL’TQ.
Pushing this statement forward via ® shows, for 1 <i,j <n, [X;, X;] = >}, & ; X,

where ¢} ; := ¢, 0 ®~!. Lemma shows there exists 51 > 0 with & ; € Y™ (V') C
C¥ (V') for some nelghborhood V of xg.
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Furthermore, since each Y; (1 < j < g) is real analytic, and Y7,...,Y;, form a
basis of the tangent space near 0, there is sy > 0 such that, for n +1 < j < gq,

Y; = b, b eam (7.13)

By Lemma“ bk € C¥*2/2(B"(s5/2)). Proposition |4.7|shows that there exists
s3 > 0 such that bk € Cy**(B™(s2/2)). Proposition shows bE = bf o®~!
Ccy 53(<I>(B"(52/2))) - C")"((@(B"(SQ/2)). Pushing |D forward via ®, we have
X Zk 1 b Xk Combining the above proves m

= Suppose holds. Let V be as in and take r > 0 so that

cf,j,bj ), Vi, j, k. We wish to show for 1 <i,j < g,

(X, X,] Zcuxk, ke (7.14)

For 1 <4,j5 <n, (7.14]) follows directly from the hypothesis We prove ([7.14) for
n+1<14,j <gq. The remaining cases (1 <i<nandn+1<j<qgorn+1<i<g
and 1 < j < n) are similar and easier. We have

li bE X zn: b;??XkQ]

k1=1 ko=1

[Xi’Xj]

n

> (bfl(xklb?)xkz—b“(xk“ ) X, + Zbklbk%kl s )

k1,ka=1

We are given b¥, ¢, j, € CY"(V) C C"?(v) and Lemmashows Xk e corRwv).
Now the result follows from the fact that C%"/*(V) is a Banach algebra (Lemma .

This is a consequence of Theorem We make a few comments
to this end. First of all, as discussed in Lemma [7.22] and Remark [7.23] there exist
n and &y as in the hypotheses of Theorem In we are given ¢f ; € C}”
near xg for some r > 0, while in Theorem it is assumed cj7k is contlnuous near
xo and ck k € Ay mo’" (where Jy is chosen as in that theorem with ¢ = 1). However,

;€ CY" near x clearly implies c  Is continuous near o, and Lemma shows
C‘” T C " C %wgo so by shrlnkmg 1 to be < r, those hypotheses follow With
these remarks, Theorem [3.10]applies to yield the coordinate chart ® as in that theorem.
This coordinate chart has the properties given in completing the proof. O

We now turn to Theorem [3.:4] The uniqueness of the real analytic structure
described in that theorem follows from the next lemma.

LEMMA 7.25. Let M, N be two n-dimensional real analytic manifolds and suppose
X1,..., Xy are real analytic vector fields on M which span the tangent space at every
point, and Zy,...,Z, are real analytic vector fields on N. Let W : M — N be a C?
diffeomorphism such that V. X; = Z;. Then V¥ is real analytic.

Proof. Fix a point xg € M. We will show ¥ is real analytic near xy. Reorder
the vector fields X1, ..., X, so that X;(xo),..., X, (zo) are linearly independent; and



COORDINATES ADAPTED TO VECTOR FIELDS III 1065

therefore form a basis for the tangent space near x,. Reorder Zi,...,Z; in the
corresponding way, so that we have ¥, X; = Z;. IL.e., we have

AV (2)X;(z) = Z;(¥(2)).

Pick a real analytic coordinate system, x1,...,x,, on M near xg. Since X1,...,X,
span the tangent space near xy and are real analytic, and Z1, ..., Z, are real analytic,
we have, for x near xg,

8x] Zaj, ja(R(x), 1<j<n,

where a;; and F}; are real analytic near zo and ¥(zy), respectively. Proposition
applies to show W is real analytic near zy, completing the proof. O

Proof of Theorem @:> is obvious. For the converse, suppose |[(ii)|
holds. Thus, for each z € M, there exist open sets U, C R", V,, C M, and a C?
diffeomorphism &, : U, — V,, such that if Y" = @ X;, then Y* is real analytic on U,.
We wish to show that the colletion {(®;1,V,):x € M} forms a real analytic atlas on
M ; once this is shown, will follow since then X; will be real analytic with respect
to this atlas by definition, and this atlas is clearly compatible with the C? structure
on M. Hence, we need only verify that the transition functions are real analytic.
Take a:l,xg € M such that V,, NV, # 0. Set ¥ = d_ L o®,, : Uy, NP1 (Vy,) —
Uz, N®, 1 (Va,). We wish to show U is a real analytic diffeomorphism. We already
know W is a C’2 diffeomorphism and W, Y;"" = Y**. That VU is real analytic now follows
from Lemma |7 ﬂ, 7.25 completing the proof of Eﬂ] As mentioned before, the uniqueness
of the real analytic structure, as described in the theorem, follows from Lemma
completing the proof. O

8. Densities in Euclidean Space. While the hypotheses in Section [3.2.1] con-
cern densities on abstract manifolds, the most important special case which arises in
applications is that of the induced Lebesgue density on real analytic submanifolds
of Euclidean space. In this section, we describe how to apply Theorem [3.14] and
Corollary in such a setting.

