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BUBBLE TREE CONVERGENCE OF CONFORMALLY CROSS
PRODUCT PRESERVING MAPS∗

DA RONG CHENG† , SPIRO KARIGIANNIS‡ , AND JESSE MADNICK§

Abstract. We study a class of weakly conformal 3-harmonic maps, called associative Smith
maps, from 3-manifolds into 7-manifolds that parametrize associative 3-folds in Riemannian 7-
manifolds equipped with G2-structures. Associative Smith maps are solutions of a conformally
invariant nonlinear first order PDE system, called the Smith equation, that may be viewed as a
G2-analogue of the Cauchy–Riemann system for J-holomorphic curves.

In this paper, we show that associative Smith maps enjoy many of the same analytic properties
as J-holomorphic curves in symplectic geometry. In particular, we prove: (i) an interior regularity
theorem, (ii) a removable singularity result, (iii) an energy gap result, and (iv) a mean-value inequal-
ity. While our approach is informed by the holomorphic curve case, a number of nontrivial extensions
are involved, primarily due to the degeneracy of the Smith equation.

At the heart of above results is an ε-regularity theorem that gives quantitative C1,β-regularity
of W 1,3 associative Smith maps under a smallness assumption on the 3-energy. The proof combines
previous work on weakly 3-harmonic maps and the observation that the associative Smith equation
demonstrates a certain “compensation phenomenon” that shows up in many other geometric PDEs.

Combining these analytical properties and the conformal invariance of the Smith equation, we
explain how sequences of associative Smith maps with bounded 3-energy may be conformally rescaled
to yield bubble trees of such maps. When the G2-structure is closed, we prove that both the 3-energy
and the homotopy are preserved in the bubble tree limit. This result may be regarded as an associative
analogue of part of Gromov’s Compactness Theorem in symplectic geometry.
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1. Introduction.

1.1. Motivation. In symplectic geometry, moduli spaces of holomorphic curves
play an important role [20, 35]. Starting with a symplectic manifold (M,ω), one
chooses an almost complex structure JM that is compatible with ω in some sense.
A map u : (Σ, JΣ) → (M,ω, JM ) from a Riemann surface (Σ, JΣ) is then called a
(JΣ, JM )-holomorphic map (or simply a holomorphic curve) if it solves the Cauchy–
Riemann system

JM ◦ du = du ◦ JΣ. (1)

Various moduli spaces of solutions to (1) can then be studied. A priori, these mod-
uli spaces are almost never compact, largely due to their conformal invariance (see
property (i) below); their compactifications are described by Gromov’s Compactness
Theorem. From the compactified moduli spaces, one can derive powerful invariants
of the original symplectic manifold (M,ω), independent of the original choice of JM .
Here we emphasize that in its full generality, Gromov’s Compactness Theorem allows
the complex structure JΣ to vary in such way that the Riemann surface (Σ, JΣ) de-
generates. However, for the purposes of the present paper we are primarily interested
in the case where JΣ is fixed.
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Underpinning Gromov’s Compactness Theorem in this case are a litany of crucial
algebraic and analytic properties enjoyed by solutions of the Cauchy–Riemann sys-
tem (1). To recall these, let u : Σ2 → M2n be a smooth map, and equip both (Σ, JΣ)
and (M,JM , ω) with compatible Riemannian metrics. Define the 2-energy of u on a
measurable set A ⊂ Σ by

E(u;A) =
1

2

ˆ
A

|du|2 volΣ

where volΣ is the volume form on Σ, and write ∂u := 1
2 (du+ JM ◦ du ◦ JΣ). Then

we have
(i) (Conformal Invariance.) If u satisfies (1) and f : Σ → Σ is a conformal diffeo-

morphism, then u ◦ f satisfies (1).
(ii) (Weak Conformality.) Every solution of (1) is weakly conformal.
(iii) (Calibrated Image.) If u is an immersion satisfying (1), then u(Σ) ⊂ M is

calibrated by ω.
(iv) (Energy Identity.) Every smooth map u : Σ → M satisfies 1

2 |du|2 volΣ =

|∂u|2 volΣ + u∗ω. Therefore

E(u; Σ) =

ˆ
Σ

|∂u|2 volΣ +

ˆ
Σ

u∗ω.

In particular, E(u; Σ) ≥
´
Σ
u∗ω, with equality if and only if ∂u = 0. Thus,

by Stokes’s theorem, holomorphic curves minimize 2-energy in their homology
class. Moreover, if ∂Σ = Ø, then the minimum 2-energy attained is

´
Σ
u∗ω =

[ω] · u∗[Σ], which depends only on the topological data [ω] ∈ H2(M ;R) and
u∗[Σ] ∈ H2(M ;R).

Note that Properties (i)–(iv) may all be proved using linear algebra. Significantly
less trivial are the following five analytic properties of holomorphic curves. In the
sequel, we let B(r) ⊂ R2 denote the open ball of radius r > 0 centered at the origin.
(v) (Mean value inequality.) There exist constants C, ε0 > 0 such that every holo-

morphic curve u : B(2r) → M with E(u;B(2r)) < ε0 satisfies

sup
B(r)

|du|2 ≤ C

r2
E(u;B(2r)).

(vi) (Interior Regularity.) If u ∈ W 1,2(Σ;M) satisfies (1) almost everywhere, then u
is C∞.

(vii) (Removable Singularities.) If u : B(1)\{0} → M is a smooth holomorphic curve
with

E(u;B(1) \ {0}) < ∞,

then u extends to a smooth holomorphic curve u : B(1) → M .
(viii) (Energy Gap.) There exists a constant ε0 > 0 such that every holomorphic curve

u : S2 → M with E(u;S2) < ε0 is constant.
(ix) (Compactness Modulo Bubbling.) Let un : (Σ, JΣ) → (M,JM ) be a sequence of

holomorphic curves with E(un; Σ) ≤ C. Then there exists a holomorphic curve
u∞ : Σ → M and a (possibly empty) finite set S = {x1, . . . , xq} ⊂ Σ such that,
after passing to a subsequence of {un}:
(a) We have un → u∞ in C1

loc on Σ \ S.
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(b) We have |dun|2 dμ → |du∞|2 dμ +
∑q

i=1 miδ(xi) as Radon measures on Σ,
where δ(xi) is the Dirac delta measure at xi. Also, each mi ≥ 1

2ε0 with ε0
as in (viii).

(c) If ‖dun‖Lp ≤ C for some p ∈ (2,∞], then S = ∅.
Note that by (iv), any sequence of holomorphic curves representing the same homology
class will satisfy a uniform 2-energy bound, and hence property (ix) may be applied
to such a sequence. For a more detailed discussion of (i)–(ix), we refer the reader
to [35, 40, 53].

In fact, several important conformally-invariant geometric PDE systems, such as
the Yang–Mills equation on 4-manifolds [7, 13] and the harmonic map equation on
surfaces [39], satisfy analogues of properties (i)–(ix) with respect to an appropriate
conformally invariant energy functional. In each of these cases, properties (i)–(ix)
can be used to construct “bubble trees” of such objects, which may be regarded as
comprising the boundary of the corresponding compactified moduli space. In favorable
cases, such as that of holomorphic curves [40] or harmonic maps from surfaces [39], the
bubble tree enjoys two additional properties, which can be loosely stated as follows:
(x) The 2-energy is preserved in the bubble tree limit.
(xi) The bubble tree has no necks. Consequently, homotopy is preserved in the

bubble tree limit.
Precise statements of (x) and (xi) may be found in [35, 40, 53].

In this paper, we demonstrate that analogues of Properties (i)–(xi)
hold for a class of weakly conformal maps that parametrize associative 3-
folds in Riemannian 7-manifolds equipped G2-structures. We are motivated
in part by the larger project of “counting” associative submanifolds in order to obtain
invariants of G2-manifolds, which we briefly discuss.

Recall that a G2-structure on a 7-manifold M is a G2-subbundle of the frame
bundle of M . Equivalently, it is a choice of a 3-form ϕ ∈ Ω3(M) with the property
that the bilinear form

Bϕ ∈ Γ(Sym2(T ∗M)⊗ Λ7(T ∗M))

given by Bϕ(X,Y ) = ιXϕ ∧ ιY ϕ ∧ ϕ is definite. Since G2 ≤ SO(7), a G2-structure
on M naturally induces a Riemannian metric hϕ on M , although the correspondence
ϕ �→ hϕ is not injective.

Two classes of submanifolds are of particular interest in G2 geometry: the asso-
ciative 3-folds, which are semi-calibrated by ϕ, and the coassociative 4-folds, which
are semi-calibrated by ∗ϕ. It is often useful to regard associative 3-folds and coas-
sociative 4-folds, respectively, as G2 analogues of holomorphic curves and special
Lagrangian submanifolds. One may also consider gauge-theoretic objects on (bundles
over) 7-manifolds with G2-structures, such as G2-monopoles and G2-instantons, by
analogy with familiar objects in 3 dimensions and 4 dimensions. For background on
G2 geometry, we refer the reader to [28].

In [9, §3], Donaldson–Thomas described an analogy between G2-instantons on 7-
manifolds and flat connections on 3-manifolds, suggesting that G2-instantons may be
used to define 7-dimensional analogues of the Casson invariant and Floer homology.
Then, Tian [47] showed that sequences of G2-instantons may bubble along associative
submanifolds, complicating the compactification of the moduli space. To account for
this, Donaldson–Segal [8, §6.2] conjectured that a count of G2-instantons, appropri-
ately weighted by a count of associative submanifolds, ought to yield a deformation
invariant of G2-manifolds.
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In [25] and [24], Haydys and Walpuski suggested that these weights might be
described by considering generalized Seiberg–Witten monopoles on the associatives.
Doan–Walpuski [6] explored this idea further, describing a Floer homology group
generated by both associatives and ADHM Seiberg–Witten monopoles that could lead
to a deformation invariant. A rather different perspective is offered by Joyce in [29],
who puts forth a conjectural notion of G2 quantum cohomology. (Some other earlier
work on the analysis of counting associative submanifolds in a particular special case
(“thin”) was done by Leung–Wang–Zhu [32, 33].)

One of the main challenges confronting each of these proposed deformation invari-
ants is that 1-parameter families of associative immersions may degenerate to a map
of the form u ◦ π, where u : Σ3 → M7 is an associative immersion and π : Σ̃3 → Σ3

is a branched cover. Thus, we are led to seek a class of maps whose immersions
parametrize associative submanifolds, but is sufficiently large to allow for nonempty
critical loci.

Indeed, in [33, page 90, item (i)], Leung–Wang–Zhu point out that the confor-
mality of the Cauchy–Riemann equation plays a key role for holomorphic curves, and
suggest that an analogous conformally invariant PDE system for associative subman-
ifolds would be desirable.

This is where the work of Smith [45] enters the picture. In his 2011 PhD thesis,
Smith introduced a class of maps that generalize holomorphic maps of Riemann sur-
faces into almost Hermitian manifolds. Namely, a map u : (Σn, g, PΣ) → (Mm, h, PM )
between Riemannian manifolds (Σn, g) and (Mm, h) endowed with compatible k-fold
vector cross products PΣ : Γ(ΛkTΣ) → Γ(TΣ) and PM : Γ(ΛkTM) → Γ(TM) is said
to be k-Smith (or Smith when k is clear from context) if du preserves the vector cross
products up to a scale factor λ = λ(du) depending only on du. That is,

PM ◦ Λkdu = λ(du) du ◦ PΣ. (2)

Equation (2) is henceforth referred to as the Smith equation. In brief, Smith maps
are “conformally cross product preserving”. Smith’s original terminology [45] for such
maps was “multiholomorphic”, which we do not use.

Vector cross products are rather special geometric structures. Indeed, a k-fold
vector cross product P : Γ(ΛkTX) → Γ(TX) on a Riemannian manifold (X, g) induces
a semi-calibration α ∈ Ωk+1(X) by raising an index:

α(v1, . . . , vk+1) = g(P (v1, . . . , vk), vk+1). (3)

Moreover, by the work of Brown–Gray [3], k-fold vector cross products are classified
into four families, and each is equivalent to particular reduction of the structure group
of X. We summarize their classification in the following table:

k dim(X) Equivalent Structure
k k + 1 Orientation
1 2r Almost Hermitian Structure
2 7 G2-Structure
3 8 Spin(7)-Structure

In particular, 2-fold vector cross products can only occur in dimensions 3 and 7, while
3-fold vector cross products can only occur in dimensions 4 and 8.

Smith primarily considered (as do we) the case in which the domain Σn and
target Mm carry (n−1)-fold vector cross products. In that case, it can be shown that
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nonconstant solutions of (2) must satisfy λ(du) = 1
(
√
n)n−2 |du|n−2, so that (2) reads

PM ◦ Λn−1du =
1

(
√
n)n−2

|du|n−2 du ◦ PΣ. (4)

In particular, when n = 2, equation (4) is the Cauchy–Riemann system (1) for holo-
morphic curves.

Note that (4) is a nonlinear first order PDE system involving m equations on
m unknown functions of n variables. When n = 2, the system is elliptic, but when
n > 2, it degenerates at points of the critical set

critu = {x ∈ Σ | (du)x = 0}.
Smith proved [45] that solutions of (4) satisfy the analogues of properties (i)–

(iv). To state his result, let α ∈ Ωn(M) denote the semi-calibration induced by PM

as in (3), and denote the n-energy of a map u ∈ W 1,n(Σ;M) on a measurable set
A ⊂ Σ by

E(u;A) =
1

(
√
n)n

ˆ
A

|du|n volΣ.

Theorem 1.1 (Smith [45]). Let u : Σn → Mm be a smooth map, where n < m.
(i) If u satisfies (4) and f : Σ → Σ is a conformal diffeomorphism, then u ◦ f

satisfies (4).
(ii) Every solution of (4) is weakly conformal.
(iii) If u is an immersion satisfying (4), then u(Σ) ⊂ M is semi-calibrated by α.
(iv) We have

E(u; Σ) ≥
ˆ
Σ

u∗α.

Moreover, equality holds if and only if u satisfies (4). Thus, if dα = 0, then
Smith maps minimize n-energy in their homology class. If, in addition, ∂Σ =
∅, then the minimum n-energy attained can simply be expressed as

´
Σ
u∗α =

[α] · u∗[Σ], which depends only on topological data.

Our interest is in the exceptional cases (n,m) = (3, 7) and (n,m) = (4, 8). We
shall refer to 2-Smith maps from a 3-manifold into a 7-manifold as associative Smith
maps, and refer to 3-Smith maps from a 4-manifold into an 8-manifold as Cayley
Smith maps. The corresponding cases of (4) are called the associative Smith equation
and Cayley Smith equation, respectively.

In light of Smith’s result, it is natural to ask whether analogues of (v)–(xi) for
holomorphic curves also hold true for associative and Cayley Smith maps. The pur-
pose of the present paper is to establish all seven of these properties. In
this present paper, our main focus is on the associative Smith equation, although
analogous results hold for the Cayley Smith equation.

Remark 1.2. Smith’s theorem indicates that solutions of (4) are attractive
parametrizations of calibrated submanifolds. Fortunately, associative (respectively,
Cayley) Smith maps are at least as abundant as associative (respectively, Cayley)
submanifolds. Indeed, given an associative immersion u : Σ3 → (M7, h) into a 7-
manifold M with a G2-structure and a smooth function F : Σ → R, equipping the
domain Σ with the Riemannian metric g = eFu∗h makes u into an associative Smith
map.
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1.2. Methods and main results.

Methods. We emphasize that many of the techniques used in establishing prop-
erties of holomorphic curves (n = 2) do not carry over mutatis mutandis to our
situation (n = 3 or 4). This is primarily due to the following two reasons, which are
themselves related:

(i) The second order elliptic system obtained by differentiating (4) is of “n-harmonic
type” and thus degenerate when n �= 2, as opposed to being uniformly elliptic
when n = 2. Consequently, the methods used in proving regularity and com-
pactness results for holomorphic curves do not directly apply to our case.

(ii) Solutions to (4) for n �= 2 need not be “immersions except for a discrete set” as
they are when n = 2. In fact, it is not known whether a unique continuation
theorem holds when n �= 2 (see [35, Theorem 2.3.2] for the case n = 2). Thus,
in extending properties (x) and (xi), one runs into complications when trying
to apply results about minimal submanifolds that prove useful in the study of
holomorphic curves, such as the isoperimetric inequality or the monotonicity
formula.

Of the two issues above, the second is less of a problem as we simply avoid it
by working directly with the n-energy of our maps, as in [35], instead of applying
minimal surface results (or more generally geometric measure theory) to their images,
as in [40]. The reader interested in the distinction between these two approaches is
suggested to compare, for example, [35, Theorem 4.4.1(i)] and [40, Lemma 3.1].

As for the first issue, one expects previous work on n-harmonic maps to help in
dealing with the degeneracy of the equation, and indeed we are aided greatly by the
results of Uhlenbeck [49], Giaquinta–Modica [17], Duzaar–Fuchs [10] and Duzaar–
Mingione [11]. However, there is one crucial aspect that existing literature on n-
harmonic maps does not fully cover, namely the continuity of W 1,n-weak solutions
(on n-dimensional domains), which has only been established in full generality for the
case n = 2 [26]. Analogous results for n �= 2 all require additional assumptions (see
for example [22, 46, 48]) that do not generally fit with our setting. This is where
the special structure of the Smith equation (4) comes in. Specifically, we are able to
show that equation (4) demonstrates a “compensation phenomenon” which has been
observed in many other geometric PDEs, including n-harmonic maps into special
targets. See §4.2, in particular Remarks 4.2 and 4.5, for details. Finally, we point out
that results on minimizers of the n-energy, such as those obtained by Hardt–Lin [22],
do not apply to our situation, as Smith maps are only minimizing within a fixed
homology class.

Main results. We summarize the main results of the paper. In this section, the
statements of the theorems are slightly simplified from their precise forms.

Let (Σ3, g, ∗) denote an oriented Riemannian 3-manifold equipped with the 2-fold
vector cross product ∗ = PΣ : Γ(Λ2TΣ) → Γ(TΣ) given by the Hodge operator.

Let (M7, h, J) denote a closed oriented Riemannian 7-manifold equipped with a
2-fold vector cross product J = PM : Γ(Λ2TM) → Γ(TM). Note that the data (h, J)
induces a definite 3-form ϕ ∈ Ω3(M), and hence a G2-structure on M , by raising an
index:

ϕ(x, y, z) = h(J(x, y), z).

For the moment, we do not assume that ϕ is closed or coclosed.

For technical convenience, we isometrically embed M in a Euclidean space Rd.
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The Sobolev space W 1,p(Σ;M) is then by definition

W 1,p(Σ;M) = {u ∈ W 1,p(Σ;Rd) | u(x) ∈ M for a.e. x ∈ Σ}.

Throughout, the manifolds Σ and M , the embedding M → Rd, and all of the relevant
geometric data g, h, ∗, J , are assumed to be smooth.

The associative Smith equation (4) for maps u : (Σ3, g, ∗) → (M7, h, J) reads

J ◦ Λ2du = 1√
3
|du| du ◦ ∗.

In the case u ∈ W 1,3(Σ;M), the weak derivative (du)x is a linear map TxΣ → Tu(x)M
for almost every x ∈ Σ, and at such points both sides of the above equation make
sense. Hence we say that a map u ∈ W 1,3(Σ;M) is an associative Smith map if the
weak derivative du satisfies the above equation almost everywhere on Σ.

As above, we let E(u;A) =
´
A
|du|3 volΣ denote the 3-energy of u on a measurable

set A ⊂ Σ.
Our first result is an ε-regularity theorem for weak solutions of (4), which gives

C1,β-regularity with a priori estimates under a smallness assumption on the 3-energy.
Two of the main ingredients for the proof are the regularity of n-harmonic functions
due to Uhlenbeck [49], and a deep result from harmonic analysis due to Fefferman–
Stein [14]. Note that because of the degeneracy of (4), in general we do not expect
the solution to be better than C1,β . However, on the set where du is nonzero we do
get smoothness. For convenience we state the ε-regularity theorem in local terms and
assume the domain is B(2) ⊂ R3. In this case we may identify the (weak) derivative
du of a map u ∈ W 1,3(B(2);Rd) with an element of L3(B(2);R3×d), which we denote
by Du.

Theorem 4.7 (ε-regularity). There exist ε0, β > 0 depending on M,J and
the embedding M → Rd such that if g is a Riemannian metric on B(2) with
|g − geuc|0;B(2) + |Dg|0;B(2) < ε0 and u ∈ W 1,3(B(2);M) is an associative Smith
map with respect to g satisying E(u;B(2)) < ε0, then the following hold:
(a) The map u belongs to C1,β(B(1);M) and the norm |u|1,β;B(1) can be estimated

through M,J , the embedding M → Rd, and E(u;B(2)).
(b) In addition, u is smooth on the open set {x ∈ B(1) | Du(x) �= 0}.

On a number of occasions, especially in §5.5, we need a more explicit gradient
estimate than the one obtained in part (a) of Theorem 4.7. The following result,
based on an adaptation of [10], provides such an estimate, again under a smallness
assumption on the energy. As in Theorem 4.7 we suppose that the domain Σ is the
ball B(2) ⊂ R3.

Theorem 4.9 (Mean value inequality). Suppose that the Ricci curvature of the
domain metric g is bounded, in the sense that∣∣Ricg(x)(v, v)∣∣ ≤ K |v|2g(x) for all x ∈ B(2), v ∈ R3.

Then there exist C > 0 and ε1 > 0 such that if |g − geuc|0;B(2) + |Dg|0;B(2) ≤ ε1 and
u ∈ W 1,3(B(2);M) is an associative Smith map with E(u;B(2)) < ε1, then

sup
B( 1

2 )

|Du(x)|3 ≤ CE(u;B(2))

where both C and ε1 depend only on (M,J), the embedding M → Rd, and the constant
K.
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Covering the domain with small enough balls to which Theorem 4.7 is applicable,
we obtain the following interior regularity result without a smallness assumption on
the energy. We remark that, as opposed to Theorem 4.7, the C1,β-regularity given
below is only qualitative as Theorem 4.10 does not provide an a priori estimate of the
C1,β-norm and thus leaves open the possibility of a sequence of Smith maps bubbling.

Theorem 4.10 (Interior regularity). Suppose that g is a smooth Riemannain
metric on B(2), and that u is a W 1,3-Smith map on B(2) with respect to g. Then u
has Hölder continuous first derivatives on B(1). Moreover, u is C∞ on the open set
{x ∈ B(1) : Du(x) �= 0}.

As another corollary of Theorem 4.7, we get that isolated singularities of associa-
tive Smith maps are removable.

Theorem 4.11 (Removable singularity). Suppose that g is a smooth Riemannian
metric on B(2), and that u ∈ C1

loc(B(2) \ {0};M) is a Smith map with respect to g,
satisfying

ˆ
B(2)

|Du|3dx < ∞.

Then in fact u extends to a C1-Smith map on all of B(2).

The next result can be viewed as a global version of Theorem 4.9. Specifically,
as in [35, §4.1], a short argument using Theorem 4.9 and the conformal invariance of
the Smith equation (4) establishes the following.

Proposition 4.17 (Energy gap). There exists a constant ε0 > 0, depending only
on (M,J) and the embedding M → Rd, such that every C1 associative Smith map
u : (S3, ground) → (M7, h) with E(u;S3) < ε0 is constant.

We then turn to sequences of associative Smith maps with uniformly bounded 3-
energy. The following theorem is central to the construction of the bubble tree limit.
Specifically, from Theorem 4.7 and Theorem 4.11, together with an argument using
the weak-∗ compactness of Radon measures which is by now standard, we deduce
C1-convergence away from a finite set of points to a C1,β-limit which is again a Smith
map.

Proposition 4.12 (Compactness modulo bubbling). Let (Σ3, g) be a closed Rie-
mannian 3-manifold. Let Ω ⊂ Σ be an open set, and let {Ωn} be a sequence of open
sets that exhaust Ω. Let gn be a Riemannian metric on Ωn such that gn → g smoothly
on compact subsets of Ω.

Let u : (Ωn, gn) → (M7, h) be a sequence of C1 associative Smith maps satisfying
a uniform 3-energy bound

E(un; Ωn) ≤ E0.

Then there exists a finite set S = {x1, . . . , xq} ⊂ Σ and an associative Smith map
u ∈ C1

loc(Ω;M) with
´
Ω
|du|3g dμg ≤ E0 such that, after passing to a subsequence:

(a) We have un → u in C1
loc(Ω \ S).

(b) We have

|dun|3gn dμgn → |du|3g dμg +

q∑
i=1

miδ(xi) as Radon measures on Ω,
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where each δ(xi) is a Dirac measure. Moreover, each mi ≥ 1
2ε0, where ε0 is as in

Theorem 4.7.
(c) If ‖dun‖p;Ωn ≤ C for some p ∈ (3,∞], then S = ∅.

Remark 1.3. One can construct associative submanifolds of the form Σ2 × S1

in Y 6 × S1, where Y 6 is a Calabi-Yau 3-fold. Because of this, one might think that,
since holomorphic curves bubble at points, associative Smith maps should generically
bubble along curves. The issue is that bubbling of holomorphic curves corresponds to
concentration of 2-energy, whereas bubbling of associative Smith maps corresponds to
concentration of 3-energy. This is all very carefully explained in §4.5 using relations
between different classes of Smith maps we establish in §3.3.

In §5, we study the behavior of sequences of associative Smith maps with uni-
formly bounded 3-energy near the bubble points xi ∈ S. Indeed, using Theorem 4.12,
the conformal invariance of the Smith equation, and the conformal invariance of the
3-energy functional E, we will see that such a sequence gives rise to a bubble tree of
associative Smith maps.

In outline, bubble trees arise in the following way. Beginning with a sequence
un : (Σ

3, g) → (M7, h) of associative Smith maps with E(un; Σ) ≤ E0, Theorem 4.12
shows that a subsequence of un converges in C1

loc to an associative Smith map
u∞ : Σ → M off of a finite set S of bubble points in Σ.

If S �= ∅, then for each bubble point xi ∈ S, we may conformally rescale the
sequence un in such a way that a subsequence of the rescaled maps converges in C1

loc

to an associative Smith map ũ∞,i : S
3 → M7 off of a finite set Si ⊂ S3 \ {p−}, where

p− is the south pole. If any of the sets Si �= ∅, then for each first-level bubble point
xij ∈ Si, we may again conformally rescale un so that a subsequence of the rescaled
maps converge in C1

loc to an associative Smith map ũ∞,ij : S
3 → M off of a finite set

Sij ⊂ S3 \ {p−}, and so on.

In §5.2, we use the energy gap of Proposition 4.17 to show that this process does,
in fact, terminate after a finite number of iterations. The result is a tree of associative
Smith maps whose base vertex corresponds to the base map u∞, whose higher vertices
correspond to the bubble maps ũ∞,I , and whose edges correspond to the bubble points
xI , where here I = (i1, . . . , ik) is a multi-index.

Having constructed the bubble tree, we turn to the analogues of Properties (x)
and (xi). For this, we need to assume that the G2-structure ϕ on M is closed. In
§5.4 and §5.5, respectively, we show that both 3-energy and homotopy are preserved
in the “bubble tree limit”.

Theorem 5.1 (No energy loss). Suppose dϕ = 0. If un : Σ → M is a sequence of
associative Smith maps with uniformly bounded 3-energy, then

lim
n→∞

E(un) = E(u∞) +
∑
I

E(ũ∞,I).

Theorem 5.2 (Zero neck length). Suppose dϕ = 0. If un : Σ → M is a sequence
of associative Smith maps with uniformly bounded 3-energy, then its bubble tree has
no necks. Therefore, for each multi-index I, we have

ũ∞,I(xIj) = ũ∞,Ij(p
−).
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In particular, the set

u∞(Σ) ∪
⋃
I

ũ∞,I(S
3)

is connected.

