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SCALAR CURVATURE AND AN INFINITE-DIMENSIONAL
HYPERKÄHLER REDUCTION∗

CARLO SCARPA† AND JACOPO STOPPA†

Abstract. We discuss a natural extension of the Kähler reduction of Fujiki and Donaldson, which
realises the scalar curvature of Kähler metrics as a moment map, to a hyperkähler reduction. Our
approach is based on an explicit construction of hyperkähler metrics due to Biquard and Gauduchon.
This extension is reminiscent of how one derives Hitchin’s equations for harmonic bundles, and yields
real and complex moment map equations which deform the constant scalar curvature Kähler (cscK)
condition. In the special case of complex curves we recover previous results of Donaldson. We focus
on the case of complex surfaces. In particular we show the existence of solutions to the moment map
equations on a class of ruled surfaces which do not admit cscK metrics.
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1. Introduction. Let M be a compact Kähler manifold. The problem of finding
a Kähler metric g with prescribed cohomology class [ωg] and constant scalar curvature

s(g) = ŝ (1.1)

has been intensively studied in complex differential geometry for the last few decades.
A particularly fruitful parallel has been established between (1.1) (the cscK equa-
tion) and the Hermitian Yang–Mills (HYM) equation for a Hermitian metric h on a
holomorphic vector bundle E over, say, a complex curve with a fixed Kähler form
(X,ω),

F (h) = μ Id⊗ ω. (1.2)

Remarkably both equations can be realised as the zero moment map condition for
a suitable infinite-dimensional Kähler reduction. For the HYM equation (1.2) this
goes back to [AB83], the Atiyah–Bott characterisation of curvature as the moment
map for the Hamiltonian action of unitary gauge transformations on the space of
compatible ∂̄-operators A . The HYM equation arises when looking for zeroes of the
moment map along the orbits of the complexified action. In the case of the cscK
equation Fujiki ([Fuj92]) and Donaldson ([Don97]) constructed a Hamiltonian action
of the group of Hamiltonian symplectomorphisms G = Ham(M,ω0) on the space J
of almost complex structures compatible with a fixed symplectic form ω0, endowed
with a natural symplectic (in fact Kähler) structure. It turns out that the moment
map for this action, evaluated on Hamiltonians h, is given by

μJ(h) =

∫
M

2(s(gJ)− ŝ)h
ωn
0

n!
.

Donaldson in [Don97] then shows how the cscK equation (1.1) (with fixed J and
varying Kähler metric) arises when looking for zeroes of the moment map along the
orbits of the complexified infinitesimal action.
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An important feature of the moment map approach in the Hermitian Yang–Mills
case is that the Atiyah-Bott Kähler reduction can be upgraded naturally to a hyper-
kähler reduction of the holomorphic cotangent space T ∗A , as was shown by Hitchin
([Hit87]). The real, respectively complex moment map, along orbits of the complexi-
fication, give Hitchin’s harmonic bundle equations,

F (h) + [φ, φ∗h ] = μ Id⊗ ω

∂̄φ = 0, (1.3)

involving a Higgs field φ ∈ Hom(E,E ⊗ T ∗X). The harmonic bundle equations (1.3)
lead to a very rich theory, especially, but not only, in the case of complex curves.

Thus it seems natural to ask if equations parallel to (1.3) can be derived and
studied in the context of the cscK problem (1.1). In fact this has been achieved by
Donaldson ([Don03]) and Hodge ([Hod05]), in the special case of complex curves, as
we discuss below in some detail.

The present paper begins a more systematic study of this problem for higher
dimensional manifolds. In the rest of this Introduction we summarise our main results.

Naturally the first step is to upgrade the (Hamiltonian) action G � J to an
action G � T ∗J preserving a hyperkähler structure. It is well known that, for a
Kähler manifold M , there exists a hyperkähler metric in a neighbourhood of the zero
section of T ∗M , see [Fei01] and [Kal99]; in the work of Donaldson such a structure is
constructed for T ∗J , in an ad-hoc way, in the special case of a complex curve. Here
we use instead an explicit construction, due to Biquard and Gauduchon ([BG97]), of
a canonical G-invariant hyperkähler metric in the neighbourhood of the zero section
of T ∗(G/H), the cotangent bundle of a Hermitian symmetric space of noncompact
type, to obtain the required hyperkähler structure in higher dimensions.

Theorem 1.1. A neighbourhood of the zero section in the holomorphic cotan-
gent bundle T ∗J is endowed with a natural hyperkähler structure. This is induced by
regarding J as the space of sections of a Sp(2n)-bundle with fibres diffeomorphic to
Sp(2n)/U(n), and by the Biquard-Gauduchon canonical Sp(2n)-invariant hyperkäh-
ler metric on a neighbourhood of the zero section in T ∗(Sp(2n)/U(n)). The induced
action G � T ∗J preserves this hyperkähler structure.

A review of the results of Biquard and Gauduchon can be found in §2.5. The
construction of the hyperkähler metric and the proof of Theorem 1.1 are given in
Section 3.

Our next result studies the induced action G � T ∗J . We let Ω denote the Fujiki-
Donaldson Kähler form on J . We write I, J for the complex structures underlying
the hyperkähler structure on T ∗J , with corresponding Kähler forms ΩI , ΩJ . By a
slight abuse of notation we will denote by (T ∗J ,ΩI) the open neighbourhood of the
zero section in T ∗J on which ΩI is well-defined. Let Θ be the canonical complex
symplectic form on T ∗J . Points (J, α) ∈ T ∗J are pairs of an almost complex structure
and a section α ∈ End(T ∗M) (satisfying the compatibility conditions). We write αᵀ

for the dual endomorphism. Finally we recall that the Biquard-Gauduchon metric is
expressed in terms of a canonical Sp(2n)-invariant function ρ on T ∗(Sp(2n)/U(n)).

Theorem 1.2. The action G � T ∗J is Hamiltonian with respect to the canonical
symplectic form Θ; a moment map mΘ is given by

mΘ(J,α)(h) = −
∫
M

1

2
Tr(αᵀLXh

J)
ωn
0

n!
.
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Moreover the action G � (T ∗J ,ΩI) is Hamiltonian; a moment map mΩI
is given by

mΩI
= μ ◦ π +m

where μ is the moment map for the action G � (J , Ω), π : T ∗J → J is the projection
and m : T ∗J → Lie(G)∗ is defined by

m(J,α)(h) =

∫
x∈M

dcρ(J(x),α(x)) (LXh
J,LXh

α)
ωn
0

n!
.

The proof of Theorem 1.2 is given in Section 3.2, see in particular Lemma 3.6 and
Lemma 3.7.

As we recalled above μ(J) is dual to the function 2(s(gJ)−ŝ) under the natural L2

product. Thus the analogue, in the cscK context, of the real moment map equation
in (1.3), is given by the problem of finding (J, α) such that the real moment map
vanishes,

mΩI
(h) = μJ(h) +m(J,α)(h) = 0 for all h ∈ C∞

0 (M).

Similarly the holomorphicity of the Higgs field φ becomes the vanishing of the complex
moment map,

mΘ(J,α)(h) = 0 for all h ∈ C∞
0 (M).

It turns out that one can easily compute the dual function to the complex moment
map under the L2 pairing, at least when J is integrable, i.e. under this identification
we have

mΘ(J, α) = −div (∂̄∗ᾱᵀ) .
Notice in particular that harmonic representatives of first order deformations of the
complex structure always provide solutions.

On the contrary considerable more work is needed to turn the vanishing of the real
moment map into an explicit partial differential equation. We achieve this here for
complex curves in Section 4.2, recovering Donaldson’s equations for the hyperkähler
reduction, and for complex surfaces in Section 5.2.

In what follows all metric quantities are computed with respect to gJ .

Theorem 1.3. Let M be a compact complex curve. Let ψ, Q be the function and
complex vector field on M , depending on a point in T ∗J , defined respectively by

ψ(α) =
1

1 +
√

1− 1
4‖α‖2

,

Q(J, α) =
1

2
Re (gJ(∇aα, ᾱ)∂a) .

Then we have the identification

mΩI
(J, α) = 2 s(gJ)− 2 ŝ+Δ

(
log

(
1 +

√
1− 1

4
‖α‖2

))
+ div (ψ(α)Q(J, α))

under the L2 product.
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In order to recover Donaldson’s result we lower one index of α = α b̄
a ∂z̄b ⊗ dza,

using the metric gJ , obtaining the (symmetric) quadratic differential τ . Then the
complex moment map equation is equivalent to

div
(
(∇0,1∗τ̄)�

)
= 0

and holds automatically when τ is a holomorphic quadratic differential. Similarly in
this holomorphic case we have

g(∇aτ, τ̄)∂a = gab̄gcēgdf̄ ∇b̄τcd τēf̄ ∂a = 0,

so the real moment map equation becomes

2 s(gJ)− 2 ŝ+Δ

(
log

(
1 +

√
1− ‖τ‖2

))
= 0.

Fixing J and varying g instead along the orbits of the formal complefixication, this is
exactly the equation that was used by Donaldson in [Don03, Lemma 18] to define a
hyperkähler structure on the cotangent bundle of the Teichmüller space of the curve
M . T. Hodge ([Hod05]) proved existence and uniqueness of solutions for each fixed
holomorphic τ , at least under some boundedness assumptions on τ .

We proceed to discuss the case of complex surfaces. In this case we prefer to write
the moment maps in terms of an endomorphism A of the real tangent bundle given
by

A = Re(αᵀ).

We need some auxiliary notation. It is convenient to define the quantities

δ±(A) =
1

2

⎛⎝Tr(A2)

2
±
((

Tr(A2)

2

)2

− 4 det(A)

) 1
2

⎞⎠ .

Similarly to the case of curves we introduce two real spectral functions of the endo-
morphism A, given by

ψ(A) =
1√

4− 2 δ+(A) +
√
4− 2 δ−(A)

;

ψ̃(A) =
1(√

4− 2 δ+(A) +
√
4− 2 δ−(A)

)(
2 +

√
4− 2 δ+(A)

)(
2 +

√
4− 2 δ−(A)

) .
Finally we write Ã for the adjugate of the endomorphism A, and A = A1,0 + A0,1,
Ã = Ã1,0 + Ã0,1 for the type decomposition of the complexifications.

Theorem 1.4. Let M be a compact complex surface. Let X be the vector field
on M , depending on a point of T ∗J , defined by

X(J,A)

=− ψ(A) grad
(
Tr(A2)

2

)
+ 4ψ(A)Re

(
g(∇aA0,1, A1,0)∂a

)− 2∇∗(ψ(A)A2)

− 4
(
ψ̃(A) grad (det(A)) + 4 ψ̃(A)Re

(
g(∇aA0,1, Ã1,0)∂a

)
+ 2det(A) grad(ψ̃(A))

)
.
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Then, when J is integrable, we have the identification

mΩI
(J, α) = 2(s(gJ)− ŝ) + divX(J,A)

under the L2 product.

We also obtain a similar but more complicated explicit expression for non-
integrable J . The Theorem is proved in Section 5.2. Note that although this general
expression for the vector field X(J,A) is rather involved, it simplifies considerably
when the endomorphism A does not have maximal rank, yielding in this case

X(J,A) = − grad
(
1
4
Tr(A2)

)
1 +

√
1− 1

4
Tr(A2)

+
2Re

(
g(∇aA0,1, A1,0)∂a

)
1 +

√
1− 1

4
Tr(A2)

−∇∗

⎛
⎝ A2

1 +
√

1− 1
4
Tr(A2)

⎞
⎠ .

The resulting real moment map in this low-rank case is quite similar to the one for
Riemann surfaces given in Theorem 1.3.

Following the well-known case of the cscK equation, it is natural to study the
system of partial differential equations obtained by fixing the complex structure J in
J and varying instead the metric g in a fixed Kähler class and the “Higgs term” α
in some class of first-order deformations of the complex structure J . Just as in the
cscK case this can be understood as a formal (infinitesimal) complexification of the
action of G, as is described in §3.2.1. The resulting real and complex moment map
equations form the system

2 s(g) + divX(g,A) = 2 ŝ

div
(
∂̄∗
gA

1,0
)
= 0, (1.4)

reminiscent of Hitchin’s harmonic bundle equations (1.3). We refer to this system as
the HcscK equations.

An important aspect of the theory of Higgs bundles is that a slope-unstable bundle
E may still carry a harmonic metric, for a suitable choice of Higgs field. Our last result
in Section 6.3 establishes an analogue of this fact in the context of the cscK equation,
albeit in a not completely satisfactory way; details are explained in §6.3.

Theorem 1.5. Fix a compact complex curve Σ of genus at least 2, endowed with
the hyperbolic metric gΣ. Let M be the ruled surface M = P(O⊕TΣ), with projection
π : M → Σ and relative hyperplane bundle O(1), endowed with the Kähler class

[ωm] = [π∗ωΣ ] +mc1(O(1)), m > 0.

Then for all sufficiently small m the HcscK equations (1.4) can be solved on (M, [ωm]).

On the other hand it is well-known that, for all positive m, (M, [ωm]) does not
admit a cscK metric (see [Szé06, §3.3 and §5.2]).

The paper is organised as follows. Section 2 contains some preliminary mate-
rial on the Hermitian symmetric space Sp(2n)/U(n) (in particular, on its natural
identifications with Siegel’s upper half space and with the space of compatible lin-
ear complex structures), on the space of almost complex structures J , and on the
Biquard-Gauduchon construction. In Section 3 we use these results to construct a
hyperkähler structure on T ∗J and to derive the implicit expression of the moment
maps. Section 4 discusses the case of a complex curve, while Section 5 is devoted to
a general complex surface. Finally in Section 6 we study the case of a ruled surface
in more detail.
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2. Preliminary results.

2.1. Notation and conventions. The imaginary unit is “ i”; if (M,J) is a com-
plex manifold of complex dimension n we use i, j, k . . . as indices for tensors defined
on the underlying real manifold, so i, j · · · ∈ {1, 2, . . . , 2n}. For complex tensors in-
stead we use a, b, c, . . . as indices ranging from 1 to n. We always use the Einstein
convention on repeated indices.

Our conventions for the Laplacian are the following: Δ = dd∗ + d∗d, and in
particular for a function ϕ we get Δ(ϕ) = −div grad(ϕ). In complex coordinates we
find, for a Kähler metric, Δ(ϕ) = −2gab̄∂a∂b̄ϕ. The “complex Laplacian” is Δ∂̄ =
Δ∂ = 1

2Δ.
When working with left actions of a Lie group G on a manifold M , we’ll denote

them by

G×M →M

(g, x) 	→ σg(x)

or simply (g, x) 	→ g.x

We let g = TeG be the Lie algebra of the group G, identified with the space of
left-invariant vector fields on G.

If we have a left action G � M , we define for a ∈ g the fundamental vector field
â on M as

âx =
d

dt

∣∣∣
t=0

(exp(−t a).x) ∈ TxM.

The vector field â is also called the infinitesimal action of a on M . The minus sign
in this definition is due to the fact that, with this definition, the map

g→ Γ (TM)

a 	→ â

is a Lie algebra homomorphism (see [LM87, Proposition 3.8, Appendix 5]).
Now, let (M,ω) be a symplectic manifold. For a function f ∈ C∞(M) we define

the Hamiltonian vector field Xf as

df = −Xf�ω.

Here the symbol � is the contraction of the first component, i.e.

−X�ω = −ω(X,−) = ω(−, X).

The Poisson bracket of two functions f, g ∈ C∞(M) is defined as

{f, g} = ω(Xf , Xg).
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This is a Lie bracket on C∞(M), and the Hamiltonian construction f 	→ Xf is a Lie
algebra homomorphism between (C∞(M), {−,−}) and (Γ (TM), [−,−]).

Bringing together the last two paragraphs, consider now a symplectic left action
G � (M,ω). We say that the action is Hamiltonian if there is a moment map

μ : M → g∗

that is equivariant with respect to G � M and the co-adjoint action of G on g∗,
and such that 〈μ, a〉 is a Hamiltonian function of the vector field â on M . In a more
concise way:

∀g ∈ G, ∀x ∈M, ∀a ∈ g 〈μg.x, a〉 = 〈μx,Adg−1(a)〉;
∀g ∈ G, ∀a ∈ g d (x 	→ 〈μx, a〉) = −â�ω.

2.2. Some matrix spaces. Consider the symplectic vector space (R2n, Ω0),
where Ω0 is the canonical symplectic form, i.e. the matrix

Ω0 =

(
0 1m

−1m 0

)
.

We recall that the symplectic group Sp(2n) is defined as

Sp(2n) = {A ∈ GL(2n,R) | AᵀΩ0A = Ω0}.
This is a connected real Lie group, and we are particularly interested on some actions
of Sp(2n).

By the usual identification of Cn with R2n as real vector spaces, we can see
GL(n,C) as the subgroup of GL(2n,R) consisting of all the real invertible 2n × 2n
matrices that commute with the standard complex structure on R2n, which is defined
by Ω0. The groups Sp(2n), SO(2n) and U(n) are tied together by the well known
result:

Sp(2n) ∩ SO(2n) = Sp(2n) ∩U(n) = SO(2n) ∩U(n) = U(n).

The coset space Sp(2n)/U(n) will play a fundamental role in what follows. It carries
a natural Kähler metric, coming from its identification with Siegel’s upper half space
H, and at the same time it can be identified naturally with the space AC+ of linear
complex structures compatible with a linear symplectic form.

Definition 2.1. Siegel’s upper half space H(n) is the set of all symmetric n× n
complex matrices whose imaginary part is positive definite.

Some reference texts for the properties of H are [Sie43, DV54]. Siegel’s upper half
space is a generalization of the well-known hyperbolic plane, and these two spaces
share many interesting geometric properties.

In particular, H is a complex manifold, with complex structure given simply by
multiplication by i. It will be more notationally convenient, however, to consider on
H the conjugate complex structure, i.e. we will define the complex structure on H to
be the multiplication by −i. The reason for this choice will become clear when we
will use it to define a complex structure on AC+, see Proposition 2.5.

On H there is also a Kähler structure; the metric tensor at a point Z = X + i Y
is

ds2Z = trace
(
Y −1dZ Y −1dZ

)
(2.1)
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where dZ and dZ are the (symmetric) matrices of differentials (dzab)1≤a,b≤m and its
conjugate. We refer to [Sie43] for the details. This metric has a local potential of the
form

∂

∂zab

∂

∂z̄cd
log det(Y )

see for example [DV54, §5].
The symplectic group Sp(2n) acts on H(n) by an analogue of the Möbius trans-

formations. For P =

(
A B
C D

)
∈ Sp(2n) and Z ∈ H(n) one defines

P.Z = (AZ +B)(CZ +D)−1.