Let 2 C RY be open and fix 79 € Q. Let X1,..., X, € C& (% RY) be real analytic
vector fields on 2. We suppose Xi,..., X, satisfy the conditions of Theorem m
with 99T = ), and so we have admissible constants as in that theorem, and &, dq, 1,
Jo, and ¢ as in the hypotheses of Theorem and we take y as in the conclusion
of Theorem As in Theorem we take n := dimspan{Xi(zo), ..., Xq(z0)}.
We also assume that £ is chosen so that Bx(xo,£) € Q. Fix an open set ' with
Bx(l'mf) e e

Under these hypotheses, Proposition applies to show that Bx(zg,&) is an
n-dimensional, injectively immersed submanifold of 2. Classical theorems show
that Bx(xg,&) can be given the structure of a real analyticE injectively immersed
submanifold of 2 and X;,...,X, are real analytic vector fields on Bx(zo,&). Let
v denote the induced Lebesgue density on Bx(xg,&). The goal of this section is to

HThere is a sense in which Theorem can always be applied to real analytic vector fields. This
is the subject of Section m and Section @ However, this section has a different thrust and so we
assume the hypotheses of Theorem

121t is not important for the results in this section that Bx (z0,&) can be given a real analytic
structure.
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describe how the hypotheses of Theorem and Corollary hold, for this choice
of v, in a quantitative way.

As in Theorem we, without loss of generality, reorder the vector fields so that
JO = (1,...,71).

Fix 6; > 0 and s; > 0 so that

Xl, e ,Xn c Cw,s1 (BN(xO>51);RN)a

where BN (zg,01) = {y € RN : |zg — y| < 61}

DEFINITION 8.1. We say C is an E-admissible constant¥]if C' can be chosen to
depend only on anything an admissible constant may depend on (see Definition ,
and upper bounds for 6; %, s7 ', N, 1 Xjllery, 1 < j <n,and [ Xl cwst (BN (20,6,):RN)
1<j<n. Wewrite A <g B if A< CB, where C is a positive E-admissible constant.
We write A ~g B for A <g B and B <g A.

The main result of this section is the following:

PROPOSITION 8.2. There exists an E-admissible constant r > 0 and functions
fiyoosfn € ,Q/;(”jor N C(Bx,, (wo,x)) such that for 1 < j < n, Lx,v = fjv and

fillogem S L Il , o) B L

REMARK 8.3. It is an immediate consequence of Proposition [8:2) that Theorem
and Corollary [3.15] hold, for this choice of v, where any constant which is v-admissible
in the sense of those results, is E-admissible in the sense of Definition 8.1

The rest of this section is devoted to the proof of Proposition 8.2 By
Lemma for 1 < 4,5,k < n, there exists an admissible constant ' > 0 and

éfj € C(Bx,, (z0,x)) N 4243:7/ such that

(Xi, X5 = Xy, 1<ij<n, (8.1)
k=1

where Héf,jHC(BXJO (z0,v)) So 1 and Héﬁjﬂd;o,,,/ <1.

J

We abuse notation and write X ;, to bothodenote the list of vector fields X1,..., X,
and the N x n matrix whose columns are given by X,...,X,,. For K € Zy(n, N) we
write Xg j, to denote the n x n submatirx of X ;, given by taking the rows listed in
K. We set detyxn X, = (det Xk 1) kezo(n,N), SO that dety, s, X, is a vector (it is
not important in which order the coordinates are arranged). Since X1 A Xa A--- A X,
is never zero on Bx, (20, %) (by Theorem @, we have |dety,x, Xj,| > 0 on
Bx,, (20, Xx)-

LEMMA 8.4. There exists an E-admissible constant " > 0 such that for 1 < j<mn
and K € Ty(n,N),

deetXKJo = Z gﬁKdetXL,Jo,
L€ETZy(n,N)

13The quantitative estimates in this section do not follow from classical proofs. The main difficulty
is that classical proofs break down near a singular point of the associated foliation. See Remarks
and

14Here, E stands for “Euclidean”.
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where g e € /35" NC(Bx,, (z0,x)) and HQJ-L,KHW;OW Se L35 kllemx,, o) SE
J,
1. ’
Proof. For K = (k1,...,ky) € To(n, N), set vg = dxg, Ndxg, A--- Adxg, , so that

v is an n-form on RY. Note that det X j, = v (A X,). Using [Lee03], Proposition
18.9] we have for 1 < j <n,

X;det Xpe.s, = Lx,vic (N X, ) = Lx,v) (N X ) +vic (L, N X)) (82)

We address the two terms on the right hand side of (8.2]) separately.
For the second term on the right hand side of (8.2)), we have

VK (ACXJ /\XJO)
=vi(Lx; (X1 AXo A AN X)) (8.3)
= v (X, Xa] A Ko Ao A X) 4 vp (X AXG, Xo] A X Ao A X
++VK(X1 /\XQ/\"'/\anl N [vaan

The terms on the right hand side of (8.3) are all similar, so we address only the first.
We have, using ({8.1]),

V(X XA K Ao A K) = 3 8w (Xi A Xa Ao A K)
=1
= &5 w(Xa A X Aee A Xy) = ¢y det X .