The precise meaning of “no necks” is explained in both §5.1 and §5.5.
Our proofs of Theorems 5.1 and 5.2 both depend on a more detailed understanding

of the 3-energies of associative Smith maps on 3-dimensional annuli, which we study
in §5.3. In turn, this requires an energy gap result of Brian White [52] as well as
the homologically energy-minimizing property of Smith maps (see Smith’s result (iv)
above), the latter of which requires that the G2-structure be closed.

Remark 1.4. Here is a simple explicit example of bubbling, adapted from [34,
Example 1.1]. Let ι : (S3, ground) → (M7, h) be an isometric associative immersion of
a round 3-sphere into a G2-manifold (M7, h). For example, we could take (M7, h) to
be the spinor bundle /S(S3) equipped with the Bryant–Salamon metric [5], and take
ι to be the inclusion map of the zero section. Let

σ : (S3 \ {p−}, ground) → (R3, geuc)

denote stereographic projection. Then the maps un : (R
3, geuc) → (M7, h) given by

un(x) := ι(σ−1(nx)) form a sequence of associative Smith maps with bounded 3-
energy. Moreover, un → u∞ in C1

loc(R
3 \ {0}), where u∞(x) ≡ ι(p−) is a constant

map, while

|dun|3 dμ → mδ({0})

as Radon measures on R3 for some m > 0.

1.3. Organization and notation. The paper is organized as follows. In §2, we
present a comprehensive treatment of the linear algebra of Smith maps, including vec-
tor cross products and calibrations. In §3, we discuss Smith maps between manifolds,
including the energy identity and the relation to n-harmonic maps. In §4, we establish
many of the analytical results, including interior regularity, the mean value inequal-
ity, removable singularities, compactness modulo bubbling, and the energy gap. In
§5, we give a detailed explanation of bubbling and the bubble tree, and prove that
there is no energy loss and zero neck length when the G2-structure is closed. Finally,
Appendix A collects some needed results from harmonic analysis, and Appendix B
presents the proofs of two of the results from §4.

We employ the following notation throughout the paper:
• We use geuc to denote the Euclidean metric on Rn for any n.
• On a Riemannian manifold we use | · | for the pointwise norm on tensors
induced from the metric. We use injM to denote the injectivity radius of M
and diam(A) to denote the diameter of a set A. In most cases the metric is
clear from the context, but it is indicated by subscripts when necessary.

• When A is a set, we use the following notation for norms:

| · |k;A on Ck(A), | · |k,α;A on Ck,α(A),

‖ · ‖p;A on Lp(A), ‖ · ‖1,p;A on W 1,p(A).

Moreover, [·]α;A denotes the Hölder semi-norm with exponent α on A.
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• In a Riemannian manifold, we use B(x; r) to denote the open ball at x of
radius r > 0. When local coordinates are chosen, we write B(r) := B(0; r)
for brevity.

• When u : Σ → M is a C1 map, then du ∈ Γ(T ∗Σ ⊗ u∗TM) denotes the
differential, so (du)x : TxΣ → Tu(x)M for all x ∈ Σ. By the embedding

M → Rd, we may also view (du)x as a linear map TxΣ → Rd with image
contained in Tu(x)M . The latter viewpoint extends to maps in W 1,3(Σ;M),
but only holds for almost every x ∈ Σ.

• If Σ ⊂ R3 and u ∈ W 1,3(Σ;Rd), the derivative du may be identified with a
map in L3(Σ;R3×d), which we denote by Du.

• Given a function F : A → R, we use (f)A to denote its average value over A,
namely

(f)A =
1´

A
vol

ˆ
A

F vol =

 
A

F vol.

Other notation is introduced and defined when it is needed.
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Remark. After this work was completed, the authors learned that Mou–
Wang [37] had studied a conformally invariant n-harmonic type system which the
Smith maps satisfy when n = 3 or 4, and obtained a no energy loss result for bub-
ble trees of solutions using methods quite different from ours. Indeed our proof of
Theorem 5.1 relies on an isoperimetric-type estimate coming from the geometric prop-
erties of Smith maps (see Section 5.3), whereas in [37] the authors exploit again the
compensation phenomenon mentioned in Section 1.2 (see [37, Lemma 3.3 and pages
363–364]). We refer the reader to the introduction of our Section 4.2 for comments
on other similarities and contrasts between our work and [37].

2. The linear algebra of Smith maps. Vector cross products were introduced
by Brown–Gray [3] and were further studied much later by Lee–Leung [31]. The notion
of a vector cross product preserving map was introduced by Gray in [19]. We refer
to such maps as Gray maps. A generalized notion, which can reasonably be called
conformally vector cross product preserving, was introduced by Smith in [45], where
they were called multiholomorphic maps. We refer to such maps as Smith maps.
Calibrations were introduced in the seminal paper of Harvey–Lawson [23]. In this
section we discuss the linear algebraic aspects of vector cross products, calibrations,
and Smith maps.

A few of the results in §2.2 and in §2.4 are at least implicit in [19] for the case of
Gray maps. We adapt the proofs to the more general case of Smith maps and flesh
out several details that are missing from [19], which is in any case somewhat difficult
to access. We also present many more results in §2.4 that do not appear to be in the
literature.

The main results in this section are that any Smith map is weakly conformal,
proved in Theorem 2.22, the relations between Smith maps and calibrations in §2.5,
and the generalized calibration inequality established in Theorem 2.40. These results
are also implicit in the unpublished preprint [45], although their precise statements
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are somewhat obscured. In the present paper we significantly clarify both of these
results, first by distilling them to their minimal hypotheses (which is entirely linear
algebraic), and second by parcelling out the various required components into separate
lemmas and propositions. We hope the careful exposition in this section will be useful
to a wider audience.

2.1. Preliminaries. We use the term Euclidean space to denote a finite-
dimensional real vector space equipped with a positive definite inner product. Here we
collect several preliminary results on linear maps between Euclidean spaces and the
exterior powers of such maps. In particular we require multiple versions of Hadamard’s
inequality. We collect them here with proofs for completeness.

Let (V, 〈·, 〉) be an n-dimensional Euclidean space and let (W, 〈·, 〉) be an m-
dimensional Euclidean space. Let A : V → W be a linear map. Let A∗ : W → V
be the adjoint map. We define the matrix norm, also called the Frobenius norm or
Hilbert–Schmidt norm, of A by |A|2 = tr(A∗A). With respect to orthonormal bases
{v1, . . . , vn} of V ∼= Rn and {w1, . . . , wm} of W ∼= Rm, this norm is given by

|A|2 = tr(A∗A) =

n∑
l=1

m∑
i=1

Ai
lA

i
l

=

n∑
l=1

m∑
i,j=1

〈Ai
lwi, A

j
lwj〉 =

n∑
l=1

〈Avl, Avl〉 =
n∑

l=1

|Avl|2.
(5)

We need to use both the tr(A∗A) and the
∑n

l=1〈Avl, Avl〉 expressions for |A|2.
Lemma 2.1. The map A : V → W is called a conformal injection if 〈Av1, Av2〉 =

λ2〈v1, v2〉 for some λ > 0. This is equivalent to A∗A = λ2I and also equivalent
to A = λÂ where Â is an isometric injection. That is, 〈Âv1, Âv2〉 = 〈v1, v2〉. When
λ = 1 then A = Â is an isometric injection. Moreover, we necessarily have λ2 = 1

n |A|2
where n = dimV .

Proof. From 〈A∗Av1, v2〉 = 〈Av1, Av2〉, we have that 〈Av1, Av2〉 = λ2〈v1, v2〉 if
and only if A∗A = λ2I. Let Â = λ−1A. Then A∗A = λ2I is equivalent to Â∗Â = I.
The last statement follows from (5), since |A|2 = tr(A∗A) = tr(λ2I) = nλ2.

Corollary 2.2. Let n = dimV . Suppose A : V → W is a conformal injection,
and let B : V → V be a conformal isomorphism. Then |AB| = 1√

n
|A| |B|.

Proof. By Lemma 2.1 we have A∗A = λ2I and B∗B = μ2I, where nλ2 = |A|2
and nμ2 = |B|2. Moreover since B is invertible we have B∗B = BB∗. Thus we have

|AB|2 = tr
(
(AB)∗(AB)

)
= tr(B∗A∗AB) = tr(A∗ABB∗)

= tr(λ2μ2I) = nλ2μ2 = 1
n |A|2|B|2

as claimed.

For 1 ≤ r ≤ dimV , let ΛrA : ΛrV → ΛrW be the rth exterior power of A, defined
by

(ΛrA)(v1 ∧ · · · ∧ vr) = (Av1) ∧ · · · ∧ (Avr)

on decomposable elements and extended linearly to all of ΛrV . It is immediate that
(ΛrA∗) = (ΛrA)∗ and that Λr(A1A2) = (ΛrA1)(Λ

rA2).
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Lemma 2.3. Let B : V → V be a positive self-adjoint linear map. This means
that 〈Bv,w〉 = 〈v,Bw〉 and 〈Bv, v〉 ≥ 0 with equality if and only if v = 0. Let
0 < r < n = dimV .

Suppose that ΛrB : ΛrV → ΛrV is an isometry on decomposable elements. This
means that

〈Bv1 ∧ · · · ∧Bvr, v1 ∧ · · · ∧ vr〉 = |v1 ∧ · · · ∧ vr|2 for all v1, . . . , vr ∈ V . (6)

Then B is is the identity map on V .

Proof. By the spectral theorem, there is an orthonormal basis {v1, . . . , vn} of V
consisting of eigenvectors of B, where the eigenvalues μ1, . . . , μn are strictly positive
real numbers. Let 1 ≤ i1 < · · · < ir ≤ n. From Bvj = μjvj , we have that (Bvi1)∧· · ·∧
(Bvir ) = (μi1 · · ·μir )vi1 ∧· · ·∧vir . By hypothesis (6) it follows that μi1 · · ·μir = 1 for
all such strictly increasing multi-indices. The positivity of the μj ’s now implies that
μj = 1 for all j, so Bv = v for all v ∈ V . Note that we definitely need 0 < r < n to
obtain the conclusion.

Lemma 2.4 (Hadamard’s inequality on ΛrA). Let 1 < r ≤ n = dimV . Let
A : V → W be nonzero. Then we have

|ΛrA|2 ≤ n−r

(
n

r

)
|A|2r, (7)

with equality if and only if A is a conformal injection in the sense of Lemma 2.1.

Proof. Let B = A∗A, which is a nonnegative self-adjoint linear map. By
the spectral theorem, there is an orthonormal basis {v1, . . . , vn} of V consisting
of eigenvectors of B, where the eigenvalues μ1, . . . , μn are nonnegative. Then
{vi1 ∧ · · · ∧ vir : 1 ≤ i1 < · · · < ir ≤ n} is an orthonormal basis of ΛrV and
(ΛrB)(vi1 ∧ · · · ∧ vir ) = (μi1 · · ·μir )vi1 ∧ · · · ∧ vir . Applying (5) to ΛrA gives

|ΛrA|2 = tr
(
(ΛrA)∗(ΛrA)

)
= tr

(
Λr(A∗A)

)
= tr(ΛrB)

=
∑

1≤i1<···<ir≤n

(μi1 · · ·μir).

McLaurin’s inequality, which is a generalization of the arithmetic-geometric mean
inequality to other symmetric polynomials, says that if μ1, . . . , μn are nonnegative,
then(

1(
n
r

) ∑
1≤i1<···<ir≤n

(μi1 · · ·μir)

) 1
r

≤
(
1

n

n∑
j=1

μj

)
with equality iff μ1 = · · · = μn.

Using this inequality and trB = tr(A∗A) = |A|2, we get that

|ΛrA|2 ≤
(
n

r

)(
1

n

n∑
j=1

μj

)r

=

(
n

r

)( 1

n
trB

)r

=

(
n

r

)
n−r|A|2r

with equality if and only if B = A∗A = μI for some μ ≥ 0, where nμ = |A|2. Since A
is nonzero, we deduce that μ > 0. The result now follows by Lemma 2.1.

Corollary 2.5. Let A : V → W be nonzero, and let n = dimV . Then we have

|ΛnA| ≤ 1

(
√
n)n

|A|n,
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with equality if and only if A is a conformal injection in the sense of Lemma 2.1.

Proof. This is obtained by taking square roots of both sides of (7) in the special
case r = n.

Corollary 2.6. Let n = dimV and let v1, . . . , vn be nonzero vectors in V . Then
we have

|v1 ∧ · · · ∧ vn| ≤ |v1| · · · |vn| with equality iff v1, . . . , vn are orthogonal. (8)

Proof. By dividing both sides by |v1| · · · |vn|, we can assume that v1, . . . , vn are
all unit vectors, and we need to prove that

|v1 ∧ · · · ∧ vn|2 ≤ 1 with equality iff v1, . . . , vn are orthonormal.

Let {u1, . . . , un} be an orthonormal basis of V and define a linear map A : V → V
by Aui = vi. By (5) we have

|A|2 =

n∑
i=1

|Aui|2 =

n∑
i=1

|vi|2 = n.

Then we have

|v1 ∧ · · · ∧ vn|2 = |(Au1) ∧ · · · (Aun)|2 = |(ΛnA)(u1 ∧ · · · ∧ un)|2.

Since the single element u1 ∧ · · · ∧ un is an orthonormal basis for ΛnV , equation (5)
applied to ΛnA gives |(ΛnA)(u1 ∧ · · · ∧ un)|2 = |ΛnA|2. Using this and Corollary 2.5
we have

|v1 ∧ · · · ∧ vn|2 = |ΛnA|2 ≤ 1

nn
|A|2n =

1

nn
nn = 1,

with equality if and only if A is a conformal injection. Note that by Lemma 2.1,
since |A|2 = n, the conformal factor must be 1 and thus A is an isometric injection.
But by the definition of A this means equality occurs if and only if v1, . . . , vn are
orthonormal.

2.2. Vector cross products. Let (V, 〈·, ·〉) be an n-dimensional Euclidean
space.

Definition 2.7. Let 1 ≤ k ≤ n− 1. A k-fold vector cross product P on V is an
element P ∈ Λk(V ∗)⊗ V that satisfies the following two properties:

P (v1 ∧ · · · ∧ vk) is orthogonal to v1, . . . , vk, (9)

and

|P (v1 ∧ · · · ∧ vk)|2 = |v1 ∧ · · · ∧ vk|2. (10)

Note that equation (9) is equivalent to the statement that the covariant (k+1)-tensor
αP defined by

αP (v1, . . . , vk, vk+1) = 〈P (v1 ∧ · · · ∧ vk), vk+1〉 is totally skew-symmetric. (11)

The (k + 1)-form αP is called the calibration form associated to P . It is discussed in
§2.3.
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Example 2.8. Consider the case k = 1. Conditions (9) and (10) say that
P : V → V satisfies 〈Pv, v〉 = 0 and |Pv|2 = |v|2. Polarizing these two equations
gives 〈Pv,w〉 = −〈v, Pw〉, so P is skew-adjoint, and 〈Pv, Pw〉 = 〈v, w〉, so P is an
isometry. Thus we have

〈P 2v, w〉 = −〈Pv, Pw〉 = −〈v, w〉.

Since this holds for all v, w, we have P 2 = −I and thus P is an orthogonal complex
structure on V . In particular then n = dimV must be even.

Example 2.9. Consider the case k = n − 1. Let u1, . . . , un be an orthonormal
basis for V . Conditions (9) and (10) say that P : Λn−1V → V satisfies 〈P (u1 ∧ · · · ∧
un−1), ui〉 = 0 for 1 ≤ i ≤ n − 1, so P (u1 ∧ · · · ∧ un−1) must be a multiple of un,
and |P (u1 ∧ · · · ∧ un−1)|2 = |u1 ∧ · · · ∧ un−1|2 = 1, so P (u1 ∧ · · · ∧ un−1) = ±un. Let
vol = ±u1∧· · ·∧un be the orientation for V induced by the ordered orthonormal basis
{u1, . . . , un−1,±un}. Then P = ∗ is the Hodge star operator on Λn−1V corresponding
to the inner product and this orientation. The Hodge star is an isometry.

In general, condition (10) says that P : Λk(V ) → V is length-preserving on
the decomposable elements of Λk(V ). When k = 1 or k = n − 1, any k-vector is
decomposable, so the vector cross P is an honest isometry in the cases of Examples 2.8
and 2.9.

The fundamental identities (9) and (10) relating a vector cross product to the
inner product are very strong constraints. In fact, there are only four possible types
of vector cross products, the two we have already discussed and two exceptional types.
This is the Brown–Gray classification [3] given in Table 1. The two exceptional vector
cross products are the most interesting, as they are related to associative submanifolds
of G2-manifolds and to Cayley submanifolds of Spin(7)-manifolds, respectively.

Type n k P α Name of structure
I n n− 1 ∗ vol Orientation
II 2m 1 J ω Orthogonal complex structure
III 7 2 × ϕ G2-structure
IV 8 3 P Φ Spin(7)-structure

Table 1

The Brown–Gray classification of vector cross products.

Despite this simple classification, almost all the properties of vector cross prod-
ucts and of Smith maps that we establish in the rest of this section and in §2.4 are
consequences of the defining properties (9) and (10), so the statements and proofs are
identical for all four types of vector cross products.

Proposition 2.10. Let P be a k-fold vector cross product on (V, 〈·, ·〉). Let
u1, . . . , uk−1 be linearly independent vectors in V and let w ∈ V be arbitrary. Let U
be the (k−1)-dimensional subspace of V spanned by u1, . . . , uk−1. Then the following
identity holds:

P
(
u1 ∧ · · · ∧ uk−1 ∧ P (u1 ∧ · · · ∧ uk−1 ∧ w)

)
= −|u1 ∧ · · · ∧ uk−1|2πU⊥w, (12)

where πU⊥ is orthogonal projection onto the subspace U⊥.
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Proof. We first polarize equation (10) in vk to obtain

〈P (u1 ∧ · · · ∧ uk−1 ∧ v), P (u1 ∧ · · · ∧ uk−1 ∧ w)〉
= 〈u1 ∧ · · · ∧ uk−1 ∧ v, u1 ∧ · · · ∧ uk−1 ∧ w〉. (13)

Let U = span{u1, . . . , uk−1}. Since w = πUw+πU⊥w and u1∧· · ·∧uk−1∧(πUw) = 0,
we can replace w with πU⊥w in the right hand side of equation (13). Thus the right
hand side is

〈u1 ∧ · · · ∧ uk−1 ∧ v, u1 ∧ · · · ∧ uk−1 ∧ (πU⊥w)〉 = det

(
〈ui, uj〉 〈ui, πU⊥w〉
〈v, ui〉 〈v, πU⊥w〉

)
= det

(
〈ui, uj〉 0
〈v, ui〉 〈v, πU⊥w〉

)
= |u1 ∧ · · · ∧ uk−1|2〈πU⊥w, v〉. (14)

Using the definition and skew-symmetry of the calibration form αP from (11) the left
hand side of (13) becomes

αP

(
u1, . . . , uk−1, v, P (u1 ∧ · · · ∧ uk−1 ∧ w)

)
= −αP

(
u1, . . . , uk−1, P (u1 ∧ · · · ∧ uk−1 ∧ w), v

)
= −〈P

(
u1 ∧ · · · ∧ uk−1 ∧ P (u1 ∧ · · · ∧ uk−1 ∧ w)

)
, v〉. (15)

Since (15) and (14) agree for all v ∈ V , the identity (12) holds.

Remark 2.11. In the particular case when k = 1, Proposition 2.10 simply says
P 2(u) = −u for all u ∈ V , which we already knew from the discussion in Example 2.8.
But for k > 1 it is nontrivial.

Proposition 2.10 has two important corollaries.

Corollary 2.12. Let v, u1 ∈ V be orthogonal vectors. Then there exists a
decomposable element of ΛkV of the form u1 ∧ · · · ∧uk such that v = P (u1 ∧ · · · ∧uk).

Proof of Corollary 2.12. By the linearity of P , we can without loss of generality
assume that v and u1 both have unit length. Choose orthonormal vectors u2, . . . , uk−1

in V that are orthogonal to both v and u1. We can always do this because (k−2)+2 =
k < n = dimV . Let U = span{u1, . . . , uk−1}. By construction we have πU⊥v = v.
Thus the fundamental identity (12) gives

P
(
u1 ∧ · · · ∧ uk−1 ∧ P (u1 ∧ · · · ∧ uk−1 ∧ v)

)
= −v.

Taking uk = −P (u1 ∧ · · · ∧ uk−1 ∧ v) completes the proof.

Remark 2.13. Corollary 2.12 says that not only is the linear map P : ΛkV → V
always surjective, but that we can in fact always choose a preimage of v that is of the
decomposable form u1 ∧ · · · ∧ uk, where u1 is any nonzero vector orthogonal to v.

Corollary 2.14. Consider the same hypotheses as in Proposition 2.10. Then
the following identity holds:

P
(
u1 ∧ · · · ∧ uk−1 ∧ P

(
u1 ∧ · · · ∧ uk−1 ∧ P (u1 ∧ · · · ∧ uk−1 ∧ w)

))
= −|u1 ∧ · · · ∧ uk−1|2P (u1 ∧ · · · ∧ uk−1 ∧ w).

(16)
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Proof. Let y = πU⊥w. Then v − y = πUw ∈ U . Thus, by multlinearity and the
property (9) of vector cross products, we have

P (u1 ∧ · · · ∧ uk−1 ∧ y) = P (u1 ∧ · · · ∧ uk−1 ∧ w). (17)

Take the wedge product of both sides of (12) with u1 ∧ · · · ∧ uk−1 and then apply the
vector cross product P to both sides. The observation (17) therefore establishes (16).

2.3. Calibration forms. Before we define Smith maps and Gray maps we re-
view the closely related but somewhat more general notion of a calibration on V . This
is used crucially in the generalized calibration inequality of Theorem 2.40. The theory
of calibrations was introduced in [23] by Harvey–Lawson. We emphasize that in this
section we are only considering the linear algebraic (pointwise) aspects of the theory.

Definition 2.15. Let α be a (k + 1)-form on V , where k + 1 ≤ n = dimV . We
say that α is a calibration if

α(v1, . . . vk+1) ≤ |v1 ∧ · · · ∧ vk+1| for all v1, . . . , vk+1 ∈ V . (18)

We say that the (k + 1)-form α has comass one.

Lemma 2.16. The inequality (18) is equivalent to the inequality

α(u1, . . . uk+1) ≤ 1 for all orthonormal vectors u1, . . . , uk+1 ∈ V . (19)

Proof. Both sides of (18) vanish if {v1, . . . , vk+1} is linearly dependent so we
may assume it is linearly independent. Moreover, recall that ΛkV ∗ ∼= (ΛkV )∗. That
is, α(v1, . . . , vk+1) = α(v1 ∧ · · · ∧ vk+1). Hence, both sides of (18) depend only on
the oriented (k + 1)-plane u1 ∧ · · · ∧ uk+1 ∈ ΛkV where {u1, . . . , uk+1} is an ordered
orthonormal basis for span{v1, . . . , vk+1} inducing the same orientation. That is,
u1 ∧ · · · ∧ uk = tv1 ∧ · · · ∧ vk+1 for some t > 0. Thus we have

α(u1, . . . , uk+1) = tα(v1, . . . , vk+1) ≤ t|v1 ∧ · · · ∧ vk+1|
= |u1 ∧ · · · ∧ uk+1| = 1,

which is what we wanted to show.

Definition 2.17. A (k + 1)-dimensional oriented subspace L of V is called
calibrated with respect to α if the maximum in (19) is achieved on L. That is, if
α(u1, . . . , uk+1) = 1 for any oriented orthonormal basis {u1, . . . , uk+1} of L. Equiva-
lently, if L is an oriented k-dimensional subspace of V with volume form volL, then
L is calibrated with respect to α if and only if α|L = volL.

The set {u1 ∧ · · · ∧ uk ∈ ΛkV : u1, . . . , uk are orthonormal} of unit-length de-
composable k-vectors in V is compact, as it is precisely the Grassmanian G+(k, V ) of
oriented k-planes in V . Hence, any nonzero (k + 1)-form can be suitably rescaled to
satisfy the comass one condition (18) to obtain a calibration. However, not all cali-
brations admit a rich class of calibrated k-planes. One of the most important classes
of such calibrations arise from vector cross products. In fact, any vector cross product
P on V induces a calibration αP , originally introduced in (11), as the following result
demonstrates.
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Proposition 2.18. Let P be a k-fold vector cross product on V . The element
αP ∈ ⊗k+1V ∗ defined by

αP (v1, . . . , vk, vk+1) = 〈P (v1 ∧ · · · ∧ vk), vk+1〉 (20)

is a calibration on V . An oriented (k + 1)-dimensional subspace L of V is calibrated
with respect to αP if and only if P (u1 ∧ · · · ∧ uk) = uk+1 whenever {u1, . . . , uk+1} is
an oriented orthonormal basis for L.

Proof. We first observe that by (9), the covariant (k + 1)-tensor αP is totally
skew-symmetric and hence a (k + 1)-form. Let u1, . . . , uk+1 be unit vectors in V .
By property (10), the Cauchy–Schwarz inequality, and Hadamard’s inequality (8), we
have

αP (u1, . . . , uk, uk+1) ≤ |P (u1 ∧ · · · ∧ uk)| |uk+1|
= |u1 ∧ · · · ∧ uk| |uk+1|
≤ |u1| · · · |uk| |uk+1| = 1.

Thus αP is indeed a calibration. Equality is achieved if and only if we have equal-
ity in both the Cauchy–Schwarz and the Hadamard inequalities. This means that
{u1, . . . , uk} must be orthonormal and that uk+1 = P (u1 ∧ · · · ∧ uk). In particular
by (9) the vector uk+1 is also orthogonal to u1, . . . , uk and thus {u1, . . . , uk+1} is
an orthonormal basis for the (k + 1)-dimensional subspace L that it spans. Since
α(u1, . . . , uk, uk+1) = 1, the ordered orthonormal basis {u1, . . . , uk+1} induces the
given orientation on L. The converse is clear.

The form αP in (20) is called the calibration form associated to to the vector cross
product P .

Despite Proposition 2.18, there are many more interesting calibrations, admitting
a rich class of calibrated subspaces, that do not arise from vector cross products.
The most well-studied calibrations are those introduced by Harvey–Lawson [23] that
include all those associated to vector cross products plus several others. They are
summarized in Table 2.

n k + 1 α Calibrated subspaces Associated VCP
n n vol Entire space Hodge star
2m 2 ω Complex lines Orthogonal complex structure
2m 2r 1

r!
ωr Complex r-planes NONE

2m m Re(eiθΩ) Special Lagrangian m-planes NONE
7 3 ϕ Associative 3planes 2-fold VCP of a G2-structure
7 4 ψ = ∗ϕ Coassociative 4-planes NONE
8 4 Φ Cayley 4-planes 3-fold VCP of a Spin(7)-structure

Table 2

The calibrations discussed in Harvey–Lawson [23].

Another very interesting class of calibrations [4] is related to the quaternions, but
appeared after [23].

It is interesting to note from Table 2 the particular case when V is equipped
with an orthogonal complex structure J and the associated 2-form ω is defined by
ω(v, w) = 〈Jv, w〉. In this case, the complex r-planes in V are calibrated by 1

r!ω
r,

which is the classical Wirtinger inequality, but only the case r = 1 is associated to a
vector cross product.
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2.4. Smith maps and Gray maps. Let P be a k-fold vector cross product
on the n-dimensional Euclidean space V with associated calibration (k+1)-form αP .
Further, let Q be a k-fold vector cross product on the m-dimensional Euclidean space
W with associated calibration (k + 1)-form αQ, for the same k. We do not assume
that m = n, although this is a special case.

Let A : V → W be a linear map. We consider a special type of such a linear
map, which we call a Smith map. This is a linear map that is in a particular sense
“compatible” with the vector cross products P,Q on V,W respectively.

Definition 2.19. Let ΛkA : ΛkV → ΛkW be the kth exterior power A. We say
that A is a Smith map if is satisfies the equation

Q(ΛkA) = λk−1AP (21)

for some positive constant λ. Note that both sides of (21) are linear maps from ΛkV to
W . Explicitly, A is a Smith map iff for all v1, . . . , vk ∈ V , we have Q(Av1∧· · ·∧Avk) =
λk−1A

(
P (v1 ∧ · · · ∧ vk)

)
. Thus we also say that a Smith map is conformally vector

cross product preserving.

