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CONICS, TWISTORS, AND ANTI-SELF-DUAL TRI-KAHLER
METRICS*

MACIEJ DUNAJSKIT AND PAUL TOD#

Abstract. We describe the range of the Radon transform on the space M of irreducible
conics in CP? in terms of natural differential operators associated to the SO(3)-structure on
M = SL(3,R)/SO(3) and its complexification. Following [27] we show that for any function F
in this range, the zero locus of F' is a four-manifold admitting an anti-self-dual conformal structure
which contains three different scalar—flat K&hler metrics. The corresponding twistor space Z admits
a holomorphic fibration over CP2. In the special case where Z = CP3 \ CP! the twistor lines project
down to a four—parameter family of conics which form triangular Poncelet pairs with a fixed base
conic.
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1. Introduction. The twistor construction of Penrose [31], and its Riemannian
version developed by Atiyah—Hitchin—Singer [1] give one-to-one correspondences be-
tween anti-self-dual conformal structures [y] on a four-manifold X, and complex
three—folds Z with a four parameter family of rational curves. More conditions need
to be imposed on Z if the conformal structure is to contain a Ricci-flat metric. In
this case there exists a holomorphic fibration £ — CP' with a twisted symplectic
form on the fibres. A weaker condition is needed [32] if there exists a K&hler metric
in [y]. Then Z admits an anti-canonical divisor given by a section of xz /2, where
Kz is the holomorphic canonical bundle of Z. While there exist many explicit ex-
amples of twistor correspondences in both Ricci—flat [19, 36], and Kéahler [26] cases,
the resulting metrics in the conformal class are special in that they admit continuous
groups of isometries. There are some notable exceptions in the Ricci—flat case, if the
twistor space fibers holomorphically over the total space of a line bundle O(k). The
corresponding hyper-Kéahler metrics arise from the generalised Legendre transform
[24], and admit tri-holomorphic Killing spinors [8], but in general no Killing vectors.

Much less is known about the K&hler case. Moraru [28, 27| considered twistor
spaces which holomorphically fiber over CP?. He identified a set of second—order
linear operators on the space M of irreducible plane conics in CP?, and showed how
any function F in the kernel of these operators gives rise to a conformal structure on
the hypersurface F' = 0 in M. Moraru’s papers do not contain explicit examples, and
an attempt to find such examples led us to this work. We show that some of Moraru’s
operators on M are redundant, and we construct a set of independent operators out
of natural geometric structures on M: M is an irreducible symmetric space carrying
an Einstein metric of negative scalar curvature, and a symmetric cubic three—form
which, together with the metric, gives an SO(3) structure in the sense of [4], [15].
The corresponding operators characterise the range of the Penrose-Radon transform
defined below on the space of conics.

*Received May 17, 2019; accepted for publication December 9, 2019.

TDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilber-
force Road, Cambridge CB3 0OWA, UK (m.dunajski@damtp.cam.ac.uk).

fThe Mathematical Institute, Oxford University, Woodstock Road, Oxford OX2 6GG, UK
(tod@maths.ox.ac.uk).

621



622 M. DUNAJSKI AND P. TOD

We find several explicit functions in the range of this conic Penrose—Radon trans-
form, and construct corresponding conformal structures [y]. There is a preferred met-
ric, which we call the barycenter metric, in each [y]. The barycenter metric admits
three linearly independent solutions to the conformal Killing—Yano equations. Each
such solution gives rise to an explicit conformal factor which reswcales the barycenter
metric to a Kéhler metric. K&hler metrics in a given ASD conformal class (X, [v])
correspond [10] to parallel sections of a certain connection on a rank ten vector bundle

E=AN (X))o A (X))o A _(X).

The ASD conformal structures arising from our construction admit a three—
dimensional space of parallel sections of E. We call them tri-Kéhler.
In the next Section we shall introduce a GL(2)-structure isomorphism

p:TnM @ C — Sym*(C?)

on the space of irreducible real conics with no real points M = SL(3,R)/SO(3), and
use it (Proposition 2.3) to construct an Einstein metric and a cubic three-form on M.
They will both be given in terms of the bi-linear pairing <, >y: Vi X V,, = V4 ok
given by (2.7), where V,, = Sym”(C?). In §3 these structures give rise to a metric
Laplacian A,, and another second order differential operator O] with values in A'(M)
which characterise (Theorem 3.1) the range of the Penrose-Radon transform on conics
as follows: if U is a neighbourhood of an irreducible conic C,,, C CP? corresponding to
m € M, and f € HY(U, Ocpz2(—1)). Then the Penrose-Radon transform F : M — R
of f satisfies the system of PDEs

1 1
AGF = 12F7 OF = 24dF. (1.1)
Theorem 3.1 makes some of the differential operators introduced in [27] redundant,
and clarifies the geometric meaning of the remaining operators.