This is a well-defined left action on H(n) that preserves the metric (2.1).

Proposition 2.2 (Theorem 1 in [Sie43]). The action of Sp(2n) on H(n) is
transitive. Moreover, every holomorphic bijection H(n)→ H(n) is a Möbius transfor-
mation.

Consider the stabilizer of i1n ∈ H(n) under this action. It is clear that the matrix(
A B
C D

)
stabilizes i1 if and only if iA + B = iD − C, i.e. B + C = 0 and A = D.

Hence the stabilizer is Sp(2n) ∩GL(n,C) = U(n), with the previous identifications.

2.2.1. The space AC+. Let J ∈ Sp(2n) be a linear almost complex structure
preserving Ω0. Then the product Ω0J is a nondegenerate symmetric matrix, defining
a bilinear form βJ . We are interested in the set of all almost complex structures
J ∈ Sp(2n) such that βJ is positive definite, and we define

AC(2n) = {J ∈ Sp(2n)
∣∣ J2 = −1}

AC+(2n) = {J ∈ Sp(2n)
∣∣ J2 = −1, βJ > 0

}
.

Notice that the matrix −Ω0 is an element of AC+(2n), and β−Ω is just the usual
Euclidean product.

Lemma 2.3. Let Sp(2n) act on AC(2n) by conjugation. Then the stabilizer of
any J ∈ AC(2n) is Sp(2n) ∩ SO(βJ).

In particular, the stabilizer of −Ω0 is Sp(2n) ∩O(2n) = U(n).

Proposition 2.4. The action of Sp(2n) on AC+(2n) is transitive.

Then for any J ∈ AC+(2n) there is some P ∈ Sp(2n) which conjugates J to −Ω0;
a possible choice of P is given by

PJ = (Ω0J)
1/2.

Proposition 2.4 and Lemma 2.3 tell us that we can identify AC+(2n) with the quotient

SP(2n)/ (SO(2n) ∩ Sp(2m)) ∼= Sp(2m)/U(n).

Let φ : AC+ → H be the diffeomorphism that is given by composing the two identifi-
cations of AC+ and H with Sp(2n)/U(n). These identifications are defined by fixing
the reference points −Ω0 ∈ AC+ and i1 ∈ H, so that φ is given by the composition



SCALAR CURVATURE AND HYPERKÄHLER REDUCTION 679

AC+ → Sp(2n)/U(n) → H
J 	→ P−1

J U(n) 	→ P−1
J .(i1)

and φ is a smooth isomorphism of Sp(2n)–spaces, i.e. it is a diffeomorphism that
commutes with the Sp(2n) actions. Using this identification of the two spaces we
obtain a Kähler structure on AC+. A straightforward computation of the differential
of Φ at the point −Ω0 gives

Proposition 2.5. Endow AC+ with the complex structure and Kähler metric
pulled back from Siegel’s upper half space H. Then the complex structure on TJAC+
is given by

A 	→ JA.

Moreover

φ∗(ds2)J(A,B) =
1

2
Tr(AB).

Remark 2.6. Notice that for A,B,C ∈ TJAC+, the trace of the product matrix
ABC vanishes; indeed

Tr(ABC) = −Tr(JJABC) = Tr(JABCJ) = Tr(JJABC) = −Tr(ABC).

This will be useful later to compute the moment map for the action in Section 3.2.

The next result is an expression for the curvature of this metric on AC+, that is
obtained by considering its homogeneous space structure.

Proposition 2.7. Consider AC+(2n) with the Kähler metric induced by its
identification with Sp(2n)/U(n) (and with H(2n)). The curvature of this metric at
the point −Ω0 is given by

R−Ω0(A,B)(C) = −1

4

[
[A,B], C

]
.

The holomorphic cotangent space of AC+. To write the moment map equations
in Section 3 it will be convenient to have an expression for the complex structure of
T 1,0∗AC+. Consider J ∈ AC+; the cotangent space of AC+ at J is the space of all
α : V ∗ → V ∗ such that

Jαᵀ+αᵀJ = 0

JᵀΩ0α
ᵀ+αΩ0J

ᵀ = 0.

We want to consider the holomorphic cotangent space at J , i.e. α ∈ V ∗ ⊗ C that
satisfies

Jᵀα = iα

αJᵀ = −iα
JᵀΩ0Re(α)

ᵀ +Re(α)Ω0J = 0.

The tangent space TJ,α

(
T 1,0∗AC+) is defined by the set of all pairs (J̇ , α̇) with J̇ ∈

TJAC+ and α̇ ∈ V ∗ ⊗ C such that
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1. J̇ᵀα+ Jᵀα̇ = iα̇
2. α J̇ᵀ + α̇ Jᵀ = −iα̇
3. J̇ᵀΩ0Re(α)

ᵀ + JᵀΩ0Re(α̇)
ᵀ +Re(α̇)Ω0J +Re(α)Ω0J̇ = 0.

A lengthy calculation using the identification between AC+ and H+ gives the
following expression for the canonical complex structure of T 1,0∗AC+:

TJ,α

(
T 1,0∗AC+

)
−→ TJ,α

(
T 1,0∗AC+

)
(J̇ , α̇) 	→ (JJ̇, α̇Jᵀ + J̇ᵀα).

(2.2)

2.3. The space J . Let (M,J0, ω0) be a compact Kähler manifold, of complex
dimension n. We are interested in the space

J =
{
J ∈ Γ (EndTM)

∣∣ J2 = −Id, ω0(J−, J−) = ω0(−,−) and ω0(J−,−) > 0
}

of all almost complex structures on M that are compatible with the symplectic form
ω0.

For any point x0 ∈ M , there is a neighbourhood U ∈ U(x0) and a coordinate
system u : U → R2n such that ω0(u) is expressed as the canonical 2-form on R2n

(in other words, u is a local system of Darboux coordinates around x0); hence for all
x ∈ U and for all J ∈ J , the matrix associated to Jx in the coordinate system u
is an element of AC+. Notice that, for a different system of Darboux coordinates v,
the “change of coordinates matrix” ∂v

∂u is a Sp(2n)-valued function. Considering the
matrices associated to Jx in the two Darboux coordinate systems we have

Jx(v) =
∂v

∂u
(x) Jx(u)

(
∂v

∂u

)−1

(x)

so the two different elements of AC+ differ by the action of an element of Sp(2n) on
AC+. We have all the ingredients to define a Sp(2n)-bundle with fibre AC+ on the
manifold M , that is trivialized in Darboux coordinates. We denote by E π−→ M this
fibre bundle, and it’s clear that J = Γ(M, E).

This description of the infinite-dimensional manifold J as a space of sections is
quite convenient for describing extra structures on J ; for example, for any J ∈ J
the tangent space at J is

TJJ = TJΓ (M, E) = Γ (M,J∗(Vert E))

where Vert E is the vertical distribution of E , the kernel of the projection on the
base π : E → M . For any x ∈ M , J∗(VertE)x = VertJ(x)E ∼= TJ(x)AC+; here the
identification is done by fixing a Darboux coordinate system around x, i.e. by locally
trivializing E . In other words, any A ∈ TJJ is itself a section of a fibre bundle on M
that is trivial over any system of Darboux coordinates, and in any such trivialization
A(x) ∈ TJ(x)AC+. This description of TJJ can be made more intrinsic by noticing
that any such A must be itself an endomorphism of TM , so that

TJJ = {A ∈ Γ (M,End(TM)) | AJ + JA = 0 and ω0(A−, J−) + ω0(J−, A−) = 0}.

The second condition, ω0(A−, J−) + ω0(J−, A−) = 0, tells us that the bilinear form
(v, w) 	→ gJ(Av,w) is symmetric. Then, in a system of local coordinates for M ,
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the conditions for an endomorphism A to be in TJJ are equivalent to these useful
identities:

J i
jA

j
k = −Ai

jJ
j
k

g(J)ijA
j
k = g(J)kjA

j
i.

(2.3)

Using the various geometric structures on AC+, we can induce similar structures
on J ; let’s see how this is done for the Kähler structure of AC+. First of all, we
define a complex structure J : TJ → TJ as follows: fix J ∈ J and A ∈ TJJ ;
for any x ∈M consider a trivialization of E around x, giving the usual identification
A(x) ∈ TJ(x)AC+; on this vector space we have the complex structure described in the
previous Section. It is given by A(x) 	→ J(x)A(x) = (JA)(x), so we define (JA)(x) =
(JA)(x) for every x ∈M . Notice moreover that the final result is independent from the
choice of the trivialization, since the action of Sp(2n) on AC+ preserves the complex
structure. Then

J : TJJ → TJJ

A 	→ JA

defines an almost complex structure on J . The same approach works to define a
metric; for A,B ∈ TJJ and x ∈ M the number 1

2Tr(A(x)B(x)) depends just on x,
and not on the particular trivialization chosen to see A(x), B(x) as matrices, since
the action of Sp(2n) on AC+ is isometric. We can then define a metric

G : TJJ × TJJ → R

(A,B) 	→ 1

2

∫
x∈M

Tr(AxBx)
ωn
0

n!

and all the “algebraic” relations of J, G carry over from those of the metric and the
complex structure on AC+; in particular G(J−, J−) = G(−,−), and so we obtain a
2-form on J ,

ΩJ(A,B) = GJ(JA,B) =
1

2

∫
x∈M

Tr(JxAxBx)
ωn
0

n!
.

Remark 2.8. If we denote by gJ the Hermitian metric on M defined by ω0 and
J ∈ J , then gJ(A,B) = Tr(AB) for any A,B ∈ TJJ . Indeed

gJ(A,B) = gjkgilA
i
jB

l
k = gjkgijA

i
lB

l
k = Ai

lB
l
i

where we have used (2.3) in the second equality. So we can rewrite the expression of
G in a way that makes more explicit the role of the point J , i.e.

GJ(A,B) =
1

2

∫
x∈M

gJ(A,B)x
ωn
0

n!

=
1

2

∫
x∈M

ω0(A, JB)x
ωn
0

n!
.

Theorem 2.9. With the almost complex structure J and the metric G, J is an
infinite-dimensional (formally) Kähler manifold.
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This theorem is actually a particular case of a more general result. Indeed, it
holds for any fibre bundle N → M over a manifold with a fixed volume form whose
fibres are Kähler manifolds, see [Koi90, Theorem 2.4].

The cotangent bundle of J can also be described in terms of the fibre bundle
E →M ; indeed, since TJJ = Γ (M,J∗(Vert E)), we also have

T ∗
JJ = Γ (M,J∗(Vert E∗)).

A more explicit description can be obtained by locally trivializing the bundle and
identifying Ex with AC+:

T ∗
JJ = {α ∈ Γ (End(T ∗M)) | Jᵀ ◦ α+ α ◦ Jᵀ = 0 and gJ(α

ᵀ−,−) is symmetric}.

Indeed these conditions on α tell us that in a system of Darboux coordinates on
U ⊂M , α(x) ∈ TJ(x)AC+ for every x ∈ U . The pairing between T ∗

JJ and TJJ is

〈α,A〉 = 1

2

∫
M

α j
i A

i
j

ωn
0

n!
.

Later on, we will need the holomorphic cotangent bundle of J , that we will still
denote by T ∗J ; the context will make clear what space we are working on. The
(1, 0)-part of T ∗

JJ consists of those α ∈ T ∗
JJ ⊗ C that satisfy Jᵀ ◦ α = i α. If J is

integrable and we fix a system of coordinates on M that are holomorphic with respect
to J , then an element α ∈ T 1,0∗

JJ in these coordinates is written as

α = α b̄
a ∂b̄ ⊗ dza.

2.4. Characterisations of hyperkähler manifolds. Definition 2.10. Let
(M, g) be a Riemannian manifold, and let I, J be two almost complex structures on
M such that

1. IJ = −JI;
2. g(I−, I−) = g(J−, J−) = g(−,−);
3. ∀x ∈M, ∀v ∈ TxM g(Iv, Jv) = 0.

Then (M, g, I, J) is a hyperkähler manifold if (M, g, I) and (M, g, J) are both Kähler.

In this case, by letting K := IJ we have that for any u ∈ S2 also (M, g, u1I +
u2J + u3K) is Kähler, hence the name. The standard notation is to call ω1, ω2 and
ω3 (or ωI , ωJ and ωK) the three 2-forms defined respectively by g ◦ I, g ◦J and g ◦K.
Moreover, we let ωc := ω2 + iω3; this is a (complex-valued) 2-form on M , and an
important remark is that ωc is a (2, 0) holomorphic symplectic form, relatively to the
complex structure I.

This lemma gives us a useful criterion to prove that some structures are hyper-
kähler.

Lemma 2.11 (Lemma 6.8 in [Hit87]). Let (M, g) be a Riemannian manifold, and
assume that I, J are almost complex structures on M satisfying conditions 1, 2, 3 of
the above definition. Then (M, g, I, J) is hyperkähler if and only if

dω1 = dω2 = dω3 = 0

where the ωis are defined as above.
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In other words, the three forms being closed is enough to ensure the integrability of
I, J and K. We remark that this conditions follows from an algebraic manipulation of
the Newlander-Nirenberg criterion, so it holds also in the infinite-dimensional setting
– guaranteeing at least the formal integrability of the complex structures.

Another important criterion we will use is the following, that is taken from the
discussion in [BG97].

Lemma 2.12. Let (M, g) be a Riemannian manifold, and let I be a complex
structure on M , compatible with g. Assume that we also have a (2, 0) symplectic form
on M , ωc. Then we can always define a tensor J on M by the condition g(J−,−) =
Reωc(−,−). Assume that

1. dω1 = 0, for ω1 = g(I−,−);
2. J2 = −Id.

Then (M, g, I, J) is a hyperkähler manifold, and the three 2-forms defined by g and I,
J and K = IJ are, respectively, ω1, Reωc and Imωc.

Proof. First of all notice that ω2 is closed, since ωc is closed and by definition
ω2 = Reωc. Now we check the various algebraic identities between g, I and J .

Compatibility of g and J : for all v, w we have, using the (anti-) symmetries of g
and ωc

g(Jv, Jw) = Re(ωc(v, Jw)) = −Re(ωc(Jw, v)) = −g(JJw, v) = g(v, w).

Anticommutativity of I and J : of course IJ + JI = 0 if and only if g(IJv +
JIv, w) = 0 for every pair of tangent vectors v, w. From the definition of J we have

g(IJv + JIv, w) = −g(Jv, Iw) + g(JIv, w) = −Re(ωc(v, Iw)) + Re(ωc(Iv, w))

and since ωc is of type (2, 0) relatively to I

−Re(ωc(v, Iw)) + Re(ωc(Iv, w)) = −Re(iωc(v, w)) + Re(iωc(v, w)) = 0.

From these two conditions it is now trivial to check that for any tangent vector v,
g(Iv, Jv) = 0.

By Lemma 2.11, the only thing that remains to be checked is that, if we let
K = IJ and ω3 = g(K−,−), we have dω3 = 0. However, as we have also seen above

g(Kv,w) = g(IJv, w) = −g(JIv, w) = −Re(ωc(Iv, w))

= −Re(iωc(v, w)) = Im(ωc(v, w))

so the closedness of ω3 follows from that of ωc.

It is important to highlight the fact that the proof of Lemma 2.12 is purely
algebraic, provided that ωc and ω1 are closed; we do not need to resort to computations
in local coordinates. Hence, this criterion for checking the hyperkähler condition also
holds in the infinite-dimensional setting; this is where we intend to apply it in Section
3.

2.5. A result of Biquard and Gauduchon. Here we recall the construction of
Biquard and Gauduchon in [BG97] of a hyperkähler metric on the cotangent bundle of
any hermitian symmetric space Σ = G/H. Assume that Σ has a complex structure
I and a Hermitian metric h. For any x ∈ Σ we have an identification of T 1,0∗Σ
and TΣ given by taking the metric dual of the real part of ξ ∈ T 1,0

x
∗
Σ. Under this
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identification, for every ξ ∈ T 1,0∗
xΣ, we can consider the endomorphism IR(Iξ, ξ)

of TxΣ associated to the Riemann curvature tensor R. Since this is self-adjoint we
can consider its spectral functions; we are interested in particular in the function
f : R>0 → R defined by

f(x) :=
1

x

(√
1 + x− 1− log

1 +
√
1 + x

2

)
. (2.4)

Theorem 2.13 ([BG97]). Let (Σ = G/H, I, h) be a Hermitian symmetric space
of compact type, and let ωc be the canonical symplectic form on T ∗Σ. Then there is
a unique G-invariant hyperkähler metric g on (T 1,0∗Σ, I, ωc) such that the restriction
of g to the zero-section of T 1,0∗Σ coincides with the Hermitian metric of Σ.

Moreover, we have an explicit expression for this metric: if we identify T ∗Σ and
TΣ using the metric on the base, the Kähler form is given by ωI = π∗ωΣ + ddcρ,
where ρ is the function on TΣ defined by

ρ(x, ξ) = hx (f(−IR(Iξ, ξ))ξ, ξ) . (2.5)

Here f is the function defined by (2.4), evaluated on the self-adjoint endomorphism
−IR(Iξ, ξ).

If instead Σ is of noncompact type, the same statement holds in an open neigh-
bourhood N ⊆ T 1,0∗Σ of the zero section. This neighbourhood is the set N of all ξ
such that the modulus of the eigenvalues of −IR(Iξ, ξ) is less than 1.

In particular this theorem applies to the quotient Sp(2n)/U(n), a symmetric space
that is diffeomorphic to Siegel’s upper half space H(n). If we endow Sp(2n)/U(n)
with the Kähler structure coming from H(n) we obtain a Kähler symmetric space of
noncompact type, to which we can apply Theorem 2.13. Then T ∗(Sp(2n)/U(n)) has
a hyperkähler metric, at least in a neighbourhood of the zero section. Moreover, also
AC+ is diffeomorphic to Sp(2n)/U(n), and the Kähler structure on AC+ is induced
from the one of Sp(2n)/U(n) using this isomorphism. Then we can also carry the
hyperkähler structure of T ∗(Sp(2n)/U(n)) to T ∗AC+.