Remark 2.20. We show in Theorem 2.22 and Proposition 2.24 that if k > 1 or
(k = 1, n = 2) then the constant λ in (21) is not arbitrary if A is nonzero.

Definition 2.21. A special case of Smith maps corresponds to λ = 1. Then
equation (21) becomes Q(ΛkA) = AP . Such a map is called a Gray map and is vector
cross product preserving.

We now establish the fundamental properties of Smith maps.

Theorem 2.22. Let k > 1 and let A : V → W be a Smith map. Then either
A = 0 or A is a conformal injection in the sense of Lemma 2.1. Thus if A �= 0 then
λ is necessarily given by λ = (dimV )−

1
2 |A|.

Proof. Suppose that A is not injective. Then there exists nonzero u1 ∈ V with
Au1 = 0. We want to show that Av = 0 for all v ∈ V . We can assume v is
nonzero and orthogonal to u1. By Corollary 2.12 we can find u2, . . . , uk ∈ V such
that v = P (u1 ∧ · · · ∧ uk). Applying λk−1A to both sides and using the fact that A is
a Smith map, we find that

λk−1Av = λk−1A
(
P (u1 ∧ · · · ∧ uk)

)
= Q(Au1 ∧ · · · ∧Auk) = 0.

Since λ > 0, we deduce that Av = 0. Because v was arbitrary we conclude that A = 0
whenever A is not injective.

From now on assume A is nonzero and thus injective. Let u1, . . . , uk−1, v be
linearly independent vectors in V . From Corollary 2.14 for (V, P ), we have that

P
(
u1 ∧ · · · ∧ uk−1 ∧ P

(
u1 ∧ · · · ∧ uk−1 ∧ P (u1 ∧ · · · ∧ uk−1 ∧ v)

))
= −|u1 ∧ · · · ∧ uk−1|2P (u1 ∧ · · · ∧ uk−1 ∧ v).

We apply λ3(k−1)A to both sides of the above and use the Smith equation (21) re-
peatedly. This gives

Q
(
Au1 ∧ · · · ∧Auk−1 ∧Q

(
Au1 ∧ · · · ∧Auk−1 ∧Q(Au1 ∧ · · · ∧Auk−1 ∧Av)

))
= −|u1 ∧ · · · ∧ uk−1|2λ2(k−1)Q(Au1 ∧ · · · ∧Auk−1 ∧Av).

(22)
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Since A is injective, the vectors Au1, . . . Auk−1, Av are linearly independent in W .
From Corollary 2.14 for (W,Q), we have that

Q
(
Au1 ∧ · · · ∧Auk−1 ∧Q

(
Au1 ∧ · · · ∧Auk−1 ∧Q(Au1 ∧ · · · ∧Auk−1 ∧Av)

))
= −|Au1 ∧ · · · ∧Auk−1|2Q(Au1 ∧ · · · ∧Auk−1 ∧Av).

(23)

From (10) and the linear independence of Au1, . . . , Auk−1, Av we have Q(Au1 ∧ · · · ∧
Auk−1 ∧Av) �= 0. Comparing equations (22) and (23) therefore gives

|Au1 ∧ · · · ∧Auk−1|2 = λ2(k−1)|u1 ∧ · · · ∧ uk−1|2 (24)

whenever u1, . . . , uk−1 are linearly independent, and hence by multilinearity for all
u1, . . . , uk−1. Let A∗ : W → V be the adjoint map, and let B = λ−2A∗A : V → V .
The map B is self-adjoint and positive. Equation (24) says

|u1 ∧ · · · ∧ uk−1|2 = λ−2(k−1) det〈Aui, Auj〉
= det〈λ−2A∗Aui, uj〉 = 〈Bu1 ∧ · · · ∧Buk−1, u1 ∧ · · ·uk−1〉.

We can thus apply Lemma 2.3 (this is where we need the hypothesis that k > 1) to
conclude that B is the identity, so A∗A = λ2I. From Lemma 2.1 we conclude that A
is conformal with conformal factor λ = (dimV )−

1
2 |A| as claimed.

Corollary 2.23. For k > 1, the nonzero Gray maps are precisely the nonzero
Smith maps that are also isometric injections.

Proof. This is immediate from Theorem 2.22.

The case when k = 1 is special, as it requires a restriction on the dimension of the
domain V . It is well known but we include it for completeness. The precise statement
is as follows.

Proposition 2.24. Let k = 1. Let A : V → W be a Smith map. Then the
conclusion of Theorem 2.22 always holds if and only if dimV = 2.

Proof. Let dimV = n and dimW = m. By Example 2.8, the maps P = V →
V and Q : W → W are both orthogonal complex structures, and moreover n =
dimV = 2r and m = dimW = 2s. We can choose orthonormal bases of the form
{u1, . . . , up, Pu1, . . . , Pur} and {e1, . . . , es, Qe1, . . . , Qes} of V and W , respectively.
With respect to such bases, the matrices for P and Q are

P =

(
0r×r −Ir×r

Ir×r 0r×r

)
, Q =

(
0s×s −Is×s

Is×s 0s×s

)
.

The Smith equation (21) in this case is AP = QA. It follows easily from this equation
that with respect to these bases, the 2s×2r matrix for A must be of the block diagonal
form

A =

(
B −C
C B

)
where B,C are s × r matrices. Because we are using orthonormal bases, the matrix
of the adjoint A∗ is just the transpose. Hence we have

A∗A =

(
BT CT

−CT BT

)(
B −C
C B

)
=

(
BTB + CTC CTB −BTC

−(CTB −BTC) BTB + CTC

)
.
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By Lemma 2.1, if A is nonzero then it is a conformal injection if and only if A∗A = λ2I
for some λ > 0. If dimV = 2, so r = 1, then B,C are s× 1 column vectors, and BTC
is 1× 1. Thus in this case

ATA =

(
|B|2 + |C|2 0

0 |B|2 + |C|2
)

= (|B|2 + |C|2)I.

Thus a nonzero Smith map A is indeed a conformal injection in this case. However,
if r > 1 it is clear that there exist choices of B,C which do not yield conformal
injections.

Next we investigate the properties of Smith maps under composition and inver-
sion.

Proposition 2.25. The composition of Smith maps is a Smith map. If a Smith
map is invertible, then its inverse is a Smith map.

Proof. Let (V, P ), (W,Q), and (U,R) be Euclidean spaces equipped with k-fold
vector cross products P,Q,R, respectively. Let A : V → W and B : W → U be Smith
maps. Then we have

Q(ΛkA) = λk−1AP, R(ΛkB) = μk−1BQ (25)

for some λ, μ > 0. Define C = BA : V → W . Since Λk(BA) = (ΛkB)(ΛkA),
from (25) we have

R(ΛkC) = R(ΛkB)(ΛkA) = μk−1BQ(ΛkA)

= μk−1λk−1BAP = (μλ)k−1CP = ρk−1CP

where ρ = λμ > 0. Thus C is a Smith map.
Now suppose that A : V → V is an invertible Smith map. The scaling of A−1

is obviously inverse to the scaling of A. But we need to show that the inverse is still
conformally cross-product preserving. From (ΛkA)−1 = (ΛkA−1) we have

P (ΛkA) = λk−1AP ⇐⇒ P = λk−1AP (ΛkA−1)

⇐⇒ (λ−1)k−1A−1P = P (ΛkA−1).

Thus A−1 is a Smith map.

Corollary 2.26. The composition of Gray maps is a Gray map. If a Gray map
is invertible, then its inverse is a Gray map.

Proof. This is immediate from Proposition 2.25 and Corollary 2.23.

2.5. Smith maps and calibrations. In this section we investigate relations
between Smith maps and calibrations. In a precise sense that we explain, the image
of a Smith map is calibrated and conversely, any calibrated subspace is the image of
a Smith map in many different ways. The consequences for manifolds are discussed
in §3.

Lemma 2.27. Let A : V → W be a Smith map. Then we have

A∗αQ = λk+1αP . (26)
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Proof. Let v1, . . . , vk+1 ∈ V be arbitrary. We compute

A∗αQ(v1, . . . , vk+1) = αQ(Av1, . . . , Avk+1) = 〈Q(ΛkA)(v1 ∧ · · · ∧ vk), Avk+1〉
= 〈λk−1AP (v1 ∧ · · · ∧ vk), Avk+1〉
= λk−1λ2〈P (v1 ∧ · · · ∧ vk), vk+1〉
= λk+1αP (v1, . . . , vk+1)

and hence (26) holds.

We have seen that if A is a nonzero Smith map and either k > 1 or (k = 1, n = 2)
so that either Theorem 2.22 or Proposition 2.24 holds, then A is a conformal injection
with conformal factor λ > 0 where λ2 = 1

n |A|2 and n = dimV . Moreover, by
Lemma 2.27, any Smith map satisfies (26). In fact, when the vector cross product
P on the domain V is of Type I from Table 1, then these two conditions together
are equivalent to the Smith map equation (21). The precise statement is proved in
Proposition 2.32 below. First we need some definitions.

Definition 2.28. Let V,W be Euclidean spaces with calibration (k + 1)-forms
αV , αW , respectively. Let A : V → W be a nonzero linear map. Suppose that the
following two conditions both hold:
(i) A is a conformal injection, necessarily with conformal factor λ = 1√

dimV
|A|.

Equivalently we write A∗gW = λ2gV where gV , gW are the Euclidean inner
products on V,W , respectively;

(ii) A∗αW = λk+1αV .
Then we say that A is conformally calibrating.

Remark 2.29. In two particular cases, condition (ii) of Definition 2.28 auto-
matically implies condition (i). These are the cases when V = W and αP = αQ is a
calibration induced from a vector cross product P = Q of either Type III or Type IV
from Table 1. The fact that A∗αP = λk+1αP implies A∗gV = λ2gV in these two cases
is well-known. See [30, Sections 3.1 and 5.1], for example. The reason this happens
is that a G2-structure or a Spin(7)-structure determines the Euclidean inner product
uniquely.

Assumption 2.30. From now on, we restrict to the case when the vector cross
product P on the domain V is of Type I from Table 1.

Definition 2.31. An oriented Euclidean n-space (V, gV , ∗V , volV ) is an n-
dimensional Euclidean space (V, gV ) equipped with an orientation which induces a
Hodge star operator ∗V . The associated calibration n-form is the volume form volV .
By Example 2.9 this is the same as saying (V, gV ) is equipped with a vector cross
product of Type I from Table 1. In [45] such a structure (V, gV , ∗V , volV ) is called a
‘conformal n-triad’ but we do not use this terminology.

An (n−1)-fold VCP space (W, gW , Q, αQ) is a Euclidean space (W, gW ) equipped
with an (n−1)-fold vector cross product Q on W and its associated calibration n-form
αQ. Note that if dimW = n then an (n− 1)-fold VCP space is an oriented Euclidean
n-space by Table 1.

Proposition 2.32. Let (V, gV , ∗, volV ) be an oriented Euclidean n-space. Let
(W, gW , Q, αQ) be an (n − 1)-fold VCP space. Let A : V → W be a nonzero linear
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map. Then A is a Smith map in the sense of equation (21) if and only if A is
conformally calibrating in the sense of Definition 2.28.

Proof. We first note that necessarily we have either k = n − 1 > 1 or else (k =
1, n = 2). In these cases we have already shown that any Smith map is conformally
calibrating. Thus assume that A is conformally calibrating. That is,

A∗gW = λ2gV , A∗αQ = λk+1αP = λnvolV , (27)

and we need to prove that

Q(Λn−1A)(v1 ∧ · · · ∧ vn−1) = λn−2AP (v1 ∧ · · · ∧ vn−1) (28)

for all v1, . . . , vn−1 ∈ V . Both sides of (28) vanish if {v1, . . . , vn−1} is linearly depen-
dent so we may assume it is linearly independent, so both sides of (28) depend only
on the (n−1)-plane u1∧ · · · ∧un−1 ∈ Λn−1V where {u1, . . . , un−1} is an orthonormal
basis for span{v1, . . . , vn−1}. That is, u1 ∧ · · · ∧ un−1 = tv1 ∧ · · · ∧ vn−1 for some
nonzero t ∈ R. Thus (28) holds for all v1, . . . , vn−1 ∈ V if and only if

Q(Λn−1A)(u1 ∧ · · · ∧ un−1) = λn−2AP (u1 ∧ · · · ∧ un−1) (29)

holds for all orthonormal u1, . . . , un−1 ∈ V . By Lemma 2.1 we know A = λÂ where
λ > 0 and Â : V → W is an isometric injection. Therefore (27) becomes

Â∗gW = gV , Â∗αQ = volV . (30)

Let u1, . . . , un−1 be orthonormal. Let un = P (u1∧· · ·∧un−1). Then {u1, . . . , un} is an
oriented orthonormal basis for V since P = ∗ is the Hodge star operator. Using (30)
we compute

1 = volV (u1, . . . un) = (Â∗αQ)(u1, . . . , un)

= αQ(Âu1, . . . , Âun−1, Âun)

= gW
(
Q(Λn−1Â)(u1 ∧ · · · ∧ un−1), Âun). (31)

Since Â is an isometric injection, Âun and (Λn−1Â)(u1 ∧ · · · ∧ un−1) are unit vectors
in W and Λn−1W , respectively. Since Q is a vector cross product, property (10) says
that Q(Λn−1Â)(u1 ∧ · · · ∧ un−1) is also a unit vector in W . Then Cauchy–Schwarz
applied to the equality (31) gives

Q(Λn−1Â)(u1 ∧ · · · ∧ un−1) = Âun = ÂP (u1 ∧ · · · ∧ un−1). (32)

Multiplying both sides by λn−1 gives equation (29) as required.

The above result has a number of important corollaries.

Corollary 2.33. Let (V, gV , ∗, volV ) be an oriented Euclidean n-space. Let
(W, gW , Q, αQ) be an (n − 1)-fold VCP space. Let A : V → W be a nonzero Smith
map. Then A induces an orientation on its image L = A(V ) such that L is calibrated
with respect to αQ.

Proof. Since A = λÂ where Â is an isometric injection, the image L = A(V ) =
Â(V ) is isometric to V and thus inherits an induced orientation by declaring that
{Âu1, . . . , Âun} is oriented (and necessarily orthonomal) whenever {u1, . . . , un} is an
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oriented orthonormal basis for V . Now equation (32) in the proof of Proposition 2.32
says that

Q
(
(Âu1) ∧ · · · ∧ (Âun−1)

)
= Âun.

Then Proposition 2.18 applied with P replaced by Q and ui replaced by Âui says that
L is calibrated with respect to αQ.

Corollary 2.34. Let (V, gV , ∗, volV ) be an oriented Euclidean n-space. A
nonzero Smith map A : V → V is precisely an orientation preserving conformal
isomorphism.

Proof. Apply Proposition 2.32 with W = V and Q = P = ∗. Then A : V → V is a
nonzero Smith map if and only if it satisfies A∗gV = λ2gV and A∗volV = λnvolV , with
nλ = |A| > 0. This precisely means that A is an orientation preserving conformal
isomorphism.

Corollary 2.35. Let (V, gV , ∗, volV ) be an oriented Euclidean n-space. Let
(W, gW , Q, αQ) be an (n− 1)-fold VCP space. Let A : V → W be a Smith map. Then
for any orientation preserving conformal isomorphism B : V → V , the composition
AB : V → W is a Smith map.

Proof. This is immediate from Corollary 2.34 and Proposition 2.25.

Remark 2.36. Corollary 2.35 is very important, as it implies that the notion of
a Smith map between appropriate Riemannian manifolds is a conformally invariant
notion. This is discussed in §3.1.

In Corollary 2.33 we showed that the image of a nonzero Smith map is calibrated.
In fact, a kind of converse holds, which is Proposition 2.38 below.

Lemma 2.37. Let (W, gW , Q, αQ) be an (n − 1)-fold VCP space. Let L be an
n-dimensional oriented subspace, and let ι : L → W be the linear inclusion. Equip L
with the induced inner product gL = ι∗gW and volume form volL. Then L is calibrated
with respect to αQ if and only if ι : L → W is a Gray map.

Proof. The map ι : L → W is a Gray map if and only if it is a Smith map with
λ = 1. By Proposition 2.32 we deduce that ι is a Gray map if and only if ι∗αQ = volL,
which is precisely the condition that L is calibrated with respect to αQ.

More generally, we have the following result.

Proposition 2.38. Let (W, gW , Q, αQ) be an (n− 1)-fold VCP space. Let V be
a n-dimensional real vector space. Let A : V → W be a linear injection. Equip V
with the inner product gV = A∗gW . Then the following are equivalent:
(i) The image L = A(V ) admits an orientation for which L is calibrated with respect

to αQ.
(ii) The space V admits an orientation such that A : V → W is a Gray map, with

respect to ∗gV .
Proof. Let L = A(V ) and give L the induced inner product gL = ι∗gW where

ι : L → W is the inclusion. Let A1 denote the map A with codomain L = A(V ). That
is, A1 : V → L is given by A1(v) = A(v). Then A1 : V → L is a linear isomorphism,
and A = ιA1, so A

∗ = A∗
1ι

∗. Hence gV = A∗gW = A∗
1gL, so A1 : V → L is an isometry,

and any orientation volL on L compatible with gL corresponds to a unique orientation
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A∗
1volL on V compatible with gV = A∗

1gL. Thus A1 : V → L is an invertible Gray
map with respect to the Hodge star operators ∗gV , ∗gL on V, L, respectively.

By Lemma 2.37, condition (i) is equivalent to the statement that ι : L → W is
a Gray map with respect to some orientation volL on L compatible with gL. Using
A = ιA1 and the invertibility of A1, we deduce from Corollary 2.26 that ι is a Gray
map if and only if A is a Gray map.

Remark 2.39. Suppose V is an n-dimensional real vector space and A : V → W
is a linear injection where (W, gW , Q, αQ) is an (n − 1)-fold VCP space, and that
the image L = A(V ) admits an orientation for which L is calibrated with respect
to αQ. Then Proposition 2.38 gives the structure of an oriented Euclidean n-space
on V such that A : V → W is a Gray map. But then Corollaries 2.34 and 2.35
say that by precomposing A with any orientation preserving conformal isomorphism
B of (V, gV , ∗, volV ), we obtain another Smith map AB : V → W whose image is
calibrated.

2.6. A generalized calibration inequality. We now establish the fundamen-
tal generalized calibration inequality that is a crucial ingredient for the energy identity
in §3.4.

Theorem 2.40 (Generalized calibration inequality). Let (V, gV , ∗, volV ) be an
oriented Euclidean n-space. Let (W, gW , Q, αQ) be an (n − 1)-fold VCP space. Let
A : V → W be a linear map. Let {u1, . . . , un} be an oriented orthonormal basis for
V . Then we have (

1√
n

)n

|A|n − (A∗αQ)(u1, . . . , un) ≥ 0, (33)

with equality if and only if A : V → W is a Smith map.

Proof. If A is zero then equality holds in (33) trivially, and the zero map triv-
ially satisfies (21). Thus assume that A is nonzero. Let u1, . . . , un be an oriented
orthonormal basis of V . We compute

(A∗αQ)(u1, . . . , un)

= αQ(Au1, . . . , Aun)

≤ |(Au1) ∧ · · · ∧ (Aun)| by (18), since αQ is a calibration (34)

= |(ΛnA)(u1 ∧ · · · ∧ un)|
= |ΛnA| by (5), since {u1 ∧ · · · ∧ un} is o.n. basis for ΛnV

≤
(

1√
n

)n

|A|n by Hadamard’s inequality (7) with r = n (35)

Thus the inequality (33) has been established. Equality holds if and only if equality
holds in both (34) and (35). By Lemma 2.4, equality holds in (35) if and only if
condition (i) of Definition 2.28 holds. But then A = λÂ where Â : V → W is an iso-
metric injection. Thus {Âu1, . . . , Âun} is an orthonormal basis for the n-dimensional
subspace imA of W . By Corollary 2.6 applied to imA we have

|(Au1) ∧ · · · ∧ (Aun)| = λn|(Âu1) ∧ · · · ∧ (Âun)| = λn.

Thus, given equality in (35), equality also holds in (34) if and only if
(A∗αQ)(u1, . . . , un) = λn, and this holds if and only if A∗αQ = λnvolV , which is
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condition (ii) of Definition 2.28. Thus A : V → W is conformally calibrating. Using
Proposition 2.32, we conclude that equality holds in (33) if and only if A is a Smith
map.

Remark 2.41. We remark that Theorem 2.40 generalizes Proposition 2.18 in
two important ways:

• It allows general injective linear maps A : V → W . This is the passage from
subspaces to maps.

• It allows the freedom that gV is only conformal to A∗gW , not necessarily
isometric. This is the passage from Gray maps to Smith maps.

The consequences for manifolds are discussed in §3.

3. Smith maps between manifolds. In this section we apply the linear alge-
braic results of §2 to maps between manifolds equipped with the appropriate geometric
structures. The most important result of this section is that, if dα = 0, then a Smith
map u : (Σn, g, ∗, vol) → (Mm, h,Q, α) is a minimizer of the n-energy in its homology
class, and thus is also an n-harmonic map.

3.1. Definition and basic properties of Smith maps between manifolds.
Let (Σ, g) be an oriented Riemannian n-manifold, with Riemannian volume form
vol. At each x ∈ Σ, the associated Hodge star operator ∗x is an (n − 1)-fold vector
cross product on TxΣ of Type I from Table 1 and volx is its associated calibration
n-form. Thus (TxΣ, gx, ∗x, volx) is an oriented Euclidean n-space for each x ∈ Σ, as
in Definition 2.31.

Let (M,h) be a Riemannian m-manifold equipped with an (n − 1)-fold vector
cross product Q and its associated calibration n-form α. This means that Q is a
smooth section of Λn−1T ∗M ⊗ TM and α is a smooth n-form on M such that, at
each y ∈ M , the map Qy : Λn−1TyM → TyM is a vector cross product with associated
calibration n-form αy. Thus (TyM,hy, Qy, (αQ)y) is an (n− 1)-fold VCP space, as in
Definition 2.31.

Definition 3.1. Let u : Σ → M be a smooth map. We say that u is a Smith
map if the differential (du)x : TxΣ → Tu(x)M is a Smith map for all x ∈ Σ in the
sense of Definition 2.19. Explicitly, a Smith map satisfies the equation

Q(Λn−1du) =
1

(
√
n)n−2

|du|n−2(du)∗ (36)

where ∗ is the Hodge star operator on Σ. Both sides of (36) are smooth sections of
Λn−1T ∗Σ⊗ u∗TM . In [45] the Smith maps are called multiholomorphic maps, which
is reasonable given Example 3.9 in §3.2.

A point x ∈ Σ where (du)x = 0 is called a critical point of u. We define

critu = {x ∈ Σ | (du)x = 0},

the set of all critical points of u, also called the critical locus of u.

Proposition 3.2. A smooth map u : Σ → M is a Smith map if and only if both
of the following conditions hold:

• u is weakly conformal. (This means that u∗h = 1
n |du|2g.)

• u∗α = 1
(
√
n)n

|du|nvol.
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We call such maps “conformally calibrating”. Thus a map is Smith if and only if it
is conformally calibrating.

Proof. This is immediate from Proposition 2.32.

Remark 3.3. The alternate characterization of Smith maps in Proposition 3.2
makes it easy to see that precomposition of a Smith map u : Σ → M by an orientation
preserving weakly conformal map F : Σ → Σ yields another Smith map u◦F : Σ → M .
See Proposition 3.6.

Note that both of the above conditions are trivially satisfied at any critical point
of u. The first condition expresses the fact that (du)x : TxΣ → Tu(x)M is a conformal
injection at any noncritical point.

Smith maps have several basic properties which are immediate from the results
of §2.5.

Proposition 3.4. Let u : Σ → M be a Smith map. Let Σ◦ = Σ\critu be the open
set on which u has no critical points. Then for any x ∈ Σ◦, the image (du)x(TxΣ) is
an n-dimensional subspace of Tu(x)M that is calibrated with respect to αQ. That is,
u(Σ◦) is an immersed calibrated submanifold of M . Here the orientation of u(Σ◦) is
the one naturally induced by the injection (du)x for each x ∈ Σ◦.

Proof. This is immediate from Corollary 2.33.

Proposition 3.5. Let Z be a smooth oriented n-manifold, and let (M,h,Q, αQ)
be as above. Let u : Z → M be a smooth immersion. Give the image u(Z) the
orientation induced by the injection (du)z for each z ∈ Z. If u(Z) is calibrated with
respect to αQ, then let g = u∗h, which is a Riemannian metric on Z. With respect to
g and the orientation on Z, the map u : Z → M is a Smith map.

Proof. This is immediate from Proposition 2.38.

Proposition 3.6. Let u : Σ → M be a Smith map. Let F : Σ → Σ be an
orientation preserving conformal diffeomorphism. Then the composition u ◦ F : Σ →
M is a Smith map.

Proof. This is immediate from Corollary 2.35.

Thus the image of any Smith map is a calibrated submanifold (away from the
critical points), and any calibrated submanifold is the image of a Smith map, in many
different ways, since the Smith equation (36) is conformally invariant in the sense of
Proposition 3.6.

Therefore, for those calibrations that correspond to a vector cross product, cal-
ibrated submanifolds are in some sense equivalent to Smith maps. We observe that
Gray maps also have these two properties with respect to calibrated submanifolds.
However, the crucial difference is that the Smith equation is conformally invariant,
whereas the Gray equation is not. Conformal invariance is a fundamental feature of
those geometric partial differential equations that exhibit phenomena of removable
singularities, compactness, and bubbling. This is why Smith maps are much more
preferable than Gray maps.

We close this section with another demonstration of this conformal invariance,
which is instructive. Let u : Σ → M be a smooth map. Define the Smith operator ð

to be the operator that takes u to

ðu = Q(Λn−1du)− 1

(
√
n)n−2

|du|n−2(du) ∗ .
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(In [45] this operator is called the multi-Cauchy-Riemann operator.) We observe that
ðu is a section of Λn−1T ∗Σ ⊗ u∗TM and that ðu = 0 if and only if u is a Smith
map. Let F : Σ → Σ be a smooth map. This corresponds to the special case when
(M,h,Q, αQ) = (Σ, g, ∗, vol). In this case the Smith operator applied to F is

ðF = ∗(Λn−1dF )− 1

(
√
n)n−2

|dF |n−2(dF ) ∗ .

Now consider the composition u ◦ F : Σ → M . Using d(u ◦ F ) = (du)(dF ) and
Corollary 2.2 (which holds trivially at critical points) we compute

ð(u ◦ F ) = Q
(
Λn−1

(
(du)(dF )

))
− 1

(
√
n)n−2

|(du)(dF )|n−2(du)(dF )∗

= Q(Λn−1du)(Λn−1dF )− 1

(
√
n)n−2(

√
n)n−2

|du|n−2|dF |n−2(du)(dF )∗

= Q(Λn−1du)(Λn−1dF )− 1

(
√
n)n−2

|du|n−2(du) ∗ (Λn−1dF )

+
1

(
√
n)n−2

|du|n−2(du) ∗ (Λn−1dF )

− 1

(
√
n)n−2(

√
n)n−2

|du|n−2|dF |n−2(du)(dF )∗

= (ðu)(Λn−1dF ) +
1

(
√
n)n−2

|du|n−2(du)(ðF ).

Thus we see explicitly that if u is a Smith map and F is also a Smith map (which for
F means it is an orientation preserving conformal diffeomorphism) then u ◦ F is also
a Smith map.