Since éjl,l € JZ{;(;(;” n C(BXJO (anX)) with ||éjl‘,1||£{;om' 5 1, ||é;,1||C(BxJO (z0,X)) 50 1,
Jo
this is of the desired form for any n”" <17’
We now turn to the first term on the right hand side of (8.2). We have, for

K = (ki,... kn),

£XjVK = Exj(dackl /\dil?k2 AREE /\dl‘kn)
= (ﬁxjdl’kl) A d.’[k2 AR -dl’k" + dxkl A (L:deku) VARERIVAN d.’Ekn (84)
+ o +drg, ANdzg, A2 A (Edexkn).

Each term on the right hand side of (8.4) is similar, so we describe the first. For
this, we write X; = Y o af 52— (1 < j < n), where a¥ € C“** (BN (20,61)) N C* (&)

. k
with [|a¥||ce.e1 (BN (zg.6)) SE 1 and [[a¥||ci) Sg 1. Then, Ly, dxy, = daj' =
N da*1
=1 ngldxl Thus,
N 8 kl N kl
a; aaﬂ
(Lx,dxy,) Ndog, A--- Ndxy, = Z 8; dry Ndxp, A\ --- Ndxy, = Z 8:2 €K IVE,,
l l
1=1 =1

where e¢x,; € {—1,0,1} and K € Zy(n, N) is obtained by reordering (I, k2, ks, . .., k»)
to be non-decreasing. Applying the same ideas to the other terms on the right hand

side of , we see
(L:le/K)(/\XJO) = Z bjl-:KI/L(/\XJO) = Z bJIinetXL,Joa (85)

LETy(n,N) LETo(n,N)
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k
where each bﬁK is a sum of terms of the form :I:g(;-j where 1 < j<n, 1<kI<N
(and the number of terms in this sum is <g 1).
Since af € C“*1(BN (29, 0,)) with Ha?HCW,sl(BN(Im&» <g 1, applying Lemma
(with X = V) shows

k
Oa;

9aj day
8:131

<pl, 1<j<n,1<kI<N.
axl

€ ¢ V(BN (w0,01)), ‘
Cws1/2(BN (29,61))

We conclude b¥ - € C¥ #1/2(BN (z¢,6,)) with 165 |l s /2 (BN (2g,60)) SE 1
By Proposmon F [0] there exists an E-adm1851ble constant so > 0 such
that bf € CW #2(BN(z0,01)) with ||bJ7K||C;;;(BN(10751)) <g 1. Also, it imme-

J
||bJLK||C(BxJ (zox)) SE 1 (here we have used x < ¢ and therefore Bx, (zo,x) C ).
’ 0

diately follows from the properties of the a¥ that bi g € C(Bx,,(z0,x)) with

Because, for 1 < j < n, ||Xchl(BN(IO’§1);RN) <g ||Xj||Cw,sl(BN(m07§1);RN) <g 1,
the Picard-Lindelof theorem shows that we may take an E-admissible constant n” €
(0, min{s2,7’}] so small that X, satisfies C(xo,n"”, BY (z0,01)). Then, by Lemma
we have, for 1 < j <n, K,L € Zy(n, N),

Hb KH To n“ < || K||C“’ “2(BN(xo,51)) NE L.

Combining this with (8.5)) and the above mentioned fact that [|b; K”C (Bx 5, (20,X)) <g 1,

shows the first term on the right hand side of (8.2} is of the desured form completing
the proof. O

LEMMA 8.5. Let K € Zo(n,N), 1 < j <n. Then,

, det Xk j, . Z gLK det X1, 5,
j = 3,
| detnx” XJ0| LeIo(n,N) | detnx“ XJ0|
Y b (det Xg, g, ) (det X1, ) (det X, s, )

J,L1 det X, |3 ’
L1,Ls€To(n,N) | detnxn X, |

where QJL?Ll are the functions from Lemma .
Proof. We have, using Lemma for 1 <j<n, K €Zy(n,N),

_ detXK,JO . X; detXK,JO _ 1 detXK,Jo
J |d€tn><nXJ0| |d€tn><nXJ0| 2 |detn><nXJ0|3

o L detXLJO (detXK,JO)(detXLl,JO)(XjdetXLl,JO)
S ety

Xj| det XJ0|2
nxn

3
LETo(n,N) ‘detan XJol L1€Zo(n,N) |detn><n XJ0|
$ gl et Xiy S gk (det Xk, s,)(det X1, ) (det Xr2a0)
gL 3
LETo(n,N) ‘detnxn XJol L1,Lo€Zo(n,N) \detan XJO‘

completing the proof. O

LEMMA 8.6. There exists an E-admissible constant 0" > 0 such that VK €
IO (TL, N):

det Xk, 7, 90077] H det Xx g, <E1
| ~

‘detnxn XJ0| XJO detnxn XJ0|

‘ a:o n’’
XJg
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Proof. For K € Zo(n, N), set G = ﬁ:iti(iKX‘]ol Lemmashows for 1 < j <n,