In §4 we introduce a four-manifold X as a hyper-surface in M corresponding
to the zero set of any function in the range of the Penrose-Radon transform. We
show (Theorem 4.3 and Theorem 4.4) that this conformal structure is anti-self-dual,
and that it contains a barycentre metric. We shall give several explicit examples
of barycentre metrics, including a Ricci-flat example. Finally in §5 we consider a
holomorphic fibration of the complement of a rational normal curve in CP? over CP%.
We characterise (Proposition 5.6 and Proposition 5.4) the four—parameter family of
conics which arise as images of lines in CP? under a quadratic map. This brings up
some classical 19th century projective geometry involving loci of Gergonne points and
the Poncelet porism [16, 7] . We shall prove

THEOREM 1. Let Q : CP? \ CP' — CP? be the projectivisation of the moment
map for the symplectic SL(2,C) action on the space of cubics with at least two dis-
tinct roots. The image of lines in CP? \ CP' are conics in CP? corresponding to a
hypersurface X C M. If x € X, then there exists a triangle inscribed in the corre-
sponding conic C, and circumscribed about a base conic (Z1)? + (Z%)? + (Z%)? = 0.
FEquivalently

2Tr(A,?) — Tr(A,)? =0,

where Ay = AyT is the non-singular symmetric 8 by 8 matriz defining the conic C..
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2. The space of plane conics.

2.1. GL(2) structure and twistor theory. Let Z = [Z', Z? Z3] be the ho-
mogeneous coordinates in CP?. A general conic in CP? is of the form

f([2),A) = ZAzZT =0, (2.2)

where A is a complex symmetric matrix. Thus the space of conics is P(Sym?(C?)) =
CP°. We shall consider the five-dimensional space M¢ of irreducible conics normalised
by det(A) = 1. The projective group PSL(3,C) acts on M¢ transitively by

A — NANT where N € SL(3,C), (2.3)

so Mc = SL(3,C)/SO(3,C) as SO(3, C) stabilises the conic A = 1. The conic A = 1,
or equivalently ZZ7 = 0 admits no real points, so it belongs to CP? \ RP?. Tts
SL(3,R) orbit consists of conics with real coefficients but no real points. The real
five-dimensional manifold of such conics is M = SL(3,R)/SO(3,R). Tt is a real slice
in the complex manifold Mc.

The vector fields in M¢ can be canonically identified with homogeneous fourth
order polynomials in two variables - this will play a role in what follows. To formalise
it, let us first make a definition

DEFINITION 2.1. A GL(2) structure on an (n+1)- complex dimensional complex
manifold Mc is an isomorphism:
T Mc = Sym™(S) (2.4)
where S is a rank—two complex symplectic vector bundle over Mc.

This structure was called a paraconformal structure in [9], and G,, structure in [5].
In practice a GL(2) structure is specified by a one—form S on M¢ with values in
Sym™(C?). Let e',e?,...,e""! be (n + 1) independent one—forms on Mc. Then

1
S=t"el fnt"lse? + in(n — Dt 2% @3 s e

and the isomorphism (2.4) is given by p(V) = VJ S, where V € T'(TM¢) and J
denotes contraction of a vector field with a form.

For even n = 2! there are two real forms of the GL(2) structure. In the indefinite
case the one forms el,... e"*! can be taken to be real, and [s,t] € RP'. In the
positive definite case

SO0 = (~1)'AS(=1/X), where X =t/s.

In what follows we shall be interested in the case n = 4, where the holomorphic
five-manifold M¢ admits real form M with a positive definite quadratic form. In this
case

S[s,t] = t* e + 4t3s ? + 61757 €3 — 4ts® 2 + stel, (2.5)
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where the one—forms e!, e? are complex, and e is real.

PROPOSITION 2.2. The space of plane conics carries a GL(2) structure.

Proof. All plane conics are rational curves and two neighbouring conics intersect
at four points. Thus if C,, = CP' is a conic corresponding to m € Mc then the
normal bundle N(C,,) = O(4). The obstruction group H'(CP', O(4)) = 0, so Mc is
a locally complete family, and there exists a Kodaira isomorphism [25]

TnMc = HO(Cm7 N<Cm)> = Sym4((c2) (2.6)

identifying vectors tangent to M¢ with binary quartics. Therefore M carries a GL(2)
structure. The isomorphism (2.6) is specified by a fourth-order polynomial .S homo-
geneous in two variables and with values in A*(Mc¢). Given such S, the binary quartic
corresponding under (2.6) to a vector field V' € T M is the contraction V' J.S. O

2.1.1. Transvectants and Invariants. In the reminder of this section we shall
use the GL(2) structure on Mc to construct a conformal structure, and a symmet-
ric cubic three—form. Both structures originate from classical invariants of binary
quartics [14], and these invariants can be conveniently introduced using the transvec-
tant /spinor notation together with some representation theory of s((2,C).