Remark 3.7. Here is yet another way to see the conformal invariance of the
Smith equation (36), which shows explicitly the necessity of the particular power of
|du| on the right hand side. Let g be a metric on Σ and let g̃ = f2g be another
metric in the same conformal class, where f is a positive function. Let Vg ∈ Λn(TΣ)
denote the volume form on tangent vectors with respect to g. Then Vg̃ = f−nVg, and
consequently the Hodge star on Λk(TΣ) with respect to g̃ is ∗g̃ = f2k−n∗g. Moreover,
we also have |du|2g̃ = f−2|du|2g. Putting these all together with k = n− 1, we deduce

that |du|n−2
g̃ ∗g̃ = |du|n−2

g ∗g and thus the right hand side of (36) is independent of the
conformal class of g.

3.2. Four classes of Smith maps. In this section we consider the four classes
of Smith maps, corresponding to the four types of vector cross product Q on M from
Table 1. We also consider the Smith equation (36) explicitly in local coordinates for
the four classes. In all these cases we have a smooth Smith map u : (Σ, g, ∗, vol) →
(M,h,Q, α). Define Σ0 = Σ \ critu, where critu is the critical locus of u.

Example 3.8. Suppose that Q is of type I from Table 1. Then Q = ∗M is
the Hodge star operator corresponding to the metric h and an orientation on M .
Furthermore, αQ = volM is the associated volume form. Since n−1 = m−1, we have
n = m. The Smith equation (36) in this case becomes

∗M (Λn−1du) =
1

(
√
n)n−2

|du|n−2(du) ∗Σ .
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This equation is equivalent to the pair of equations u∗h = 1
n |du|2g and u∗volM =

1
(
√
n)n

|du|nvolΣ. Thus in this case a Smith map u : Σ → M is an orientation preserving

weakly conformal diffeomorphism. The image u(Σ◦) is an open submanifold of M .

Example 3.9. Suppose that Q is of type II from Table 1. Then necessarily m
is even and Q = JM is an orthogonal almost complex structure on (M,h), which
need not be integrable. Furthermore, αQ = ωM is the associated Kähler form, which
need not be parallel nor even closed. Since n − 1 = 1, we have n = 2. Thus ∗ = JΣ
is simultaneously of both Type I and Type II, where JΣ is an orthogonal almost
complex structure on (Σ, g). In particular (Σ, g, ∗, vol) is a complex 1-dimensional
Kähler manifold, as a U(1)-structure is always torsion-free. The Smith equation (36)
in this case becomes

JM (du) = (du)JΣ. (37)

Note that since the Smith equation depends only on the conformal class of the metric g
on Σ, in this case it really depends only on the underlying Riemann surface (Σ, JΣ). In
particular, in this case a Smith map u : Σ → M is a J-holomorphic map. The image
u(Σ◦) is a J-holomorphic curve in M , also called a 1-dimensional almost complex
submanifold. This Smith equation is the classical Cauchy–Riemann equation.

We remark that if n = 2 then Example 3.8 is a special case of Example 3.9
corresponding to m = 2.

For our purposes, the two most important Smith maps are the exceptional cases
corresponding to the vector cross products of type III and IV from Table 1.

Example 3.10. Suppose that Q is of type III from Table 1. Then necessarily
n = 3, m = 7 and Q is a 2-fold vector cross product corresponding to a G2-structure
ϕ = αQ, which is the associated calibration 3-form. This G2-structure need not be
torsion-free. The Smith equation (36) in this case becomes

Q(Λ2du) =
1√
3
|du|(du) ∗ . (38)

The image u(Σ◦) is an associative submanifold of M and this Smith equation is called
the associative Smith equation.

Example 3.11. Suppose that Q is of type IV from Table 1. Then necessarily
n = 4, m = 8 and Q is a 3-fold vector cross product corresponding to a Spin(7)-
structure Φ = αQ, which is the associated calibration 4-form. This Spin(7)-structure
need not be torsion-free. The Smith equation (36) in this case becomes

Q(Λ3du) =
1

2
|du|2(du) ∗ .

The image u(Σ◦) is a Cayley submanifold of M and this Smith equation is called the
Cayley Smith equation.

In Section 3.3 we discuss relations between different classes of Smith maps, which
is nontrivial.

We now express these equations in local coordinates. Let (x1, . . . , xn) be local
coordinates for Σ and let (y1, . . . , ym) be local coordinates for M . Let u : Σ → M
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be a smooth map. In terms of these coordinates we have ya = ya(x1, . . . , xn) for
1 ≤ a ≤ m. The section du of T ∗Σ⊗ u∗TM becomes

(du)x =
∂ua

∂xi

∣∣∣
x
dxi|x ⊗ ∂

∂ya

∣∣∣
u(x)

.

This means that (du)x
∂

∂xi

∣∣
x
= ∂ua

∂xi

∣∣
x

∂
∂ya

∣∣
u(x)

. Write

volΣ =
1

n!
μi1···indx

i1 ∧ · · · ∧ dxin and αQ =
1

n!
αb1···bndy

b1 ∧ · · · ∧ dybn

where 1 ≤ ik ≤ n and 1 ≤ bk ≤ m for all k. Then by (20) the Hodge star ∗ on
Λn−1TΣ and the vector cross product Q on Λn−1TM are given by

∗
( ∂

∂xi1
∧ · · · ∧ ∂

∂xin−1

)
= μi1···in−1jg

jl ∂

∂xl
,

Q
( ∂

∂yb1
∧ · · · ∧ ∂

∂ybn−1

)
= αb1···bn−1ch

ca ∂

∂ya
.

Then the equation (36) becomes

αb1···bn−1c
∂ub1

∂xi1
· · · ∂u

bn−1

∂xin−1
hca =

1

(
√
n)n−2

|du|n−2 ∂u
a

∂xl
μi1···in−1jg

jl.

which simplifies to

αb1···bn−1c
∂ub1

∂xi1
· · · ∂u

bn−1

∂xin−1
=

1

(
√
n)n−2

|du|n−2 ∂u
b

∂xl
μi1···in−1jg

jlhbc, (39)

where |du| is given in the coordinates by

|du|2 =
∂ua

∂xi

∂ub

∂xj
habg

ij . (40)

For the cases of type II, III, IV in Examples 3.9, 3.10, 3.11, respectively, equa-
tion (39) becomes

ωab
∂ua

∂xi
=

∂ua

∂xl
μijg

jlhab, (classical Cauchy–Riemann equation),

ϕabc
∂ua

∂xi

∂ub

∂xj
=

1√
3
|du|∂u

a

∂xl
μijkg

klhac (associative Smith equation),

Φabcd
∂ua

∂xi

∂ub

∂xj

∂uc

∂xk
=

1

2
|du|2 ∂u

a

∂xp
μijklg

lphad (Cayley Smith equation),

where μ is the Riemannian volume form on (Σ, g) and |du| is given by (40).

3.3. Relations between classes of Smith maps. Let us recall the following
two product constructions of associative and Cayley submanifolds.

(A.) Let (Y 6, J, ω,Υ) be a Calabi-Yau 3-fold with Kähler form ω and holomorphic
volume form Υ. Define M7 = Y 6 × S1 and

ϕ = Re(Υ) + dθ ∧ ω (41)
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where θ is the standard periodic “coordinate” on S1. Then ϕ is a torsion-free G2-
structure on M7. Moreover, if Σ2 is a complex submanifold of Y 6 then Σ2 × S1 is an
associative submanifold of M7.

(B.) Let (Y 7, ϕ) be a torsion-free G2 manifold with associative 3-form ϕ and
Hodge dual coassociative 4-form ψ = ∗ϕϕ. Define M8 = Y 7 ×S1 and Φ = dθ ∧ϕ+ψ
where θ is as before. Then Φ is a torsion-free Spin(7)-structure on M8. Moreover, if
Σ3 is an associative submanifold of Y 7, then Σ3 × S1 is a Cayley submanifold of M8.

In light of the relationships (A.) and (B.) between complex, associative, and
Cayley submanifolds, it is natural to ask whether there exist analogous relationships
between Smith maps of types II, III, and IV. In this section, we focus on the rela-
tionship between Smith maps of types II and III. We use this discussion in §4.5 to
clarify the (non-)relation between bubbling of J-holomorphic curves and bubbling of
associative Smith maps.

To begin, let v : Σ2 → Y 6 be a Smith map of type II as in Example 3.9, where
Σ2 is a Riemann surface equipped with a conformal class of metrics [g2] and volume
form vol2, and where Y 6 is a Calabi-Yau 3-fold with Riemannian metric h6 and data
(J, ω,Υ) as above. By Proposition 3.2, we have

v∗h6 = μ2g2, v∗ω = μ2vol2. (42)

where we are writing

μ2 = 1
2 |dv|

2 (43)

for ease of notation, and where |dv|2 is computed with respect to g2 on Σ and h6 on Y .
We remark that by the first equation in (42), or by direct computation, the expression
|dv|2g2 is independent of the choice of representative metric in the conformal class [g2].

Next, equip M7 = Y 6 × S1 with the G2-structure ϕ = Re(Υ) + dθ ∧ ω as above.
The induced Riemannian metric h7 on M7 is simply the product metric

h7 = h6 + (dθ)2 (44)

where θ denotes the angle coordinate in Y 6 × S1. Since the image v(Σ) is a complex
curve in Y , it follows that v(Σ)× S1 is an associative submanifold of M7 = Y 6 × S1.

Finally, we equip the 3-manifold Σ × S1 with a Riemannian metric g3, and let
vol3 denote the corresponding volume form. We let φ denote the angle coordinate for
the S1 factor of Σ× S1.

We may now consider maps u : Σ× S1 → Y × S1 of the form

u(x, φ) = (v(x), f(x, φ)) (45)

where f : Σ× S1 → S1 is a smooth function θ = f(x, φ). For simplicity, we suppose
that

f ′ :=
∂f

∂φ

nonvanishing, so that u as defined in (45) is an immersion whenever v is an immersion.
The particular form (45) of u is motivated by the desire to have the image u(Σ× S1)
be an open subset of the associative submanifold v(Σ) × S1. Note that the choice
f(z, φ) = φ is permissible, which corresponds to u = v× IdS1 , but for later use in §4.5
we need to consider the general form in (45). See Remark 4.16.
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We aim to understand when such maps u are associative Smith. To this end, note
that using (44), followed by the first part of (42), we see that

u∗h7 = u∗(h6 + (dθ)2) = v∗h6 + (u∗dθ)2 = μ2g2 + (d(u∗θ))2 = μ2g2 + (df)2. (46)

Similarly, using (41), followed by the second part of (42), we see that

u∗ϕ = u∗(Re(Υ) + dθ ∧ ω) = v∗Re(Υ) + (d(u∗θ)) ∧ v∗ω

= 0 + df ∧ (μ2vol2)

= μ2f ′dφ ∧ vol2 (47)

using that df = f ′dφ+ dΣf and (dΣf) ∧ vol2 = 0. Finally, to streamline notation, we
write

λ2 = 1
3 |du|

2 (48)

where |du|2 is computed with respect to g3 on Σ× S1 and h7 on Y × S1.

Proposition 3.12. The map u of (45) is an associative Smith map if and only
if the metric g3 and volume form vol3 on Σ× S1 satisfy

λ2g3 = μ2g2 + (df)2 (49)

and

λ3vol3 = μ2f ′dφ ∧ vol2. (50)

Proof. By Proposition 3.2, the map u is associative Smith if and only if it satisfies

u∗h7 = λ2g3, u∗ϕ = λ3vol3. (51)

The result now follows from (46) and (47).

3.4. The fundamental energy identity for Smith maps. In this section we
establish the fundamental energy identity for Smith maps, when Σ is compact and
the calibration form α = αQ on M is closed. We explain why dα = 0 is necessary for
the energy identity, which says that the Ln-energy of a Smith map is in some sense a
topological invariant when ∂Σ = ∅.

The energy identity, which is our Theorem 3.14 below, originally appeared in the
unpublished preprint [45, Proposition 6.5]. The way we present it here, the proof is
almost immediate due to our parcelling out the preliminary linear algebraic results in
§2.

Let Σn and Mm be as in §3.1, and let u be any smooth map. Further, throughout
this section we suppose that Σ is compact, so that we may integrate over Σ.

Definition 3.13. The n-energy of u, denoted En(u), is defined to be

En(u) =
1

(
√
n)n

ˆ
Σ

|du|nvol.

Thus, up to a factor which is chosen for later convenience, we observe that En(u) is
essentially ‖du‖nn, where ‖du‖n is the Ln-norm of u.
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Theorem 3.14 (The energy identity for Smith maps). When the n-energy En

is written as

En(u) =

ˆ
Σ

(
1

(
√
n)n

|du|nvol− u∗α

)
+

ˆ
Σ

u∗α,

then the first term is always nonegative and vanishes if and only if u is a Smith map.

Moreover, if dα = 0 and ∂Σ = ∅, then the second term is a topological in-
variant, depending only on the cohomology class [α] ∈ Hn(M,R) of α in M and
on the homology class u∗[Σ] ∈ Hn(M), which is the image of the fundamental class
[Σ] ∈ Hn(Σ) by the pushforward homomorphism u∗ : Hn(Σ) → Hn(M) induced by
the map u : Σ → M .

Consequently, when dα = 0, a smooth map u : Σ → M is a Smith map if and
only if its n-energy is given by

En(u) =

ˆ
Σ

u∗α = [α] · u∗[Σ].

Proof. The generalized calibration inequality Theorem 2.40 applied to A = du
says that

1

(
√
n)n

|du|nvol− u∗α ≥ 0 (52)

with equality if and only if u : Σ → M is a Smith map. If dα = 0, then by Stokes’s
Theorem,

´
Σ
u∗α = [α]·u∗[Σ] depends only on the cohomology class [α] ∈ Hn(M,R).

Remark 3.15. The first part of Theorem 3.14 actually holds for maps u ∈
W 1,n(Σ;M) since in this case the inequality (52) holds almost everywhere on Σ and
vanishes almost everywhere if it integrates to zero. Recall that a map u ∈ W 1,n(Σ;M)
is said to be a Smith map if its weak derivative du satisfies the Smith equation almost
everywhere on Σ.

Corollary 3.16. Let dα = 0. If a Smith map u : Σ → M exists, then it
is an absolute minimizer of the n-energy En amongst all smooth maps v : Σ → M
representing the same homology class in Hn(M) as u.

Proof. This is immediate from Theorem 3.14.

Of course, when n = 2, so that we are in the case of Type II from Table 1, then
this result is classical in the theory of J-holomorphic maps, and can be found, for
example, in McDuff–Salamon [35].

Remark 3.17. A consequence of Theorem 3.14 and Proposition 2.32 is that if
u : Σ → M is a Smith map with no critical points, then the n-energy En(u) equals
the volume of Σ with respect to the metric u∗h = 1

n |du|2g on Σ. In particular, if u
is a Gray map with no critical points, then En(u) equals the volume of (Σ, g). (See
also Proposition 3.24 and Remark 3.25 for the geometric measure theory analogue of
this in the setting of currents.)
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3.5. Smith maps and n-harmonic maps. The theory of p-harmonic maps
has been extensively studied. Some possible references for this theory (certainly not
exhaustive) include [10, 15, 22, 36, 38, 46]. Let (Σ, g) and (M,h) be Riemannian
manifolds. A smooth map u : Σ → M is p-harmonic if is satisfies

div(|du|p−2du) = 0, (53)

where div is the Riemannian divergence on (M, g) taking a section of T ∗Σ⊗u∗TM to
a section of u∗TM . When Σ is compact, the p-harmonic maps are the critical points
of the p-energy

´
Σ
|du|pvol.

Suppose that (Σn, g, ∗, vol) and (Mm, h,Q, αQ) are as in §3.1 and suppose that
dα = 0, where we write α for αQ. Then by Corollary 3.16, since a Smith map
u : Σ → M is an absolute minimizer of the n-energy in its homology class, it is
certainly a critical point, and thus it is an n-harmonic map. (Here p = n = dimΣ.)

In this section we show explicitly that Smith maps satisfy (53) when dα = 0.
This argument is interesting because we cannot just differentiate the Smith equation
to obtain the n-harmonic map equation. Rather, we also need to use the fact that a
Smith map is conformally calibrating.

Lemma 3.18. Let Q be a k-fold vector cross product on (M,h) with associated
calibration (k + 1)-form α. Let ∇ be the Levi-Civita connection of h. Then we have

(∇V α)(W1, . . . ,Wk+1) = h
(
(∇V Q)(W1, . . . ,Wk),Wk+1

)
, (54)

h
(
(∇V Q)(W1, . . . ,Wk), Q(W1, . . . ,Wk)

)
= 0, (55)

for all smooth vector fields V,W1, . . . ,Wk+1 on M .

Proof. The metric h is parallel with respect to ∇. Equation (54) is a consequence
of applying ∇V to both sides of

α(W1, . . . ,Wk+1) = h
(
Q(W1, . . . ,Wk),Wk+1

)
,

which is the definition of α from Q as in (20). Similarly (55) is obtained by applying
∇V to both sides of

h
(
Q(W1, . . . ,Wk), Q(W1, . . . ,Wk)

)
= h(W1 ∧ · · · ∧Wk,W1 ∧ · · · ∧Wk),

which is the fundamental property (10) of a vector cross product.

Corollary 3.19. Let u : Σ → M be a smooth Smith map as in §3.1. Then we
have u∗(∇V α) = 0 for any smooth vector field V on M .

Proof. Fix x ∈ Σ and let e1, . . . , en be an oriented orthonormal frame for TxΣ.
Since u is a Smith map, it follows from Proposition 2.32 that u∗e1, . . . , u∗en are all
orthogonal and of the same length λ = 1√

n
|(du)x|, and that they span a calibrated

subspace L = u∗(TxΣ) of Tu(x)M . Then the vectors fi =
1
λu∗ei for i = 1, . . . , n form

an oriented orthonormal basis of L. By Proposition 2.18 we deduce that

fn = Q(f1, . . . , fn−1).
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Using the above equation as well as (54) and (55), we compute

λ−n(u∗∇V α)(e1, . . . , en) = λ−n(∇V α)(u∗e1, . . . , u∗en)

= (∇V α)(f1, . . . , fn−1, fn)

= h
(
(∇V Q)(f1, . . . , fn−1), fn

)
= h

(
(∇V Q)(f1, . . . , fn−1), Q(f1, . . . , fn−1)

)
= 0,

which is equivalent to u∗(∇V α) = 0.

Now we show that a Smith map is n-harmonic if dα = 0. Because the Hodge
star ∗ on Λn−1TΣ is invertible, with ∗−1 = (−1)n−1∗, the Smith equation (36) is
equivalent to

Q(Λn−1du) ∗ = (−1)n−1 1

(
√
n)n−2

|du|n−2(du).

Here both sides of the above equation are sections of T ∗Σ⊗u∗TM . Thus, in order to
show that a Smith map satisfies the n-harmonic map equation (53), we need to show
that div(Q(Λn−1du) ∗) = 0.

Proposition 3.20. If dα = 0, then div(Q(Λn−1du) ∗) = 0, so any Smith map is
an n-harmonic map.

Proof. First consider an arbitrary section B of T ∗Σ ⊗ u∗TM . Using local co-
ordinates as in the end of §3.2 we can write B = Ba

j dx
j ⊗

(
∂

∂ya ◦ u
)
, which means

that

Bx = Ba
j (x) dx

j |x ⊗ ∂

∂ya

∣∣∣
u(x)

.

Now we consider the particular case B = Q(Λn−1du) ∗, where ∗ : TΣ → Λn−1TΣ.
Writing vol = 1

n!μi1···μin
dxi1 ∧ · · · ∧ dxin and α = 1

n!αb1···bndy
b1 ∧ · · · ∧ dybn , we can

compute that

Ba
j =

1

(n− 1)!
μi1···in−1jg

i1l1 · · · gin−1ln−1
∂ub1

∂xl1
· · · ∂u

bn−1

∂xln−1
αb1···bn−1ch

ca. (56)

The connection ∇ on T ∗Σ⊗u∗TM is the tensor product of the Levi-Civita connection
of g on T ∗Σ and the pullback by u of the Levi-Civita connection of h on TM . Using
the fact that g, h, and vol are all parallel, applying gij∇i to (56) gives

(divB)a = gij(∇iB)aj

=
1

(n− 1)!
μi1···in−1jg

ijgi1l1 · · · gin−1ln−1hca∇i

(∂ub1

∂xl1
· · · ∂u

bn−1

∂xln−1
αb1···bn−1c

)
.

If we choose (x1, . . . , xn) to be Riemannian normal coordinates for g centred at x ∈ Σ,
and (y1, . . . , ym) to be Riemannian normal coordinates for h centred at u(x) ∈ M ,
then the covariant derivative ∇i evaluated at the point x is the same as the partial
derivative ∂

∂xi at x, since the Christoffel symbols vanish. Thus, at x, we have

(divB)a

=
1

(n− 1)!
μi1···in−1jg

ijgi1l1 · · · gin−1ln−1hca
( n−1∑

k=1

∂2ubk

∂xlk∂xi

∂ub
i1

∂xl1
· · ·

∂̂ub
ik

∂xlk
· · · ∂u

bn−1

∂xln−1
αb1···bn−1c

)

+
1

(n− 1)!
μi1···in−1jg

ijgi1l1 · · · gin−1ln−1hca ∂u
b1

∂xl1
· · · ∂u

bn−1

∂xln−1

(
∇ ∂

∂xi
αb1···bn−1c

)
.
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Since ∂2ubk

∂xlk∂xi is symmetric in lk, i and μi1···in−1j is skew in ik, j, all the terms in the

first line above vanish. For the covariant derivative of α, we use ∇ ∂

∂xi
= ∂ubn

∂xi ∇ ∂

∂ybn
,

which we write as ∂ubn

∂xi ∇bn for simplicity. We thus have that at the point x,

(divB)a

=
1

(n− 1)!
μi1···in−1jg

ijgi1l1 · · · gin−1ln−1hca ∂u
b1

∂xl1
· · · ∂u

bn−1

∂xln−1

∂ubn

∂xi

(
∇bnαb1···bn−1c

)
.

Relabel j → in and i → ln. We have

(divB)a =
1

(n− 1)!
μi1···ing

i1l1 · · · ginlnhca ∂u
b1

∂xl1
· · · ∂u

bn

∂xln

(
∇bnαb1···bn−1c

)
.

It follows by the skew-symmetry of μi1···in that if we interchange any two of b1, . . . , bn
in the last factor ∇bnαb1···bn−1c, then the right hand side above will change sign.
Consequently, we can write

(divB)a

=
1

(n− 1)!
μi1···ing

i1l1 · · · ginlnhca ∂u
b1

∂xl1
· · · ∂u

bn

∂xln

( 1

n

n∑
k=1

∇bkαb1···bk−1cbk+1···bn

)
. (57)

Now we use the hypothesis that dα = 0. Since d is the skew-symmetrization of ∇, we
have

0 = (dα)cb1···bn = ∇cαb1...bn −
n∑

k=1

∇bkαb1···bk−1cbk+1···bn .

Substituting the above into (57) gives

(divB)a =
1

n!
μi1···ing

i1l1 · · · ginlnhca ∂u
b1

∂xl1
· · · ∂u

bn

∂xln
∇cαb1···bn . (58)

We observe that Corollary 3.19 with V = ∂
∂yc evaluated on W1, . . . ,Wn with Wk =

∂
∂xlk

says that

0 = (u∗∇cα)
( ∂

∂xl1
, . . . ,

∂

∂xln

)
=

∂ub1

∂xl1
· · · ∂u

bn

∂xln
∇cαb1···bn .

Substituting the above into (58) gives divB = 0, as claimed.

3.6. Smith maps via currents. Most of this section can be read independently
from the rest of the paper, with the exception of Corollary 3.27, which is used later. We
give two proofs of Corollary 3.27, one using the geometric measure theory framework
of this section, and another using the energy identity of Theorem 3.14. The reader
who is not interested in geometric measure theory can skip this entire section with
the exception of Corollary 3.27 and its second proof.

Here we continue using the notation of §3.1, and we assume that the n-form α
associated with the vector cross product Q on M is closed. Also, we emphasize that
we allow Σ to have nonempty boundary.

Recall that in §3.1 and §3.4 the following result is effectively proved.
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Proposition 3.21. Suppose Σ is compact, possibly with boundary, and let u :
Σ → M be a Lipschitz map. Thenˆ

Σ

u∗α ≤ 1

(
√
n)n

ˆ
Σ

|du|nvol. (59)

Moreover, we have the following two equivalent characterizations for when equality
holds:

(a) u is a Smith map.
(b) u is conformally calibrating; that is, u∗h = 1

n |du|2g and u∗α = 1
(
√
n)n

|du|nvol.
The main purpose of this section is to complete the inequality (59) by showing

that it is part of a longer string of inequalities which involves the volume of the image
of Σ under u, which has to be understood as a current when critu is nonempty. In
addition, we show that, in the equality case, the image current is calibrated by α.
Below we very briefly recall some relevant definitions from the theory of currents. For
a general introduction to the subject, see for instance [44, Chapter 6].

Following standard practice in geometric measure theory, we assume that Σ and
M are isometrically embedded into Rl and Rd, respectively, in which case the n-
dimensional Hausdorff measure Hn restricts to the volume measure vol on Σ. Next,
to Σ we associate an integral current �Σ� given by

�Σ�(ω) :=

ˆ
Σ

〈ωx, ξx〉dHn(x) for all ω ∈ Dn(Rl),

where Dn(Rl) denotes the space of all smooth compactly supported n-forms on Rl,
and ξx ∈ ΛnRl is the unit simple n-vector giving the orientation on TxΣ for each
x ∈ Σ. (Here TxΣ is considered a subspace of Rl via the embedding Σ → Rl.)

Given a Lipschitz map u : Σ → M , we regard it as a map into Rd and define the
pushforward u#�Σ� of �Σ� by u, which is an integral current supported in M , by

u#�Σ�(η) :=

ˆ
Σ

〈ηu(x),Λn(du)xξx〉dHn(x) for all η ∈ Dn(Rd).

Note that the right hand side is just �Σ�(u∗η) when u is smooth. Also, strictly
speaking, on the right we should write u instead u, where u : Rl → Rd is any compactly
supported extension of u. (The choice of extension does not affect the definition of
u#�Σ�.)

The mass of the current u#�Σ� is, by definition,

M(u#�Σ�) = sup
{
u#�Σ�(η)

∣∣ η ∈ Dn(Rd), ‖ηy‖ ≤ 1 for all y ∈ Rd
}
,

where ‖ · ‖ denotes the comass norm of a covector.
To pair the current u#�Σ� with the calibrating n-form α, we need to extend the

latter to a compactly supported form on Rd. Specifically, take δ0 sufficiently small so
that the neighborhood

N2δ0(M) := {x ∈ Rd | distRd(x,M) < 2δ0}

is strictly contained in a tubular neighborhood of M in Rd, and let π : N2δ0(M) → M
be the nearest-point projection. In addition, fix a cutoff function ζ which is identically
1 on N 3δ0

2
(M) and vanishes outside of N2δ0(M).

Lemma 3.22. The n-form α̃ on Rd defined by α̃ = ζπ∗α has the following
properties.
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(a) dα̃ = 0 on N 3δ0
2
(M).

(b) For y ∈ Rd, the comass norm of α̃y satisfies ‖α̃y‖ ≤ 1.
(c) For y ∈ M and τ ∈ ΛnTyM , we have 〈α̃y, τ〉 = 〈αy, τ〉, where on the left hand

side we view τ as an element of ΛnRd via the embedding M → Rd.

Proof. Statements (a) and (c) can be verified by direct computation. For (b),
take a unit simple n-vector τ ∈ ∧n

Rd. Then by the definition of α̃ we have

|〈α̃y, τ〉| = ζ(y)
∣∣〈απ(y),Λ

n(dπ)yτ〉
∣∣

≤ ‖απ(y)‖ |Λn(dπ)yτ | ≤ |Λn(dπ)yτ |,

where we used that fact that ‖απ(y)‖ ≤ 1 in the last inequality. Therefore, taking the
supremum over all unit simple n-vectors τ , we obtain

‖α̃y‖ ≤ |Λn(dπ)y| ≤ 1,

which implies the desired estimate.