XjGK = Z gﬁKGL - Z §£2LlGKGL1GLz~

LeZy(n,N) Li,Ly€Zp(n,N)

Using the estlmates on the functions g gj L1 described in Lemma the result follows
from Proposition with ¢ =n, n =1", £ = x, D an E-admissible constant, L = 3,
N = |Zy(n, N)|, and |G(z0)| = 1. Here, we take """ to be the r’ guaranteed by that
result. O

LEMMA 8.7.
det X det X
_CAAKT o € C(Bx,, (wo,x H =K <L
|detn><n XJ0| ° |detn><n XJ0|

C(Bx 5, (z0,x))

Proof. Since A\ X, is never zero on By, (zo,X) (by Theorem [3.10} m @) the

. . det X g JO
continuity of et

from the deﬁnition I:I

follows immediately. That it is bounded by 1 follows directly

LEMMA 8.8. There exists an E-admissible constant 12 > 0 and functions h; €
Ay N C(Bx,, (20, x)), 1 <j < n so that

Xj|det Xj,| = hj|det X;,|, 1<j<mn,
nxn nxn
and ||h;ll gzom2 Se 1, [|Bjllcsy, (z000) SE 1
Jo o
Proof. Using Lemma we have
1 -1 2 -1
6| dot X = 5ot K| oo X = gldet K| P KlderXic)”
KeTy(n,N)
-1
= | det X, > gli(det Xi g)(det X1 g,)
K,LE€To(n,N)
- det XKJ det XL J
= |det X, gL 0 J
nxmn 0 Z jK|detn><nXJg| |detn><nXJ0‘

K,LETo(n,N)

L ~L det Xk, g4 det X1, 19 o "
We set hj =3k 1ez(n.n) 9. K Tdet s Xo0] \detanXJ > and let 7 := 0" An"™. Then,

. - det X
using the bounds on §%, from Lemma/8.4, the bounds on ————=0— from Lemmas
7, K | dety xn XJ0|

and. and Lemma we have h; € ,;27;3;”2 NC(Bx,, (zo,x)) and th||£¢;3;)nz <k 1,
”hJ'HC(BXJO (z0x)) SE 1 completing the proof. O

LEMMA 8.9. v = [detyxn Xj,|vo on Bx, (7o, X), where vg is given by @)

Proof. Since vo(/\ Xj,) =1, vg is a strictly positive density on Bx, (zo,x). Thus,
v = f(z)vy for some f : Bx,, (20, x) = R. To solve for f we evaluate this equation
at A\ X, and since vo(A Xj,) = 1, we have f = v(A\ X,). Since v is the induced
Lebesgue density on an n-dimensional, injectively immersed, submanifold of RV (to
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which Xi,..., X, are tangent), we have v(A X,,) = | detyxn XJ,|, completing the

proof. O

Proof of Proposz'tz'on For1 <j<n,let f;:= f]Q + h;, where ij is described in
Lemma and h; is described in Lemma [8.8] Then, if r := min{n, 72} > 0 we have
that r is an E-admissible constant, f; € @/x°" N C(Bx,, (o, x)), and ||fj||£{§0»7‘ Sk,

0 Jo

1 fillesx,, @ox) Se 1
Using Lemmas [7.17} [8:8 and [8:9] we have, for 1 < j < n,

vy = <XJ >I/0+

det Xy, |vo = fjl/,
nXxn

L= Lo |t X fro = (X |det X oo+ | dt X

;CX]. 140

_ 0
=h; SSELXJO vo + f;

completing the proof. [

9. Scaling and real analyticity: the proof of Theorem In this section,
we prove Theorem Fix a compact set I € 2. The idea is that, if m is chosen
sufficiently large (depending on K and Vi,...,V}), then a proof similar to that of
Theorem [5.7] will work uniformly for x € K with the manifold M from Theorem
replaced by L,. As in Theorem throughout this section we use A < B to denote
A < CB where C can be chosen independent of z € K and § € (0, 1].

We first show how the appropriate conditions hold uniformly, which uses the
Weierstrass preparation theorem. This is based on an idea of Lobry [Lob?OJE (see
also [Sus73, p. 188]), and was used in a similar context in [SS12] and [Str14 Section
2.15.5].

We take the same setting and notation as in Theorem Thus, we have real
analytic vector fields V7,...,V, on an open set  C R™. We assign to each Vp,...,V,
the formal degree 1. If Z has formal degree e, we assign to [V}, Z] the formal degree
e+ 1. We let S denote the (infinite) set of all such vector fields with formal degrees;
thus each (X, e) € S is a pair of a real analytic vector field X and e € N, where X is
an iterated commutator of Vy,...,V,.