Let V; = Sym'(C?) be the (I + 1)-dimensional complex vector space of binary
quantics of degree [. These quantics are the same as polynomials in [s, t| homogeneous
of degree [. Given two binary quantics ¢ € V,, and ¢ € V}, the kth transvectant is a
map <, >g: Vi X V,, = Vi, _ok given by a quantic of degree [ +n — 2k

< @, >pi= Z(—l)ﬂ i) e300 oo (2.7)

k , <k) e Oy
j=1

This map is SL(2,C) equivariant, and is symmetric for k even and skew-symmetric for
k odd. Where possible, we will use the notation (2.7) instead of the spinor notation
[12] which we summarise in the Appendix. For example if ¢ € V5 and ¢ € Vj then
< ¢,1 > is a cubic proportional to qb(ADEz/)BC)DE.

2.2. Conformal structure and Einstein metric. In the next Proposition we
shall give a twistor construction of an Einstein metric on a five dimensional manifold
M which is a real slice of Mg. The metric itself is well known in the theory of
symmetric spaces [18]. Our treatment will follow the twistor procedure of [11].

PROPOSITION 2.3. Let [gc] be the conformal structure on the space of complex
irreducible conics Mc = SL(3,C)/SO(3,C) such that the vector field V € T'(T Mc¢)
is null iff the corresponding 4th order polynomial has a vanishing transvectant <
V.V >,=0.

o There exists a real form M = SL(3,R)/SO(3) of Mc where [gc] gives a posi-
tive definite conformal structure [g], and such that there exists a Riemannain
metric g € [g] which is Einstein, has negative scalar curvature, and admits
SL(3,R) as its isometry group.

e Local coordinates (a,b,p,q,r) can be used on M to parametrise conics, such
that then

g = 8[(2da + db)? + 3db* + > 40dp? 4 2272 dr? 4 192 (dg — pdr)?]. (2.8)
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Proof. A vector in V€ C® T M is null if the corresponding quartic has vanishing
transvectant i. e.

<V, V >4=4ae—866+672, where V = at* +45t3s+67t%s% +46ts® +es*. (2.9)

This nullity condition can be interpreted in terms of the roots of V: they can be
transformed to vertices of a regular tetrahedron in CP! (if they are distinct), or at
least three of the roots coincide! [14].

To find explicit forms of the metric and the GL(2) stucture on M we use the fact
that any symmetric matrix A is of the form

A= BBT, (2.10)

where B is upper triangular, so that the general conic (2.2) is ZBBTZT = 0. A
convenient parametrisation of B turns out to be

where (a,b,p, q,r) are real coordinates on M. To single out the irreducible conics we
chose the normalisation det(B) = 1 which corresponds to a + b+ ¢ = 0.

To find the paraconformal structure consider a neighbouring conic where B is re-
placed by B+dB in (2.2). It will intersect the conic (2.2) at four points corresponding
to the roots of a quartic

of
S(s,t) = Z E|Z:Z([s,t],3)dBaﬂa (2.11)
a,f @

where Z(][s,t], B) is a rational parametrisation of the general conic and det(B) = 1.
To find this rational parametrisation consider a conic W = [W! W2 W3] given by

(Wh2+ (W22 + (W3 =0

which is (2.2) with B = 1. Any other conic is projectively equivalent to this one, so
we can use (2.11) with f = ZBBTZ” | and the parametrisation

Z=WB™', where W = [s? 1% 2ts,i(s* + t?)]
= [eH(s? — 12), 2Pt — e Hop(s? — £2), cH(pr — g)(s? — 12)

—2rebst + ie (5% 4 t2)].
The formula (2.11) leads to
S=wWow”, where Q=B"'dB+ (B 'dB)".