Lemma 3.23. Let u : Σ → M be a Lipschitz map. For any x ∈ Σ such that (du)x
exists, and any η ∈ Dn(Rd) with ‖ηy‖ ≤ 1 for all y ∈ M , we have

〈ηu(x),Λn(du)xξx〉 ≤ |Λn(du)xξx| ≤
1

(
√
n)n

|(du)x|n.

Proof. This is immediate from the proof of the generalized calibration inequality,
Theorem 2.40.

We now give the precise version of the main result of this section along with two
corollaries.

Proposition 3.24. Let u : Σ → M be a Lipschitz map.
(a) We have

u#�Σ�(α̃) ≤ M(u#�Σ�) ≤
ˆ
Σ

|Λn(du)xξx|dHn(x) ≤ 1

(
√
n)n

ˆ
Σ

|du|ndHn. (60)

(b) If u is a Smith map, then all the inequalities in (60) become equalities. In par-
ticular, the integral current u#�Σ� is calibrated by α̃. That is, it is a positive
α̃-current in the sense of [23, Section II.4].

Remark 3.25. The third term in (60) coincides with the mass of the pushforward
of Σ as a varifold via the map u.

Proof of Proposition 3.24. We begin with part (a). Applying Lemma 3.23 to
any η ∈ Dn(Rd) with ‖ηy‖ ≤ 1 everywhere, integrating over Σ, and then taking the
supremum over all such η, we see that

M(u#�Σ�) ≤
ˆ
Σ

|Λn(du)xξx|dHn(x) ≤ 1

(
√
n)n

ˆ
Σ

|du|ndHn.

To finish the proof of (a), we simply note that u#�Σ�(α̃) ≤ M(u#�Σ�) by the definition
of M(u#�Σ�), because ‖α̃y‖ ≤ 1 for all y ∈ Rd.

The first claim of part (b) follows directly from Proposition 3.21. The second part
holds because any integral current T supported in M and satisfying T (α̃) = M(T )
must be a positive α̃-current.
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Corollary 3.26. Let A,B be compact subsets of Σ with smooth boundary and
let u : A → M and v : B → M be Lipschitz maps, with u being a Smith map. Suppose
further that u#�A� + v#�B� = ∂S for some (n+ 1)-current supported in M . Then

ˆ
A

|du|ndHn ≤
ˆ
B

|dv|ndHn.

Proof of Corollary 3.26. By Proposition 3.24(b), the current u#�A� is calibrated
by α̃ and hence is mass-minimizing among all currents homologous to it. Since
−v#�B� is homologous to u#�A� by assumption, we get

M(u#�A�) ≤ M(−v#�B�) = M(v#�B�) ≤ 1

(
√
n)n

ˆ
B

|dv|ndHn,

where the last inequality follows from (60). We complete the proof by noting that

M(u#�A�) =
1

(
√
n)n

ˆ
A

|du|ndHn,

because of Proposition 3.24(b).

The following result is used in §5.3 to derive an estimate crucial to the proofs
of Theorems 5.1 and 5.2. As mentioned at the beginning of this section, we give
two proofs, the second of which depends only on Theorem 3.14 and does not use the
geometric measure theory framework above.

Corollary 3.27. Suppose Σ = ∂W where W is a compact oriented Riemannian
(n+1)-manifold isometrically embedded in Rl, and let u : A → M be a Lipschitz Smith
map on a compact set A ⊆ Σ with smooth boundary. Suppose moreover that u has a
Lipschitz extension f : Σ → M , which extends further to a Lipschitz map F : W → M .
Then we have

1

(
√
n)n

ˆ
A

|du|ndHn ≤ 1

(
√
n)n

ˆ
Σ\A

|df |ndHn.

Proof of Corollary 3.27. This follows at once from Corollary 3.26 with A being
the same, B = Σ \A, and v = f |B , and S = F#�W �. (Note that ∂S = f#�Σ� =
u#�A� + v#�B�.)

We also give a second proof, using the energy identity of Theorem 3.14. By the
energy identity applied to the calibration −α and the map f with domain Σ \ A, we
have

1

(
√
n)n

ˆ
Σ\A

|df |ndHn ≥ −
ˆ
Σ\A

f∗α.

On the other hand, recalling that f |A = u is a Smith map and using the equality case
of the energy identity (with the calibration α), we get

1

(
√
n)n

ˆ
A

|df |ndHn =

ˆ
A

f∗α =

ˆ
Σ

f∗α−
ˆ
Σ\A

f∗α.

Combining the two relations above, we arrive at

1

(
√
n)n

ˆ
A

|du|ndHn ≤
ˆ
Σ

f∗α+
1

(
√
n)n

ˆ
Σ\A

|df |ndHn.
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To finish, it suffices to prove that
´
Σ
f∗α = 0. For that, note that by Stokes’s theorem

we have
ˆ
Σ

f∗α =

ˆ
Σ

F ∗α =

ˆ
W

F ∗(dα) = 0,

as claimed.

4. Analytic aspects of Smith maps.

Note. Beginning in this section and for the remainder of the paper, for concrete-
ness we restrict to the case of associative Smith maps u : (Σ3, g, ∗, μ) → (M7, h, J, ϕ),
although all of our results also apply to Cayley Smith maps after making the obvious
modifications.

Thus, (Σ, g) is an oriented Riemannian 3-manifold with volume form μ and Hodge
star operator ∗, and (M,ϕ) is a 7-manifold with a G2-structure ϕ inducing a Rieman-
nian metric h and an associated 2-fold vector cross product which we denote by J
in analogy with almost complex structures. In addition, recall that M is compact
without boundary and that it is isometrically embedded into (Rd, geuc).

The present section is divided into five parts. In §4.1 we derive an explicit useful
form of the Smith equation in local coordinates. In §4.2 we prove the ε-regularity
theorem, which is Theorem 4.7. In §4.3 we establish a mean value inequality, in-
terior regularity, and a removable singularity theorem. §4.4 is devoted to the basic
convergence result for a sequence of Smith maps with uniformly bounded 3-energy,
which gives C1-subsequential convergence away from a set of isolated points and is
important for the bubble tree construction in §5. Finally in §4.6 we mention two well-
known results giving positive lower bounds for the 3-energy of maps from S3 which
are “nontrivial” in some sense.

4.1. The Smith equation. In this section and the next, Greek indices run from
1 to 3 and Latin indices run from 1 to d, where M is isometrically embedded into
(Rd, geuc). In particular we have global coordinates y1, . . . , yd on Rd and the vector
fields ∂

∂y1 , . . . ,
∂

∂yd are orthonormal. We extend the vector cross product J on M to

Rd as follows. Let δ0 be chosen such that

N2δ0(M) := {x ∈ Rd | distRd(x,M) < 2δ0}

is strictly contained in a tubular neighborhood of M in Rd, and let π denote the
nearest-point projection onto M . Moreover, let ζ be a cutoff function which is iden-
tically equal to 1 on N 3δ0

2
(M) and vanishes outside of N2δ0(M). Then we define

J̃y(X,Y ) =

{
ζ(y)Jπ(y)

(
(dπ)yX, (dπ)yY

)
if y ∈ N2δ0(M),

0 otherwise.

Note that J̃y is still bilinear and skew-symmetric for all y ∈ Rd, and moreover

J̃y(X,Y ) = Jy(X,Y ) whenever y ∈ M and X,Y ∈ TyM.

Note that J̃ is not a vector cross product on Rd. However, this does not affect any of
the results where J̃ is used, as only the bilinearity and skew-symmetry are required
whenever we use J̃ .
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We write J̃ in coordinates as

J i
jk(y)

∂

∂yi
= J̃y

( ∂

∂yj
,

∂

∂yk

)
.

Note that we have dropped the tilde in the notation for the components.
In addition, because all of the results in §4.2 and §4.3 are local, in these two

sections we assume the domain is the ball B(2) ⊆ R3 equipped with a Riemannian
metric g = (gαβ). Moreover we assume B(2) is given the standard orientation, so
that ∂1, ∂2, ∂3 is a positive basis everywhere. For a map u : B(2) → Rd we write the
components of its differential as

ui
α

∂

∂yi
=

∂u

∂xα
=: uα.

We need to rewrite the Smith equation (36) in terms of the components of J̃ and
μ. It is more convenient to precompose both sides of (36) with ∗. Thus we have
(recall n = 3 from now on) that

1√
3
|du|du = J(Λ2du) ∗ . (61)

If we write ∂λ for ∂
∂xλ , then ∗∂λ = 1

2C
αβ
λ ∂α ∧ ∂β for some functions Cαβ

λ = −Cβα
λ .

Using that ∗ is an isometry and ∗2 = 1 in three dimensions, we find that

μγδλ = g(∗(∂γ ∧ ∂δ), ∂λ) = g(∂γ ∧ ∂δ, ∗∂λ)
= 1

2C
αβ
λ g(∂γ ∧ ∂δ, ∂α ∧ ∂β) =

1
2C

αβ
λ (gγαgδβ − gγβgδα)

= Cαβ
λ gγαgδβ .

Thus we conclude that Cαβ
λ = μλγδg

γαgδβ = μαβγgαλ. The second expression is
preferable, since μαβγ are the components of the 3-vector that is metric dual to the
Riemannian volume form μ. Thus

μαβγ =
1√
g
εαβγ ,

where
√
g denotes

√
det(gαβ) and εαβγ is the permutation symbol on three letters.

That is, εσ(1)σ(2)σ(3) = sgn(σ) for σ ∈ S3. Thus

∗∂λ =
1

2
√
g
εαβγgλγ∂α ∧ ∂β . (62)

Using (62) and the notation defined above, equation (61) becomes

1√
3
|du|ui

λ

∂

∂yi
= [J ◦ (du ∧ du) ◦ ∗] (∂λ)

=
1

2
√
g
[J ◦ (du ∧ du)] (εαβγgλγ∂α ∧ ∂β)

=
1

2
√
g
εαβγgλγJ(uα, uβ)

=
1

2
√
g
εαβγgλγ(J

i
jk ◦ u)uj

αu
k
β

∂

∂yi
.
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Finally, equating the ∂
∂yi components of each side and skew-symmetrizing in α, β, we

conclude that

1√
3
|du|ui

λ =
1

4
√
g
εαβγgλγ(J

i
jk ◦ u)(uj

αu
k
β − uj

βu
k
α), (63)

which is the form of the Smith equation that we require in the next section.

4.2. The ε-regularity theorem. The main result of this section, namely The-
orem 4.7, is an ε-regularity theorem in the spirit of Sacks–Uhlenbeck [42]. The proof
is accomplished in a number of stages. First, in Proposition 4.1 we derive from the
Smith equation (63) a system of second order elliptic equations that resembles the n-
harmonic map system. Then, combining the work of Uhlenbeck [49] and some results
from harmonic analysis, which are collected in Appendix A (see also Remarks 4.2
and 4.5), we prove a decay estimate on the 3-energy under a smallness assumption in
Proposition 4.3. From there and using standard theory, we derive C0,α-regularity for
any α ∈ (0, 1) in Proposition 4.6. Finally, choosing α sufficiently close to 1 and adapt-
ing an argument from [11], which is itself based on a refinement [17] of Uhlenbeck’s
work, allows us to prove Theorem 4.7.

We point out that the system (65) we derive in Proposition 4.1 belongs to the
class of n-harmonic type systems studied by Mou–Wang in [37]. Using the same
harmonic analysis tools that we use below, but rather differently, they obtained a
Hölder continuity result similar to Corollary 4.6 for some α ∈ (0, 1). They also
obtained analogues of Theorem 4.10 (the first conclusion) and Proposition 4.17 using
arguments different from ours.

Proposition 4.1. Let u ∈ W 1,3(B(2);M) be an associative Smith map. That
is, u satisfies the Smith equation (63) almost everywhere on B(2). Then the following
hold:

(a) We have

ˆ
B(2)

〈|du|du, dη〉gdμg = −
√
3

4

ˆ
B(2)

εαβγ(uj−ξj)
(
(J i

jk◦u)αuk
β−(J i

jk◦u)βuk
α

)
ηiγdx,

(64)
for any constant vector ξ ∈ Rd and any η ∈ W 1,3

0 ∩ L∞(B(2);Rd).
(b) We have

ˆ
B(2)

〈|du|du, dη〉gdμg = −
√
3

2

ˆ
B(2)

εαβγ(J i
jk ◦ u)γuj

αu
k
βη

idx. (65)

for any η ∈ W 1,3
0 ∩ L∞(B(2);Rd).

Proof. The idea is to compute
´
B(2)

〈|du|du, dη〉gdμg using the Smith equation (63)

and then integrate by parts with the help of smooth approximations. We only give
the details for part (a), since part (b) is similar.

For any η as in the statement of the theorem, using (63) and that ξ is a constant
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vector, we have
ˆ
B(2)

〈|du|du, dη〉gdμg =

ˆ
B(2)

|du|ui
λη

i
δg

λδ√gdx

=

√
3

4

ˆ
B(2)

εαβγ(J i
jk ◦ u)(uj

αu
k
β − uj

βu
k
α)η

i
γdx

=

√
3

4

ˆ
B(2)

εαβγ(J i
jk ◦ u)

(
(uj − ξj)αu

k
β − (uj − ξj)βu

k
α

)
ηiγdx.

We want to integrate by parts, but u does not necessarily possess weak second deriva-
tives. Thus we take a sequence (vn) in C∞(B(2);Rd) such that ‖vn − u‖1,3;B(2) → 0
as n → ∞, and consider
ˆ
B(2)

εαβγ(J i
jk ◦ u)

(
(uj − ξj)αv

k
n,β − (uj − ξj)βv

k
n,α

)
ηiγdx

= εαβγ
ˆ
B(2)

(J i
jk ◦ u)(uj − ξj)αv

k
n,βη

i
γdx− εαβγ

ˆ
B(2)

(J i
jk ◦ u)(uj − ξj)βv

k
n,αη

i
γdx.

The first term can be treated as follows.ˆ
B(2)

(J i
jk ◦ u)(uj − ξj)αv

k
n,βη

i
γdx

= −
ˆ
B(2)

(uj − ξj)
(
vkn,βαη

i
γ(J

i
jk ◦ u) + vkn,βη

i
γα(J

i
jk ◦ u) + vkn,βη

i
γ(J

i
jk ◦ u)α

)
.

Similarly,
ˆ
B(2)

(J i
jk ◦ u)(uj − ξj)βv

k
n,αη

i
γdx

= −
ˆ
B(2)

(uj − ξj)
(
vkn,βαη

i
γ(J

i
jk ◦ u) + vkn,αη

i
βγ(J

i
jk ◦ u) + vkn,αη

i
γ(J

i
jk ◦ u)β

)
.

Subtracting this from the previous identity, multiplying by εαβγ , and summing over
α, β, γ, we arrive at

ˆ
B(2)

εαβγ(J i
jk ◦ u)

(
(uj − ξj)αv

k
n,β − (uj − ξj)βv

k
n,α

)
ηiγdx

= −
ˆ
B(2)

εαβγ(uj − ξj)
(
(J i

jk ◦ u)αvkn,β − (J i
jk ◦ u)βvkn,α

)
ηiγdx.

Letting n → ∞ completes the proof.

Remark 4.2. Equation (64) is useful because, fixing any i, j, the vector field X
on B(2) defined by

Xγ = εαβγ
(
(J i

jk ◦ u)αuk
β − (J i

jk ◦ u)βuk
α

)
lies in L

3
2 (B(2)) and furthermore has divergence zero in B(2) in the sense of distri-

butions. Hence, by Proposition A.6, we know that for any η ∈ W 1,3
0 (B(1);Rd) and

fixed i, j, the function

εαβγ
(
(J i

jk ◦ u)αuk
β − (J i

jk ◦ u)βuk
α

)
ηiγ
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lies in the Hardy space H1(R3) and has H1-norm bounded by

C‖X‖ 3
2 ;B(2)‖Dη‖3;B(1) ≤ C‖Du‖23;B(2)‖Dη‖3;B(1).

Next, we establish the regularity of W 1,3-Smith maps on B(2).

Proposition 4.3. For all α ∈ (0, 1), there exist constants ε0, θ ∈ (0, 1
9 ), depend-

ing only on α,M, J and on the embedding M → Rd, such that if the metric g on B(2)
satisfies

|g − geuc|0;B(2) + |Dg|0;B(2) ≤ ε0, (66)

and if u : B(2) → M is a W 1,3 associative Smith map with

ˆ
B(2)

|Du|3dx < ε0, (67)

then we have
ˆ
B(θ)

|Du|3dx ≤ θ3α
ˆ
B(2)

|Du|3dx. (68)

Remark 4.4. Note that if ε0 < 1
9 then, because the domain is 3-dimensional,

condition (66) implies that

1

2
|ξ|2 ≤ gαβ(x)ξ

αξβ ≤ 2|ξ|2, for all x ∈ B(2), ξ ∈ R3. (69)

Here the | · | denotes length measured with respect to the Euclidean metric geuc. We
often use relation (69) to go back and forth between g and geuc.

Proof of Proposition 4.3. First note that the inequalities (69) mean that for any
map w ∈ W 1,3(B(1);Rd) we have

1

8

ˆ
A

|Dw|3dx ≤
ˆ
A

|dw|3gdμg ≤ 8

ˆ
A

|Dw|3dx, for all A ⊆ B(1). (70)

Next we let v be the unique minimizer of
´
B(1)

|Dw|3dx amongst all maps w ∈
W 1,3(B(1);Rd) satisfying w − u ∈ W 1,3

0 (B(1);Rd). Then v satisfies

ˆ
B(1)

(|Dv|Dv ·Dη)dx = 0 for all η ∈ W 1,3
0 (B(1);Rd). (71)

Fix i ∈ {1, . . . , d} and choose η = (vi − ess supB(1)u
i)+

∂
∂yi , where (·)+ denotes the

positive part. This η belongs to W 1,3
0 (B(1);Rd) because v−u does. Then (71) implies

vi ≤ ess supB(1)u
i on B(1), for all i = 1, . . . , d. (72)

Similarly, we can prove that

vi ≥ ess infB(1)u
i on B(1), for all i = 1, . . . , d. (73)
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Since M is compact, the two sets of inequalities above imply that v lies in
L∞(B(1);Rd). Moreover, by the 3-energy minimizing property of v we have

ˆ
B(1)

|Dv|3dx ≤
ˆ
B(1)

|Du|3dx. (74)

The following result due to Uhlenbeck [49] is the reason we introduced the map v.
Specifically, her work tells us that v ∈ C1,γ

loc (B(1);Rd), and satisfies

sup
B( 1

2 )

|Dv|3 ≤ C

ˆ
B(1)

|Dv|3dx
(
≤ C

ˆ
B(1)

|Du|3dx
)
, (75)

where γ, C are universal constants.
To establish the asserted energy decay, we compare the 3-energy of u with that of

v and use (64) to estimate the difference. To do that, we need a system of equations
satisfied by v which resembles (64). Therefore we use (71) to deduce, for all η ∈
W 1,3

0 (B(1);Rd), that

ˆ
B(1)

〈|dv|gdv, dη〉
√
gdx

=

ˆ
B(1)

(
〈|dv|gdv, dη〉

√
g − |Dv|Dv ·Dη

)
dx

=

ˆ
B(1)

(√
g|dv|g〈dv, dη〉 − |Dv|Dv ·Dη

)
dx

=

ˆ
B(1)

(
(
√
g|dv|g − |Dv|)gαβvα · ηβ + |Dv|

(
gαβ − gαβeuc

)
vα · ηβ

)
dx

=

ˆ
B(1)

(F β · ηβ)dx, (76)

where we defined F β = (
√
g|dv|g − |Dv|)gαβvα + |Dv|

(
gαβ − gαβeuc

)
vα. Note that by

the definition of F and (74), for some universal constant C we have

‖F‖ 3
2 ;B(1) ≤ C|g − geuc|0;B(1)‖Dv‖23;B(1) ≤ C|g − geuc|0;B(1)‖Du‖23;B(1). (77)

Now we test both (64) and (76) against w := u − v, extended to be zero outside of
B(1), and consider the differences of the resulting identities to get

ˆ
B(1)

〈|du|gdu− |dv|gdv, dw〉dμg

= −
√
3

4

ˆ
B(1)

εαβγ(uj − ξj)
(
(J i

jk ◦ u)αuk
β − (J i

jk ◦ u)βuk
α

)
wi

γdx−
ˆ
B(1)

(F β · wβ)dx

= −
√
3

4

ˆ
B(1)

εαβγ(uj − ξj)ζ
(
(J i

jk ◦ u)αuk
β − (J i

jk ◦ u)βuk
α

)
wi

γdx−
ˆ
B(1)

(F β · wβ)dx,

(78)

where ζ is a cutoff function which is identically 1 on B(1) and vanishes outside of
B( 32 ).

We next show how the equation (78) can be used to estimate ‖Dw‖3;B(1). Note
that the second term on the last line of (78) can be estimated by Hölder’s inequality
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and (77), yielding

ˆ
B(1)

(F β ·wβ)dx ≤ C‖F‖ 3
2 ;B(1)‖Dw‖3;B(1) ≤ C|g− geuc|0;B(1)‖Du‖23;B(1)‖Dw‖3;B(1).

(79)
To estimate the first term, we choose ξ =

ffl
B(2)

udx and use Proposition A.5 to deduce

that

[(u− ξ)ζ]BMO ≤ C‖Du‖3;B(2). (80)

On the other hand, denoting by Xj the (R3×d-valued) function defined by

(Xj)
γ
i = εαβγ

(
(J i

jk ◦ u)αuk
β − (J i

jk ◦ u)βuk
α

)
,

we see by Remark 4.2 and Proposition A.6 that

‖Xj ·Dw‖H1 ≤ C‖Du‖23;B(2)‖Dw‖3;B(1).

Using this together with (80) and Theorem A.4, we obtain

ˆ
B(1)

εαβγ(uj − ξj)ζ
(
(J i

jk ◦ u)αuk
β − (J i

jk ◦ u)βuk
α

)
wi

γdx ≤ C‖Du‖33;B(2)‖Dw‖3;B(1).

(81)
Putting (81) and (79) back into the equation (78) and rearranging, we obtain
ˆ
B(1)

〈|du|gdu− |dv|gdv, dw〉dμg ≤ C
(‖Du‖3;B(2) + |g − geuc|0;B(1)

)‖Du‖23;B(2)‖Dw‖3;B(1).

Next, we show how the left-hand side controls ‖Dw‖3;B(1). Specifically, we have

ˆ
B(1)

|Dw|3dx ≤ C

ˆ
B(1)

|dw|3gdμg

≤ C

ˆ
B(1)

(
|du|g + |dv|g

)
|dw|2gdμg

≤ C

ˆ
B(1)

〈|du|gdu− |dv|gdv, dw〉dμg,

where the first inequality above follows from (69), and in the last inequality we
used [11, equation (10) on page 240]. To sum up, we arrive at

ˆ
B(1)

|Dw|3dx ≤ C
(
‖Du‖3;B(2) + |g − geuc|0;B(1)

)
‖Du‖23;B(2)‖Dw‖3;B(1). (82)

Cancelling a factor of ‖Dw‖3;B(1) from both sides and recalling the assumptions (66)
and (67), we obtain

ˆ
B(1)

|Dw|3dx ≤ Cε0‖Du‖33;B(2).

On the other hand, by (75) and (74), for each θ ∈ (0, 1
9 ) we have

ˆ
B(θ)

|Dv|3dx ≤ Cθ3
ˆ
B(2)

|Du|3dx.
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Combining the two estimates above gives
ˆ
B(θ)

|Du|3dx ≤ C

ˆ
B(θ)

|Dv|3 + |Dw|3dx ≤ C(θ3 + ε0)

ˆ
B(2)

|Du|3dx. (83)

Now fix θ ∈ (0, 1
9 ) such that

Cθ3 <
1

2
θ3α,

which is possible because α ∈ (0, 1). Then choose ε0 = θ3. We have

C(θ3 + ε0) < 2Cθ3 < θ3α.

By the above and (83), we get (68) and the proof is complete.

Remark 4.5. The Hardy space H1 and the Fefferman–Stein identification of
its dual space with BMO (see [14] and also our Theorem A.4) underlie a “com-
pensation phenomenon” that shows up in many geometric PDEs to give solutions
better regularity than afforded by standard theory. Examples include the H-system
for CMC surfaces (see for example [2, 51]), the harmonic map system [1, 12, 26],
p-harmonic maps into special targets [46, 48], and the Cauchy–Riemann equation for
J-holomorphic maps [50]. Proposition 4.3 is another manifestation of this compensa-
tion phenomenon.

Corollary 4.6. For all α ∈ (0, 1), let ε0 be as in Proposition 4.3. If u ∈
W 1,3(B(2);M) is an associative Smith map with respect to g and if both (66) and (67)
hold, then for all x0 ∈ B( 32 ) and r ∈ (0, 1

4 ) we have

ˆ
B(x0;r)

|Du|3dx ≤ Kr3α
ˆ
B(2)

|Du|3dx for all x0 ∈ B( 32 ), r ∈ (0, 1
4 ). (84)

In particular, the map u lies in C0,α(B( 32 );R
d), with

[u]3α;B( 3
2 )

≤ C

ˆ
B(2)

|Du|3dx. (85)

The constants K and C above have the same dependence as ε0.

Proof. Choose any x0 ∈ B( 32 ) and r < 1
4 and consider the rescalings

ũ(x) = u(x0 + rx), g̃(x) = g(x0 + rx).

Then (B(2), g̃) and (B(x0; 2r), g) are conformal via x �→ x0+rx, and by the conformal
invariance of the Smith equation, we see that ũ is a Smith map with respect to g̃.
Furthermore, g̃ again satisfies (66) on B(2), and

ˆ
B(2)

|Dũ|3dx =

ˆ
B(x0;2r)

|Du|3dx ≤ ε0.

Hence we may apply Proposition 4.3 on B(2) to ũ and undo the rescaling to get

ˆ
B(x0,θr)

|Du|3dx ≤ θ3α
ˆ
B(x0;2r)

|Du|3dx for all x0 ∈ B( 32 ), r ∈ (0, 1
4 ). (86)
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It is now fairly standard (compare with [18, Lemma 8.23]) to iterate (86) to obtain

ˆ
B(x0;r)

|Du|3dx ≤ Kr3α
ˆ
B(x0;

1
2 )

|Du|3dx for all x0 ∈ B( 32 ), r ∈ (0, 1
4 ),

for some K depending on θ and α. This immediately gives (84), and the second
conclusion follows by Morrey’s embedding (compare with [18, Chapter 7]).

Theorem 4.7 (ε-regularity). Fix α ∈ ( 34 , 1) and let ε0 be given by Proposition 4.3
with this choice of α. There exists a constant β ∈ (0, 1), depending only on α,M, J
and the embedding M → Rd, such that if u ∈ W 1,3(B(2);M) is an associative Smith
map with respect to g and if both (66) and (67) hold, then the following hold.
(a) The map u belongs to C1,β(B(1);Rd). Moreover |u|1,β;B(1) can be estimated in

terms of M,J , the embedding M → Rd and ‖Du‖3;B(2).
(b) In addition, u is smooth on the (open) set

{x ∈ B(1) | Du(x) �= 0}.

Proof. Part (a) can be proven as in [11, Lemma 6], with only minor modifications,
while part (b) is standard. For the sake of completeness we included proofs of both
parts in Appendix B.

Remark 4.8. The constant ε0 of Theorem 4.7 is called the threshold energy.

4.3. Mean value inequality, interior regularity and removable singular-
ities. We now discuss three additional important properties of Smith maps, two of
which are immediate consequences of the regularity results in §4.2. These are The-
orem 4.9, which is a mean value inequality for the gradient of an associative Smith
map, Theorem 4.10, which gives everywhere interior regularity of W 1,3-Smith maps,
and Theorem 4.11, which is a removable singularity result.

Theorem 4.9 (Mean value inequality). Suppose that Ricg is bounded by K, in
the sense that ∣∣Ricg(x)(v, v)∣∣ ≤ K|v|2g(x) for all x ∈ B(2), v ∈ R3.