Let’s denote by (g, I, ω) the Kähler structure of AC+; then it is natural to also
denote by I the complex structure on T ∗AC+, and we let θ be the canonical 2-form.
Theorem 2.13 guarantees that ĝ := π∗ω + 2i∂∂̄ρ is a hyperkähler metric on T ∗AC+.

Remark 2.14. Biquard and Gauduchon consider the full cotangent bundle; for
notation reasons, for us it will be more convenient to just consider the holomorphic
cotangent bundle of AC+ and J , but this won’t cause issues, thanks to the usual
canonical identifications of the two. Moreover, Biquard and Gauduchon in [BG97] use
the convention R(X,Y ) = ∇[X,Y ]− [∇X ,∇Y ], rather than the more usual R(X,Y ) =
[∇X ,∇Y ] − ∇[X,Y ], that is the one we are going to use. This is why we introduced
that minus sign in equation (2.5).

3. An infinite dimensional hyperkähler reduction.

3.1. A hyperkähler structure on T ∗J . In this section we prove Theorem
1.1, constructing the required hyperkähler structure on T ∗J , using the results of the
previous Section.

Firstly, we realise T ∗J itself as a space of sections of a Sp(2n)-bundle, with fibres
diffeomorphic to T ∗AC+. The action of Sp(2n) on T ∗AC+ induced by the action on
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AC+ is again by conjugation. More precisely, for h ∈ Sp(2n) and (J, α) ∈ T ∗AC+ we
have

h.(J, α) = (hJ h−1, (h−1)ᵀαhᵀ)

and that is precisely also the change that the matrices associated to (J, α) ∈ T ∗J in a
Darboux coordinate system undergo under a change to another Darboux coordinate
system. Hence, as was the case for J , we can write T ∗J as the space of sections
of some Sp(2n)-bundle Ê π−→ M . Notice that we have a natural Sp(2n)-bundle map
F : Ê → E , covering the identity on M , that is induced by the projection p : T ∗AC+ →
AC+. Define F : Ê → E as follows: for ξ ∈ Ê , let x = π(ξ) and fix a system
of Darboux coordinates u : U → R2n around x; consider then the trivializations
Φu : Ê�U → U × T ∗AC+ and φu : E�U → U ×AC+ and let

F (ξ) := φ−1
u ◦ (id× p) ◦ Φu(ξ).

Then it’s immediate to check that the definition of F does not depend upon the choice
of Darboux coordinates on M , since the action of Sp(2n) on T ∗AC+ is the one induced
by the action on AC+. This map accounts for the fact that from a section s of Ê we
can always get a section J = F (s) of E and a section α of J∗(Vert E∗).

Next, with a view to applying Lemma 2.12, we introduce the following tensors on
T ∗J :

· a Riemannian metric G;
· a complex structure I compatible with G;
· a symplectic form Ωc of type (2, 0) with respect to I.

By Lemma 2.12, to prove that this defines a hyperkähler structure on T ∗J it suffices
to show that

1. J2 = −1, where J is defined by G(J−,−) = Re(Ωc);
2. dΩI = 0, where ΩI(−,−) = G(I−,−).

Since J already has a complex structure I, we define I as the complex structure
induced on T ∗J by I; explicitly, from equation (2.2) we have

∀(J, α) ∈ T ∗J , ∀(A,ϕ) ∈ T(J,α)(T
∗J ) I(J,α)(A,ϕ) := (JA, ϕJᵀ +Aᵀα).

Let (I, θ, ĝ) be the triple of a complex structure, canonical 2-form and hyperkähler
metric on T ∗AC+ described in Section 2.5. The 2-form Θ on T ∗J will be

∀(J, α) ∈ T ∗J , ∀v, w ∈ T(J,α)(T
∗J ) Θ(J,α)(v, w) :=

∫
x∈M

θx(vx, wx)
ωn
0

n!
(3.1)

where as usual we are taking around each x ∈ M a trivialization of the fibre bundle
(i.e. a system of Darboux coordinates). It’s not obvious that this expression is actually
independent from the choice of the trivialization; it will be shown in Lemma 3.4. A
point to remark is that Θ is automatically of type (2, 0) with respect to I, since θ is
of type (2, 0) with respect to the complex structure of T ∗AC+.

The natural candidate to be the hyperkähler metric is the metric G induced on
T ∗J from the Biquard-Gauduchon metric on T ∗AC+

G(J,α)(v, w) :=

∫
x∈M

ĝx(vx, wx)
ωn
0

n!
(3.2)

but again we should check that this expression is independent from the choice of
Darboux coordinates around each point. Assuming for the moment that it is, the fact
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that I and G are compatible follows immediately from the compatibility of I and ĝ
on T ∗AC+; moreover, the 2-form ΩI is

ΩI (J,α)(v, w) :=

∫
x∈M

(ωI)x(vx, wx)
ωn
0

n!
(3.3)

where ωI is the 2-form defined in Theorem 2.13. Notice also that it is enough to
check that (3.3) does not depend on the choice of coordinates to guarantee that also
(3.2) does not. Again under the (provisional) assumption that (3.3) is well-defined,
we notice that condition (1) above is automatically satisfied. Indeed, the complex
structure J is pointwise induced from the analogue complex structure J of T ∗AC+,
from which it inherits algebraic properties like J2 = −1.

Summing up these considerations, to prove Theorem 1.1 we just have to verify
that Θ and ΩI are well-defined and closed.

First we prove the well-definedness of ΩI . Notice that, since the action of Sp(2n)
on AC+ is isometric and holomorphic, both ρ and ∂∂̄ρ are Sp(2n)-invariant.

Lemma 3.1. The 2-form ΩI of equation (3.3) is well-defined.

Proof. Choose (J, α) ∈ T ∗J , v, w ∈ T(J,α)(T
∗J ) and a Darboux coordinate system

u. In this coordinate system u the bundle Ξ trivializes, and we have to check that,
for x ∈ dom(u), the expression

π∗ω(J(x),α(x))(v(x), w(x)) + ddcρ(J(x),α(x))(v(x), w(x))

does not depend upon the choice of the coordinate system u. If v is a different
Darboux coordinate system, the matrix ϕ := ∂v

∂u is a Sp(2n)-valued function and the
previous expression becomes, in the new coordinate system,

π∗ωϕ(x).(J(x),α(x))(ϕ(x).v(x), ϕ(x).w(x))

+ ddcρϕ(x).(J(x),α(x))(ϕ(x).v(x), ϕ(x).w(x)).

Since both terms are Sp(2n)-invariant this proves the claim.

The closedness of both forms is guaranteed by the following theorem.

Theorem 3.2. Let k be a r-form on T ∗AC+ invariant under the Sp(2n)-action,
and let K be a r-form on T ∗J such that

∀(J, α) ∈ T ∗J , ∀v1, . . . , vr ∈ T(J,α)T
∗J

K(J,α)(v1, . . . , vr) =

∫
x∈M

k(J(x),α(x))(v1(x), . . . , vr(x))
ωn
0

n!

where the second expression is computed by taking a local trivialization of Ξ around
each x ∈M . Then

dK(J,α)(. . . ) =

∫
x∈M

dk(J(x),α(x))(. . . )
ωn
0

n!
.

Remark 3.3. In fact we just need this result for r = 0, 1, 2. For r = 0 the result
is elementary: for (J, α) ∈ T ∗J and v ∈ T(J,α)(T

∗J ), let (Jt, αt) be a path in T ∗J
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such that v = d
dt

∣∣∣
t=0

(Jt, αt). Then

dK(J,α)(v) = v(K)(J,α) =
d

dt

∣∣∣
t=0

∫
x∈M

k(Jt(x), αt(x))
ωn
0

n!

=

∫
x∈M

d

dt

∣∣∣
t=0

k(Jt(x), αt(x))
ωn
0

n!
=

∫
x∈M

dk(J(x),α(x))(v(x))
ωn
0

n!
.

Here the last equality holds since the matrix v(x) associated to v in a Darboux coor-
dinate system around x ∈M is given by d

dt

∣∣∣
t=0

(Jt(x), αt(x)).

Proof of Theorem 3.2. We spell out the proof for r = 1; the other cases are very
similar. It will be convenient to introduce some additional notation: for x ∈ M and
a system of Darboux coordinates u around x, let Φx

u be the map

Φx
u : T ∗J → T ∗AC+
(J, α) 	→ (J(x), α(x))

given by locally trivializing the fibre bundle over the coordinate system u.
For v ∈ Tp(T

∗J ) a tangent vector on T ∗J , we can extend it to a vector field V
on an open neighbourhood of p ∈ T ∗J in such a way that V is constant in a system
of “local coordinates” for T ∗J . For the details about how to find local coordinates
for T ∗J , see [Koi90, proof of Theorem 1.2]. Moreover, this extension V is such that
dΦx

u(V ) is a vector field on T ∗AC+(2n), itself constant in a system of coordinates for
T ∗AC+(2n).

Now fix p ∈ T ∗J , v, w ∈ Tp(T
∗J ). If we extend v, w to constant vectors V,W as

described in the previous paragraph, we can compute

dKp(v, w) = vp(K(W ))− wp(K(V ))−K([V,W ])

however, [V,W ] = 0 since the vector fields are constant; for the other two terms we
have, if v = ∂t

∣∣∣
t=0

pt:

vp(K(W )) =
d

dt

∣∣∣
t=0

∫
x∈M

kΦx
u(pt)

(
(dΦx

u)pt
(W )

) ωn
0

n!

=

∫
x∈M

(dΦx
u)p (v) (k(dΦ

x
u(W )))

ωn
0

n!

so we find

dKp(v, w) =

∫
x∈M

[
(dΦx

u)p (v) (k(dΦ
x
u(W )))− (dΦx

u)p (w) (k(dΦ
x
u(V )))

− kΦx
u(p) ([dΦ

x
u(V ), dΦx

u(W )])
]ωn

0

n!

=

∫
x∈M

dkΦx
u(p) (dΦ

x
u(v), dΦ

x
u(w))

ωn
0

n!
.

Another consequence of Theorem 3.2 is that Θ has a more natural description,
and in particular it is well-defined, concluding the proof of Theorem 1.1.
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Lemma 3.4. The 2-form Θ defined in equation (3.1) is the canonical 2-form of
T ∗J .

Proof. We recall that for any manifold X, the tautological 1 form τX is a 1-form
defined on the total space of T ∗X π−→ X by

T ∗
x,αX → R

v 	→ α(π∗v)

and is related to the canonical 2-form θX of T ∗X by θX = −dτX . Denote simply by
τ the tautological 1-form of T ∗AC+, just as θ is the canonical 2-form. Let also τ be
the tautological form of T ∗J . Then from the definitions it follows immediately that
for any (J, α) ∈ T ∗J and (A,ϕ) ∈ T(J,α)(T

∗J )

τ(J,α)((A,ϕ)) = α(A) =

∫
x∈M

1

2
Tr(αxA

ᵀ
x)

ωn
0

n!
=

∫
x∈M

τ(Jx,αx)(Ax, ϕx)
ωn
0

n!
.

By Theorem 3.2 it’s clear that this identity proves that Θ = −dτ .
3.2. The infinite-dimensional Hamiltonian action. Let (M,J0, ω0) be a

compact Kähler manifold. In this Section we prove Theorem 1.2, showing that the
action of G = Ham(M,ω0) induced on T ∗J from the action on J is Hamiltonian
with respect to both the real symplectic form ΩI and the complex symplectic form
Θ.

The group G acts on J by pull-backs: more precisely, for ϕ ∈ G and J ∈ J we
define

ϕ.J = (ϕ−1)∗J = ϕ∗ ◦ J ◦ ϕ−1
∗ .

Notice that, since elements ϕ of G preserve ω0, in any system of Darboux coordinates
on M the tensor ϕ∗ is given by a Sp(2n)-valued function. It follows that the action
preserves the structures Ω, J on J . The action induced by G on T ∗J is given by

ϕ.(J, α) =
(
(ϕ−1)∗J, (ϕ−1)∗α

)
=
(
ϕ∗ ◦ J ◦ ϕ−1

∗ , (ϕ−1)∗ ◦ α ◦ ϕ∗)
and again it preserves Θ, I and ΩI .

For a function h ∈ C∞0 (M) = Lie(G), the infinitesimal action of h on T ∗J is

ĥ(J,α) = (LXh
J,LXh

α) ∈ T(J,α)(T
∗J ). (3.4)

First we recall a simple result that will be used to prove Theorem 1.2.

Lemma 3.5. Let G be a Lie group acting on the left on a manifold X, and assume
that the action preserves a 1-form χ; let also η = dχ. Then the map

X → Lie(G)∗

x 	→ mx

defined by mx(a) = χx(âx) satisfies

d(m(a)) = −â�η.
Moreover, m is G-equivariant with respect to the action of G on X and the co-adjoint
action on Lie(G)∗. In particular if η is a symplectic form then m is a moment map
for G � X.
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Proof. The first part is a simple consequence of Cartan’s formula:

0 = Lâχ = â�dχ+ d(â�χ) = â�η + d(mx(a)).

As for the G-equivariance, fix g ∈ G and a ∈ Lie(G). Then for every x ∈ X (here σ
denotes the left action G � X)

mg.x(a) = χg.x(âg.x) = χg.x

(
(dσg)x

(
̂Adg−1(a)

x

))
=
(
σ∗
gχ
)
x

(
̂Adg−1(a)

x

)
= χx

(
̂Adg−1(a)

x

)
= Ad∗g−1mx(a)

where we have used again the fact that χ is G-invariant.

As a consequence, we obtain the following results for the action G � T ∗J .

Lemma 3.6. The action G � T ∗J is Hamiltonian with respect to the canonical
symplectic form Θ; a moment map mΘ is given by

mΘ(J,α)(h) = −
∫
M

1

2
Tr(αᵀLXh

J)
ωn
0

n!
. (3.5)

Proof. Since Θ = −dτ and G preserves τ , we can apply Lemma 3.5 to find that
−τ(J,α)(ĥ) is a moment map for G � (T ∗J ,Θ).

Let us now consider the action with respect to the real symplectic form.

Lemma 3.7. The action G � (T ∗J ,ΩI) is Hamiltonian; a moment map mΩI
is

given by

mΩI
= μ ◦ π +m

where μ is the moment map for the action G � (J , Ω), π : T ∗J → J is the projection
and m : T ∗J → Lie(G)∗ is defined by

m(J,α)(h) =

∫
x∈M

dcρ(J(x),α(x)) (LXh
J,LXh

α)
ωn
0

n!
. (3.6)

With our choice of notation and conventions, the moment map μ for G � (J , Ω)
is given by

μ(J) = 2 s(J)− 2 ŝ

where we are identifying C∞0 (M) with its dual via the usual L2 pairing on functions.
For a proof of this result, see [Don97], [Tia12, chapter 4], [Fuj92], [Szé14, section 6.1]
and [Szé06, Proposition 2.2.1]. (Note that there are various different sign conventions,
as well as different conventions with the pairings involved).

Proof of Lemma 3.7. Since ΩI = π∗Ω+
∫
M

ddcρ
ωn

0

n! , the first step is to show that
for all h ∈ C∞0

d(m(h)) = −ĥ�
∫
M

ddcρ
ωn
0

n!
.
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To prove this, we can use Lemma 3.5 and Theorem 3.2. Indeed, if we define χ =∫
M

dcρ
ωn

0

n! then dχ =
∫
M

ddcρ
ωn

0

n! . We already saw that the action of G preserves χ,
and so Lemma 3.5 tells us that m defined by

m(J,α)(h) =

∫
x∈M

dcρ(J(x),α(x)) (LXh
J,LXh

α)
ωn
0

n!

has the properties we need.

The results of Lemma 3.6 and Lemma 3.7 conclude the proof of Theorem 1.2.
Clearly one would like to obtain more explicit expressions for the moment maps

under the natural L2 pairing. This is not too difficult for the complex moment map,
at least if J is integrable.

Lemma 3.8. Suppose J is integrable. Then we have

mΘ(J,α)(h) =
〈
h,−div (∂̄∗ᾱᵀ)〉 .

Proof. We compute

mΘ(J,α)(h)

=− 1

2

∫
M

α b̄
a (LXh

J)
a
b̄

ωn
0

n!
= i

∫
M

α b̄
a ∂b̄(Xh)

a ωn
0

n!
= −i

∫
M

α b̄
a ∇b̄(Xh)

a ωn
0

n!

=− i

∫
M

∇b̄

(
α b̄
a (Xh)

a
) ωn

0

n!
+ i

∫
M

(Xh)
a∇b̄α

b̄
a

ωn
0

n!
= −

∫
M

gac̄∇c̄h∇b̄α
b̄

a

ωn
0

n!

=

∫
M

h gab̄∇c̄∇b̄α
c̄

a

ωn
0

n!
=
〈
h,−div

(
∇0,1∗ᾱᵀ

)〉
.

Unfortunately it is more difficult to obtain an explicit expression for the real
moment map. We will do this for complex curves and surfaces in the next sections.

The Biquard-Gauduchon function for T ∗AC+(2n). An explicit expression for the
real moment map requires an explicit expression for the Biquard-Gauduchon function
ρ.

For a fixed vector field A on TAC+(2n) we consider the endomorphism Ξ(A) of
TAC+(2n) defined by

Ξ(A) : B 	→ −J (R(JA,A)(B)) .

By Proposition 2.7, at the point −Ω0 ∈ AC+(2n), Ξ(A) can be written as:

Ξ−Ω0(A)(B) = Ω0

(
−1

4

[
[−Ω0 A,A], B

])
= −1

2

(
A2B +BA2

)
. (3.7)

Then the Biquard-Gauduchon function at A is a spectral function of the endomor-
phism Ξ(A).

3.2.1. The complexified action. The classical Kempf-Ness Theorem in Ge-
ometric Invariant Theory characterises orbits of a complexified Hamiltonian action
containing a zero of the moment map in terms of algebro-geometric stability. This is
not applicable in our situation, in particular since the group of Hamiltonian symplec-
tomorphisms does not admit a complexification (see e.g. the discussion in [Wan04,
Remark 35] and [GF09, §1.3.3]). However, there is a way to circumvent this, at least
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at the formal level. The general idea is well-known and goes back to [Don97]: while
a complexification of the group G does not exist, we can find subvarieties of J that
play the role of complexified orbits for the action of G.

The same result holds also in our case: the infinitesimal action of h ∈ Lie(G) =
C∞(M,R) on T ∗J is

ĥJ,α = (LXh
J,LXh

α)

and since T ∗J has a complex structure I we can infinitesimally complexify the action
of G by setting for h ∈ Lie(G)C = C∞(M,C)

ĥJ,α := R̂e(h)J,α + IJ,αÎm(h)J,α.