An important ingredient is the next proposition:

PROPOSITION 9.1. Fiz x € Q. Then, there exists an open neighborhood U, C ) of
x and my € N such that the following holds. Let m > my, and let (X1,d1),. .., (Xq,dg)
be an enumeration of those elements (Z,e) € S with e < m. Then there exist real
analytic functions 63? € C¥(U,) with

Al
(X, Xy] = g ;X1 on Us.
di<dj+dy

We turn to the proof of Proposition In the next few results, we (without loss
of generality) relabel the fixed point x € Q from Proposition to be 0. Thus, we
work near the point 0 € R”. We write f : R — R™ to denote that f is a germ of a
function defined near 0 € R™. Let

A, ={f: Ry =R | f is real analytic},
15 Lemmas and re classical, and it was Lobry [Lob70| who first used them to prove a result

similar to Proposition Unfortunately, there is a slight error in [LobT70]; see [Ste80]. Below, we
begin with a finite collection of vector fields Vi, ..., V;, which allows us to avoid this issue.
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A= {f: Ry = R™ | [ is real analytic}.

Notice that A" can be identified with the m-fold Cartesian product of A, ; justifying
our notation. A7 can also be identified with the space of germs of real analytic vector
fields near 0 € R™.

LEMMA 9.2. The ring A,, is Noetherian.

Comments on the proof. This is a simple consequence of the Weierstrass preparation
theorem. See page 148 of [ZST75]. The proof in [ZST75| is for the formal power series
ring, however, as mentioned on page 130 of [ZS75], the proof also works for the ring of
convergent power series. This is exactly the ring A,,. O

LEMMA 9.3. The module A" is a Noetherian A, module.

Comments on the proof. 1t is a standard fact that for any Noetherian ring R, the
R-module R™ is Noetherian. O

LEMMA 9.4. Let S C A x N. Then, there exists a finite subset F C S such that
for every (g,e) € S,

with cp g € Ay.

Proof. Define a map ¢ : A? x N — A?_ | by «(f,d) = t*f(z), where t € R,

n

x € R". Let M be the submodule of A}, | generated by +S. M is finitely generated
by Lemma Let F C S be a finite subset so that ¢ F generates M. We will show
that F satisfies the conclusions of the lemma.

Let (g,e) € S. Since t°g € M, we have

teg(l‘) = Z é(f’d) (t,x)tdf(x), é(f’d) € Ant1,
(f,d)eF

on a neighborhood of (0,0) € R x R™. Applying 9y
é@f‘tzotdc(f’d) (t,z) =0 if d > e, we have

‘ 1o to both sides and using that

1.
s = ¥ [l et o).
(fzid<)ef '

The result follows. O

We return to the setting at the start of this section. We let S denote the smallest
collection of vector fields paired with formal degrees such that:
e (V,1),...,(V,,1) € 8.
o If (Y,d),(Z,e) €S, then ([Y, Z],d +¢) € S.
Note that S and S (where S is defined at the start of this section) are closely related.
Indeed, S C 8, and if (Z,¢) € S then Z is a finite linear combination (with constant
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coefficients) of vector fields Z’ such that (Z’,e) € S (this follows from the Jacobi
identity).

LEMMA 9.5. Fizx € Q. There exists a finite set F,, C S and an open neighborhood
U, € Q of x such that for every (X,d) € S,

_ JZ) (Z0) _
X= ) cxaZ cxa€CUs).
(Z,e)eFy
e<d

Proof. In this proof we relabel x to be 0. We apply Lemma to S to obtain a
finite set F C S as in that lemma. Thus, every element (X, d) € S can be written in
the form:

_ e (Ze)
X= Y ¥9Z i €A
(Z,e)GJ:
e<d
Since every vector field appearing in S is a finite linear combination (with constant
coefficients) of vector fields with the same degree in S, there is a finite set /3 C S
such that every element (X,d) € S can be written in the form:

o (Z e) (Ze
X = E cxa? X € An- (9.1)
(Z»G)fl]ﬁ
e<

The problem is that, a priori, the neighborhood of 0 on which cE % d e)) are defined might

depend on (X, d). Our goal is to find a common neighborhood of 0 which works for
all (X,d) € S.

Let m := max{d : 3(X,d) € F1} and set F := {(X,d) € S : d < m}. Note that
F C S is a finite set and F; C F. Furthermore, holds with /7 replaced by F
(since Fy C F). For each (X1,dy), (X, dy) € F, ([X1, Xa],dy 4+ d3) € S and therefore
holds with (X, d) replaced by ([X1, X2|,d; + d2) and F; replaced by F. Since
there are only finitely many such vector fields, there is a common neighborhood U; of
0 such that for each (X1,dy), (X2,d2) € F we may write

(Z,e (Z,e) w
X17X2 Z b(X1,d1 (X27d2) b(X17d1)7(X27d2) € ClOC(Ul)' (92)
(Z,e)eF
e<dj+dz

We claim, V(X,d) € S,

Z C X d) Ef{fj) € Cloc(Ul) (93)
(Z,e)eF

e<d
We prove by induction on d. Since (V,1),...,(V,,1) € F, the base case, d = 1,
is clear. Let dop > 2; we assume the result for all d < dy and prove the result for
do. If (X, do) € S with d() Z 2, then X = [Xl,XQ] where (Xl,dl), (Xg,dg) € S with
dy + dy = dy. In particular, di,ds < dy and so by the inductive hypothesis we may
write for j = 1,2,