There exists ε1 > 0 such that if (66) and (67) hold with ε1 in place of ε0 and if
u ∈ W 1,3(B(2);M) is an associative Smith map with respect to g, then we have

sup
x∈B( 1

2 )

|Du(x)| ≤ C
( ˆ

B(2)

|Du|3dx
) 1

3

,

where both ε1 and C depend only on M,J , the embedding M → Rd, and K.

Proof. This essentially follows from the arguments in [10, Theorem 2.1], which
concerns weakly p-harmonic maps with respect to the Euclidean metric. Indications
of the main steps of the proof along with necessary modifications can be found Ap-
pendix B.

Theorem 4.10 (Interior regularity). Suppose that g is a smooth Riemannain
metric on B(2), and that u is a W 1,3-Smith map on B(2) with respect to g. Then u
has Hölder continuous first derivatives on B(1). Moreover, u is C∞ on the open set
{x ∈ B(1) : du(x) �= 0}.
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Proof. Obviously it suffices to prove that for all x0 ∈ B(1) there exists r ∈ (0, 1
4 )

such that both conclusions hold with B(x0; r) in place of B(1). To that end, take
any x0 ∈ B(1) and define the rescalings ũ and g̃ as in the proof of Corollary 4.6, with
r < 1

4 to be determined. Then by the conformal invariance of the Smith equation, ũ
is a W 1,3-Smith map with respect to g̃ on B(2). Moreover, we have

ˆ
B(2)

|Dũ|3dx =

ˆ
B(x0;2r)

|Du|3dx,

and

|g̃ − geuc|0;B(2) + |Dg̃|0;B(2) = |g − geuc|0;B(x0;2r) + r|Dg|0;B(x0;2r) ≤ 2r|Dg|0;B(x0;2r).

Since u ∈ W 1,3(B(2);M) and g is smooth on B(2), the two relations above imply
that we may choose r sufficiently small so that (66) and (67) hold with ε0 given
by Theorem 4.7. Consequently ũ ∈ C1,β(B(1);M) and is smooth on the open set
{x ∈ B(1) | Dũ(x) �= 0}. Since x0 ∈ B(1) is arbitrary, we are done upon scaling back
to u and recalling the observation at the beginning of the proof.

Theorem 4.11 (Removable singuarity). Suppose that g is a smooth Riemannian
metric on B(2), and that u ∈ C1

loc(B(2) \ {0};M) is a Smith map with respect to g,
satisfying

ˆ
B(2)

|Du|3dx < ∞.

Then in fact u extends to a C1-Smith map on all of B(2).

Proof. We first note that the assumptions imply that u belongs to W 1,3(B(2);M)
and that its weak derivative, which coincides with its classical derivative away from
the origin, satisfies the Smith equation (with respect to g) almost everywhere. Next,
we again consider the rescalings ũ and g̃ introduced in the proof of Corollary 4.6,
this time choosing x0 = 0. Then, as in the proof of Theorem 4.10, there exists a
small enough r such that Theorem 4.7 is applicable to ũ on B(2). Hence ũ lies in
C1,β(B(1);M). In other words, u ∈ C1,β(B(r);M), which immediately gives the
desired conclusion.

4.4. Convergence modulo bubbling. In this section we study sequences of
Smith maps with uniformly bounded 3-energy, which we may assume to be C1 thanks
to Theorem 4.10. We show that the estimates in §4.3 give C1-(subsequential) con-
vergence locally away from a finite set of points to a C1 associative Smith map. As
mentioned in §1.2, the main result of the present section, Proposition 4.12, figures
prominently in the construction of the bubble tree limit. In particular, we show in §5
that bubbling phenomena occur precisely at the points where C1-convergence fails.

We now state the main result of this section.

Proposition 4.12 (Convergence modulo bubbling). Let (Σ, g) be a closed Rie-
mannian 3-manifold and let Ω be an open subset of Σ with {Ωn} an increasing sequence
of open subsets exhausting Ω. Moreover, suppose that for each n we have a Rieman-
nian metric gn on Ωn and an associative Smith map un ∈ C1(Ωn,M) with respect to
gn, such that

gn converges smoothly to g on compact subsets of Ω,
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and ˆ
Ωn

|dun|3gndμgn ≤ E0 for all n. (87)

Then, there exists a finite set of points S ⊆ Σ such that, up to taking a subsequence,
the following hold.
(a) (un) converges in C1

loc(Ω \ S) to u ∈ C1
loc(Ω;M) which is an associative Smith

map with respect to g, satisfying
ˆ
Ω

|du|3gdμg ≤ E0.

(b) As Radon measures on Ω, we have

|dun|3gndμgn → |du|3gdμg +
∑
x∈S

mxδx,

with each mx ≥ ε0
2 , where the constant ε0 is the threshold energy from Remark 4.8.

(c) If ‖dun‖p;Ωn ≤ C for some p ∈ (3,∞], then S = ∅.

Proof. We first identify the set S. Let νn denote the Radon measure |dun|3gndμgn .
Then (87) implies that, for all m ∈ N, the sequence (νn)n>m has uniformly bounded
total mass on Ωm. Hence, by standard functional analysis and a diagonal process, we
obtain a subsequence, which we do not relabel, that converges in the weak-∗ sense to
a Radon measure ν on Ω which satisfies

ν(Ω) ≤ E0.

Consequently, if we define

S = {x ∈ Ω | ν({x}) ≥ 1
2ε0},

where ε0 is the constant from Theorem 4.7, then S is finite.
To prove part (a), take any x /∈ S. Then by the definition of ν and S, there exists

a radius r > 0 such that for all large enough n we have
ˆ
B(x;r)

|dun|3gndμgn < 1
2ε0,

where the geodesic ball B(x; r) is taken with respect to g. By the smooth convergence
of gn to g on B(x; r) and the above inequality, and shrinking r if necessary, we may
pull un and gn back to B(r) via the exponential map expx with respect to g, and
then dilate to B(2) to conclude that the hypotheses of Theorem 4.7 are all verified.
Thus we obtain uniform C1,β-estimates on B(x; r

2 ) for the sequence (un). Therefore,
passing successively to subsequences (without relabelling), we see that (un) converges

in C1 on every compact subset of Ω\S to some map u ∈ C1,β
loc (Ω\S;M) which satisfies

the Smith equation pointwise on Ω \ S. To see that u is in fact C1 on all of Σ, note
that for each Ω′ ⊂⊂ Ω \ S we have

ˆ
Ω′

|du|3gdμg = lim
n→∞

ˆ
Ω′

|dun|3gndμgn ≤ E0,

and hence
´
Ω
|du|3gdμg ≤ E0, since S is a finite set. But then Theorem 4.11 applies to

give C1-regularity of u on all of Σ, and we have completed the proof of (a).
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For (b), we consider the so-called defect measure, defined by

θ := ν − |du|3gdμg,

and observe that supp(θ) ⊂ S because un converges to u in C1
loc(Ω \ S). Therefore θ

must be of the form

θ =
∑
x∈S

mxδx,

and it remains to show that mx ≥ 1
2ε0 for all x ∈ S. Indeed, for any x ∈ S and r > 0

such that B(x; r) ∩ S = {x}, by the definition of θ we have

mx = θ(B(x; r)) = ν(B(x; r))−
ˆ
B(x;r)

|du|3gdμg.

Since u ∈ C1(Σ;M), letting r tend to zero yields

mx = lim
r→0

ν(B(x; r)) = ν({x}) ≥ 1
2ε0, (88)

and we are done with part (b).
Finally we prove part (c). Since p ∈ (3,∞], we see by the assumption and Hölder’s

inequality that for all B(x; r) ⊂ Ωn there holds

ˆ
B(x;r)

|dun|3gndμgn ≤
( ˆ

B(x;r)

|dun|pgndμgn

) 3
p
(
μgn(B(x; r))

) p−3
p

≤ C3
(
μgn(B(x; r))

) p−3
p

.

This implies, by the smooth local convergence of gn to g, that for all x ∈ Ω there
exists a constant C1 independent of r and n such thatˆ

B(x;r)

|dun|3gndμgn ≤ C1r
3(p−3)

p ,

for r small enough and n large enough. Consequently for all x ∈ Ω and small enough
r we have

ν({x}) ≤ ν(B(x; r)) ≤ C1r
3(p−3)

p ,

which implies that S = ∅ by its definition.

Remark 4.13. We make three remarks about Proposition 4.12.
(i) In practice we only apply Proposition 4.12 to the case Ω = Σ or Ω = S3 \

{p−}, where p− is the south pole. Note that in the latter case, the finite-energy
property of u and Theorem 4.11 imply that u is actually C1 on all of S3.

(ii) From (88) we deduce that the numbers {mx}x∈S can be characterized by

mx = lim
r→0

lim
n→∞

νn(B(x; r))

for all x ∈ S. Thus one can view mx as the amount of energy concentrating
at the point x. For this reason, the set S is often referred to as the energy
concentration set. Note that S can equivalently be defined as

S =
{
x ∈ Σ

∣∣ lim inf
n→∞

νn(B(x; r)) ≥ 1
2ε0 for all r > 0

}
.
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(iii) The defect measure θ can be thought to capture the energy that escapes the limit
map u. One of the main goals of the present paper is to study what happens
to this “escaped energy”. We do this in §5. The defect measure and the energy
concentration set have long been used in many other contexts, such as the study
of harmonic maps (for example, see [34, 43]) and Yang–Mills connections (for
example, see [41, 47]).

4.5. Non-relation between J-holomorphic and associative bubbling. In
Proposition 4.12 we established that a sequence un of associative Smith maps with
uniformly bounded 3-energy will (up to passing to a subsequence) converge away from
a finite set of points, where bubbling occurs. These are points where the 3-energy of
un concentrates.

As stated in item (ix) of §1.1, an entirely analogous result holds in the classical
situation of holomorphic curves. That is, if vn is a sequence of holomorphic curves with
uniformly bounded 2-energy, then up to passing to a subsequence, vn will converge
away from a finite set of points where bubbling occurs. In this case, these are points
where the 2-energy of vn concentrates.

Recall from §3.3 that a complex curve Σ2 in a Calabi-Yau 3-fold Y 6 gives rise
to an associative submanifold Σ2 × S1 in the G2 manifold Y 6 × S1. Therefore it
is natural to wonder, if vn : (Σ2, [g2,n]) → (Y 6, h6) is a sequence of holomorphic
curves bubbling at points {z1, . . . , zN} in Σ, whether it should be the case that un =
vn× IdS1 : Σ2×S1 → Y 6×S1 is a sequence of associative Smith maps bubbling along
a finite set of circles {zk} × S1, for k = 1, . . . , N . This would appear to contradict
Proposition 4.12 which says that bubbling of associative Smith maps always occurs
in codimension 3, not codimension 2.

The following proposition clarifies in what precise sense the above reasoning is
faulty. We use the notation of §3.3. For simplicity we assume that the representatives
g2,n in the conformal classes [g2,n] can be chosen to converge smoothly to a limit
metric g2, since 2-energy concentration for holomorphic curves can already occur in
this setting.

Proposition 4.14. Let vn : Σ → (Y 6, h6) be a sequence of immersions, where
each vn is holomorphic with respect to the conformal class [g2,n] of metrics on Σ.
Assume that the representatives g2,n converge smoothly to a limit metric g2. Define
un : Σ× S1 → (Y × S1, h7 = h6 +

(
dθ2)

)
by

un(x, φ) = (vn(x), fn(x, φ))

and suppose that the f ′
n := ∂fn

∂φ are nonvanishing, so that the un are also immersions.
Further suppose that the following three conditions all hold:
(a) Each un is an associative Smith map with respect to the conformal class [g3,n] of

metrics on Σ× S1.
(b) The representatives g3,n can be chosen to converge smoothly to some limit metric

g3.
(c) The 3-energies

ˆ
Σ×S1

|dun|3g3,nvolg3,n are uniformly bounded.

Then the 3-energy of vn with respect to g2,n is uniformly bounded. Hence, by item
(ix)(c) in §1.1, the sequence {vn} does not bubble.
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Proof. Suppose that (a), (b), and (c) all hold. Using the notation of (43) and (48)
we write

μ2
n = 1

2 |dvn|
2
g2,n , λ2

n = 1
3 |dun|2g3,n . (89)

Since the vn are holomorphic with respect to [g2,n], and using assumption (a), Propo-
sition 3.12 applies. From equation (49) in that proposition, we have

g3,n = λ−2
n

(
μ2
ng2,n + (dfn)

2
)
. (90)

From assumption (b), in local coordinates the components of g3,n converge smoothly
to the components of the limit metric g3. In local coordinates (x1, x2) on Σ, write
g2,n = (g2,n)ijdx

idxj . Then in terms of (x1, x2, φ) we can write (90) as

g3,n =
(μ2

n

λ2
n

(g2,n)ij + λ−2
n

∂fn
∂xi

∂fn
∂xj

)
dxidxj + 2

(
λ−2
n

∂fn
∂xi

∂fn
∂φ

)
dxidφ+ λ−2

n

(∂fn
∂φ

)2

(dφ)2.

Therefore we must have

λ−1
n

∂fn
∂φ

→ k smoothly as n → ∞, (91)

where k > 0 on Σ × S1. Using this in the cross term dxidφ above tells us that for
i = 1, 2 the functions

λ−1
n

∂fn
∂xi

=
λ−2
n

∂fn
∂xi

∂fn
∂φ

λ−1
n

∂fn
∂φ

converge smoothly to some limit function. Consequently, looking at the dxidxj terms
above, we conclude that

λ−1
n μn → h smoothly as n → ∞ (92)

where h ≥ 0 on Σ × S1 because λn, μn are both positive. We may not have h > 0
everywhere, but this does not matter. Writing f ′

n := ∂fn
∂φ , by combining (91) and (92)

we find that

μn

f ′
n

→ h

k
smoothly as n → ∞. (93)

Thus, for n sufficiently large, we have

0 <
μn

f ′
n

<
∣∣∣h
k

∣∣∣
0;Σ×S1

+ 1 =: L

and hence

f ′
n

μn
> L−1 everywhere on Σ× S1 for sufficiently large n. (94)

Note that L is just a positive constant.
Since the vn are holomorphic with respect to [g2,n], and using assumption (a),

Proposition 3.12 applies. Equation (50) in that proposition gives

λ3
nvolg3,n = μ2

nf
′
ndφ ∧ volg2,n . (95)
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From (95) and (89), we have that for n sufficiently large,

1

3
√
3

ˆ
Σ×S1

|dun|3g3,nvolg3,n =

ˆ
Σ×S1

λ3
nvolg3,n

=

ˆ
Σ×S1

f ′
nμ

2
nvolg2,ndφ

=

ˆ
Σ×S1

f ′
n

μn
μ3
nvolg2,ndφ

> L−1

ˆ
Σ×S1

μ3
nvolg2,ndφ

=
2πL−1

2
3
2

ˆ
Σ

|dvn|3g2,nvolg2,n .

Hence, assumption (c) implies that the 3-energy of vn with respect to g2,n is uni-
formly bounded, which by item (ix)(c) in §1.1 prevents supx∈Σ |dvn(x)|g2 from going
to infinity.

Remark 4.15. The above argument suggests that in order to construct a se-
quence of associative Smith maps un from a sequence of holomorphic curves vn that
“bubbles” along circles, one would have to violate assumptions (b) or (c) above. That
is, one would have to allow the conformal classes [g3,n] to degenerate, or else allow for
the 3-energies of un to be unbounded.

Remark 4.16. Suppose we chose fn(x, φ) = φ, so that un = vn×IdS1 . With this
choice for fn, if (vn)∗[Σ] ∈ H2(Y,R) is constant, then (un)∗[Σ×S1] ∈ H3(Y ×S1,R)
is constant. But then f ′

n = 1 for all n, and equation (94) shows that the sequence
{supx∈Σ μn(x)} is bounded. Thus for the choice fn(x, φ) = φ, if (a), (b), (c) all hold,
then the sequence vn does not bubble by item (ix)(c) of §1.1.

4.6. Energy lower bound for maps from S3. In this section we record for
later use two results, both of which give lower bounds for the 3-energy of maps from
S3 which are “nontrivial” in some sense. The first result concerns Smith maps on the
standard sphere S3 and is important for proving that the bubble tree terminates after
finitely many steps.

Proposition 4.17 (Energy Gap. Compare with [35, Proposition 4.1.4]). Let ε0
be as in Theorem 4.7. If u : S3 → M is a C1-associative Smith map with respect to
the round metric on S3, and if

ˆ
S3

|du|3dμ < ε0,

then u is constant.

Proof. The argument below is inspired by the proof of [35, Proposition 4.1.4] and
relies on the fact that the round S3 is conformally flat. Let σ : R3 → S3 \ {p} denote
the stereographic projection. By the conformal invariance of the Smith equation and
the 3-energy, the map ū = σ∗u is a Smith map on R3 with respect to the flat metric
and satisfies ˆ

R3

|Dū|3dx < ε0.
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In particular, Theorem 4.9 is applicable to the map ūR(x) := ū(Rx) on B(2) for any
R > 0, giving us

|Dū|0;B(R
2 ) ≤ CR−3

ˆ
B(2R)

|Dū|3dx ≤ CR−3ε0 for all R > 0.

From this we easily see that ū must be constant, and hence u is constant as well.

The next result is a special case of a theorem due to White [52] and concerns a
general Lipschitz map on S3 with small energy and is a crucial ingredient in proving
that there is no energy loss through the necks.

Proposition 4.18 ([52, Theorem 2]). There exists a constant γ1 > 0 depending
only on M and the embedding M → Rd such that if u : S3 → M is a Lipschitz map
with ˆ

S3

|du|3dμ < γ1, (96)

then u is homotopic to a constant. Here |du| and dμ are both with respect to the round
metric on S3.

Proof. For the convenience of the reader we briefly describe what the proof in [52]
becomes in our case. In short, the homotopy is constructed out of the averages of u
on geodesic balls, and the assumption (96) enters the argument through the Poincaré
inequality. To set things up, for a geodesic ball B(x; r), we define

(u)x,r =

 
B(x;r)

udμ.

Then there exist universal constants C, r0 > 0 such that for all x ∈ S3 and r ≤ r0 the
following two conditions hold:

1

2
r3 ≤ μ(B(x; r)) ≤ 2r3,

r−3

ˆ
B(x;r)

|u− (u)x,r|3dμ ≤ C

ˆ
B(x;r)

|du|3dμ.

Furthermore, there exists δ0 depending on M such that

Nδ0(M) := {x ∈ Rd | distRd(x,M) < δ0}

is strictly contained in a tubular neighborhood of M in Rd. Let π : Nδ0(M) → M
denote the nearest-point projection.

Now since u maps into M , the inequalities above and (96) imply that if γ1 is
small enough, then

distRd((u)x,r,M)3 < 2Cγ1 < δ30 for all x ∈ S3, r ≤ r0,

and thus π((u)x,r) is well-defined, and we have

|(u)x,r − π((u)x,r)| ≤ (2Cγ1)
1
3 for all x ∈ S3, r ≤ r0. (97)

Consider the function H : S3 × [0, r0] → M defined by

H(x, r) =

{
π((u)x,r) if r ∈ (0, r0],

u(x) if r = 0.
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Since u is Lipschitz by assumption, the function H is continuous and gives a homotopy
from u to H(·, r0). It remains to show that the latter is null-homotopic. To that end
we recall the following Poincaré inequality on the whole S3. Namely,ˆ

S3

|u− (u)S3 |3dμ ≤ C

ˆ
S3

|du|3dμ.

Then for all x ∈ S3 we compute

|(u)x,r0 − (u)S3 | =
(  

B(x;r0)

|(u)x0,r − (u)S3 |3dμ
) 1

3

≤
(  

B(x;r0)

|(u)x0,r − u|3dμ
) 1

3
+

(  
B(x;r0)

|u− (u)S3 |3dμ
) 1

3

≤ C
( r30
μ(B(x; r0))

ˆ
B(x;r0)

|du|3dμ
) 1

3
+ C [μ(B(x; r0))]

− 1
3

( ˆ
S3

|du|3dμ
) 1

3

≤ C(1 + r−1
0 )γ

1
3
1 .

Thus for all x1, x2 ∈ S3 we obtain

|(u)x1,r0 − (u)x2,r0 | ≤ 2C(1 + r−1
0 )γ

1
3
1 .

Combining this with (97), we arrive at

|H(x1, r0)−H(x2, r0)| ≤ C ′(1 + r−1
0 )γ

1
3
1 for all x1, x2 ∈ S3.

Thus, making a smaller choice of γ1 if necessary, we deduce that H(·, r0) has image
contained in a geodesic ball in M , and hence must be null-homotopic. The proof is
complete.

5. The bubble tree. As stated in §4, for the remainder of this paper, we are
exclusively concerned with associative Smith maps u : (Σ3, g) → (M7, h), although
our results also apply to Cayley Smith maps after making the obvious modifications.

In this section we employ the following notation:
• For a W 1,3 map u : (Σ, g) → (M,h) and a measurable subset A ⊂ Σ, we write

Eg(u;A) = E(u;A) =

ˆ
A

|du|3 dμg,

often suppressing explicit reference to the domain metric g when it is clear
from context. (From now on, for convenience, we drop the 1

3
√
3
factor in the

3-energy.) For brevity, we often write E(u) := E(u; Σ).
• We use I = (i1, . . . , ik) to denote a multi-index of length |I| = k ≥ 1.
• The symbol ε0 always denotes the threshold energy constant of Theorem 4.7

and Remark 4.8.

5.1. Overview. Let un : (Σ
3, g) → (M7, h) be a sequence of associative Smith

maps with bounded 3-energy. That is,

E(un) ≤ E0 for all n ∈ N.

By Proposition 4.12, after passing to a subsequence, there exists an associative Smith
map u∞ ∈ C1

loc(Σ;M) called the base map for which

un → u∞ in C1
loc(Σ \ S) (98)
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where S = {x1, . . . , xq} is a finite set (possibly empty) whose elements are called
(zeroth level) bubble points, and also

|dun|3 dμg → |du∞|3 dμg +

q∑
i=1

miδ(xi) as Radon measures, (99)

where each mi ≥ 1
2ε0. The purpose of the whole of §5 is to understand the behavior

of the sequence {un} at the bubble points xi.
Suppose that S �= ∅. At each xi ∈ S, we choose local coordinates centered at xi

and construct a sequence of conformal maps

Rn : Ωn ⊂ S3
xi

\ {p−} → R3,

where S3
xi

is the round 3-sphere (the subscript xi is simply for bookkeeping), p− ∈ S3
xi

is the south pole, and Ωn ⊂ S3
xi

is a particular increasing sequence of open sets that
exhaust S3

xi
\ {p−}. The rescaled maps

ũn,i := un ◦Rn : Ωn → M (100)

are a sequence of associative Smith maps (with respect to appropriate metrics hn on
Ωn) that has bounded 3-energy.

Hence, again by Proposition 4.12, there exists an associative Smith map
ũ∞,i : (S

3
xi
, ground) → (M,h) of class C1

loc, called a first level bubble map, and
a finite set (possibly empty)

Si = {xi1, . . . , xiqi} ⊂ S3
xi

\ {p−},

called the first level bubble points, for which (after passing to a subsequence) we
have

ũn,i → ũ∞,i in C1
loc

(
S3
xi

\ ({p−} ∪ Si)
)

and

|dũn,i|3 dμhn
→ |dũ∞,i|3 dμround +

qi∑
j=1

mijδ(xij) as Radon measures on S3
xi

\ {p−}

where each mij ≥ 1
2ε0.

If Si �= ∅ for some i = 1, . . . , q, then this process may be repeated, yielding
associative Smith maps ũ∞,ij : (S

3
xij

, ground) → M of class C1
loc, called second level

bubble maps, and a finite set Sij ⊂ S3
xij

\ {p−} (possibly empty) of second level
bubble points. Evidently, we may iterate this procedure as long as the sets of bubble
points remain nonempty. In §5.2, we show that, in fact, this process must eventually
terminate.

The result of this iteration is a bubble tree. That is, one obtains a tree
({T0, TI}, {EI}), meaning a connected graph without cycles, in the following way:

• The vertex T0 corresponds to the base map u∞.
• Each vertex Ti corresponds to the first-level bubble map ũ∞,i. Each vertex

Ti (for i = 1, . . . , q) is joined to T0 by an edge Ei, which corresponds to the
bubble point xi.
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• Each vertex Tij corresponds to the second-level bubble map ũ∞,ij . Each
vertex Tij is joined to Ti by an edge Eij , which corresponds to the bubble
point xij .

• And so on.
As we show in §5.2, the construction of the bubble tree, which primarily amounts to
a careful choice of the rescaling maps Rn and open sets Ωn, is essentially a formal
process. Indeed, in that discussion we do not need the full strength of the associative
Smith condition, but only the following properties of such maps:

• The conformal invariance of the 3-energy functional E.
• The conformal invariance of the Smith equation from Proposition 3.6.
• Removal of singularities from Theorem 4.11.
• The convergence result from Proposition 4.12.
• The energy gap from Proposition 4.17.

Analogous properties hold in several other conformally invariant settings, in-
cluding harmonic maps [40], Yang–Mills connections [7, 13], and holomorphic
curves [35, 39, 53], leading to bubble trees in such settings.

Zero Energy Loss and Zero Neck Length. By virtue of (99), we see that
energy appears to be lost in the limit. That is,

lim
n→∞

E(un) ≥ E(u∞).

Ideally, we would like to say that the discrepancy
∑

mi is completely accounted for
by the energies of the bubble maps. More precisely, we would like to say that each
zeroth-level energy concentration mi is equal to the energy E(ũ∞,i) of the first-level
bubble map plus all of the the first-level energy concentrations mij . That is,

mi = E(ũ∞,i) +

qi∑
j=1

mij . (101)

In turn, the first-level energy concentrations mij ought to equal the sum of the energy
of a second-level bubble map plus all of the second-level energy concentrations mijk,
and so on. If this were the case, then we would indeed have

lim
n→∞

E(un) = E(u∞) +
∑
I

E(ũ∞,I) (102)

essentially asserting that energy is preserved in the “bubble tree limit”.
A priori, it is not obvious that (101) holds true, and we call the discrepancy τi

the energy loss. That is, we define

τi = mi −
(
E(ũ∞,i) +

qi∑
j=1

mij

)
,

and in §5.4 we prove:

Theorem 5.1 (No energy loss). We have τi = 0. Consequently, (101) and (102)
both hold.

Now, although we have described the bubble tree in abstract terms, as a connected
graph that records the various bubble maps and bubble points, it may also be regarded
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as a concrete geometric object. That is, we may regard the bubble tree as the subset
of M given by the union of the images of the base and bubble maps:

u∞(Σ) ∪
⋃
I

ũ∞,I(S
3
xI
). (103)

We prove that this set is connected. In fact, in §5.5 we prove the stronger statement
that:

Theorem 5.2 (Zero neck length). We have

u∞(xi) = ũ∞,i(p
−). (104)

By extension, we have ũ∞,I(xIj) = ũ∞,Ij(p
−).

In fact, our proof of (104) establishes more: we prove the stronger result given
in (105) below. Moreover, combining (105) and a straightforward adaptation of the
proof of [35, Theorem 5.2.2(ii)], we see that for large enough k, the map uk is homo-
topic to the connected sum u∞#

(
#I ũ∞,I

)
. Therefore homotopy is preserved in the

bubble tree limit.
The proofs of Theorems 5.1 and 5.2 are significantly less trivial than the construc-

tion of the bubble tree. Both results rely on a deeper understanding of the energies
of associative Smith maps on annuli

A = Bouter \Binner,

where here Binner ⊂ Bouter are concentric 3-balls. We devote §5.3 to this study.
Note that the results in §5.3 require geometric properties of associative Smith maps
beyond those used in the construction of the bubble tree, namely the energy gap of
Proposition 4.18 and the energy identity of Corollary 3.27.