So we can define a distribution on T ∗J that is a complexification of the infinitesimal
action

DJ,α =
{
ĥJ,α

∣∣∣ h ∈ C∞(M,R)
}
∪
{
îhJ,α

∣∣∣ h ∈ C∞(M,R)
}

={(LXh
J,LXh

α) | h ∈ C∞(M,R)}
∪ {(JLXh

J, (LXh
α)Jᵀ + (LXh

Jᵀ)α) | h ∈ C∞(M,R)}.

It is still possible to show that this distribution is integrable, at least for an integrable
pair (J, α), and we can consider its integral leaves at a point (J, α) ∈ T ∗J as the
complexified orbit of (J, α). The final result is that for (J, α) ∈ T ∗J one can construct
a map from the Kähler class of ω0 to T ∗J that describes the complexified orbit of
(J, α). We omit the details here, as this map will not be used in the present paper.

The complexified equations. Following the classical case of the cscK equation, the
“formal complexification” of the orbits of G � T ∗J makes it natural to regard our
system {

mΩI
(ω, J, α) = 0

mΘ(ω, J, α) = 0
(3.8)

as equations for a deformation α of the complex structure and a form ω, to be found
in the Kähler class of ω0, keeping instead the complex structure J fixed. Of course, we
have the additional condition that α and ω should be compatible, i.e. ω0(α

ᵀ−, J−)+
ω0(J−, αᵀ−) = 0.

4. The case of complex curves. In this Section we examine the moment map
equations when the base manifold M is a Riemann surface, proving Theorem 1.3. We
will also recover Donaldson’s equations (see [Don03]) by considering the complexified
equations (3.8).

4.1. The space T ∗AC+(2). In the special case when n = 1, an element of AC+

is a matrix J =

(
a b
c −a

)
of determinant 1, and a tangent vector in TJAC+(2) is a

matrix A =

(
A1 A2

A3 −A1

)
with

A2 =
1 + a2

c2
A3 − 2

a

c
A1.
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In particular that A2 = −det(A)Id, so that ‖A‖2 = 1
2Tr(A

2) = −det(A). Then in the
n = 1 case the map Ξ(A) of equation (3.7) becomes

T−Ω0
AC+(2)→ T−Ω0

AC+(2)
B 	→ det(A)B = −‖A‖2 B

so it is simply a scalar map, with spectrum
{
−‖A‖2

}
.

We can use this map to find the Biquard-Gauduchon form dcρ on T 1,0∗AC+(2);
recall however that we have to consider the space TAC+(2), that is isomorphic to
T 1,0∗AC+(2) under the map

T 1,0∗AC+(2)→ TAC+(2)
α 	→ Re(α)ᵀ.

The Biquard-Gauduchon function on TAC∗ is ρ(J,A) = 〈f(−J R(JA,A))A,A〉, where
we are using the canonical metric on AC+(2) (induced from the Poincaré upper half
plane) and f is defined by equation (2.4). We have just seen that

−J R(JA,A) = det(A) · Id

so

f(−J R(JA,A)) =

(
1

det(A)

(√
1 + det(A)− 1− log

(
1 +

√
1 + det(A)

2

)))
· Id

and the Biquard-Gauduchon function is

ρ(J,A) = 〈f(−J R(JA,A))A,A〉 = 1−
√

1 + det(A) + log

(
1 +

√
1 + det(A)

2

)
.

Consider now a tangent vector V ∈ T(J,A)(TAC+(2)), V = (J̇0, Ȧ0). According
to our previous computations, the differential of ρ acts on V as

dρ(J,A)(V ) = −1

2

∂tdet(At)

1 +
√

1 + det(A0)

= −1

2

Tr(Ȧ0adj(A0))

1 +
√

1 + det(A0)
=

1

2

Tr(Ȧ0A0)

1 +
√

1 + det(A0)

(4.1)

where we used Jacobi’s formula for the derivative of the determinant in terms of the
adjugate endomorphism.

Some remarks on this object, adj(A), are in order: for matrices M1,M2 we have
adj(M1M2) = adj(M2)adj(M1). Moreover, for an invertible matrix G, adj(G) =
det(G)G−1. Then

adj(GAG−1) = G adj(A)G−1

and this means that, if A ∈ Γ (M,End(TM)), adj(A) is a well-defined section of
End(TM).

Lemma 4.1. If A ∈ TJJ , then also adj(A) belongs to TJJ .
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Proof. We have to check that adj(A)J + J adj(A) = 0 and that gJ(adj(A)−,−)
is a symmetric bilinear form. The first identity can be obtained as follows, recalling
that adj(J) = −J :

J adj(A) = −adj(AJ) = adj(JA) = −adj(A)J.

The second identity can be checked pointwise: fix p ∈M , and choose a local coordinate
system x around p such that gJ(p) in this coordinate system is the standard Euclidean
product. Abusing notation let A be the matrix associated to A(p) in the coordinate
system x; then A is a symmetric matrix, since gJ(A−,−) is symmetric. But then

adj(A)ᵀ = adj(Aᵀ) = adj(A)

and so gJ(adj(A)−,−) is also a symmetric matrix, at the point p.

4.2. The real moment map for a curve. The expression for dρ on TAC+(2)
that we just computed allows to rewrite the implicit definition of m in equation (3.6)
as

m(J,α)(h) =

∫
x∈M

dcρ(J(x),α(x)) (LXh
J,LXh

α)
ωn
0

n!
.

However, as was remarked earlier, under our identifications we should compute

dcρJ,Re(α)ᵀ (LXh
J,Re (LXh

α)
ᵀ
)

= dρJ,Re(α)ᵀ (−JLXh
J,Re ((LXh

J)ᵀα+ (LXh
α)Jᵀ)ᵀ)

with dρ as in (4.1), since the identification between TAC+ and T 1,0∗AC+ is conjugate-
linear in the second component. It is more convenient to write A = Re(α)ᵀ ∈ TJJ ,
so that equation (4.1) gives

dρJ,Re(α)ᵀ (−JLXh
J,Re ((LXh

J)ᵀα+ (LXh
α)Jᵀ)ᵀ)

=
1

2

Tr (A(LXh
J)A) + Tr(J(LXh

A)A)

1 +
√
1 + det(A)

.

Since LXh
J ∈ TJJ , Remark 2.6 implies

Tr (A(LXh
J)A) + Tr(J(LXh

A)A) = −Tr((LXh
A) J A)

and we can write

m(J,α)(h) = −1

2

∫
M

Tr((LXh
A)JA)

1 +
√

1 + det(A)

ωn
0

n!
. (4.2)

If we could write this expression in the form
∫
M

f h
ωn

0

n! for some function f , then we
could use the L2 pairing of C∞0 (M) to identify m with f − ∫

M
f . To get this result,

consider the function

F : C∞0 (M)→ C∞0 (M)

h 	→ Tr((LXh
A)JA).

(4.3)

We have m(J,α) = − 1
2

〈
1

1+
√

1+det(A)
, F (h)

〉
; so if we can find a formal adjoint F ∗ of

F with respect to the L2 pairing, we could write m = − 1
2F

∗
(

1

1+
√

1+det(A)

)
. Notice
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that we can write F as a composition F = F3 ◦ F2 ◦ F1, with

F1 : C∞0 (M)→ Γ (M,TM)

h 	→ Xh

F2 : Γ (M,TM)→ Γ (M,End(TM))

X 	→ LXA

F3 : Γ (M,End(TM))→ C∞0 (M)

P 	→ Tr(PJA).

Moreover the formal adjoints of F1 and F3 with respect to the pairing induced by the
metric gJ := ω0(−, J−) are given explicitly by

F ∗
1 (X) = div(JX);

F ∗
3 (f) = −f AJ.

It remains to compute the formal adjoint of F2.

Lemma 4.2. For any Q ∈ Γ (End(TM)), X ∈ Γ (TM) and A ∈ TJJ we have

〈LXA,Q〉 = 〈Q,∇XA〉+ 〈AQ−QA,∇X〉.

Here the pairings and the connection are those defined by the metric gJ .
Proof. Fix an element Q of Γ (End(TM)), and consider the product

gJ(LXA,Q) = gijgklQ
l
jX

m∂mAk
i−gijgklQl

jA
m

i∂mXk+gijgklQ
l
jA

k
m∂iX

m. (4.4)

We can exchange the usual derivatives with covariant derivatives (using the Levi-
Civita connection of gJ), but we have to introduce Christoffel symbols; the proof
consists in showing that the sum of all the terms that must be introduced in fact
vanishes, and this is done recalling that gJ(−, A−) is symmetric (cf. equation (2.3)).

The first right hand side term of equation (4.4) can then be written as

gijgklQ
l
jX

m∂mAk
i

=gijgklQ
l
jX

m∇mAk
i − gijgklQ

l
jX

mAp
iΓ

k
mp + gijgklQ

l
jX

mAk
qΓ

q
mi

=gijgklQ
l
jX

m∇mAk
i − gipgklQ

l
jX

mAj
iΓ

k
mp + gijgkqQ

l
jX

mAk
lΓ

q
mi

(4.5)

while the other two terms become

−gijgklQl
jA

m
i∂mXk = −gijgklQl

jA
m

i∇mXk + gijgklQ
l
jA

m
iX

pΓ k
pm

= −gijgklQl
jA

m
i∇mXk + gimgklQ

l
jA

j
iX

pΓ k
pm

(4.6)

gijgklQ
l
jA

k
m∂iX

m = gijgklQ
l
jA

k
m∇iX

m − gijgklQ
l
jA

k
mXpΓm

ip

= gijgklQ
l
jA

k
m∇iX

m − gijgkmQl
jA

k
lX

pΓm
ip

(4.7)

and adding up equations (4.5), (4.6) and (4.7) we find

gJ(LXA,Q) = gijgklQ
l
jX

m∇mAk
i − gijgklQ

l
jA

m
i∇mXk + gijgklQ

l
jA

k
m∇iX

m

= gJ(Q,∇XA)− gJ(QA,∇X) + gJ(AQ,∇X).
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Corollary 4.3. The formal adjoint of F2 is

F ∗
2 : Γ (End(TM))→ Γ (TM)

Q 	→ C2
1 ((∇A)Q)

�
+∇∗([A,Q]).

Here ∇∗ is the formal adjoint of ∇, ∇∗Q = −gij∇iQ
k
j∂k , while C2

1 denotes the
contraction of the first lower index with the second upper index. More explicitly

C2
1 ((∇A)Q)

�
= gnpQi

j∇pA
j
i∂n .

We are finally in a good position to write the moment map and prove Theorem
1.3. For notational convenience, we introduce the function

ψ :=
1

1 +
√

1 + det(A)
.

Our computations so far show

m(J,α)(h) =

〈
ψ,−1

2
Tr ((LXh

A)AJ)

〉
=

〈
−1

2
F ∗
1 F

∗
2 F

∗
3 (ψ), h

〉
=

〈
1

2
div

[
ψ J C2

1 ((∇A)AJ)
�
+ 2 J∇∗(ψA2J)

]
, h

〉
so we can identify the function m, using the L2-pairing, with

m(J, α) = div

[
ψ

2
J C2

1 ((∇A)AJ)
�
+ J∇∗(ψA2J)

]
. (4.8)

Notice that this expression implies already that m(J,α) is a zero-average function, as we
expected. But we can make further simplifications. First, recall that A2 = −det(A)Id.
Since A = Re(αᵀ) = ᾱᵀ+αᵀ

2 we have A0,1 = 1
2α

ᵀ and det(A) = − 1
2Tr(A

2) =

−‖A1,0‖2gJ = − 1
4‖α‖2gJ , so that A2 = 1

4‖α‖2gJ Id. Then we have (all metric quan-
tities are computed w.r.t. gJ)

J∇∗(ψA2J) = −∇∗
(
1

4
ψ ‖α‖2 Id

)
= grad

(
1

4
ψ ‖α‖2

)
since J is integrable and gJ is a Kähler metric. This shows

m(J, α) =
1

2
div

(
ψJ

(
C2

1 ((∇A)AJ)
�
)
+ 2grad

(
1

4
ψ ‖α‖2

))
.

Fix holomorphic coordinates with respect to J . Then

J
(
C2

1 ((∇A)AJ)
�
)

=− grad
(
Tr(A1,0A0,1)

)
+ 2

(
Tr(∇aA0,1 A1,0)∂a +Tr(∇b̄A1,0 A0,1)∂b̄

)
=− grad

(
1

4
‖α‖2

)
+ 2

(
1

4
g(∇aα, ᾱ)∂a +

1

4
g(∇b̄ᾱ, α)∂b̄

)
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so we can rewrite everything as

m(J, α) =
1

2
div

[
−ψ grad

(
1

4
‖α‖2

)
+ 2ψ

(
1

4
g(∇aα, ᾱ)∂a +

1

4
g(∇b̄ᾱ, α)∂b̄

)
+2grad

(
1

4
ψ ‖α‖2

)]
.

(4.9)

Notice that

−ψ grad

(
1

4
‖α‖2

)
+ 2grad

(
1

4
ψ ‖α‖2

)
= −2 grad

(
log

(
1 +

√
1− 1

4
‖α‖2

))
so that

m(J, α) =Δ

(
log

(
1 +

√
1− 1

4
‖α‖2

))
+ div

[
ψ

(
1

4
g(∇aα, ᾱ)∂a +

1

4
g(∇b̄ᾱ, α)∂b̄

)]
.

(4.10)

The complete expression for the moment map relative to ΩI is, according to Lemma
3.6:

mΩI
(J, α) = 2 s(J)− 2 ŝ+Δ

(
log

(
1 +

√
1− 1

4
‖α‖2

))
+ div (ψQ(J, α)) (4.11)

where Q(J, α) is the vector field on M defined by

Q(J, α) :=
1

4
g(∇aα, ᾱ)∂a +

1

4
g(∇b̄ᾱ, α)∂b̄.

4.3. Equations for a quadratic differential. We turn now to the complexified
system of equations, (3.8). Notice that in dimension 1 the compatibility between ω
and α is a vacuous condition, since α 1̄

1 g11̄ is certainly symmetric. From now on we fix
the complex structure J and a Kähler class [ω0], and look for a metric ω ∈ [ω0] and
a “Higgs field” α ∈ Hom(T 0,1∗, T 1,0∗) such that (ω, α) satisfy the following system of
equations⎧⎪⎪⎨⎪⎪⎩

1
4‖α‖2 < 1;

div(∂̄∗ᾱᵀ) = 0;

2 s(ω)− 2 ŝ+Δ

(
log

(
1 +

√
1− 1

4‖α‖2
))

+ div (ψQ(J, α)) = 0,

(4.12)

where all the metric quantities are computed from the metric defined by ω and J . It
is more convenient to write the equations in (4.12) not in terms of α but rather in
terms of the quadratic differential τ defined by

τ :=
1

2
α b̄
a gb̄c dz

a � dzc;

using this object, equations (4.12) become⎧⎪⎪⎨⎪⎪⎩
‖τ‖2 < 1;

div(∇1,0∗τ)� = 0;

2 s(ω)− 2 ŝ+Δ

(
log

(
1 +

√
1− ‖τ‖2

))
+ div (ψQ(ω, τ)) = 0.

(4.13)
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We can make the the second equation in (4.13) more explicit by using holomorphic
local coordinates (with respect to the fixed complex structure); recall that we are
working on a Riemann surface, so we just have one index, when working in coordinates:

div(∇1,0∗τ)� = −g11̄∂1
(
g11̄∂1̄τ11

)
and so the second equation in (4.13) is certainly satisfied when τ is a holomorphic
quadratic differential; the space of such objects has dimension 3 g(M)−3, so if g(M) >
1 we are sure that there are holomorphic quadratic differentials. Notice that, while
the second equation in (4.13) depends on the choice of ω in the fixed Kähler class,
the simpler condition “τ is holomorphic” does not; then our equations can be satisfied
if we are able to show that the following equation has solutions, for a small enough
holomorphic quadratic differential τ

2 s(ω)− 2 ŝ+Δ

(
log

(
1 +

√
1− ‖τ‖2

))
+ div (ψQ(ω, τ)) = 0.

Notice however that, under the assumption that τ is a holomorphic quadratic differ-
ential, we can simplify this equation, since Q(f, τ) = 0. Indeed

g(∇aτ, τ̄)∂a = gab̄gcēgdf̄ ∇b̄τcd τēf̄ ∂a = 0.

So the complexified moment map equation becomes

2 s(ω)− 2 ŝ+Δ

(
log

(
1 +

√
1− ‖τ‖2

))
= 0. (4.14)

As was already mentioned in the Introduction, this equation has been already studied
by Donaldson in [Don03] and by T. Hodge in [Hod05] (see also [Tra]). In particular,
if the ω0–norm of τ and its derivative is small enough, then there is a unique solution
ω of equation (4.14) that is in the conformal class of ω0.

5. The case of complex surfaces. In this Section we will derive explicit mo-
ment map equations when the base manifold M is a complex surface. The first step
is to find an explicit expression for the Biquard-Gauduchon function ρ on T∗AC+(4).
This is computationally quite heavy. Obtaining similar expressions in general is cer-
tainly one of the difficulties in working out the HcscK system explicitly in higher
dimension.

5.1. The Biquard-Gauduchon function for T ∗AC+(4). In this subsection
we will compute the Biquard-Gauduchon function. This involves working out the
spectrum of the self-adjoint operator (3.7).

An element A ∈ T−Ω0
AC+(4) is a matrix that can be written as A =

(
P Q
Q −P

)
for P = (P i

j )1≤i,j≤2 and Q = (Qi
j)1≤i,j≤2 some 2× 2 symmetric matrices.

The space of all such matrices is 6-dimensional, and a possible basis is given by
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the matrices

E1 =

⎛⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

⎞⎟⎟⎠ , E2 =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞⎟⎟⎠ , E3 =

⎛⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

⎞⎟⎟⎠ ,

E4 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎠ , E5 =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ , E6 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞⎟⎟⎠ .