— (Z e) (Z,e) w
Xj= Z CXpd L C(Xpdy) € Cloc(Un).
(Z,e)eF
e<d;
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Thus, we have, using ((9.2)),

_ _ (Z1,e1) (Z2,e2)
X =X, K] = Z C(ledl)Zl’ Z C(Xzz,d22)Z2
(Z1,e1)EF (Za2,e2)EF
e1<d; ex<ds

_ (Z2,e2) (Z1,e1) (Z1,e1) (Z2,e2)

= Z Z ((Zlc<x1,d2>)z2 - (ZQC(Xll,dll))Zl + X ) C ) [ 415 ZQ])
Z1,e F (Zz,e F
VLT 2,

-y ¥ (Zlcgfg’j;))zz - (chgf;l ’;13))21

(Zl,el)G]: (22,82)6]:

e1<dy ex<d2
(Z1,e1) (Z2,e2) (Z3,e3)
e ) D Bz (zaen) D
(Z3,e3)eF
ez<ei1+ez
Since (51 clZ2e2) plZoes) Ci.(Uh), V(2 Z Z F. (93
mce C(Xl,dl)’c(Xg,dz)’ (Z1,e1),(Z2,e2) S loc( 1)7 ( lael)a( 2762)7( 3763) € ) ‘ . )

follows for (X,d), completing the proof of (9.3). Taking F, := F and U € U; a
relatively compact open set containing 0 = z, the result follows. O

Proof of Proposition[9.1] Let F,, C S and U, C Q be as in Lemma[0.5] Set m, :=
max{e : 3(Z,e) € F,}. For m > my let (X1,d1),..., (X4, dq) be an enumeration of
those elements (Z,e) € S with e < m. Since F, C {(X1,d1),...,(Xq,dg)} and for
each 1, j, ([X;, X;],d; + d;) € 3\’ the result follows from Lemma d

LEMMA 9.6. There exists m = m(K) € N such that the following holds. Let
(X1,d1),...,(Xq,dy) be the list of vector fields with formal degrees < m as defined at
the start of this section. Then, there exists & € (0,1], s > 0 such that Vz € I,

(X5, Xkl = > &iX, e Y (Bx(x,9)), (9.4)
dy<d;+dg

where X denotes the list of vector fields X1,...,X,. Furthermore,
sup Hcl"flﬁc”C“"”(BX(xf)) < oo.
zel 7 X l

Finally, ), ¢ Bx (x,§) € Q.

Proof. For each x € Q, let m; € N and U, € € be as in Proposition Fix an
open set Q' with £ € Q' € Q, and set K1 := Q' € Q. {U, : x € K1} is an open cover for
K1 and we extract a finite sub-cover U,,,...,U;,. Set m := max{m,, : 1 <k < R}
and let (X1,d1),...,(Xg,dq) € S be an enumeration of all the vector fields in S with
degree d; < m.

We claim that there exists £ € (0, 1] such that Vo € K, 3k € {1,..., R} with
Bx (z,£) C Uy, . Consider the list of vector fields W = X,..., X, 8%1, cee %. By
the Phragmen-Lindelof principle, we may take &’ > 0 so small By (z,£') C Q' C Ky,
for all x € K. The balls By (x,0) are metric balls and the topology induced by these
balls on Q is the usual topology. Let £ € (0,£'] be less than or equal to the Lebesgue
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number for the cover U,,,...,U,, of Ky, with respect to the metric associated to
the balls By (z,d). Then, Vz € K, 3k € {1,...,R} with Bx(z,§) C Bw(xz,§) =
Bw (z,&) N Ky C Uy, as desired. Also, J,cx Bx(2,8) C Uz, U---UU,, € Q.

Let éé”,i be the functions from Proposition (with this choice of m). Take s1 > 0
so that ¥r € {1,..., R}, &7 € C«=1(U,,).

Take z € K and 1 < r < R so that Bx(z,£) C U,,_. Set céz = él»"zT|Bx(w o
By Proposition there exists s ~ 1 with cég,i € CY°(Bx(z,8)) C CY°(U,,) C
C¥*1(Uy,.) and

I, J, o, J,
les il s (Bx@en SN Nowsw,,) S NG lowsiw,,) < IQTEECR||Cj,zr\|0“*sl(Ux,.> SL

By the definition of céz, we have [X;, Xi] =3, cé.”}in, for x € Bx(z, &), completing
the proof. O

Let m, c;’:,z, ¢, s, and (X3,d1),...,(X,,d,) be as in Lemma We will prove
Theorem with this choice of m. For ¢ € (0, 1], set XJ‘-s := 0% X, let X% denote the

list Xf,...,Xg, and set

djtdy—dy Lz
R gtitdr=dict, if dj +dy > dy,
Ik 0, otherwise.