In Lemma 5.7, we explain how to cap off maps from the boundary 2-spheres
∂Bouter and ∂Binner to obtain maps from 3-balls with controlled energy. We then
patch these maps together to obtain a single map S3 → M with small energy, which
by the energy gap of Proposition 4.18 must be null-homotopic. As a result, we obtain
a crucial bound (Proposition 5.8) on the energy of associative Smith maps on annuli
A in terms of the energies on the boundary 2-spheres ∂Bouter and ∂Binner.

In §5.4, we prove Theorem 5.1. Intuitively, the idea is to “trap” τi in a sequence
of carefully chosen annuli

Ak = Bouter
k \Binner

k .

That is, we reinterpret τi as a subsequential limit of energies on the annuli Ak (in
Lemma 5.10(b)(i)), and observe that energies on the boundary 2-spheres ∂Bouter

k ,
∂Binner

k approach zero (in Lemma 5.3(c) and Lemma 5.10(b)). Therefore, the bound
(Proposition 5.8) described in the previous paragraph implies that the energies on Ak

approach zero, whence τi = 0.
Now, geometrically we think of the images of the outer 2-spheres uk(∂B

outer
k ) as

being close to u∞(xi), and think of the images of the inner 2-spheres uk(∂B
inner
k ) as

being close to ũ∞,i(p
−). In this way, we regard the images of the annuli uk(Ak) ⊂ M

as “necks” of the bubble tree (103).
This intuition leads to the beginning of the proof of Theorem 5.2. Indeed, choose

points yk ∈ ∂Bouter
k and zk ∈ ∂Binner

k and let z̃k = R−1
k (zk) ⊂ S3

xi
. From (100) we get
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uk(zk) = ũk,i(z̃k). By the triangle inequality, we have

|u∞(xi)− ũ∞,i(p
−)| ≤ |u∞(xi)− uk(yk)|+ |uk(yk)− uk(zk)|+ |ũk,i(z̃k)− ũ∞,i(p

−)|
≤ |u∞(xi)− uk(yk)|+ diam(uk(Ak)) + |ũk,i(z̃k)− ũ∞,i(p

−)|.
By our choice of Ak, it is relatively straightforward to see, using Lemma 5.3(c) and
Lemma 5.10(b), that the first and third terms approach zero as k → ∞. The sig-
nificantly more nontrivial matter, however, is establishing that the second term also
approaches zero, that is:

lim
k→∞

diam(uk(Ak)) = 0. (105)

In other words, the bubble tree (103) has no necks. In §5.5, we prove (105) by making
use of both the mean value inequality of Theorem 4.9 as well as the bound from
Proposition 5.8.

5.2. Construction of the bubble tree. As in §5.1, we consider a sequence
un : (Σ

3, g) → (M7, h) of associative Smith maps with bounded 3-energy:

E(un) ≤ E0 for all n ∈ N.

Let the base map u∞ ∈ C1
loc(Σ;M), the set of bubble points S, and the energy

concentrations mi ≥ 1
2ε0 be as in (98) and (99).

Suppose that S �= ∅ and fix a bubble point xi ∈ S. Choose a geodesic ball
centered at xi that contains no other points in S, and identify it with B(2) ⊂ R3 via
expxi

and a dilation. In this setting, the conclusion of Proposition 4.12 states that

un → u∞ in C1
loc(B(2) \ {0};M)

although not in C1
loc(B(2);M), and that

|dun|3 dμg → |du∞|3 dμg +miδ0

as Radon measures on B(1).
Given this setup, we now describe the construction of the bubble tree as a three

step process. Steps one and two describe the base case, while step three indicates the
induction step and contains a proof that the procedure eventually terminates.

Step One: Choice of center points and dilation factors for rescaling. We
begin by focusing our attention on xi. To that end, we let εk ∈ (0, 1

2 ) be a sequence
of radii with εk → 0 and

E(u∞;B(2εk)) = O( 1
k2 ). (106)

Having made this choice, we define a nested sequence of open balls D1(k) ⊂ D2(k) ⊂
D3(k) ⊂ D4(k) centered at 0 by:

D1(k) = B( 1
2k2 εk), D2(k) = B( 1

k2 εk), D3(k) = B(εk), D4(k) = B(2εk).

We also fix, once and for all, a positive constant η0 > 0 for which

η0 < 1
16 min

(
1
3ε0, γ1

)
,

where γ1 is the energy gap constant of Proposition 4.18.
Next, we choose center points and dilation factors by which to rescale. Our choice

is given by the following lemma.

Lemma 5.3. The following results hold:
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(a) There exists a subsequence uk := unk
such that:

E(uk;D1(k)) = mi +O( 1
k2 ), (107)

E(uk;D4(k) \D1(k)) = O( 1
k2 ), (108)

|uk − u∞|1;D4(k)\D1(k)
= O( 1

k2 ). (109)

(b) There exist a sequence of centers ck ∈ D2(k) and a sequence of radii λk ∈ (0, εk
2k2 ]

such that

η0 = E(uk;D4(k) \B(ck;λk)) ≤ E(uk;D4(k) \B(x; r)) (110)

for all balls B(x; r) with centers x ∈ D3(k) and radii r ≤ λk.
(c) We have the following estimates:

E(uk;B(ck; εk)) = mi +O( 1
k2 ), (111)

εk sup
∂B(ck;εk)

|duk| = o(1) as k → ∞, (112)

lim
k→∞

|uk − u∞(0)|0;B(ck;εk)\B(ck;
1
R εk)

= 0, for all R > 1. (113)

Proof. (a) Since un → u∞ in C1
loc(B(2) \ {0};M), and since we have the conver-

gence of Radon measures |dun|3 dμg → |du∞|3 dμg +miδ0 on B(1), for each fixed k,
the following hold:

lim
n→∞

E(un;D1(k)) = mi + E(u∞;D1(k)),

lim
n→∞

E(un;D4(k) \D1(k)) = E(u∞;D4(k) \D1(k)),

lim
n→∞

|un − u∞|1;D4(k)\D1(k)
= 0.

Hence, because we chose εk to satisfy (106), for each k, the relations (107), (108),
and (109) all hold for large enough choices of nk. In this way, we obtain a subsequence
(uk) satisfying (107), (108), (109).

(b) Consider the quantity E(uk;D4(k)\B(x; r)) =
´
B(2εk)\B(x;r)

|duk|3 dμg. Note

that it is continuous in (r, x) on [0, εk]×D3(k). Hence, for each k, the function

Fk(r) := inf
x∈D3(k)

E(uk;D4(k) \B(x; r))

is continuous in r. In fact, Fk : [0, εk] → R is a decreasing function that satisfies

Fk(0) = E(uk;D4(k)) = mi +O( 1
k2 ),

Fk(
1

2k2 εk) ≤ E(uk;D4(k) \D1(k)) = O( 1
k2 ).

Recalling our choice of η0 and that mi ≥ ε0
2 , for each large enough k we have

Fk(
1

2k2 εk) < η0 < Fk(0).

Thus, for each sufficiently large k, there exists a smallest radius λk ∈ [0, 1
2k2 εk] for

which

Fk(λk) = η0.
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We now choose ck ∈ D3(k) to be a point that attains the infimum defining Fk(λk),
which exists because D3(k) is compact. That is,

Fk(λk) = E(uk;D4(k) \B(ck;λk)).

In fact, we claim that eventually |ck| < 1
k2 εk for large enough k, meaning that

ck ∈ D2(k). Indeed, if we instead had |ck| ≥ 1
k2 εk, then λk ≤ 1

2k2 εk implies that
D1(k) ⊂ D4(k) \B(ck;λk), whence

mi +O( 1
k2 ) = E(uk;D1(k)) ≤ E(uk;D4(k) \B(ck;λk)) = Fk(λk) = η0.

But this contradicts η0 < 1
2ε0 ≤ mi.

(c) For (111), since |ck| < 1
k2 εk, we have D1(k) ⊂ B(ck; εk). Hence,

E(uk;B(ck; εk)) = E(uk;D1(k)) + E(uk;B(ck; εk) \D1(k))

= mi +O( 1
k2 )

where the last equality follows from (107) and (108) and the fact that B(ck; εk) ⊂
D4(k).

To prove (112), note that since ∂B(ck; εk) ⊂ D4(k)\D1(k) for k sufficiently large,
by (109), we get

sup
∂B(ck;εk)

|duk| ≤ sup
∂B(ck;εk)

|du∞|+O( 1
k2 ) = O(1),

where the boundedness of |du∞| uses the fact that u∞ extends to a C1 map on all of
B(1) by Theorem 4.11. It follows that

εk sup
∂B(ck;εk)

|duk| = O(εk) = o(1) as k → ∞.

Finally, to see (113), we observe that by the triangle inequality, for each x ∈
B(ck; εk) \B(ck;

1
Rεk), we have:

|uk(x)− u∞(0)| ≤ |uk(x)− u∞(x)|+ |u∞(x)− u∞(0)|
≤ |uk − u∞|0;B(ck;εk)\B(ck;

1
R εk)

+ Cεk |du∞|0;B(ck;εk)
.

Since ck ∈ D2(k), we see by the triangle inequality that, when k is so large that
k2 > 2R, there holds

B(ck; εk) \B(ck;
1
Rεk) ⊂ D4(k) \D1(k).

Thus we may use the estimate (109) and the fact that u∞ is C1 on all of B(1) to
bound the last two terms in the above string of inequalities and get

|uk(x)− u∞(0)| ≤ O( 1
k2 ) +O(εk)

= o(1) as k → ∞.

This proves the lemma.

Step Two: The rescaled maps and first level bubble points. With the
choices of center points ck and scale factors λk of Lemma 5.3 in place, we may now
define the desired rescalings Rk.
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We introduce some notation. Let σ : S3 \ {p−} → R3 denote stereographic pro-
jection from the south pole p− ∈ S3. Also let S3

+ and S3
− denote the upper and lower

hemispheres, respectively. In particular,

σ(p+) = 0, σ(S3
+) = B(1).

We also let ak : R
3 → R3 denote the affine function ak(x) = λkx+ ck, so that

ak(B(x; r)) = B(λkx+ ck;λkr).

In particular,

ak(0) = ck, ak(B(1)) = B(ck;λk).

We denote their composition by

Rk = ak ◦ σ : S3 \ {p−} σ−−→ R3 ak−−−→ R3

so that

Rk(p
+) = ck, Rk(S

3
+) = B(ck;λk) ⊂ D4(k).

Finally, we let Ωk ⊂ S3 be the open sets for which

Rk(Ωk) = D4(k).

Since Rk preserves inclusions, we see that S3
+ ⊂ Ωk. Note that the Ωk are increasing

and exhaust S3 \ {p−}.
Lemma 5.4. The rescaled maps

ũk,i : Ωk → M

ũk,i := uk ◦Rk = uk ◦ ak ◦ σ

are associative Smith maps with respect to a sequence of metrics hk on Ωk ⊂ S3\{p−}
that converge in C∞

loc to the round metric. Moreover, ũk,i has uniformly bounded 3-
energy.

Proof. By the conformal invariance of the Smith equation, the maps uk ◦ ak are
associative Smith maps with respect to the metrics λ−2

k a∗kg on a−1
k (D4(k)). Note that

1
λ2
k
a∗kg → geuc in C∞

loc. Again by the conformal invariance of the Smith equation, the

maps ũk,i = uk ◦ ak ◦ σ are associative Smith with respect to the metrics 1
λ2
k
R∗

kg =
1
λ2
k
σ∗a∗kg on Ωk ⊂ S3, and 1

λ2
k
R∗

kg → σ∗geuc in C∞
loc. Finally, since σ

∗geuc is conformal

to the round metric, say σ∗geuc = bground for an appropriate function b, we see that
hk := 1

b
1
λ2
k
R∗

kg → ground in C∞
loc.

Therefore, by Lemma 5.4 and Proposition 4.12 applied to Ω = S3
xi

\ {p−}
and Ωk = R−1

k (D4(k)), there exists a (possibly empty) finite set of points Si =
{xi1, . . . , xiqi} ⊂ S3

xi
\ {p−}, called first level bubble points, and a C1 associative

Smith map ũ∞,i : (S
3
xi
, ground) → M , called a first level bubble map, such that

after passing to a subsequence

ũk,i → ũ∞,i in C1
loc

(
S3
xi

\ ({p−} ∪ Si)
)
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and such that, as Radon measures on S3
xi

\ {p−}, we have

|dũk,i|3 dμhk
→ |dũ∞,i|3 dμround +

qi∑
j=1

mijδ(xij) =: κi (114)

with each mij ≥ 1
2ε0. In fact, we claim that all of the first level bubble points lie in

the closure of the upper hemisphere. This is part (d) of the following result.

Lemma 5.5. The following results hold:
(a) κi(S

3
xi

\ {p−}) ≤ mi,

(b) κi(S3
+) ≥ mi − η0,

(c) κi(S
3
− \ {p−}) ≤ η0,

(d) Si ⊂ S3
+.

Proof. (a) By conformal invariance of the 3-energy and (107)–(108), we have

Ehk
(ũk,i; Ωk) = Eg(uk;D4(k)) = mi +O( 1

k2 ). (115)

Hence, using (114) and that Ω� is an open set, for each � we have:

κi(Ω�) ≤ lim inf
k→∞

Ehk
(ũk,i; Ω�) ≤ lim inf

k→∞
Ehk

(ũk,i; Ωk) = mi.

Hence, κi(S
3
xi

\ {p−}) ≤ mi.
(b) By conformal invariance of the 3-energy and (110), we have

Ehk
(ũk,i; Ωk \ S3

+) = Eg(uk;D4(k) \B(ck;λk)) = η0. (116)

Thus, using (114) and the fact that S3
+ is compact, followed by (115) and (116), we

have

κi(S3
+) ≥ lim sup

k→∞
Ehk

(ũk,i;S3
+)

= lim sup
k→∞

[
Ehk

(ũk,i; Ωk)− Ehk
(ũk,i; Ωk \ S3

+)
]

= mi − η0.

(c) This follows immediately from parts (a) and (b):

κi(S
3
− \ {p−}) = κi(S

3
xi

\ {p−})− κi(S3
+) ≤ η0.

(d) On the one hand,

κi(S
3
− \ {p−}) = E(ũ∞,i;S

3
− \ {p−}) +

∑
j : xij∈S3

−

mij ≥
∑

j : xij∈S3
−

mij . (117)

On the other hand, by part (c), we have

κi(S
3
− \ {p−}) ≤ η0 < 1

2ε0 ≤ mij (118)

for all 1 ≤ j ≤ qi. Comparing (117) with (118), we conclude that none of the points

in Si can be in S3
−. That is, Si ⊂ S3

+.
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Step Three: Iteration and finite termination. If any of the sets Si is
nonempty, then Steps One and Two above may be repeated, resulting in second-
level bubble maps ũ∞,ij : (S

3
xij

, ground) \ {p−} → M and a (possibly empty) finite set

Sij ⊂ S3
xij

\ {p−} of second level bubble points. If any of the Sij is nonempty, then
we may repeat the process again, and so on.

As explained above in §5.1, iterating this procedure results in a tree
({T0, TI}, {EI}) whose base vertex T0 corresponds to the base map u∞, whose higher
level vertices TI correspond to bubble maps ũ∞,I , and whose edges EI correspond to
bubble points xI . In the tree, the edge Ei1···ikik+1

joins a kth level vertex Ti1···ik to a
(k + 1)st level vertex Ti1···ikik+1

.
Thus, to conclude the construction, it remains only to show that the bubble

tree is finite, that is that the sets Si1···ik of kth level bubble points are all empty
for k sufficiently large. To do this, we demonstrate that all of the (k + 1)st level
energy concentrations mi1···ik+1ik+2

are a fixed constant less than the kth level energy
concentrations mi1···ik+1

. More precisely we have the following result.

Lemma 5.6. We have mij ≤ mi − 1
2η0 for each 1 ≤ j ≤ qi.

Proof. By definition of κi followed by Lemma 5.5(a), we have

E(ũ∞,i;S
3
xi

\ {p−}) +
qi∑

j=1

mij = κi(S
3
xi

\ {p−}) ≤ mi. (119)

Suppose for the sake of contradiction that the first-level bubble point xi1 ∈ Si =
{xi1, . . . , xiqi} has energy concentration mi1 > mi − 1

2η0. Then (119) implies

E(ũ∞,i;S
3
xi

\ {p−}) +
qi∑

j=2

mij ≤ mi −mi1 < 1
2η0 < 1

6ε0.

By Proposition 4.17, we see that ũ∞,i is a constant map. Moreover, since each mij ≥
1
2ε0, we must have Si = {xi1}. Thus, the Radon measure κi = |dũ∞,i|3dμround +∑

mijδ(xij) is simply

κi = mi1δ(xi1).

Let B = BS3

(xi1; ρ) denote a small geodesic ball in S3 centered at xi1. Using the
conformal invariance of E first, followed by (114) and κi = mi1δ(xi1) second, and our
hypothesis third, we obtain

lim
k→∞

Eg(uk;Rk(B)) = lim
k→∞

Ehk
(ũk,i;B) = mi1 > mi − 1

2η0.

On the other hand, (107)–(108) give

Eg(uk;D4(k)) = mi +O( 1
k2 ).

We deduce that for k sufficiently large,

Eg(uk;D4(k) \Rk(B)) < 1
2η0 +O( 1

k2 ). (120)

Now, by Lemma 5.5(d), we have xi1 ∈ S3
+, and hence Rk(xi1) ∈ B(ck;λk). By choosing

the radius ρ > 0 smaller if necessary, we may suppose that Rk(B) is contained in a
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ball B(z; r) with center z ∈ B(ck;λk) ⊂ D3(k) and radius r < λk. But then (120)
implies that

Eg(uk;D4(k) \B(z; r)) ≤ Eg(uk;D4(k) \Rk(B)) < η0,

which contradicts (110).

Iterating Lemma 5.6 shows that the bubble tree has finitely many levels. Indeed,
at a kth level bubble point xI = xi1···ik+1

, the energy concentration mI = mi1···ik+1

at xI satisfies

mI ≤ mi1 − k
(
1
2η0

)
.

On the other hand, the energy concentration mI must satisfy

mI ≥ 1
2ε0.

Together, these two inequalities yield k( 12η0) ≤ mi1− 1
2ε0, an upper bound on k. That

is, for k is sufficiently large, the set
⋃

|I|=k SI of kth level bubble points is empty, and
hence the bubble tree terminates.

5.3. Energy of Smith maps on annuli. In this section we show (Proposi-
tion 5.8) that the 3-energies of associative Smith maps on annular regions are con-
trolled by their 3-energies on the boundary spheres. One could view this as an
isoperimetric-type estimate. As mentioned in §5.1, such an estimate is crucial to
the proofs of Theorems 5.1 and 5.2.

We begin by recalling the following well-known extension result (compare with [35,
Remark 4.4.2]). For completeness we include a proof.

Lemma 5.7. Suppose u : S2 → M is a C1-map and that

diamM

(
u(S2)

)
< injM .

Then there exists a Lipschitz map v : B(1) → M such that v|S2 = u and

ˆ
B(1)

|Dv|3dx ≤ K

ˆ
S2

|du|3,

where K depends only on the geometry of M .

Proof. Fix an arbitrary ξ0 ∈ S2 and let p = u(ξ0). Then, by assumption, it makes
sense to talk about the map ũ : S2 → R7 given by

ũ(ξ) = exp−1
p (u(ξ)) .

Note that |ũ(ξ)| = distM (u(ξ), p). Next we define v : B(1) → M to be the homoge-
neous degree-1 extension of u. Specifically, let

v(rξ) = expp (rũ(ξ)) for r ∈ [0, 1], ξ ∈ S2.

Then a straightforward calculation shows that

|Dv(rξ)|3 =
(
|∂rv|2 + r−2|∂ξv|2

) 3
2

≤ C
(
|ũ(ξ)|3 + |du|3

)
.
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Therefore we have

ˆ
B(1)

|Dv|3dx =

ˆ 1

0

r2
ˆ
S2

|Dv(rξ)|3dξdr

≤ C

ˆ
S2

(|ũ|3 + |du|3)dξ

≤ C

ˆ
S2

(|dũ|3 + |du|3)dξ

≤ C

ˆ
S2

|du(ξ)|3dξ,

where we used the Poincaré inequality for W 1,3-functions on S2 in the second-to-last
inequality.

Proposition 5.8. Let u : B(2) → M be a C1-Smith map with respect to a metric
which satisfies

1
2 |ξ|

2 ≤ gαβ(x)ξ
αξβ ≤ 2|ξ|2, for all x ∈ B(2), ξ ∈ R3. (121)

Suppose further that for some 0 < r < 1 we have

diamM (u(∂B(r))) + diamM (u(∂B(1))) < injM , (122)

and that
ˆ
B(1)\B(r)

|du|3dμg +Kr

ˆ
∂B(r)

|du|3dSg +K

ˆ
∂B(1)

|du|3dSg < 1
8γ1, (123)

with γ1 coming from Proposition 4.18 and K from Lemma 5.7. Then there holds

ˆ
B(1)\B(r)

|du|3dμg ≤ C
(
r

ˆ
∂B(r)

|du|3dSg +

ˆ
∂B(1)

|du|3dSg

)
,

where C depends only on the geometry of M . In particular C is independent of r.

Proof. By assumption (122), we may apply Lemma 5.7 to u|∂B(1) and (a suitable
rescaling of) u|∂B(r) to obtain Lipschitz maps v : B(1) → M and w : B(r) → M such
that

v|∂B(1) = u|∂B(1), w|∂B(r) = u|∂B(r),

ˆ
B(1)

|Dv|3dx ≤ K

ˆ
∂B(1)

|du|3,

ˆ
B(r)

|Dw|3dx ≤ Kr

ˆ
∂B(r)

|du|3.

Note that u|B(1)\B(r) and w together form a Lipschitz map on B(1) into M , which can
be pulled back to a Lipschitz map from S3

+ into M via the stereographic projection.
Similarly, v gives rise to a Lipschitz map from S3

− into M . The two maps agree on
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the equator, and we thus obtain a Lipschitz map f : S3 → M . Moreover, by the
conformal invariance of the 3-energy, we see that
ˆ
S3

|Df |3dx =

ˆ
B(1)\B(r)

|Du|3dx+

ˆ
B(r)

|Dw|3dx+

ˆ
B(1)

|Dv|3dx

≤
ˆ
B(1)\B(r)

|Du|3dx+Kr

ˆ
∂B(r)

|du|3 +K

ˆ
∂B(1)

|du|3

≤ 8
( ˆ

B(1)\B(r)

|du|3dμg +Kr

ˆ
∂B(r)

|du|3dSg +K

ˆ
∂B(1)

|du|3dSg

)
< γ1.

where we used (121) in the second to last inequality, and (123) in the last one. But then
by Proposition 4.18, the map f is null-homotopic and hence extends to a Lipschitz map
F : B4(1) → M . We may then invoke Corollary 3.27 with Σ = S3 and W = B4(1) to
obtain ˆ

B(1)\B(r)

|du|3dμg ≤
ˆ
B(r)

|dw|3dμg +

ˆ
B(1)

|dv|3dμg

≤ C
(
r

ˆ
∂B(r)

|du|3dSg +

ˆ
∂B(1)

|du|3dSg

)
,

and the proof is complete.

5.4. No energy loss. This section is devoted to the proof of Theorem 5.1 (No
energy loss). Recall that, by the definition of τi and the measure κi, we have τi =
m − κi(S

3 \ {p−}). To streamline notation, in this section we omit the subscript i,
writing m := mi and τ := τi and κ := κi. We also write vk := ũk,i and v := ũ∞,i.
Finally we write S1 = Si.

As a preliminary step, we note the following consequence of Lemma 5.5, which
says that the energy loss τ is nonnegative, and lies below the threshold η0 we chose
in Lemma 5.3.

Lemma 5.9. We have 0 ≤ τ ≤ η0.

Proof. The lower bound τ ≥ 0 is exactly the statement of Lemma 5.5(a). For the
upper bound, observe that Lemma 5.5(b) gives

τ = m− κ(S3 \ {p−}) ≤ m− κ(S3
+) ≤ η0

as desired.

Next, as explained in §5.1, we want to identify (after passing to a further subse-
quence if necessary) suitable annuli Al for which

τ = lim
l→∞

E(ul;Al).

The outer boundaries of Al are a subsequence ∂B(ckl
; εkl

) of the spheres ∂B(ck; εk)
constructed in §5.2. Choosing this subsequence and finding the inner boundaries is
the content of Lemma 5.10 below. The proof of Theorem 5.1 is given after that of
Lemma 5.10.

We introduce the following notation: For r > 0 we define the open sets

G(r) = σ−1 (B(r)) ⊂ S3,
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so that

Rk (G(r)) = B(ck; rλk).

Then, since the sets G(
√
k) exhaust S3 \ {p−}, by the definition of τ we know that

κ
(
G(

√
l)
)
increases to κ(S3 \ {p−}) = m− τ as l → ∞. In other words,

κ
(
G(

√
l)
)
= m− τ + o(1) as l → ∞. (124)

Moreover, since v is a C1-map on S3, we have

E(v;S3 \G(
√
l)) = o(1) as l → ∞. (125)

Lemma 5.10. We have:
(a) There exists a subsequence (vkl

) of (vk) such that the following hold:

Ehkl
(vkl

;G(
√
l)) = m− τ + o(1), (126)

Ehkl
(vkl

;G(l2) \G(
√
l)) = o(1), (127)

|vkl
− v|1;G(l2)\G(

√
l) = o(1). (128)

(b) Scaling back to (ukl
), writing ul := ukl

and cl := ckl
, and setting

ρl = εkl
, σl = lλkl

,

we have

E(ul;B(cl; ρl) \B(cl;σl)) = τ + o(1), (129)

lλkl
sup

∂B(ckl
;lλkl

)

|dul| = o(1), (130)

and

lim
l→∞

∣∣ul − v(p−)
∣∣
0;B(ckl

;Rlλkl
)\B(ckl

;lλkl
)
= 0 for all R > 1,

or equivalently, lim
l→∞

∣∣vkl
− v(p−)

∣∣
0;G(Rl)\G(l)

= 0 for all R > 1.
(131)

Proof. (a) Recall that, as Radon measures on S3 \ {p−} we have

|dvk|3dμhk
→ |dv|3dμ+

∑
xij∈S1

mijδ(xij) = κ,

where S1 ⊆ S3
+. This has the following two consequences. First, for all l > 1,we have

κ(∂G(
√
l)) = 0, which implies that

κ(G(
√
l)) = lim

k→∞
Ehk

(vk;G(
√
l)).

Secondly, since vk converges in C1 to v on compact subsets of S3 \ (S1 ∪ {p−}), we
infer that, for all l > 1,

lim
k→∞

|vk − v|1;G(l2)\G(
√
l) = 0.
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From these facts and (124), (125), we easily see that there is a subsequence (vkl
) such

that (126), (127) and (128) all hold.
(b) To prove (129), recall from Lemma 5.3(c) that

E(ul;B(cl; ρl)) = m+ o(1).

On the other hand, (126) and (127) imply that

E(ul;B(cl;σl)) = m− τ + o(1).

Subtracting this from the previous equality gives (129).
For (130), we note that if x ∈ ∂B(ckl

; lλkl
), then eventually B(x; 1

2 lλkl
) ⊆

B(ckl
; l2λkl

) \B(ckl
;
√
lλkl

). Hence, by (127),

E
(
ul;B(x; 1

2 lλkl
)
)
≤ E(ul;B(ckl

; l2λkl
) \B(ckl

;
√
lλkl

)) = o(1),

which means for large enough l we may apply Theorem 4.9 to get

(lλkl
)
3 |dul(x)|3 ≤ E(ul;B(ckl

; l2λkl
) \B(ckl

;
√
lλkl

)).

Since x ∈ ∂B(ckl
; lλkl

) is arbitrary, we conclude that

(lλkl
)
3

sup
∂B(ckl

;lλkl
)

|dul|3 ≤ E(ul;B(ckl
; l2λkl

) \B(ckl
;
√
lλkl

)) = o(1).