The matrix representing the map M(A) : B 	→ − 1
2

(
A2B +BA2

)
with respect to this

basis may be conveniently expressed in terms of the quantities

k1 =(P 1
1 )

2 + (P 1
2 )

2 + (Q1
1)

2 + (Q1
2)

2

k2 =P 1
2

(
P 1

1 + P 2
2

)
+Q1

2

(
Q1

1 +Q2
2

)
k3 =(P 1

2 )
2 + (P 2

2 )
2 + (Q1

2)
2 + (Q2

2)
2

k4 =Q1
2(P

2
2 − P 1

1 ) + P 1
2 (Q

1
1 −Q2

2)

and is given by

M(A) = −1

2

⎛⎜⎜⎜⎜⎜⎜⎝
2 k1 2 k2 0 0 −2 k4 0
k2 k1 + k3 k2 k4 0 −k4
0 2 k2 2 k3 0 2 k4 0
0 2 k4 0 2 k1 2 k2 0
−k4 0 k4 k2 k1 + k3 k2
0 −2 k4 0 0 2 k2 2 k3

⎞⎟⎟⎟⎟⎟⎟⎠
(the vertical and horizontal lines have been added to make the symmetries of the
matrix more evident). It is useful to observe the identities

1

2
Tr(A2) = k1 + k3, det(A) = k1k3 − k22 − k24.

The spectrum of M(A) contains three eigenvalues, each with multiplicity 2. A lengthy
computation shows that they are given by

−1

2

(
k1 + k3, k1 + k3 +

√
k21 + 4 k22 − 2 k1 k3 + k23 + 4 k4, k1 + k3

−
√
k21 + 4 k22 − 2 k1 k3 + k23 + 4 k4

)

and by the previous observation they can be rewritten as

−1

2

(
Tr(A2)

2
,
Tr(A2)

2
+

√(
Tr(A2)

2

)2

− 4 det(A),

Tr(A2)

2
−
√(

Tr(A2)

2

)2

− 4 det(A)

)
.

(5.1)
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In order to get more compact expressions we introduce the auxiliary quantities

δ±(A) :=
1

2

⎛⎝Tr(A2)

2
±
√(

Tr(A2)

2

)2

− 4 det(A)

⎞⎠ .

Then a set of eigenvectors for the eigenvalues in (5.1) is given by

v1 =

(
k2
k4

,
k3 − k1
2 k4

,−k2
k4

, 1, 0, 1

)ᵀ
;

v2 =

(
2

k24 − k22
(k1 − k3)k4

,
k2
k4

, 2
k24 + k22

(k1 − k3)k4
, 4

k2
k3 − k1

, 1, 0

)ᵀ
;

v3 =

(
k2 (δ

+(A)− k3)

k4 (δ−(A)− k3)
,−δ+(A)− 2 k3

k4
,−k2

k4
,
δ+(A)− k3
δ−(A)− k3

, 0, 1

)ᵀ
;

v4 =

(
− k22 − k24
k4 (δ−(A)− k3)

,
k2
k4

,−δ−(A)− k3
k4

,−2 k2
δ−(A)− k3

, 1, 0

)ᵀ
;

v5 =

(
k2 (δ

−(A)− k3)

k4 (δ+(A)− k3)
,−δ−(A)− k3

k4
,−k2

k4
,
δ−(A)− k3
δ+(A)− k3

, 0, 1

)ᵀ
;

v6 =

(
k24 − k22

k4 (δ+(A)− k3)
,
k2
k4

,−δ+(A)− k3
k4

,−2 k2
δ+(A)− k3

, 1, 0

)ᵀ
.

We finally have all the ingredients needed in the computation of the spectral function
for M(A), and of the Biquard-Gauduchon ρ function itself. A direct computation
gives

ρ(A) = 2−
√

1− δ+(A)−
√
1− δ−(A)

+ log

(
1

2
+

1

2

√
1− δ+(A)

)
+ log

(
1

2
+

1

2

√
1− δ−(A)

)
.

Recall that a priori this is an expression for the Biquard-Gauduchon function ρ at the
point −Ω0. However, since we know that ρ is invariant under the action of Sp(2n)
and that the action is transitive, this is in fact valid on the whole TAC+(4).

5.2. The real moment map for a complex surface. Consider now a path
(Jt, At) ∈ TAC+(4); the differential dρ(J0,A0)(J̇0, Ȧ0) is

d

dt

∣∣∣
t=0

(ρ(Jt, At))

=
Tr(A0Ȧ0)√

4− 2 δ+(A0) +
√

4− 2 δ−(A0)

− 4Tr(adj(A0)Ȧ0)(√
4− 2 δ+(A0) +

√
4− 2 δ−(A0)

)(
2 +

√
4− 2 δ+(A0)

)(
2 +

√
4− 2 δ−(A0)

) .
(5.2)
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Equation (3.6) tells us that we should compute (see the discussion at the beginning
of §4.2) ∫

M

dρ(J,A) (−J(LXh
J),Re ((LXh

J)ᵀα+ (LXh
α)Jᵀ)ᵀ)

ωn
0

n!

for A = Re (αᵀ), where (J, α) ∈ T ∗J . By Remark 2.6 we can write the integrand
using equation (5.2) as

dρ(J,A) (−J(LXhJ),Re ((LXhJ)
ᵀα+ (LXhα)J

ᵀ)ᵀ)

=− Tr(A(LXhA)J)√
4− 2 δ+(A) +

√
4− 2 δ−(A)

+
4Tr(adj(A)(LXhA)J)(√

4− 2 δ+(A) +
√

4− 2 δ−(A)
)(

2 +
√

4− 2 δ+(A)
)(

2 +
√

4− 2 δ−(A)
) .

(5.3)

To find an explicit expression for m(J,α) we should try write this as the L2-pairing of
h with some function m(J, α) ∈ C∞0 (M). Equation (5.3) gives

m(J,α)(h)

=−
∫
M

Tr(A(LXhA)J)√
4− 2 δ+(A) +

√
4− 2 δ−(A)

ωn
0

n!

+ 4

∫
M

Tr(adj(A)(LXhA)J)(√
4− 2 δ+(A) +

√
4− 2 δ−(A)

)(
2 +

√
4− 2 δ+(A)

)(
2 +

√
4− 2 δ−(A)

) ωn
0

n!

and these two terms are quite similar to the one we had in complex dimension 1, see
equation (4.2). The first term can be written as a pairing 〈h, F (J,A)〉L2(M) in the
same way we did for equation (4.2) in subsection 4.2, while to get the same result for
the second term we have to make small modifications.

Let F be defined as in (4.3), and let F̃ be defined as

F̃ : C∞0 (M)→ C∞0 (M)

h 	→ Tr((LXh
A)Jadj(A)).

(5.4)

Then
m(J,α)(h)

=−
〈
F (h),

1√
4− 2 δ+(A) +

√
4− 2 δ−(A)

〉
L2(M)

+ 4

〈
F̃ (h),

1(√
4− 2 δ+(A) +

√
4− 2 δ−(A)

)(
2 +

√
4− 2 δ+(A)

)(
2 +

√
4− 2 δ−(A)

)
〉

L2(M)

.

The computation of the formal adjoint of F that was carried out in subsection
4.2, particularly in Lemma 4.2 and Corollary 4.3, actually holds in any dimension.
We can use them also to compute the adjoint of F̃ , by virtue of Lemma 4.1. The only
difference is that, while F = F3 ◦ F2 ◦ F1, we have instead F̃ = F̃3 ◦ F2 ◦ F1, with

F̃3 : Γ (M,End(TM))→ C∞(M)

P 	→ Tr(PJ adj(A)).

The formal adjoint of F̃3 is readily computed as F̃ ∗
3 (f) = −f adj(A)J .
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Introduce the quantities

ψ =
1√

4− 2 δ+(A) +
√
4− 2 δ−(A)

;

ψ̃ =
1(√

4− 2 δ+(A) +
√
4− 2 δ−(A)

)(
2 +

√
4− 2 δ+(A)

)(
2 +

√
4− 2 δ−(A)

) .
Our computations so far show

m(J,α)(h) =− 〈F (h), ψ〉+ 4 〈F̃ (h), ψ̃〉
=〈h, div

[
ψ J C2

1 ((∇A)AJ)
�
+ 2 J∇∗(ψA2J)

]
〉

− 4〈h, div
[
ψ̃ J C2

1 ((∇A)adj(A)J)
�
+ 2 J∇∗(ψ̃ det(A)J)

]
〉

and so we have an explicit expression for m(J, α), letting as usual A = Re(α)ᵀ (see
equation (4.8)):

m(J, α) =div
[
ψ J C2

1 ((∇A)AJ)
�
+ 2 J∇∗(ψA2J)

]
− 4 div

[
ψ̃ J C2

1 ((∇A)adj(A)J)
�
+ 2 J∇∗(ψ̃ det(A)J)

]
.

(5.5)

It is possible to simplify this result further, following closely what we did in the case
of curves.

Assume that J is integrable. Then ∇J = 0, hence

J∇∗(ψA2J) = −∇∗(ψA2)

J∇∗(ψ̃ det(A)J) = −∇∗(ψ̃ det(A) Id) = grad(ψ̃ det(A)).

It will be useful to have a more compact notation for adj(A). We’ll denote it by Ã
whenever working in local coordinates.

Lemma 5.1. Let J ∈ J be an integrable, compatible complex structure. For any
A ∈ TJJ

J C2
1 ((∇A)AJ)

�
= −grad

(
Tr(A2)

2

)
+ 2

(
g(∇aA0,1, A1,0)∂a + g(∇b̄A1,0, A0,1)∂b̄

)
;

J C2
1

(
(∇A)ÃJ

)�
=
(
g(∇aA0,1, Ã1,0)− g(∇aA1,0, Ã0,1)

)
∂a

+
(
g(∇āA0,1, Ã1,0)− g(∇āA1,0, Ã0,1)

)
∂ā.

This is proved by precisely the same type of computations carried out at the end
of Section 4.2. We omit the details.

Summarising our results in this Section, we have derived the expression

m(J, α)

=div

[
−ψ grad

(
Tr(A2)

2

)
+ 2ψ

(
g(∇aA0,1, A1,0)∂a + c.c.

)− 2∇∗(ψA2)

]

− 4 div
[
ψ̃
(
g(∇aA0,1, Ã1,0)− g(∇aA1,0, Ã0,1)

)
∂a + c.c.+ 2grad(ψ̃ det(A))

] (5.6)

where “c.c.” denotes simply the complex conjugate of the term immediately before it.
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Low-rank case.. There are some conditions under which the expression for m(J, α)
becomes much simpler. If A does not have maximal rank then det(A) = 0; moreover,
since the rank of A is even (the kernel of A is J-invariant), if rk(A) is not maximal
then actually rk(A) = 0 or 2, so also adj(A) = 0.

Hence if rank(A) is not maximal we get

δ±(A) :=
1

2

⎛⎝Tr(A2)

2
±
√(

Tr(A2)

2

)2

− 4 det(A)

⎞⎠ =
1

2

(
Tr(A2)

2
± Tr(A2)

2

)

so that δ+(A) = 1
2Tr(A

2) = 1
2‖A‖2gJ , and we also find

ψ =
1√

4− 2 δ+(A) +
√
4− 2 δ−(A)

=
1

2

1

1 +
√

1− 1
4Tr(A

2)
.

So, in this low-rank case, we can write
m(J, α)

=div

⎡
⎢⎣− grad

(
1
4
Tr(A2)

)
1 +

√
1− 1

4
Tr(A2)

+
g(∇aA0,1, A1,0)∂a + c.c.

1 +
√

1− 1
4
Tr(A2)

−∇∗

⎛
⎜⎝ A2

1 +
√

1− 1
4
Tr(A2)

⎞
⎟⎠
⎤
⎥⎦

=div

⎡
⎢⎣− grad

(
1
2
‖A1,0‖2

)
1 +

√
1− 1

2
‖A1,0‖2

+
g(∇aA0,1, A1,0)∂a + c.c.

1 +
√

1− 1
2
‖A1,0‖2

−∇∗

⎛
⎜⎝ A2

1 +
√

1− 1
2
‖A1,0‖2

⎞
⎟⎠
⎤
⎥⎦

(5.7)

The resulting moment map is remarkably similar to the one we had in the Riemann
surface case, see equation (4.9). In the rest of this paper we will focus on this low-rank
case.

6. The equations on a ruled surface. Let Σ be a Riemann surface of genus
g(Σ) ≥ 2 and assume that L → Σ is a holomorphic line bundle equipped with a
Hermitian fibre metric h. In this section we study our equations on the ruled surface
M = P(O ⊕ L) (the completion of L) using the momentum construction; our main
reference for this technique is [HS02]; see also [Szé06, chapter 5]).

After this initial study we solve a “complexified” version of the equations in the
particular case when L is the anticanonical bundle of Σ. We remark that we solve
just a subset of equations of the complexified HcscK system (3.8), namely for a fixed
complex structure J we’ll find a Kähler form ωφ and a “Higgs field" α that are a zero
of the moment maps, but such that α and ωφ are not compatible. In fact we will not
solve the equations in general, but rather prove that in the “adiabatic limit” in which
the fibres are sufficiently small a solution exists. This is a well developed technique
and we follow in particular the approach of [Fin04].

For a fixed Kähler form ωΣ on Σ, we consider Kähler forms on the total space of
the bundle

P(L⊕O)
π−→ Σ

that satisfy the Calabi ansatz, i.e. we consider a form ω of the form

ω = π∗ωΣ + i ∂∂̄f(t) (6.1)

where t is the logarithm of the fibrewise norm function, and f is a suitably convex
real function. More explicitly, we fix a system of holomorphic coordinates (z, ζ) on



SCALAR CURVATURE AND HYPERKÄHLER REDUCTION 703

M that are adapted to the bundle structure, i.e. z is a holomorphic coordinate on
Σ while ζ is a linear coordinate on the fibres of L → Σ. Let a(z) denote the local
function on Σ such that the Hermitian metric h on L is given by h = a(z) dζ dζ̄; then
t := log(a(z) ζζ̄) is a well-defined function on L \Σ, and if f satisfies some conditions
on its second derivative then i∂∂̄f(t) is a (globally) well-defined real 2-form on the
total space of L, that in some cases can be extended to M .

Let F (h) be the curvature form of h. We choose h such that F (h) = −ωΣ . Then
in bundle-adapted holomorphic coordinates w = (z, ζ) we have

π∗ωΣ + i ∂∂̄f(t)

=(1 + f ′(t))π∗ωΣ

+ i f ′′(t)
[
∂zt ∂z̄t dz ∧ dz̄ +

∂zt

ζ̄
dz ∧ dζ̄ +

∂z̄t

ζ
dζ ∧ dz̄ +

1

ζ ζ̄
dζ ∧ dζ̄

]
.

(6.2)

It will be useful to change point of view to describe the curvature properties of
the metric ω. Rather than working with f and t, define τ to be the function τ = f ′(t),
and let F be the Legendre transform of f . If we define φ := 1

F ′′ , then we have

τ = f ′(t)
t = F ′(τ)

F (τ) + f(t) = t τ

f ′′(t) = φ(τ)

so that the metric ωφ := ω is, with the notation of (6.2)

ωφ =(1 + τ)π∗ωΣ

+ i φ(τ)

(
∂zt ∂z̄t dz ∧ dz̄ +

∂zt

ζ̄
dz ∧ dζ̄ +

∂z̄t

ζ
dζ ∧ dz̄ +

1

ζ ζ̄
dζ ∧ dζ̄

) (6.3)

In particular, the matrices of the metric and its inverse in this system of coordinates
are

(gab̄)1≤a,b≤2 =

(
(1 + τ)gΣ + φ(τ) ∂zt ∂z̄t φ(τ)∂zt

ζ̄

φ(τ)∂z̄t
ζ

φ(τ)

ζ ζ̄

)

(
gab̄
)
1≤a,b≤2

=

(
1

(1+τ)gΣ
− ζ̄ ∂z̄t

(1+τ)gΣ

− ζ ∂zt
(1+τ)gΣ

ζ ζ̄
φ(τ) +

ζ ζ̄ ∂zt ∂z̄t
(1+τ)gΣ

)
.

The main reasons for using φ(τ) rather than f(t) are given by Proposition 6.1 and
Proposition 6.3. Note that we are only stating a particular case of the more general
results of Hwang-Singer in [HS02].

Proposition 6.1 ([HS02], see also [Szé14]). Assume that φ : [a, b]→ [0,∞) is a
function positive on the interior of [a, b]. Then ωφ defines a smooth metric on M \Σ∞
if and only if φ(a) = 0, φ′(0) = 1. Moreover, ωφ extends to the whole of M if and
only if φ(a) = φ(b) = 0 and φ′(a) = 1, φ′(b) = −1.

Then it will be useful to assume that τ takes values in an interval [a, b]. The
convexity assumptions on f imply that actually τ is increasing (as a function of
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t), and that τ�Σ0
= a, τ�Σ∞ = b. Up to translations, we can assume that in fact

[a, b] = [0,m] for some m ∈ R>0. This m has a direct geometric interpretation:

Lemma 6.2. The volume of a fibre of P(O ⊕ L)→ Σ is 2πm.

Proof. We just have to compute
∫
F
i∗ωφ, where F is a fibre of P(O⊕L)→ Σ and

i : F ↪→ P(O ⊕ L) is the inclusion. Fix a system of bundle-adapted coordinates (z, ζ)
on P(O ⊕ L), and let r = |ζ|. Then ∂rτ = 2φ(τ) r−1, and so∫

F

i∗ωφ =

∫
ζ∈C

i
φ(τ)

r2
dζ dζ̄ =

∫
R2

2
φ(τ)

r2
dx dy =

∫
[0,2π]×R

∂rτ dτ dϑ = 2πm.

Proposition 6.3 ([HS02], see also [Szé14]). With the previous notation, the
scalar curvature of ωφ is

s(ωφ) =
1

1 + τ
π∗s(ωΣ)− φ′′(τ)− 2

1 + τ
φ′(τ).

To study the moment map equations we will also need an explicit expression for
ŝ(ωφ).

Lemma 6.4. If φ defines a Kähler metric on the whole ruled surface P(L ⊕ O)
then

ŝ(ωφ) =
2

m+ 2
ŝ(ωΣ) +

2

m
.

Proof. We use the same notation of the proof of Lemma 6.2. First notice that

ω2
φ = −(1 + τ)gΣ

φ(τ)

r2
dz ∧ dz̄ ∧ dζ ∧ dζ̄

so that the volume of M = P(L⊕O) is

Volφ(M) =

∫
M

ω2
φ

2
= −1

2

∫
Σ

dz dz̄

[
g0

∫
C

(1 + τ)
φ(τ)

r2
dζ dζ̄

]
=

∫
Σ

dz dz̄ g0

[
π i
(
1 +

m

2

)
m
]

=π
m(2 +m)

2
VolωΣ

(Σ).