LEMMA 9.7. [X9,X]] = Y0, &57° XP on Bys(2,€) and

. l,z,0
sup €k
zeK,6€(0,1]

C23 (Bys (2,6))

Proof. This follows immediately from Lemma by multiplying (9.4) by 6%+
and tracing through the definitions. O

We pick j1 = j1(2,9), ..., Jno(x) = Jno(x)(,0) as in Section and we set
Jo = Jo(x,0) := (j1(2,0), .. jne(a) (%, 6)) € L(no(x),q)) € L(no(x), q)-
[ : & 3
Let X5 denote the list le(w’(;), e ’Xjn,()(m)(w,é)'

LEMMA 9.8. The conditions Theorem hold uniformly when applied to
Xf,...7X§, at the base point x, for x € K and § € (0,1]. Here we take & and
Jo = Jo(x,0) as defined above. The corresponding map ® from Theorem is the
map ® 5 defined in . In particular, any constant which is admissible in the sense

of Theorem can be taken independent of x € K and ¢ € (0,1], when applied to
X90,... ,Xg at the base point x.

Proof. We use £ > 0 and c;’,z"s from Lemma The existence of dg, independent
of z € K and § € (0,1], as in the hypotheses o eorem follows directly from
Lemma The existence of n > 0, independent of z € K and ¢ € (0, 1], such that
X9 satisfies C(x,n,Q), YV € K also follows from Lemma With Jy as above, we
may take ¢ &= 1 in Theorem [3.10, By Lemma [4.3| and Lemma we have

l,x,0 < l,x,0
Sup cj,k g @omin{sn€} — sup Cj,k
z€K,6€(0,1] X9 zek,6€(0,1]
Jo(z,6)

) < 0.
CU5 (Bys (2,6))
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Thus, we use min{s, 7, ¢} in place of 7 in the hypotheses of Theorem The result
follows. O

Lemmashows that Theorem applies to X?¢, . .. ,Xg at the base point x € IC,
to yield constants x,n1,&1,& > 0 as in that theorem (with 0 < & < & < x < &),
which are independent of z € K and ¢ € (0, 1].

Proof of Theorem This follows directly from Theorem and
o

Proof of Theorem By Theoremwe have Bxs(z,£2) C @, 5(B™(m)) C
Bxs(x,€). Taking & = &2, we have B(x q)(%,&00) € Bys(z,§2) and since { < 1
Bxs(x,§) € Bxs(x,1) = B(x,q)(x,9), completing the proof of d

REMARK 9.9. In the proof of Theorem we chose &g so that Bx q4y(7,&0d) C
Bys(z,€&2).

Proof of Theorem |5.4 This is contained in Theorem [(d)] and

except that Theorem [3.10] only guarantees that ®, s is a C? diffeomorphism, not
a real analytic diffeomorphism. However, using (which we have already proved),
Yo, , Y= form a real analytic spanning set for T, B"(®) (n;) (Vu € B"@) (1,)).
Since (CDI’(;)*Y].””"; = 6dej where Xi,...,X, are real analytic on L., Lemma |7.25
shows @, 5 is real analytic. O

)

LEMMA 9.10. There exists r > 0, independent of x € KC, 6 € (0,1], and functions
flz’é (1 <1 <mng(x)) such that Vz € K, § € (0,1],

‘CX‘.S( G lw’gyfra 1 <1 <ng(x),
iy (=,

where flgc’5 € Ay NC(Bys (x,x)) with

Jo(z,8) Jo(z,9)

5 5
Tl PN
Jo(,5)

e @xn S 1<1<no(x).
Jo(x,8)

Proof. 1t is immediate to verify that the hypotheses of Proposition [8.2] when
applied to the vector fields X, hold uniformly for z € K, § € (0, 1]. Thus, E-admissible
constants in that theorem can be chosen independent of z € K, ¢ € (0, 1]. Because of
this, the lemma is an immediate consequence of Proposition [8:2] O

In light of Lemma[9.10} the assumptions of Theorem [3:14 and Corollary hold,
when applied to the vector fields X? and the density v, at the base point z, uniformly
for x € K and 6 € (0,1]. Thus, any constant which is v-admissible (or 0; v-admissible)
in the sense of those results can be chosen independent of x € K, 6 € (0,1].

Since v, is the induced Lebesgue density on an ng(x)-dimensional injectively
immersed submanifold of RV, we have

Va(ZL N N Zpg(z) = det  (Z1] | Zng(a)) | (9.5)
no(z)xXno(z)

where Z1, ..., Zy, () are vector fields tangent to L, and (Z1]---|Z,,(s)) denotes the
N x ng(x) matrix with columns given by Zi,..., Z,(4).-

Proof of Theorem This follows from Theorem and Corollary [3.15],
using (9.5)). O
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Proof of Theorem By Remark Corollary and (9.5), we have for
0 € (0,1],

Ve (Bx,a)(,800)) < va(Bxs(7,&2))

d
max Ve (051 Xy, 6% o) Xy,

k1yekng (@) €{1:--,q} mo(=)

(9.6)
det 67X (z)

no(z)Xno(x)

det  (£0)"X(x)|

no (@) xmo ()

Q

~
~

oo oo

where the last &~ follows immediately from the formula for ]detno(w)xno(m) 51X (J;)|oo
and the fact that & ~ 1.