To prove (131), we take an arbitrary y ∈ G(Rl) \G(l) and estimate

|vl(y)− v(p−)| ≤ |vl(y)− v(y)|+ |v(y)− v(p−)|
≤ |vl − v|0;G(Rl)\G(l) + |v − v(p−)|0;S3\G(l).

Thus we obtain, for all l > R, that

|vl − v(p−)|0;G(Rl)\G(l) ≤ |vl − v|0;G(l2)\G(
√
l) + |v − v(p−)|0;S3\G(l).

To finish the proof, we recall (128) and also note that |v − v(p−)|0;S3\G(l) = o(1) as
l → ∞, since v ∈ C1(S3;M) and S3 \ G(l) converges to {p−} in Hausdorff distance
as l → ∞.

We are now ready for the proof of Theorem 5.1.

Proof of Theorem 5.1. We maintain the notation of Lemma 5.10. In particular,
we continue to write

ρl = εkl
, σl = lλkl

.

(Note that ρl, σl → 0 while ρl

σl
→ ∞ as l → ∞.) Furthermore, we define the following

annular regions

Al = B(cl; ρl) \B(cl;σl).

Then, by Lemma 5.3(c) and Lemma 5.10(b), we have

ρl

ˆ
∂B(cl;ρl)

|dul|3dSg + σl

ˆ
∂B(cl;σl)

|dul|3dSg = o(1) as l → ∞. (132)
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This estimate then allows us to apply Proposition 5.8 to suitable rescalings of the
maps ul. Specifically, we show that the rescaled maps

ũl(x) = ul(cl + ρlx)

eventually satisfy the hypotheses (122) and (123).
To see this, note that we have by equation (112) and equations (129)–(130) that,

lim
l→∞

(
E(ul;Al) +Kρl

ˆ
∂B(cl;ρl)

|dul|3dSg +Kσl

ˆ
∂B(cl;σl)

|dul|3dSg

)
= τ,

where K is as in Lemma 5.7. Since τ ≤ η0 < 1
16γ1, we see that there exists l0 such that

for all l ≥ l0, the rescaled maps ũl satisfy (123) with r = σl

ρl
. Moreover, increasing l0

if necessary, we see that (113) and (131) yield (122) for all l ≥ l0. Therefore we may
invoke Proposition 5.8 to conclude that

E(ul;Al) ≤ C
(
ρl

ˆ
∂B(cl;ρl)

|dul|3dSg + σl

ˆ
∂B(cl;σl)

|dul|3dSg

)
,

with C independent of l. Letting l → ∞ and recalling (129) and (132), we get τ = 0
as desired.

5.5. Zero neck length. In this section we continue to use notation from §5.3
and §5.4. Our goal here is to prove Theorem 5.2 (Zero neck length), which in the
present notation reads

u∞(0) = v(p−).

In fact, it is enough to show that

lim
l→∞

diam
(
ul

(
B(cl;

1
4ρl) \B(cl; 4σl)

))
= 0. (133)

To see this, note that in view of (113) and (131) with R = 4, the above implies that

lim
l→∞

diam (ul (Al)) = 0,

which is (105). Then as indicated in §5.1, with the help of (113) and (131) again, we
may finish the proof of Theorem 5.2. That is, we choose points yl ∈ ∂B(cl; ρl) and
zl ∈ ∂B(cl;σl) and estimate

|u∞(0)− v(p−)| ≤ |u∞(0)− ul(yl)|+ |ul(yl)− ul(zl)|+ |ul(zl)− v(p−)|
≤ |u∞(0)− ul|0;∂B(cl;ρl) + diam(ul(Al)) + |ul − v(p−)|0;∂B(cl;σl).

By (113), (105) and (131), all three terms in the last line tend to zero as l → ∞, and
we are done. Therefore, it remains to prove (133).

As a first step towards proving (133), we establish the following pointwise gradient
estimates.

Lemma 5.11. For l sufficiently large, we have

sup
x∈B(cl;r2)\B(cl;r1)

|x− cl|3|Dul(x)|3 ≤ CE
(
ul;B(cl; 2r2) \B(cl;

1
2r1)

)
, (134)
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whenever 2σl ≤ r1 < r2 ≤ 1
2ρl. In particular,

lim
l→∞

(
sup

x∈B(cl;
1
2ρl)\B(cl;2σl)

|x− cl| |Dul(x)|
)
= 0. (135)

Proof. To begin, we note two rather obvious facts. First of all, whenever r1 ≤
r ≤ r2, we have

min{2r2 − r, r − 1
2r1} ≥ 1

2r.

Secondly, if 2σl ≤ r1 < r2 ≤ 1
2ρl, then

B(cl; 2r2) \B(cl;
1
2r1) ⊆ Al.

It follows that, for any l, if 2σl ≤ r1 < r2 ≤ 1
2ρl, then for all r ∈ [r1, r2] and

x ∈ ∂B(cl; r) we have

E
(
ul;B(x; 1

2r)
)
≤ E

(
ul;B(cl; 2r2) \B(cl;

1
2r1)

)
≤ E(ul;Al).

Since we have shown in §5.4 that

lim
l→∞

E(ul;Al) = 0, (136)

we infer that there exists an L0 such that, for all l ≥ L0, and r1, r2, r, x as above, we
may apply the mean value inequality (Theorem 4.9) on B(x; 1

2r) to get

r3|Dul(x)|3 ≤ CE
(
ul;B(x; 1

2r)
)
≤ CE

(
ul;B(cl; 2r2) \B(cl;

1
2r1)

)
.

Taking the supremum over x ∈ ∂B(cl; r) and r ∈ [r1, r2] yields (134). The second
conclusion follows by taking r1 = 2σl and r2 = 1

2ρl in (134) and recalling (136).

We introduce some additional notation before we continue. Below, we let T0 =
log 2. For all l such that ρl

σl
> 4 (recall that ρl

σl
→ ∞), we let

Tl = log

√
ρl
σl
.

Moreover, we define fl : [T0, Tl] → R by

fl(t) = E(ul;B(cl; e
−tρl) \B(cl; e

tσl)).

The following estimate is motivated by the proofs of [35, Lemma 4.7.3] and [27, Lemma
A.4] and is the key to establishing (133).

Proposition 5.12. There exists a constant b > 0 such that

fl(t) ≤ e−3b(t−T0)fl(T0), (137)

for all l sufficiently large and t ∈ [T0, Tl].

Proof. As the conclusion suggests, we prove the proposition by showing that fl
satisfies some first order differential inequality. To begin, suppose 2σl ≤ r1 < r2 ≤ 1

2ρl.
Then by (135) and (136) we see that, for l sufficiently large, the rescaled maps

x �→ ul(cl + r2x)
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satisfy both (122) and (123), with r = r1
r2
. Therefore we apply Proposition 5.8 to

deduce that

E(ul;B(cl; r2) \B(cl; r1)) ≤ C
(
r2

ˆ
∂B(cl;r2)

|dul|3dSg + r1

ˆ
∂B(cl;r1)

|dul|3dSg

)
.

From this it is not hard to see that there exists some b independent of l such that

f ′
l (t) ≤ −3bfl(t) for all l sufficiently large and t ∈ [T0, Tl].

Integrating from T0 to t gives (137).

At last we come to the proof of Theorem 5.2.

Proof of Theorem 5.2. As remarked in the beginning of this section it suffices to
prove (133). Since ρl

σl
→ ∞ as l → ∞, we may without loss of generality assume that

ρl > 16σl for all l.

Now suppose 4σl ≤ r ≤ (ρlσl)
1
2 and define t by the equation

etσl =
1
2r.

Then t ∈ [T0, Tl] and moreover r ≤ 1
2e

−tρl. Hence by (134) (with r2 = 1
2e

−tρl and
r1 = 2etσl = r) and (137), we have

r3 sup
∂B(cl;r)

|Dul|3 ≤ Cfl(t) ≤ Ce3bT0e−3btfl(T0)

≤ Ce3bT0

( r

2σl

)−3b

fl(T0). (138)

Therefore, in terms of polar coordinates around cl, we deduce that for any 4σl ≤ s ≤
r ≤ (ρlσl)

1
2 and ξ, η ∈ S2, there holds

|ul(sξ)− ul(rη)| ≤ |ul(sξ)− ul(rξ)|+ |ul(rξ)− ul(rη)|

≤
ˆ r

4σl

|Dul(tξ)|dt+ Cr sup
∂B(cl;r)

|Dul|.

We use (138) to estimate the first term on the last line by

ˆ r

4σl

|Dul(tξ)|dt ≤ C(2σl)
b
( ˆ r

4σl

t−b−1dt
)
fl(T0)

1
3

≤ Cfl(T0)
1
3 ≤ CE(ul;Al)

1
3 .

Combining this with the previous string of inequalities, we infer that

diam (ul (B(cl;
√
ρlσl) \B(cl; 4σl)))

≤ CE(ul;Al)
1
3 + C sup

x∈B(cl;
1
2ρl)\B(cl;2σl)

|x− cl| |Dul(x)|,

which tends to zero as l → ∞. A similar argument shows that

diam
(
ul

(
B(cl;

1
4ρl) \B(cl;

√
ρlσl)

))
→ 0 as l → ∞,

and hence we have proven (133).
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Appendices.

Appendix A. Harmonic Analysis. In this appendix we gather some results
from harmonic analysis that are used in §4. We first introduce the function spaces
before stating the main estimates.

Definition A.1. The Hardy space H1(Rn) is defined as follows. Consider the
class

T = {ζ ∈ C∞
c (B(1)) | ‖Dζ‖∞ ≤ 1}.

For ζ ∈ T and ε > 0, we write ζε(x) = ε−nζ(xε ). Then, for any g ∈ L1(Rn), we define

g∗(x) = sup
ζ∈T

sup
ε>0

∣∣∣∣ˆ
Rn

ζε(x− y)g(y)dy

∣∣∣∣ .
By definition, g belongs to H1 if g∗ belongs to L1(Rn), in which case we define
‖g‖H1 = ‖g∗‖1.

Definition A.2. A function f ∈ L1
loc(R

n) is in BMO(Rn), which is called the
space of functions with bounded mean oscillation, if

[f ]BMO := sup
x∈Rn,r>0

 
B(x;r)

|f − (f)B(x;r)|dx < ∞.

Remark A.3. We make two remarks concerning these definitions.
(i) The Hardy space is a Banach space and is strictly contained in L1(Rn).
(ii) Note that [f ]BMO = [g]BMO when f, g differ by a constant. Thus [·]BMO de-

scends to the quotient of BMO(Rn) by the constant functions and in fact makes
it a Banach space.

As a consequence of a deep result due to Fefferman–Stein [14], which identifies
BMO with the dual space of H1, we have the following inequality.

Theorem A.4 ([14, Theorem 2]). Suppose f ∈ L∞(Rn) and g ∈ H1(Rn). Thenˆ
Rn

fgdx ≤ C‖g‖H1 [f ]BMO,

where C depends only on the dimension n.

The following two propositions can be found in [12] and contain estimates which,
together with the Fefferman–Stein theorem above, are key to the regularity results in
§4.

Proposition A.5. Suppose f ∈ W 1,n(B(2)) and that
´
B(2)

fdx = 0. Let ζ be

a cutoff function which is identically 1 on B(1) and vanishes outside of B( 32 ). Then
ζf ∈ BMO(Rn) with

[ζf ]BMO ≤ C‖Df‖n;B(2).

Proposition A.6. Let f ∈ W 1,n
0 (B(1)) and let X ∈ L

n
n−1 (B(2);Rn) be a vector

field which is divergence-free on B(2) in the sense of distributions. Then X · Df ∈
H1(Rn), and

‖X ·Df‖H1 ≤ C‖Df‖n‖X‖ n
n−1

,
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where C depends only on the dimension n.

Proof. For the sake of completeness we include a proof of Proposition A.6. We
would like to estimate the quantity∣∣∣∣ˆ

Rn

ζε(x− y)X(y) ·Df(y)dy

∣∣∣∣ ,
for any given ζ ∈ T and ε > 0. To do that we need to treat a few different cases
depending on where x is and how large ε is.

Case 1. Suppose that x ∈ B( 32 ) and ε < 1
2 . Then B(x; ε) ⊆ B(2), so for any

λ ∈ R, the function

y �→ (f(y)− λ)ζε(x− y)

has compact support in B(2). Since divX vanishes on B(2) in the sense of distribu-
tions, this implies

0 =

ˆ
Rn

X(y) ·D [(f(y)− λ)ζε(x− y)] dy

=

ˆ
Rn

ζε(x− y)X(y) ·Df(y)dy −
ˆ
Rn

(f(y)− λ)X(y) ·Dζε(x− y)dy.

In other words, recalling the definition of ζεˆ
Rn

ζε(x−y)X(y) ·Df(y)dy = ε−1

 
B(x;ε)

Dζ
(
ε−1(x− y)

)
· (f(y)−λ)X(y)dy. (139)

Next we choose an exponent p > n and define

q =
p

p− 1
, p∗ =

np

p+ n
,

so that W 1,p∗ controls Lp by the Sobolev embedding theorem, and 1
p + 1

q = 1. For

later use, we note that q < n
n−1 and p∗ < n. Now we choose λ =

ffl
B(x;ε)

f(y)dy and

use the Hölder inequality, the fact that ‖Dζ‖∞ ≤ 1, and the Poincaré inequality to
estimate the right hand side of (139) as follows:∣∣∣∣∣ε−1

 
B(x;ε)

Dζ(ε−1(x− y)) · (f(y)− λ)X(y)dy

∣∣∣∣∣
≤ ε−1

(  
B(x;ε)

|X|q
) 1

q
(  

B(x;ε)

|f − λ|p
) 1

p

≤
(  

B(x;ε)

|X|q
) 1

q
(  

B(x;ε)

|Df |p∗
) 1

p∗

≤ [M(|X|q)(x)]
1
q [M(|Df |p∗)(x)]

1
p∗ ,

where M(|X|q) and M(|Df |p∗) in the last line denote maximal functions. This means
that

M(F )(x) = sup
ε>0

 
B(x;ε)

F.
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Case 2. Suppose that x ∈ B( 32 ) and ε > 1
2 . We observe that since

ˆ
Rn

X(y) ·Df(y)dy = 0,

we haveˆ
Rn

ζε(x− y)X(y) ·Df(y)dy =

ˆ
B(1)

(ζε(x− y)− ζε(x))X(y) ·Df(y)dy,

and hence, recalling that ‖Dζε‖∞ ≤ ε−n−1, we deduce that∣∣∣∣ˆ
Rn

ζε(x− y)X(y) ·Df(y)dy

∣∣∣∣
≤ ε−n−1

ˆ
B(1)

|X(y)||Df(y)|dy ≤ 2n+1‖X‖ n
n−1

‖Df‖n. (140)

Combining Cases 1 and 2, we get that for x ∈ B( 32 ), there holds

(X ·Df)∗(x) ≤ [M(|X|q)(x)]
1
q [M(|Df |p∗)(x)]

1
p∗ + 2n+1‖X‖ n

n−1
‖Df‖n.

Consequently

‖(X ·Df)∗‖1;B( 3
2 )

≤ ‖M(|X|q) 1
q M(|Df |p∗) 1

p∗ ‖1 + C‖X‖ n
n−1

‖Df‖n. (141)

To continue, note that the function |X|q lies in Lα(Rn) for α = n
q(n−1) > 1, and that

the function |Df |p∗ lies in Lβ(Rn) for β = n
p∗

> 1. Hence

‖M(|X|q)‖α ≤ C‖ |X|q ‖α = C‖X‖q n
n−1

,

‖M(|Df |p∗)‖β ≤ C‖ |Df |p∗ ‖β = C‖Df‖p∗n .

Combining these estimates with the Hölder inequality and the fact that 1
αq +

1
βp∗

= 1,
we get

‖M(|X|q) 1
q M(|Df |p∗) 1

p∗ ‖1 ≤ ‖M(|X|q) 1
q ‖qα‖M(|Df |p∗) 1

p∗ ‖p∗β
= ‖M(|X|q)‖

1
q
α‖M(|Df |p∗)‖

1
p∗
β

≤ C‖X‖ n
n−1

‖Df‖n.

Putting this back into (141), we get

‖(X ·Df)∗‖1;B( 3
2 )

≤ C‖X‖ n
n−1

‖Df‖n. (142)

Case 3. Suppose that x ∈ Rn \ B( 32 ). Then since Df is nonzero only in B(1)
and since B(x; ε) ∩B(1) = ∅ if ε < 1

3 |x|, we have in this case that

(X ·Df)∗(x) = sup
ζ

sup
ε≥ 1

3 |x|
ε−n

∣∣∣∣ ˆ
B(1)

ζ(ε−1(x− y))X(y) ·Df(y)dy

∣∣∣∣.
Then, the same observation that lead to (140) allows us to conclude that in fact

(X ·Df)∗(x) ≤ 3n+1|x|−n−1‖X‖ n
n−1

‖Df‖n.
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Integrating this over Rn \B( 32 ) gives

‖(X ·Df)∗‖1;Rn\B( 3
2 )

≤ C‖X‖ n
n−1

‖Df‖n. (143)

We complete the proof upon combining (142) and (143), and recalling the definition
of H1.

Appendix B. Higher regularity and the mean value inequality. In this
appendix we give proofs of Theorems 4.7 and 4.9. The arguments are largely based
on the work of Duzaar–Fuchs [10] and Duzaar–Mingione [11] on p-harmonic maps,
with some necessary modifications due to the fact that we have a different system
of equations, and because we are working with a potentially nonflat metric on the
domain.

Proof of Theorem 4.7. We begin with part (a), whose proof actually resembles
the proof of Proposition 4.3, but we estimate things slightly differently. Take any
x0 ∈ B(1) and r < 1

8 , and again introduce the rescalings

ũ(x) = u(x0 + rx), g̃(x) = g(x0 + rx).

Then Corollary 4.6 is applicable to ũ, so we have (84) and (85) at our disposal. Next,
we let g0 denote the constant metric given by

g0ij(x) := g̃ij(0) = gij(x0) for all x ∈ B(2).

Similarly to the proof of Proposition 4.3, we consider the unique function ṽ ∈
W 1,3(B(1);Rd) which minimizes

ˆ
B(1)

|dw|3g0dμg0

amongst all functions w ∈ W 1,3(B(1);Rd) with w − ũ ∈ W 1,3
0 (B(1);Rd). Then ṽ

satisfies ˆ
B(1)

〈|dṽ|g0dṽ, dη〉g0dμg0 = 0 for all η ∈ W 1,3
0 (B(1);Rd),

and ˆ
B(1)

|dṽ|3g0dμg0 ≤
ˆ
B(1)

|dũ|3g0dμg0 . (144)

Following [11], we introduce the function V : R3×d → R3×d defined by

V (ξ) = |ξ| 12 ξ.

Then by a refinement of Uhlenbeck’s work due to Giaquinta–Modica [17, Theorem,
3.1], we know that ṽ has Hölder continuous first derivatives, and furthermore there
exist universal constants C and γ such that

ˆ
B(λ)

∣∣V (Dṽ)− (V (Dṽ))B(λ)

∣∣2 dx
≤ Cλ3+2γ

ˆ
B(1)

|V (Dṽ)− (V (Dṽ))B(1)|2dx for all λ ∈ (0, 1
4 ). (145)
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Also, the argument leading to (72) and (73) is still valid, and for all x ∈ B(1) and
i = 1, . . . , d, we get

min
B(1)

ũi − ũi(x) ≤ ṽi(x)− ũi(x) ≤ max
B(1)

ũi − ui(x).

In particular, by (85), we have

|ṽ − ũ|0;B(1) ≤ C[ũ]α;B(1) ≤ C‖Dũ‖3;B(2).

Therefore, using ũ− ṽ as a test function in (65), we get

ˆ
B(1)

〈|dũ|dũ, d(ũ− ṽ)〉dμg ≤ C‖Dũ‖43;B(2)

≤ C‖Du‖43;B(x0;2r)
≤ Cr4α‖Du‖43;B(2),

where we used (84) in the last inequality. On the other hand, repeating the calculation
in (76) and (77), and using (144), we deduce that

ˆ
B(1)

〈|dṽ|gdṽ, d(ũ− ṽ)〉gdμg ≤ C|g̃ − g0|0;B(1)‖Dṽ‖23;B(1)‖Dũ−Dṽ‖3;B(1)

≤ C|g − g(x0)|0;B(x0;r)‖Dũ‖33;B(1)

≤ Cr|Dg|0;B(2)r
3α‖Du‖33;B(2)

≤ Cε0r
1+3α‖Du‖33;B(2).

Letting v(x) = ṽ(r−1(x− x0)), the above gives

ˆ
B(x0;r)

|V (Du)− V (Dv)|2 dx =

ˆ
B(1)

|V (Dũ)− V (Dṽ)|2 dx

≤ C

ˆ
B(1)

〈|dũ|gdũ− |dṽ|gdṽ, dũ− dṽ〉dμg

≤ Cr4α(1 + ‖Du‖3;B(2))‖Du‖33;B(2).

Note that we used [11, equation (11) on page 240] in the second line above.
Scaling ṽ to v in (145) and combining it with estimate just obtained, we find that

for all x0 ∈ B(1), r < 1
8 , and λ ∈ (0, 1

4 ), we have

ˆ
B(x0;λr)

∣∣V (Du)− (V (Du))B(x0;λr)

∣∣2 dx ≤ Cλ3+2γ

ˆ
B(x0;r)

∣∣V (Du)− (V (Du))B(x0;r)

∣∣2 dx

+ Cr4α
(
1 + ‖Du‖3;B(2)

) ‖Du‖33;B(2).

Letting K = C
(
1 + ‖Du‖3;B(2)

)
‖Du‖33;B(2) and

Φ(x0, t) =

ˆ
B(x0;t)

∣∣V (Du)− (V (Du))B(x0;t)

∣∣2 dx,
we see that for all x0 ∈ B(1) and s ≤ r < 1

8 , we have

Φ(x0, s) ≤ C
(s
r

)3+2γ

Φ(x0, r) +Kr4α.
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Recalling that 4α > 3, we obtain by [21, Lemma 3.4] that

Φ(x0, s) ≤ Cs3+2γ′

for all x0 ∈ B(1) and s ∈ (0, 1
9 ), where γ′ = min{γ, 1

2 (4α − 3)}. Thus V (Du) ∈
C0,γ′(B(1);R3×d) with [V (Du)]γ′;B(1) depending on M,J , the embedding M → Rd,
and ‖Du‖3;B(2). Then [11, Lemma 3] yields the assertion in part (a).

For (b) we only indicate the main steps. Fix any ball B with compact closure in
the set

{x ∈ B(1) | Du(x) �= 0} (= B(1) \ critu).

Via a difference quotient argument (compare with [10, Lemma 2.2]) using (65), we
can show that

ˆ
B

|Du| |D2u|2dx < ∞,

so that u ∈ W 2,2(B), because |Du| is bounded away from zero on B. This W 2,2-
regularity then allows us to integrate by parts on the left hand side of (65) to see that
u satisfies an elliptic system of equations of the form

Aγλ
ij u

j
γλ +Bλ

iju
j
λ = Fi,

almost everywhere in B, where Aγλ
ij , B

λ
ij and Fi are rational expressions involving

g,Dg, J ◦u and Du and hence all lie in C0,β(B) because u ∈ C1,β(B), and because g is
smooth by assumption. The regularity theory for W 2,2-solutions to elliptic systems of
the above type (see [16, Theorem 5.22]) tells us that u ∈ C2,β

loc (B), and a bootstrapping
argument yields smoothness locally in B. Since B is an arbitrary ball with compact
closure in {x ∈ B(1) | Du(x) �= 0}, we are done.

Proof of Theorem 4.9. Throughout this proof, we use d∗ to denote the dual, with
respect to g, of the exterior derivative. The operators Δ and ∇, as well as the volume
form μ, are with respect to the metric g, and ∇du refers to the covariant derivative
of du as a Rd-valued 1-form, as opposed to a section of R3 ⊗ u∗TM .

We first require ε1 < ε0, so that by Theorem 4.7 we have u ∈ C1,β(B(1);M) and
u is smooth on the set {x ∈ B(1) | Du(x) �= 0}, which we denote by U+ for this proof.

Next, we note that the difference quotient argument in the proof of [10, Lemma

2.2] carries over to our case to give |du| 12 du ∈ W 1,2
loc (B(1)). Since u ∈ C1(B(1)),

we deduce that |du|3 ∈ W 1,2
loc (B(1)). Next we show, as in [10, Lemma 2.3], that the

function w := |du|3 satisfies a second order, uniformly elliptic equation in U+.
The computation in the proof of [10, Lemma 2.3] can then be modified as follows.

(See also [49, pages 222–223].) At any point in U+ we have

Δw = Δ〈|du|du, du〉
= 〈Δ(|du|du) , du〉+ 2〈∇ (|du|du) ,∇du〉+ 〈|du|du,Δdu〉
= −〈(d∗d+ dd∗) (|du|du) , du〉+Ric(|du|du, du) + 2〈∇ (|du|du) ,∇du〉+ 〈|du|du,Δdu〉
= −〈(d∗d+ dd∗) (|du|du) , du〉+Ric(|du|du, du) + 〈∇ (|du|du) ,∇du〉+ 1

3
Δw.
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(Note that we used the Weitzenböck formula for differential 1-forms in going from the
second line to the third.) Hence we get

2
3Δw + 〈d∗d (|du|du) , du〉

= −〈dd∗ (|du|du) , du〉+Ric(|du|du, du) + 〈∇(|du|du),∇du〉
≥ −〈dd∗ (|du|du) , du〉 −K|du|3 + |du|−1〈du,∇du〉2 + |du||∇du|2

≥ −〈dd∗ (|du|du) , du〉 −K|du|3 + |du||∇du|2. (146)

To continue, note that we have

〈d∗d (|du|du) , du〉 = − 1
3 div

(
dw − |du|−2〈du, dw〉du

)
,

and thus the left hand side of (146) becomes

2
3Δw + 〈d∗d (|du|du) , du〉 = 1

3 div(dw + |du|−2〈du, dw〉du), (147)

where the right hand side can be understood as a uniformly elliptic operator of second
order acting on w. For the right hand side of (146), the first term can be estimated
with the help of (65) as follows:

−〈dd∗ (|du|du) , du〉 =
√
3
2

〈
d
(

1√
g ε

αβγ(J i
jk ◦ u)γuj

αu
k
β

)
, dui

〉
≥ −C|du|4 − C|du|5 − C|du|3|D2u|
≥ −C|du|3 − C|du|5 − C|du|3|D2u|, (148)

where we used Young’s inequality to estimate |du|4 ≤ C(|du|3 + |du|5) in the last
inequality above.

Next, by the coordinate expression for ∇du, we have

|D2u| ≤ C(|∇du|+ |du|).

Using this and Young’s inequality again, we bound the last term in (148) as follows.

|du|3|D2u| ≤ C|du|3(|∇du|+ |du|)
≤ C

(
1
4ε |du|

5 + ε|du||∇du|2
)
+ C

(
1
2 |du|

3 + 1
2 |du|

5
)
. (149)

Combining this with (148) and choosing a small enough ε, we arrive at

−〈dd∗ (|du|du) , du〉 ≥ −C|du|3 − C|du|5 − 1
2 |du||∇du|2.

Putting this back into the right hand side of (146) and using (147), we obtain

1
3 div(dw + |du|−2〈du, dw〉du) ≥ −Cw

5
3 − Cw, (150)

pointwise everywhere on U+. Hence, for all ζ ∈ C1
c (U+) with ζ ≥ 0, we have

ˆ
U+

(
〈dw, dζ〉+ |du|−2〈du, dw〉〈du, dζ〉

)
dμ ≤ C

ˆ
U+

(w
5
3 + w)ζdμ.

Now the proof of [10, Lemma 2.4] carries over to show that the above inequality
actually holds for all ζ ∈ C1

0 (B(1)) with ζ ≥ 0. Consequently w ∈ W 1,2
loc (B(1)) is a

weak solution to (150) on all of B(1). We may then follow [10, pages 394–395] to
complete the proof, shrinking ε1 if necessary.
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