In order to compute the integral of s(ωφ) recall that

s(ωφ) =
s(ωΣ)

1 + τ
− φ′′(τ)− 2

φ′(τ)
1 + τ

.

Then∫
M

s(ωφ)
ω2
φ

2

=− 1

2

∫
M

(1 + τ)gΣ
φ(τ)

r2

(
s(ωΣ)

1 + τ
− φ′′(τ)− 2

φ′(τ)
1 + τ

)
dz dz̄ dζ dζ̄

=− 1

2

∫
Σ

dz dz̄ gΣ s(ωΣ)

[∫
C

φ(τ)

r2
dζ dζ̄

]
+

1

2

∫
Σ

dz dz̄ gΣ

[∫
C

2φ(τ)φ′(τ)
r2

dζ dζ̄

]
+

1

2

∫
Σ

dz dz̄ gΣ

[∫
C

(1 + τ)φ(τ)φ′′(τ)
r2

dζ dζ̄

]
.
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We split the computation in three parts. To compute the integrals over C, we use
polar coordinates.∫

C

φ(τ)

r2
dζ dζ̄ = −2 i

∫
C

φ(τ)

r
dϑ dr = −i

∫ 2π

0

dϑ

[∫ ∞

0

2
φ(τ)

r
dr

]
= −2π im

∫
C

2φ(τ)φ′(τ)
r2

dζ dζ̄ = −2 i
∫ 2π

0

dϑ

[
2

∫ ∞

0

φ(τ)φ′(τ)
r

dr

]
= −2 i

∫ 2π

0

dϑ [φ(τ)]
∞
0 = 0

∫
C

(1 + τ)φ(τ)φ′′(τ)
r2

dζ dζ̄

=− i

∫ 2π

0

dϑ

[
2

∫ ∞

0

(1 + τ)φ(τ)φ′′(τ)
r

dr

]
=− i

∫ 2π

0

dϑ

[∫ ∞

0

∂rφ
′(τ)dr

]
− i

∫ 2π

0

dϑ

[∫ ∞

0

∂r(φ
′(τ) τ)− ∂rφ(τ)dr

]
=4π i + 2π im.

Putting everything together:∫
M

s(ωφ)
ω2
φ

2
=− 1

2

∫
Σ

dz dz̄ gΣ s(ωΣ) [−2π im] +
1

2

∫
Σ

dz dz̄ gΣ [4π i + 2π im]

=πm

∫
Σ

s(ωΣ)ωΣ + (2π + πm)VolωΣ
(Σ).

Finally:

ŝ(ωφ) =

∫
M
s(ωφ)

ω2
φ

2

Volφ(M)
= 2

πm
∫
Σ
s(ωΣ)ωΣ + (2π + πm)VolωΣ (Σ)

πm(2 +m)VolωΣ (Σ)
=

2

2 +m
ŝ(ωΣ) +

2

m
.

An analogous computation will give the Kähler class of ωφ.

Lemma 6.5 (See §4.4 in [Szé14]). Consider on P(O ⊕ L) the classes of a fibre C
and the infinity section Σ∞. Then the Poincaré dual to [ωφ] is

Lm := 2π (C +mΣ∞) .

Transversally normal coordinates. For many of the computations that we will
have to make, it will be convenient to choose bundle-adapted holomorphic coordinates
w = (z, ζ) such that, for a fixed point p ∈ Σ, (∂zt) (p) = 0. For brevity, we will
call coordinates with these properties transversally normal at p. Such a system of
coordinates always exists, they are essentially just normal coordinates for the bundle
metric h. In these coordinates the metric ωφ becomes (see equation (6.3))

ω(p) = (1 + τ)π∗ωΣ + i
φ(τ)

ζζ̄
dζ ∧ dζ̄ .

In particular, it will be convenient to use transversally normal coordinates whenever
we have to compute objects that involve the Christoffel symbols of ωφ, since in these
coordinates gφ and its inverse are diagonal.
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Lemma 6.6. The Christoffel symbols of ωφ are

Γ 1
11 =2

φ(τ)

1 + τ
∂zt+ Γ 1

11(Σ); Γ 2
11 =ζ (∂zt)

2

(
−2 φ(τ)

1 + τ
+ φ′(τ)

)
+ ζ ∂2

z t− ζ ∂zt Γ 1
11(Σ);

Γ 1
21 =

φ(τ)

(1 + τ)ζ
; Γ 2

21 =∂zt

(
− φ(τ)

1 + τ
+ φ′(τ)

)
;

Γ 1
22 =0; Γ 2

22 =
φ′(τ)− 1

ζ
.

In particular, if we fix a point p ∈ Σ and a system of transversally normal coor-
dinates around it, the Christoffel symbols of ωφ at the point p are

Γ 1
11 =Γ 1

11(Σ); Γ 2
11 =0;

Γ 1
21 =

φ(τ)

(1 + τ)ζ
; Γ 2

21 =0;

Γ 1
22 =0; Γ 2

22 =
φ′(τ)− 1

ζ
. (6.4)

6.1. Deforming complex structures on the total space of a vector bun-
dle. The HcscK equations involve both a Kähler metric and a deformation of the
complex structure. While in this ruled surface case we have already chosen to use
Kähler metrics satisfying the Calabi ansatz (6.1), we still have to choose which de-
formations of P(O ⊕ L) to consider. The natural choice is to consider a deformation
of the ∂̄-operator of E := O ⊕ L, so a matrix-valued form β ∈ A0,1(End(E)); this β
will induce a deformation A ∈ End(TE) of the complex structure of the total space
(which we still denote by E).

First, recall how a ∂̄E-operator determines the complex structure JE , see [Kob87,
Proposition 1.3.7]. Fix a local holomorphic coordinate z on Σ and a local frame
(s1, s2) on E. If we let (w1, w2) be the usual coordinates on C2, by the choice of the
local frame we can use (z, w1, w2) as local complex coordinates on E. Denote by

T i
j := T i

1̄ j dz̄

the local representative of the ∂̄E-operator. A complex structure on E is uniquely
determined by a decomposition TCE = T 1,0E ⊕ T 0,1E; we define

T 1,0E := spanC

(
∂w1 , ∂w2 , ∂z − T i

j (∂z)w̄
j∂w̄i

)
.

A different choice of a local frame does not change this bundle; moreover, the integra-
bility of ∂̄E (i.e. ∂̄2

E = 0) is equivalent to that of T 1,0E (i.e. [T 1,0E, T 1,0E] ⊆ T 1,0E.)
Consider now the case in which we already have a holomorphic structure ∂̄E , and

we are deforming it as ∂̄′
E := ∂̄E + β for some β ∈ A0,1(End(E)). Choose a local

∂̄E-holomorphic frame s1, s2 for E. Then a local representative for ∂̄′
E in this local

frame is just the matrix β, and the previous construction gives us

T 1,0

∂̄E
E = spanC (∂w1 , ∂w2 , ∂z) , T 1,0

∂̄′E
E = spanC

(
∂w1 , ∂w2 , ∂z − β i

1̄ j
w̄j∂w̄i

)
.

Changing point of view, ∂̄E defines on the total space of E a complex structure
JE , and if we slightly deform it to J ′

E := JE + εA for some A ∈ Γ (E,End(TE)),
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to first order in ε the holomorphic tangent bundle of E with respect to J ′
E can be

described as

T 1,0
J ′E

E =

{
v − i ε

2
A(v) | v ∈ T 1,0

JE
E

}
.

Comparing the spaces T 1,0
J ′E

E and T 1,0

∂̄′E
E, we see that A induces the same deformation

of JE as β if and only if

A1,0(∂w̄i) =0

A1,0(∂z̄) =2 iβi
j (∂z̄)w

j∂wi ;
(6.5)

we let A(β) be the deformation of the complex structure defined by these equations.

The next step is to see how a deformation of ∂̄E , β ∈ A0,1(End(E)) induces
a deformation of the complex structure of P(E). From the previous discussion, we
have a canonical way to induce a first-order deformation A(β) ∈ Γ (End(TE)) of the
complex structure of E. Now, on E we have the usual C∗-action on the fibres, and
P(E) is defined as

P(E) := (E \M) /C∗.

Lemma 6.7. Let p : E \ M → P(E) be the usual projection, and fix β ∈
A0,1(End(E)). Then A = A(β) induces a deformation of the complex structure of
P(E) as follows: for [x] ∈ P(E) and v ∈ T[x]P(E) choose a p-lift v̂ ∈ TxE of v, and
let

A[x](v) := p∗Ax(v̂).

Proof. We have to check that this expression does not depend upon the choice of
the preimage of [x] and of the lift v̂ of v.

Fix holomorphic local frames of O and L, so that we can locally describe E as
M × C2, with coordinates w1, w2 on the fibres. We get homogeneous coordinates on
the fibres of P(E) as [w1 : w2]. If we fix a holomorphic coordinate z on M , on the
open subset of P(E) where w1 �= 0 we have local holomorphic coordinates (z, ζ), with
w = w2/w1.

In this system of local coordinates the projection p is written as p(z, w1, w2) =(
z, w2

w1

)
, and (the (1, 0) part of) its differential is

dp(z,w1,w2) =

(
1 0 0

0 − w2

(w1)2
1
w1

)
.

We have to check that for all [x] ∈ P(E) and all λ ∈ C∗, if v̂1 ∈ T 0,1
x E and v̂2 ∈ T 0,1

λxE
are such that p∗v̂1 = p∗v̂2, then also

p∗Ax(v̂1) = p∗Aλx(v̂2).

If x = (z, w1, w2) and v̂1 = V ∂z̄ + U ī∂w̄i then

p∗Ax(v̂1) = p∗
(
2 i V βi

j (∂z̄)w
j∂wi

)
= 2 i V

(
−β1

j (∂z̄)w
j w2

(w1)2
+ β2

j (∂z̄)w
j 1

w2

)
∂ζ
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while, if v̂2 = Ṽ ∂z̄ + Ũ ī∂w̄i

p∗Aλx(v̂2) = p∗
(
2 i Ṽ βi

j (∂z̄)w
j∂wi

)
= 2 i Ṽ

(
−β1

j (∂z̄)w
j w2

(w1)2
+ β2

j (∂z̄)w
j 1

w2

)
∂ζ

but if v̂1 and v̂2 have the same image under p∗, V = Ṽ .

Let v = v1̄∂z̄ + v2̄∂ζ̄ ∈ T 0,1
(z,ζ)P(E), and consider v̂ = v1̄∂z̄ + v2̄∂w̄2 ∈ T 0,1

(z,1,ζ)(E).
By our definition,

p∗A(v̂) =2 i v1̄
(−β1

1(∂z̄) ζ − β1
2(∂z̄) ζ

2 + β2
1(∂z̄) + β2

2(∂z̄) ζ
)
∂ζ .

So, if we denote still by A the deformation of the complex structure of P(E) we have

A1,0 = 2 i
[
(β 2

1̄ 2 − β 1
1̄ 1) ζ − β 1

1̄ 2 ζ
2 + β 2

1̄ 1

]
dz̄ ⊗ ∂ζ . (6.6)

Notice that when we decompose β ∈ A0,1(O ⊕ L) as

β =

(
β1

1 β1
2

β2
1 β2

2

)
then β1

1 ∈ A0,1(O) ∼= A0,1(Σ,C), β1
2 ∈ A0,1(L∗), β2

1 ∈ A0,1(L) and β2
2 ∈

A0,1(End(L)) ∼= A0,1(Σ,C).
The expression (6.6) for A1,0 holds just on the set P(O ⊕ L) \Σ∞. If instead we

change coordinates to P(O ⊕ L) \ Σ0, we simply have to exchange the roles of β1
2

and β2
1 . Indeed, equation (6.6) was obtained by fixing a system of bundle-adapted

holomorphic coordinates (z, ζ) on L; if we perform the change of variables η = ζ−1

we obtain

A1,0 = −2 i [(β 2
1̄ 2 − β 1

1̄ 1

)
η − β 1

1̄ 2 + β 2
1̄ 1η

2
]
dz̄ ⊗ ∂η.

After all, the construction of P(O⊕ L) can be interpreted as glueing the total spaces
of L and L∗ along their open subsets L \Σ and L∗ \Σ.

Remark 6.8. Our choice of deformation of the complex structure A is not
compatible with ωφ for any φ. Indeed A2 = A1,0A0,1 +A0,1A1,0 = 0, and if A and ωφ

were compatible then we would find

‖A‖2gφ = Tr(A2) = 0

but A �= 0. Hence, in this Section we study the complexified equations{
mΩI

(ω,A(β)) = 0;

mΘ (ω,A(β)) = 0.

for A(β) as in 6.6, and so we’ll find a solution to the complexified system (3.8) without
the compatibility condition.

Hence, we are tacitly assuming that we have extended the moment maps mΩI
, mΘ

to the space of metrics g for which g(αᵀ−,−) is not necessarily symmetric. We have
shown above that mΘ(J,α)(h) =

〈
h,−div (∂̄∗ᾱᵀ)〉, which clearly has a tautological

extension to all g in the Kähler class. But the choice of an extension of the real
moment map mΩI

is more flexible.
The crucial point is that, by Lemma 3.7, mΩI

is computed in terms of a spectral
function of A = Re(αᵀ). This function can be expressed in several different, equivalent
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ways by using a compatible metric g, that is, one for which g(αᵀ−,−) is symmetric.
In our present situation where this compatibility condition might not hold, these
equivalent expressions give rise to potentially different extensions of mΩI

. A simple
example is given by the spectral quantity Tr(A2). A computation shows that for
compatible g this may be expressed equivalently as ‖A‖2g. So when g and A are not
compatible ‖A‖2g gives an alternative extension of the spectral quantity Tr(A2).

Choice of complexification. The two expressions appearing in (5.7) were derived
in close analogy to the case of curves. However in the present case they are no longer
equivalent, as we discussed in Remark 6.8. This leads to a few different possibilities
for the formal complexification. In the rest of this paper we examine the natural
choices given by the two expressions in (5.7). So in terms of the endomorphism A the
alternative possibility for the real moment map is

m(J, α) = div

⎡⎣− grad
(

1
2‖A1,0‖2g

)
1 +

√
1− 1

2‖A1,0‖2g
+

g(∇aA0,1, A1,0)∂a + c.c.

1 +
√

1− 1
2‖A1,0‖2g

−∇∗

⎛⎝ A2

1 +
√

1− 1
2‖A1,0‖2g

⎞⎠⎤⎦ .

(6.7)

6.2. The complex moment map. In this Section we’ll find sufficient condi-
tions on β ∈ A0,1(End(O ⊕ L)) such that the pair (ωφ, A(β)) satisfies the complex
moment map equation. We work with a fixed metric ωφ for a prescribed (arbitrary)
momentum profile φ.

Our strategy is to carry out the necessary computations in transversally normal
local coordinates and without assuming that A = A(β), but rather for some arbitrary
A1,0 = A2

1̄dz̄⊗∂ζ . At the end of this Section we show that, when L is the anticanonical
bundle and for suitable choices of A = A(β), our computations actually globalise to
the whole ruled surface.

Recall that, for a deformation of complex structures J̇0 and a Kähler form ω, the
complex moment map equation is

div
(
∂̄∗J̇1,0

0

)
= 0.

Lemma 6.9. With the previous notation,

∂̄∗A1,0 = − φ(τ)

ζ g0 (1 + τ)2
A2

1̄∂z

− 1

(1 + τ)g0

(
∂zA

2
1̄ +A2

1̄ ∂zt

(
1− φ(τ)

1 + τ

)
− ζ ∂zt ∂ζA

2
1̄

)
∂ζ .

Proof. It’s just a matter of computing carefully, starting from

∂̄∗A1,0 = −gab̄∇aA
c
b̄ ∂c.
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The covariant derivatives of A satisfy

∇1A
1
1̄ = A2

1̄Γ
1
12; ∇2A

1
1̄ = A2

1̄Γ
1
22 = 0;

∇1A
1
2̄ = 0; ∇2A

1
2̄ = 0;

∇1A
2
1̄ = ∂zA

2
1̄ +A2

1̄Γ
2
21; ∇2A

2
1̄ = ∂ζA

2
1̄ +A2

1̄Γ
2
22;

∇1A
2
2̄ = 0; ∇2A

2
2̄ = 0.

By (6.4) we can rewrite ∂̄∗A1,0 as

∂̄∗A1,0 =− g11̄∇1A
c
1̄ ∂c − g21̄∇2A

2
1̄ ∂ζ

=− g11̄∇1A
1
1̄∂z −

(
g11̄∇1A

2
1̄ + g21̄∇2A

2
1̄

)
∂ζ

=− φ(τ)

ζ g0 (1 + τ)2
A2

1̄∂z

− 1

(1 + τ)g0

(
∂zA

2
1̄ +A2

1̄ ∂zt

(
1− φ(τ)

1 + τ

)
− ζ ∂zt ∂ζA

2
1̄

)
∂ζ .

We proceed to calculate the divergence of ∂̄∗A1,0. By definition

div(∂̄∗A1,0) = ∇a(∂̄
∗A1,0)a = ∂a(∂̄

∗A1,0)a + (∂̄∗A1,0)bΓ a
ab.

We compute the two terms separately. We will need the quantities

D1(τ) :=− φ(τ)

(1 + τ)2
= φ(τ) ∂τ

(
1

1 + τ

)
D2(τ) :=φ(τ) ∂τD1(τ).

The first term is the sum of

∂1(∂̄
∗A1,0)1 = ∂z

(
D1(τ)

A2
1̄

ζ g0

)
= D2(τ)

∂zt

ζ g0
A2

1̄ −D1(τ)
Γ 1
11(Σ)

ζ g0
A2

1̄ +D1(τ)
1

ζ g0
∂zA

2
1̄

and

∂2(∂̄
∗A1,0)2 =∂ζ

(
− ∂zA

2
1̄

(1 + τ)g0
− A2

1̄ ∂zt

(1 + τ)g0
−D1(τ)

A2
1̄ ∂zt

g0
+

ζ ∂zt

(1 + τ)g0
∂ζA

2
1̄

)
=−D1(τ)

∂zA
2
1̄

ζ g0
− ∂ζ∂zA

2
1̄

(1 + τ)g0
−D1(τ)

A2
1̄ ∂zt

ζ g0

−D2(τ)
A2

1̄ ∂zt

ζ g0
+

ζ ∂zt

(1 + τ)g0
∂ζ∂ζA

2
1̄.