Similarly, since £, < 1, we have by Corollary and (9.5]),

Vo (B(x,a)(%,0)) = vo(Bxs (z,82))

d
~ max Vm(édlekl,...,(S Fno(e) X,

ki, kng () €{1,.,a} ro(®

(9.7)

Q

det 69X (z)

no () X0 (%) o

Combining and completes the proof. O

Proof of Theorem This follows immediately from the formula given in
Theorem a

9.1. Multi-parameter geometries. The results in Section [5.1.2| concerned
single-parameter sub-Riemannian geometries. Theorem can be generalized to the
setting of multi-parameter geometries with essentially the same proof. We outline
these ideas in this section. Such multi-parameter geometries arise in applications: see
[SS12], [Str1d].

Let Vi,...,V, be real analytic vector fields defined on an open set 2 C R™. Fix
v € N and to each V; assign a formal degree 0 # e; € N”. If Z has formal degree
e € N, we assign to [V}, Z] the formal degree e + e;. Fix m € N a large integer and
let (X1,d1),...,(Xq, dq) denote the finite list of vector fields with v-parameter formal
degree d; € N” with |dj|s < m. The results which follow are essentially independent
of m, so long as m is chosen sufficiently large (depending on (V1,e1),...,(V;, e.) and
K). For § € (0,1]*, we let 62X denote the list of vector fields 6% X1, ..., 5% X,. We
sometimes identify 6?X with the n x ¢ matrix (09 X;|---|6%X,). As before, we set
Bx,a)(x,0) := Bsax(x,1), though now § € (0, 1]".

As in Section the involutive distribution generated by Vi, ..., V, foliates
Q into leaves, and we let L, denote the leaf passing through z, and v, the induced
Lebesgue density on L. B(x,q)(,6) is an open subset of L.

For each z € Q set ng(z) := dimspan{X;(z),...,X4(z)}. For each z € Q,
6 € (0,1)%, pick j1 = j1(z,9),... s Ino(z) = Jno(x) (x,6) so that

det (5dj1 X]l (x)l T |5djn0(1) Xjno(z) ((E)) ‘ N

no(z)Xno(x)

det 5dX‘ .

no(x)xno(x)

For this choice of ji = j1(2,6), ..., Jng(x) = Jno(z)(T,0) set (writing ng for ng(x)):

(I)myg(tl, N ,tno) = exp(tlédjl le + -+ tnoédjno Xjn(,)‘r'
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THEOREM 9.11. Fiz a compact set K € Q and x € IC, take m sufficiently large
(depending on K and (Vi,e1),...,(Ve,e.)), and define (X1,d1),...,(Xy,dq) as above.
Define no(x), vy, and @4 5(t1, ..., tn,) as above. We write A S B for A < CB where
C' is a positive constant which may depend on IC, but does not depend on the particular
points © € K and u € R™ @) under consideration, or on the scale § € (0,1]%; we write
A~ B for AS B and B < A. There exist g, &0 ~ 1 such that Va € K,

(i) Va(B(x.a)(x,0)) & |dety,(2)xno(x) 07X (2)| _, V6 € (0,1]%, [8] < &.

(“) VI(B(X,d)(x’Q(S)) 5 Vw(B(X,d)(xv(s)); Vo € (07 1]u, |5| < £0/2'

(iii) V5 € (0,17, @y 5(B™@) (1,)) C L, is open and @, 5 : B" (1) — ®u.5(B™(1m1))
is a real analytic diffeomorphism.

(iv) For § € (0,1]", define hy s(t) on B”O(m)(m) by hysoren, = P} svz. Then,
hes(t) = }detno(w)Xno(I) 5dX(x)|oo, Yt € B™®)(n,), and there exists s ~ 1
with [[ha sl gnows S |detng ()xno () 07X ()] -

(v) Bix,a)(x,&00) € @p5(B™@ (1)) C Bix,a)(x,6), V6 € (0,1]".

(vi) For§ € (0,1)V, x € K, let ij,& = @;’55d-fXj, so that Yf’é s a real analytic
vector field on B™®) (1;). We have

5 .
||ngc7 ||g{”ro(m),m (R™) Sz 1, 1<j<q

Finally, Yf"s(u), .. 7qu”"s(u) span T, B™®) (), uniformly in x, §, and u, in
the sense that

max inf
kiyeoskng(2)€{1--,q} u€B™0(®) (ny)

det (Y,g;‘S ()] - [V (u))‘ ~ 1.

ng(e)

Comments on the proof. The proof is nearly identical to the proof of Theorem [5.4}
anywhere in the proof where one writes d < e, where now d,e € N, the inequality
means d, < e,, V1 < p < v. A main change needed is that the set S consists of
vector fields paired with formal degrees in N”, instead of formal degrees in N. To deal
with this one needs to generalize Lemma to deal with & C A} x N¥; the same
proof works by treating ¢t € R” and using each degree as a multi-index. With these
modifications it is straightforward to adapt the proof to yield this more general result.
We leave the details to the interested reader. O
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