The sum is given by

∂a(∂̄
∗A1,0)a

=−D1(τ)
Γ 1
11(Σ)

ζ g0
A2

1̄ −
∂ζ∂zA

2
1̄

(1 + τ)g0
−D1(τ)

A2
1̄ ∂zt

ζ g0
+

ζ ∂zt

(1 + τ)g0
∂ζ∂ζA

2
1̄

=− (∂̄∗A1,0)1Γ 1
11(Σ)− ∂ζ∂zA

2
1̄

(1 + τ)g0
−D1(τ)

A2
1̄ ∂zt

ζ g0
+

ζ ∂zt

(1 + τ)g0
∂ζ∂ζA

2
1̄.
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On the other hand the second term in div(∂̄∗A1,0) is given by

(∂̄∗A1,0)bΓ a
ab

=(∂̄∗A1,0)1Γ 1
11 + (∂̄∗A1,0)1Γ 2

21 + (∂̄∗A1,0)2Γ 1
12 + (∂̄∗A1,0)2Γ 2

22

=(∂̄∗A1,0)1Γ 1
11(Σ) +D1(τ)

∂zt

ζ g0
A2

1̄

(
φ′(τ) +

φ(τ)

1 + τ

)
+D1(τ)

∂zA
2
1̄

ζ g0

+D1(τ)
∂zt

ζ g0
A2

1̄ −D1(τ)
φ(τ) ∂zt

ζ g0
A2

1̄ −D1(τ)
∂zt ∂ζA

2
1̄

g0
+ (∂̄∗A1,0)2

φ′(τ)− 1

ζ
.

These computations show that we have

div(∂̄∗A1,0)

=− ∂ζ∂zA
2
1̄

(1 + τ)g0
+

ζ ∂zt

(1 + τ)g0
∂ζ∂ζA

2
1̄ −

1

(1 + τ)g0 ζ

(
φ(τ)

1 + τ
+ φ′(τ)− 1

)
∂zA

2
1̄

+

(
φ(τ)

1 + τ
+ φ′(τ)− 1

)
∂zt ∂ζA

2
1̄

(1 + τ)g0
− ∂zt A

2
1̄

(1 + τ)ζ g0

(
φ′(τ)− 1 +

φ(τ)

1 + τ

)
=
−∂ζ∂zA2

1̄ + ζ ∂zt ∂ζ∂ζA
2
1̄

(1 + τ)g0
− 1

(1 + τ)g0

(
−∂zA

2
1̄

ζ
+ ∂zt ∂ζA

2
1̄ −

∂zt A
2
1̄

ζ

)
+

1

(1 + τ)g0
∂ζ [log φ(τ)(1 + τ)]

(−∂zA2
1̄ + ∂zt ζ∂ζA

2
1̄ − ∂zt A

2
1̄

)
.

This quantity vanishes precisely when

−ζ∂ζ∂zA2
1̄ + ζ2 ∂zt ∂ζ∂ζA

2
1̄ −

(−∂zA2
1̄ + ∂zt ζ ∂ζA

2
1̄ − ∂zt A

2
1̄

)
+ ζ∂ζ [log φ(τ)(1 + τ)]

(−∂zA2
1̄ + ∂zt ζ ∂ζA

2
1̄ − ∂zt A

2
1̄

)
= 0.

Notice that

−ζ∂ζ∂zA2
1̄ + ζ2 ∂zt ∂ζ∂ζA

2
1̄ = ζ∂ζ

(−∂zA2
1̄ + ∂zt ζ∂ζA

2
1̄ − ∂zt A

2
1̄

)
.

Thus, introducing the locally defined function

k := −∂zA2
1̄ + ∂zt ζ∂ζA

2
1̄ − ∂zt A

2
1̄, (6.8)

the complex moment map equation div(∂̄∗A1,0) = 0 may be expressed locally as

ζ∂ζk + (ζ∂ζ [log φ(τ)(1 + τ)]− 1) k = 0.

This condition can be rewritten as

∂ζk + ∂ζ

(
log

φ(τ)(1 + τ)

ζ ζ̄

)
k = 0.

This equation can be integrated; so we see that the equation div(∂̄∗A1,0) = 0 is
satisfied locally if and only if the function k defined by equation (6.8) satisfies

k = c
ζ ζ̄

φ(τ)(1 + τ)
(6.9)

for some function c = c(z, ζ) such that ∂ζc = 0.
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Choosing c = 0. Let’s consider the case in which the function c in (6.9) is identi-
cally 0. In this case, A1,0 satisfies

−∂zA2
1̄ + ζ ∂zt ∂ζA

2
1̄ − ∂zt A

2
1̄ = 0. (6.10)

If we now choose A = A(β), i.e.

A2
1̄ = 2i

(
ζ(β 2

1̄ 2 − β 1
1̄ 1)− ζ2β 1

1̄ 2 + β 2
1̄ 1

)
for β1

1 , β
2
2 ∈ A0,1(Σ,C), β1

2 ∈ A0,1(L∗), β2
1 ∈ A0,1(L), we can get an interesting

consequence from equation (6.10). Indeed, on the divisor Σ = Σ0 = {ζ = 0} we get,
from equation (6.10)

−∂zβ 2
1̄ 1 − ∂zt β

2
1̄ 1 = 0

and recalling that ∂zt = ∂zlog(a(z)), were a(z) is the local representative of the fibre
metric on L, this tells us that

β 2
1̄ 1 =

q(z)

a(z)

for some function q over Σ such that ∂zq = 0. Consider instead what equation (6.10)
tells us for ζ = ∞, i.e. on the zero-set of η = ζ−1; after the change of coordinates,
equation (6.10) becomes

∂zA
2
1̄(η) + ∂zt

(
η∂ηA

2
1̄ −A2

1̄(η)
)
= 0

where A2
1̄(η) = −2i

(
η(β 2

1̄ 2 − β 1
1̄ 1)− β 1

1̄ 2 + η2 β 2
1̄ 1

)
. Setting η = 0 we find

∂zβ
1

1̄ 2 − ∂zt β
1

1̄ 2 = 0

and so

β 1
1̄ 2 = a(z) q̃(z)

for some function q̃ over Σ such that ∂z q̃ = 0. With these choices, the matrix
associated to β ∈ A0,1(End(O ⊕ L)) in a local holomorphic frame for L is(

β1
1 q̃(z) a(z) dz̄

q(z)
a(z) dz̄ β2

2

)
.

It is useful to notice the identity ζ ∂ζA
2
1̄ −A2

1̄ = −2i (ζ2 β 1
1̄ 2 + β 2

1̄ 1

)
. Plugging this

into (6.10) the equation can be rewritten as

−ζ∂z
(
β 2
1̄ 2 − β 1

1̄ 1

)− ζ2 ∂zβ
1

1̄ 2 + ∂zβ
2

1̄ 1 − ∂zt
(
ζ2 β 1

1̄ 2 + β 2
1̄ 1

)
= 0,

which reduces to

∂z
(
β 2
1̄ 2 − β 1

1̄ 1

)
= 0.

So equation (6.10) is satisfied if and only if

β 1
1̄ 2 = a(z) q̃(z) with ∂z q̃ = 0;

β 2
1̄ 1 =

q(z)

a(z)
with ∂zq = 0;

∂
(
β2

2 − β1
1

)
= 0.

(6.11)
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The first two conditions in equation (6.11) are still just local ones. However we
can globalise them by choosing L to be the anticanonical bundle of Σ, L = T 1,0Σ.
Indeed, recall that β1

2 ∈ A0,1(L∗), β2
1 ∈ A0,1(L), so that if L = T 1,0Σ then β1

2

must be an element of A0,1(T 1,0∗Σ), while β2
1 must be an element of A0,1(T 1,0Σ).

Then we can choose the quantity q̃ of equation (6.11) to be a constant, and the local
condition on β1

2 becomes the the global condition β1
2 = q̃ h. This is compatible with

β1
2 ∈ A0,1(T 1,0∗Σ), since h is a Hermitian metric on T 1,0Σ. In the same way, if q

is the local representative of a global holomorphic quadratic differential on Σ (that
we denote still by q), then the local condition on β2

1 globalises to β2
1 = q�h , i.e. β2

1

should be the quadratic differential with one index raised by h.
Let us summarise the results of this Section. Suppose that L = K∗

Σ = T 1,0Σ and
that β satisfies the globally defined equations

β1
2 = q̃ h for some constant q̃;

β2
1 = q�h for some holomorphic quadratic differential q;

∂
(
β2

2 − β1
1

)
= 0.

(6.12)

The the complex moment map equation is satisfied. From now we always assume that
L, β are of this form.

6.3. The real moment map. In this section we will prove that there exists
a solution to the HcscK equations on our ruled surface, at least when the fibres
have sufficiently small volume. We will work with the two possible choices of formal
complexification given by the expressions in (5.7). First we reformulate Theorem 1.5
using the notation introduced in the last few sections.

Theorem 6.10. Let Σ be a Riemann surface of genus g ≥ 2, and consider
the ruled surface M = P(O ⊕ K∗

Σ). Then, for all sufficiently small m > 0, there
exists a Kähler metric ω in the class dual to 2π (C +mΣ∞) (see Lemma 6.5) and a
“Higgs field" α ∈ Hom(T 1,0∗M,T 0,1∗M) such that the complex and real moment map
equations

div
(
∂̄∗ᾱᵀ) = 0

2 s(ω)− 2 ŝ(ω) +m(ω,Re(αᵀ)) = 0

are satisfied, with m given by one of the expressions in (5.7).

We will choose A = Re(αᵀ) = A(β), for a form β ∈ A0,1(End(O ⊕ L)). Then the
complex moment map equation holds provided β satisfies the conditions (6.12).

Note that, for any β and with A = A(β), we know that A1,0 = A2
1̄dz̄ ⊗ ∂ζ and

so the matrix associated to A1,0 in a system of bundle-adapted coordinates has the

form
(
0 0
∗ 0

)
. In particular we are in the low-rank situation described at the end of

Section 5.2, as required by the statement of Theorem 6.10.
We will present the details of the proof of Theorem 6.10 for the choice of com-
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plexification given by the first expression in (5.7), namely

m(ωφ, A) =divφ

⎡⎣− gradφ
(
1
4Tr(A

2)
)

1 +
√

1− 1
4Tr(A

2)
+

gφ(∇a
φA

0,1, A1,0)∂a + c.c.

1 +
√

1− 1
4Tr(A

2)

−∇∗
φ

⎛⎝ A2

1 +
√

1− 1
4Tr(A

2)

⎞⎠⎤⎦ .

The proof for the alternative complexified equation (6.7) is essentially the same, but
some of the computations are more involved. We will point out the key differences in
the course of the proof.

We note that A(β) is nilpotent, with A(β)2 = 0, so with our current choice of
complexification we find

m(ωφ, A(α)) =
1

2
divφ

[
gφ(∇a

φA
0,1, A1,0)∂a + c.c.

]
.

In the rest of this Section we fix L = K∗
Σ and choose β so that the complex

moment map vanishes, i.e. we assume that A1,0 satisfies equation (6.10). Notice that
if we fix a point p ∈ P(O⊕L) and a system of transversally normal coordinates around
this point, equation (6.10) at the point p simply reads as ∂zA2

1̄ = 0.

Lemma 6.11. Assume that β2
2 = β1

1 and β2
1 = 0, so that the matrix of 1-forms

associated to β is upper triangular. Then

divφ
[
gφ(∇aA0,1, A1,0)∂a + c.c.

]
= 2 ‖A1,0‖2φ

(
φ′′(τ) +

(φ′(τ) + 1)2

φ(τ)

)
.

Proof. We fix a point p ∈ P(O ⊕ L) and a system of transversally normal coor-
dinates (z, ζ) at this point. All of the following computations will be carried out at
p.

From the definition we have

divφ
[
gφ(∇aA0,1, A1,0)∂a

]
=∇a

[
gab̄∇b̄A

c̄
d A

e
f̄g

df̄gec̄

]
=gab̄gdf̄gec̄∇a∇b̄A

c̄
d A

e
f̄ + gab̄gdf̄gec̄∇b̄A

c̄
d∇aA

e
f̄ .

We proceed to examine the two terms.
Using the fact that we are in transversally normal coordinates and that the only

possibly non-vanishing component of A1,0 is A2
1̄, we can write the first term as

gab̄gdf̄gec̄∇a∇b̄A
c̄
d A

e
f̄ =gab̄g11̄g22̄∇a∇b̄A

2̄
1 A

2
1̄

=g11̄g11̄g22̄∇1∇1̄A
2̄
1 A

2
1̄ + g11̄∇2∇2̄A

2̄
1 A

2
1̄.

A quick computation using equation (6.10) and the properties of the special system
of coordinates gives

∇1∇1̄A
2̄
1 = g0

(
ζ̄ ∂ζ̄A

2̄
1 −A2̄

1 +A2̄
1

(
φ′(τ)− φ(τ)

1 + τ

))
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and

∇2∇2̄A
2̄
1 = A2̄

1

φ(τ)

ζ ζ̄

(
φ′′(τ)− φ′(τ)− 1

1 + τ

)
− ∂ζ̄A

2̄
1

φ(τ)

(1 + τ)ζ
.

Hence the first term is

gab̄gdf̄gec̄∇a∇b̄A
c̄
d A

e
f̄

=
φ(τ)

(1 + τ)2 ζ ζ̄ g0

(
ζ̄ ∂ζ̄A

2̄
1 −A2̄

1 +A2̄
1

(
φ′(τ)− φ(τ)

1 + τ

))
A2

1̄

+
1

(1 + τ)g0

(
A2̄

1

φ(τ)

ζ ζ̄

(
φ′′(τ)− φ′(τ)− 1

1 + τ

)
− ∂ζ̄A

2̄
1

φ(τ)

(1 + τ)ζ

)
A2

1̄

=‖A1,0‖2φ
(
φ′′(τ)− φ(τ)

(1 + τ)2

)
.

On the other hand for the second term we have

gab̄gdf̄gec̄∇b̄A
c̄
d∇aA

e
f̄

=g11̄∇1̄A
1̄
1∇1A

1
1̄ + g11̄∇2̄A

2̄
1∇2A

2
1̄

=
A2̄

1 A
2
1̄

(1 + τ)g0

φ(τ)2

(1 + τ)2 ζ ζ̄
+

1

(1 + τ)g0

(
∂ζ̄A

2̄
1 +A2̄

1Γ
2̄
2̄2̄

) (
∂ζA

2
1̄ +A2

1̄Γ
2
22

)
=‖A1,0‖2φ

φ(τ)

(1 + τ)2
+

∂ζ∂ζ̄
(
A2

1̄ A
2̄
1

)
(1 + τ)g0

+
φ′(τ)− 1

(1 + τ)g0 ζ ζ̄

(
ζ ∂ζ

(
A2̄

1 A
2
1̄

)
+ ζ̄ ∂ζ̄

(
A2̄

1 A
2
1̄

))
+

(φ′(τ)− 1)2

φ(τ)
‖A1,0‖2φ.

Up to this point of the proof, no assumption was made on the components of β.

However, if we assume that β is of the form
(∗ ∗∗
0 ∗

)
then

ζ∂ζA
2
1̄ =2A2

1̄.

So in this case we find

gab̄gdf̄gec̄∇b̄A
c̄
d∇aA

e
f̄ = ‖A1,0‖2φ

(
φ(τ)

(1 + τ)2
+

(φ′(τ) + 1)2

φ(τ)

)
.

Putting everything together we get

divφ
[
gφ(∇aA0,1, A1,0)∂a

]
=‖A1,0‖2φ

(
φ′′(τ)− φ(τ)

(1 + τ)2

)
+ ‖A1,0‖2φ

(
φ(τ)

(1 + τ)2
+

(φ′(τ) + 1)2

φ(τ)

)
=‖A1,0‖2φ

(
φ′′(τ) +

(φ′(τ) + 1)2

φ(τ)

)
and

divφ
[
gφ(∇aA0,1, A1,0)∂a + c.c.

]
=2 ‖A1,0‖2φ

(
φ′′(τ) +

(φ′(τ) + 1)2

φ(τ)

)
.
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Notice that, under the assumption of Lemma 6.11,

‖A1,0‖2φ = 4
φ(τ)

(1 + τ)g0
ζ ζ̄ |β 1

1̄ 2 |2

so that

1

2
divφ

[
gφ(∇aA0,1, A1,0)∂a + c.c.

]
= 4

φ(τ)

(1 + τ)g0
ζ ζ̄ |β 1

1̄ 2 |2
(
φ′′(τ) +

(φ′(τ) + 1)2

φ(τ)

)
.

However, since we are assuming that A satisfies equation (6.10), β should satisfy the
conditions in equation (6.12). So β 1

1̄ 2 = q̃ a(z) for some constant q̃, and

1

2
divφ

[
gφ(∇aA0,1, A1,0)∂a + c.c.

]
= 4|q̃|2 φ(τ)

(1 + τ)g0
a(z)2 |ζ|2

(
φ′′(τ) +

(φ′(τ) + 1)2

φ(τ)

)
.

Now recall that we are assuming L = K(Σ)∗ = T 1,0Σ, and ζ is a linear coordinate
on L. We also have the Hermitian metric on the fibres of L whose local representative
is a(z). If we choose this metric to be Kähler-Einstein, i.e. a(z) = λ g0(z) for some
positive constant λ, the equation becomes

1

2
divφ

[
gφ(∇aA0,1, A1,0)∂a + c.c.

]
=4|q̃|2 1

1 + τ
λ a(z) |ζ|2 (φ(τ)φ′′(τ) + (φ′(τ) + 1)2

)
=

c

m2

et

1 + τ

(
φ(τ)φ′′(τ) + (φ′(τ) + 1)2

)
where we are collecting in c

m2 all the various constants.
We can finally write the zero-locus equation of the real moment map, using Propo-

sition 6.3 and Lemma 6.4: since we are choosing a metric on Σ that has constant scalar
curvature equal to −1, the equation is

φ′′(τ) +
2

1 + τ
φ′(τ) +

1

1 + τ
+

4

m(2 +m)

=
c

m2

et

1 + τ

(
φ(τ)φ′′(τ) + (φ′(τ) + 1)2

)
.

(6.13)

(dividing throughout by a factor of 2).
The reason for introducing the factor m−2 in the equation is that in the next

sections we will find a solution of equation (6.13) in the adiabatic limit when m→ 0,
and to do this we will have to expand the equation with respect to m. This m−2

factor has been chosen precisely in such a way that the expansion in m will have the
appropriate form.

Let us summarise our computations so far. We showed that with all our as-
sumptions, in particular those of Lemma 6.11, the complex moment map vanishes
automatically, while the real moment map equation reduces to the problem

φ′′(τ) + 2
φ′(τ)
1 + τ

+
1

1 + τ
+

4

m(2 +m)
=

c

m2

et

1 + τ

(
(φ′(τ) + 1)2 + φ(τ)φ′′(τ)

)
φ(0) = φ(m) = 0

φ′(0) = −φ′(m) = 1

(6.14)
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to be solved for a positive function φ(τ) on [0,m] and a positive real number c. Here
the function t is a primitive of 1

φ(τ) ; we might fix the starting point of integration as
m/2, since the choice of a different point can be absorbed by the constant c. From
now on then we’ll consider t as

t(τ) =

∫ τ

m
2

1

φ(x)
dx

hence equation (6.14) becomes an ordinary integro-differential equation for φ and c.

Remark 6.12. Essentially the same computations show that for the alternative
choice of complexification (6.7), the real moment map equation reduces to the problem√

4− 2
c

m2

φ(τ)

1 + τ
et
(
φ′′(τ) +

2φ′(τ)
1 + τ

+
1

1 + τ

)
+

8

m(2 +m)
+

c
m2

φ(τ)
1+τ e

t√
4− 2 c

m2

φ(τ)
1+τ e

t

(
φ(τ)

(1 + τ)2
− (1 + φ′(τ))2

φ(τ)

)
= 0

with the same boundary and positivity conditions, and the same definition of t(τ).

6.3.1. Approximate solutions. We may regard the problem (6.14) as a family
of integro-differential equations parametrized by m ∈ R>0. Our aim is to show that
for sufficiently small values of this parameter (i.e. in the limit when the fibres of
P(O ⊕ L) are very small) there is a solution to the equation. Notice however that m
appears both in the equation and in the domain of definition of φ(τ), since τ takes
values in [0,m]. It will then more convenient to first change variables, letting τ = mλ,
so that λ takes values in the fixed interval [0, 1]. If we rewrite the problem (6.14) in
terms of φ(λ) we get

φ′′(λ)
m2

+ 2
φ′(λ)

m(1 +mλ)
+

1

1 +mλ
+

4

m(2 +m)

=
c

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

((
φ′(λ)
m

+ 1

)2

+ φ(λ)
φ′′(λ)
m2

)
φ(0) =φ(1) = 0

φ′(0) =− φ′(1) = m

which is of course equivalent to the problem

φ′′(λ) + 2m
φ′(λ)

1 +mλ
+

m2

1 +mλ
+

4m

2 +m

=
c

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(
(φ′(λ) +m)2 + φ(λ)φ′′(λ)

)
φ(0) =φ(1) = 0

φ′(0) =− φ′(1) = m,

to be solved for a momentum profile φ(λ) and a constant c > 0.
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Remark 6.13. The corresponding equation for (6.7) is given by(
4− 2

c

m2

φ

1 + λm
exp

(∫ λ

1/2

m

φ
dx

)) 1
2 (

φ′′ +
2mφ′

1 + λm
+

m2

1 + λm

)

+
8m

2 +m
+

c
m2

φ
1+λmexp

(∫ λ

1/2
m
φ dx

)
(
4− 2 c

m2
φ

1+λmexp
(∫ λ

1/2
m
φ dx

)) 1
2

(
m2 φ

(1 + λm)2
− (m+ φ′)2

φ

)
= 0

with the same boundary conditions.

Introduce the space

Vm := {φ ∈ C∞([0, 1]) | φ > 0 in (0, 1), φ(0) = φ(1) = 0 and φ′(0) = −φ′(1) = m} .

Our problem is equivalent to showing that the integro-differential operator

Fm : Vm × R>0 → C∞0 ([0, 1])

defined by

Fm(φ, c) :=φ′′(λ) + 2m
φ′(λ)

1 +mλ
+

m2

1 +mλ
+

4m

2 +m

− c

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(
(φ′(λ) +m)2 + φ(λ)φ′′(λ)

) (6.15)

has a zero. The reason why the image of Fm lies inside the space of zero-average
functions is that in its original form the real HcscK equation is of the form

scalar curvature − its average + divergence of a vector field = 0.

In fact we will show that Fm has a zero for all sufficiently small m > 0.
We follow the well-developed approach of adiabatic limits and in particular the

excellent reference [Fin04]. In this approach one first constructs a sufficiently good
approximate solution and then perturbs this to a genuine solution by using a suitable
quantitative versione of the Implicit Function Theorem.

Thus our first step is to find an approximate solution, i.e. (φ0, c0) ∈ Vm × R>0

such that

Fm(φ̃, c̃) = O(mn)

for some n > 0, in a purely formal sense. It is in fact possible to find approximate
solutions up to every order, but we’ll just need the first one

φ0(λ) =
m

2(2 +m)
λ(1− λ) (4 + 2m−m(4 + 3m)λ(1− λ)) ;

c0 =2m2.

For this choice of φ, c, we have

Fm(φ0, c0) = O(m3)



SCALAR CURVATURE AND HYPERKÄHLER REDUCTION 719

moreover,

φ′′
0(λ) + 2m

φ′
0(λ)

1 +mλ
+

m2

1 +mλ
+

4m

2 +m
= O(m2)

exp
(∫ λ

1
2

m
φ0(x)

dx
)

1 +mλ

(
(φ′

0(λ) +m)2 + φ0(λ)φ
′′
0(λ)

)
= O(m2).

(6.16)

Remark 6.14. Precisely the same choice of approximate solution works for the
more complicated equation corresponding to (6.7).

Linearization around the approximate solution. We wish to study the differential
of Fm around our approximate solution, (φ0, c0). Introduce the space

V := {φ ∈ C∞([0, 1]) | φ(0) = φ′(0) = φ(1) = φ′(1) = 0} .

The tangent space to Vm × R>0 is V × R. The linearization

(DFm)(φ,c) : V × R→ C∞0 ([0, 1])

around a point (φ, c) ∈ Vm × R>0 is given by

(DFm)(φ,c) (u, k)

=u′′(λ) + 2m
u′(λ)

1 + λm
− k

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(
(φ′(λ) +m)2 + φ(λ)φ′′(λ)

)
+

c

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(∫ λ

1
2

mu(x)

φ(x)2
dx

)(
(φ′(λ) +m)2 + φ(λ)φ′′(λ)

)

− c

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(2(φ′(λ) +m)u′(λ) + u(λ)φ′′(λ) + φ(λ)u′′(λ)) .

(6.17)

Now consider the linearization around the approximate solution (φ0, c0). Taking
into account (6.16) and the fact that φ0(λ) = O(m), we have for the various terms in
the linearized operator:

u′′(λ) + 2m
u′(λ)

1 + λm
= u′′(λ) +O(m);

k

m2

exp
(∫ λ

1
2

m
φ0(x)

dx
)

1 +mλ

(
(φ′

0(λ) +m)2 + φ0(λ)φ
′′
0(λ)

)
= −2 k (3λ2 − 2λ) +O(m);

c0
m2

exp
(∫ λ

1
2

m
φ0(x)

dx
)

1 +mλ

(∫ λ

1
2

mu(x)

φ0(x)2
dx

)(
(φ′

0(λ) +m)2 + φ0(λ)φ
′′
0(λ)

)
= O(m);

c0
m2

exp
(∫ λ

1
2

m
φ0(x)

dx
)

1 +mλ
(2(φ′

0(λ) +m)u′(λ) + u(λ)φ′′
0(λ) + φ0(λ)u

′′(λ)) = O(m).

Hence we see that the differential of Fm at the point (φ0, c0) is

(DFm)(φ0,c0)
(u, k) = u′′(λ) + 2 k(3λ2 − 2λ) +O(m).
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Lemma 6.15. The map

D : V × R→ C∞0 ([0, 1])

(u, k) 	→ u′′(λ) + 2 k(3λ2 − 2λ)
(6.18)

is an isomorphism.

Proof. Fix f ∈ C∞([0, 1]) and consider

u′′(λ) + 2 k(3λ2 − 2λ) = f(λ)

as a differential equation for u(λ). The general solution is given by

u(λ) =

∫ λ

0

(∫ y

0

f(x)dx

)
dy − 2 k

(
λ4

4
− λ3

3

)
+ C1 λ+ C2

for constants C1, C2. There is a unique choice of k, C1, C2 such that this solution u
lies in V, and this choice is

C1 = C2 = 0 and k = −6
∫ 1

0

(∫ y

0

f(x)dx

)
dy.

So we have found an explicit inverse to the zeroth-order part of (DFm)(φ0,c0)
.

Remark 6.16. The linearisation of the more complicated equation corresponding
to (6.7) is in fact just the same asDFm, up to O(m) terms, so Lemma 6.18 also applies
to that case.

Some estimates. We recall two results that are essential to obtain an exact solu-
tion from the approximate one. The first one is a quantitative version of the usual
fact that invertibility is an open property, while the second is a quantitative version
of the Inverse Function Theorem.

Lemma 6.17 (Lemma 7.10 in [Fin04]). Let D : B1 → B2 be a bounded linear map
between Banach spaces, with bounded inverse D−1. Then any other linear bounded
operator L such that ||D−L|| ≤ (2 ||D−1||)−1 is also invertible, and ||L−1|| ≤ 2 ||D−1||.

Lemma 6.18 (Theorem 5.3 in [Fin04]). Let F : B1 → B2 be a differentiable map
between Banach spaces, with derivative DF : B1 → B2 at 0. Assume that DF is
an isomorphism, with inverse P , and let δ be such that F − DF is Lipschitz on the
ball B(0, δ) with a Lipschitz constant l ≤ (2||P ||)−1. Then, for any y ∈ B2 such that
||y−F (0)|| < δ (2||P ||)−1 there is a unique x in B1 such that ||x|| < δ and F (x) = y.

In order to apply these results we embed V ×R and C∞0 ([0, 1]) into Banach spaces
as follows:

• the first Banach space is the closure V of V in Cl+2,β([0, 1]), with the usual
Hölder norm, for l large enough and 0 < β < 1. We can then take the direct
sum of this space with R, and we let

(V × R, ||.||) be the resulting Banach
space;

• for C∞0 ([0, 1]), we’ll just consider it as a subset of Cl,β0 ([0, 1]).
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Then we have the following estimate for the norm of the operator D defined in
equation (6.18) (that is the zeroth-order part of the linearization of Fm around the
approximate solution (φ0, c0)):

‖D(u, k)‖Cl,β ≤ ‖u′′‖Cl,β + 2 |k| ‖3λ2 − 2λ‖Cl,β ≤ ‖u‖Cl+2,β + 22 |k| ≤ 22 ‖(u, k)‖.

In order to prove a similar estiamate for the inverse, fix f ∈ Cl,β0 ([0, 1]) and let
(u0, k0) := D−1(f). Then

|k0| =
∣∣∣∣6 ∫ 1

0

(∫ y

0

f(x)dx

)
dy

∣∣∣∣ ≤ 3 sup f ≤ 3 ‖f‖Cl,β

‖u0‖Cl+2,β =

∥∥∥∥∥
∫ λ

0

(∫ y

0

f(x)dx

)
dy + 2 k0

(
λ4

4
− λ3

3

)∥∥∥∥∥
Cl,β

≤
∥∥∥∥∥
∫ λ

0

(∫ y

0

f(x)dx

)
dy

∥∥∥∥∥
Cl,β

+ 2 |k0|
∥∥∥∥λ4

4
− λ3

3

∥∥∥∥
Cl,β

< 70 ‖f‖Cl,β

This shows

‖D−1(f)‖ < 73 ‖f‖Cl,β .

Lemma 6.19. For all sufficiently small m > 0 the map (DFm)(φ0,c0)
is a linear

isomorphism of Banach spaces. Moreover the norm of its inverse is less than 146.

Proof. We can use Lemma 6.17; indeed, we know that (DFm)(φ0,c0)
−D = O(m)

so for m small enough we’ll have that the norm of the difference is less than 1
146 , as

is needed to apply the Lemma.

Remark 6.20. In fact precise estimates for the norm of (DFm)(φ0,c0)
and its

inverse are not needed. We only require that the norm of the inverse can be controlled
by a quantity which is independent of m and l. In what follows we’ll write simply N
for the norm of (DFm)

−1
(φ0,c0)

.

6.3.2. Proof of Theorem 6.10. We showed that for m small enough we have
an approximate solution (φ0, c0), depending on m, to the equation Fm = 0, such that

Fm(φ0, c0) = O(m3).

Moreover, we know that the differential of F around this approximate solution is an
isomorphism of Banach spaces. Our next step is to use Lemma 6.18 to show that for
small enough m we have a genuine solution to Fm = 0.

Let Gm : V × R→ L∞
0 ([0, 1]) be defined as

Gm(u, c) := Fm(φ0 + u, c0 + c).

The differential of Gm at 0 is just (DFm)(φ0,c0)
, so it is an isomorphism. Then Lemma

6.18 tells us that, if δ is the radius of a ball over which Gm −DGm is Lipschitz with
a constant that is less than 1

N , then for any y such that ‖y − Gm(0)‖ ≤ δ
N there is a

unique x such that ‖x‖ < δ and Gm(x) = y.
As Gm(0) = O(m3), in order to apply the result, we need to show that δ can be

chosen to vanish slower than m3 as m→ 0.
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However we also want (Φ,C) to satisfy some positivity conditions: Φ should be
strictly positive in the interior of [0, 1], and C should be positive. The approximate
solution satisfies these conditions, however φ0(λ) = O(m) and c0 = O(m2); so in
order to preserve positivity we need to choose a radius δ that goes to 0 faster than
m2 as m→ 0

The next result shows that we can choose δ as required.

Lemma 6.21. Let k ≥ 2. If δ ∈ O(mk) then for m small enough Gm −DGm is
Lipschitz on B(0, δ) ⊂ V × R with Lipschitz constant smaller than 1

N .

This tells us that for a small enough m we can choose δ in such a way that the
solution of the equation that we have found satisfies the positivity conditions; it is
enough to use Lemma 6.21 for k = 2 + 1

2 .
Proof. [Proof of Lemma 6.21] Let Nm := Gm − DGm be the nonlinear part of

Gm. For a, b ∈ B(0, δ), the Mean Value Theorem implies ‖Nm(a) − Nm(b)‖Cl,β ≤
‖a− b‖Cl+2,β · supz∈B(0,δ)‖(DNm)z‖. For z ∈ B(0, δ),

(DNm)z (ϕ) = (DGm)z (ϕ)− (DGm)0 (ϕ) =

= (DFm)(φ0,c0)+z (ϕ)− (DFm)(φ0,c0)
(ϕ).

We will show that this quantity is O(m), if δ ∈ O(m2). Since O(mk) ⊆ O(m2) for
k ≥ 2, this will give us the thesis.

To prove the claim, let z =: (ỹ, c̃); if δ is O(m2), since ‖z‖ ≤ δ also ỹ = O(m2)
and c̃ = O(m2). The linearization of Fm at (φ, c) := (φ0, c0) + z is given by (recall
equation (6.17))

(DFm)(φ,c) (u, k)

=u′′(λ) + 2m
u′(λ)

1 + λm
− k

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(
(φ′(λ) +m)2 + φ(λ)φ′′(λ)

)
+

c

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(∫ λ

1
2

mu(x)

φ(x)2
dx

)(
(φ′(λ) +m)2 + φ(λ)φ′′(λ)

)

− c

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(2(φ′(λ) +m)u′(λ) + u(λ)φ′′(λ) + φ(λ)u′′(λ)) .

Let us consider the series expansions:

exp

(∫ λ

1
2

m

φ(x)
dx

)
=exp

(∫ λ

1
2

m

φ0 + ỹ
dx

)
= exp

(∫ λ

1
2

m

φ0
− m

φ2
0

ỹ + . . . dx

)

=exp

(∫ λ

1
2

m

φ0
+O(m) dx

)
= exp

(∫ λ

1
2

m

φ0
dx

)
+O(m),

(φ′(λ) +m)2 + φ(λ)φ′′(λ)

=(φ′
0 + ỹ′ +m)2 + (φ0 + ỹ)(φ′′

0 + ỹ′′)

=(φ′
0 +m)2 + (ỹ′)2 + 2(φ′

0 +m)ỹ′ + φ0 φ
′′
0 + ỹ φ′′

0 + φ0 ỹ
′′ + ỹ ỹ′′

=(φ′
0 +m)2 + φ0 φ

′′
0 +O(m3).
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So we have

k

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(
(φ′(λ) +m)2 + φ(λ)φ′′(λ)

)
=

k

m2

exp
(∫ λ

1
2

m
φ0
dx
)

1 +mλ

(
(φ′

0 +m)2 + φ0 φ
′′
0

)
+O(m).

For the other terms, recalling that c = c0 + c̃ = O(m2), we have simply

c

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(∫ λ

1
2

mu(x)

φ(x)2
dx

)(
(φ′(λ) +m)2 + φ(λ)φ′′(λ)

)
= O(m)

c

m2

exp
(∫ λ

1
2

m
φ(x)dx

)
1 +mλ

(2(φ′(λ) +m)u′(λ) + u(λ)φ′′(λ) + φ(λ)u′′(λ)) = O(m).

As a consequence

(DFm)(φ,c) (u, k)

=u′′(λ) + 2m
u′(λ)

1 + λm
− k

m2

exp
(∫ λ

1
2

m
φ0
dx
)

1 +mλ

(
(φ′

0 +m)2 + φ0 φ
′′
0

)
+O(m)

= (DFm)(φ0,c0)
(u, k) +O(m).

Then for z ∈ B(0, δ), ‖(DNm)z‖ is O(m). Hence for m small enough, on a ball of
radius m2 the Lipschitz constant of Nm will be smaller than 1

N .

This settles the problem of existence of a solution (Φ,C) ∈ Cl+2,β([0, 1]) × R of
Fm(y, c) = 0. To prove smoothness we consider the existence result we just showed
for increasing values of l, with corresponding solutions Φl. The uniqueness statement
in Lemma 6.18, together with the fact that ‖u‖Cl,β ≤ ‖u‖Cl+1,β , implies that actually
all the various Φl are the same function, that is of course smooth.

Remark 6.22. Given our previous remarks, it is straightforward to check that
the same proof works for the more complicated equation corresponding to (6.7).
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