Note that the SL(3,R) action on M takes the form B — NB. This does not pre-
serve the upper-triangular matrices B, but it preserves B~'dB. Therefore both the

1Such a conformal structure exists on any odd-dimensional manifold with a GL(2)-structure.
The geometric interpretation in terms of roots of the associated homogeneous polynomial also exists,
but is a little more complicated [12]. For even n, say n = 2l, the real forms are as follows: in the
indefinite case the quadratic form < p(V'), p(V) >9; has signature (I,! + 1), and is invariant under
SL(2,R); in the positve definite case this quadratic form is positive—definite, and is invariant under

SU(2).
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paraconformal structure encoded in the quartic S and the resulting metric (2.9) are
SL(3,R) invariant. Computing S explicitly gives

. . 2 1 1
S(S,t) = t4(Q11 — Q33 — 2’LQ13) + 4t38(2923 — ng) + 6t282(5922 — 5911 — 5933)

+A4ts® (i3 + Qa) + 51 (21 — Daz + 2iQ3).
This leads to the positive definite SL(3)-invariant conformal structure (2.9)
g =4(0%, + Q3 + Q35) + (U1 — Qs3)? + 3(u1 + Qa3)? (2.12)

where we have used Q11 + Q99 + Q33 = 0. To find the explict form of the conformal
structure compute

—da —db e*tadp €2t (dg — pdr)
B~ ldB = 0 db e~ bdr
0 0 da

Using (a, b, p, q,r) as real coordinates on M yields the Riemannian metric (2.8). We
verify by explicit calculation that this metric is Einstein with negative scalar curva-
ture equal to —15/16. The isometry group of (2.8) is SL(3,R). The Killing vectors
generating this goup are given in the Appendix by the formula (A2). O

2.3. SO(3) structure on the space of conics. In this Section we shall reveal
an additional structure on the space of irreducible conics which will (in §3) play a role
in a characterisation of the Penrose-Radon transform on coincs.

DEFINITION 2.4. An integrable SO(3) structure on a five-dimensional manifold
M is a pair (g, G), where g is a Riemannain metric, and G is a symmetric three—form
on TM such that [15, 4].

VaGpea = 0, 6Ga(chde)a = 9(bcYde)s Gabcgab =0. (213)

We have seen that the fourth transvectant endows the space of conics with an
Einstein metric. We shall now see that another transvectant operation gives an SO(3)
structure on (M, g).

PROPOSITION 2.5. Let g be the FEinstein metric on the space of conics from
Proposition 2.3, such that g(V,V) =< V,V >4. The symmetric cubic form
G:TMoOTMOTM — R

given by G(V,V,V) =<< V|V >3,V >4 gives an integrable SO(3) structure.

Proof. We will establish the identities (2.13) directly. The GL(2) structure S €
AY(M) ® Sym*(C?) is given by (2.5), where e,..., €% is the pentad of one-forms on
M given by

et = —2(db + 2da + ie** T (dg — pdr)), €* = —(eT?Pdp —ie*"tdr), €3 = 2db,

ed =el, et =—¢2

This gives rise to the metric g from Proposition 2.3, and a symmetric three—form G
as

g=2e' 0’ —8e? ®et +6e% 0P (2.14)
G=6clooed+20ct0ed—oedoed—coetoer - 0e?oe?),
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where
uUu®OU =

(u®v—|—v®u)

UGUOW:=

DD~ N

(u®v®w+u®w®v+v®u®w+v®w®u
+w®U®v+w®v®w>.
The metric and the cubic form satisfy (2.13). Moreover the SL(3) action (2.3) on M

preserves G. O

3. The Penrose-Radon transform on the space of conics. Let £ — CP?
be a holomorphic line bundle such that L|c, = Ogpi(—2) for any conic and let
f € HY (U, L), where U is a neighbourhood of C,, in CP?. Restricting f to a conic
C,», and integrating over a contour I' C (), defines a function on M by

F(m) = ﬁcc f[Z (s, t,m), Z%(s,t,m), Z3(s,t,m)](sdt — tds). (3.15)

If [Z1, Z2, Z3] are three quadrics in [s, t], then

6 = f(Z')(sdt — tds), df = (Zi% + 1 )ds A dt.

Thus we require f to be homogeneous of degree —1 in Z. For example taking

Z2
f=7>i
VAYVA
and using a contour enclosing the singularity at [s, ] = [1,0] in CP* gives (on taking
the real part)?
e~
T g2 4 220 (3.16)

3.1. Differential operators on SL(3,R)/SO(3), and the range of the
Penrose—Radon transfom. We aim to characterise the range of the transform
(3.15) as the kernel of some differential operators on M. One natural operator is
the metric Laplacian A, = 9"V, V, of the metric (2.8) explicitly given in the Ap-
pendix by (A3). Another operator can be defined for any SO(3) structure as follows.
Define a second-order operator [ with values in A'(M) by

OF = (G,"V, V. F)e?,
where the indices are raised and lowered by g and its inverse.

2Some other solutions are obtained as the residues:

q—pr re® + ieb

2
Z/(20)" = "y B/ 2s) = Sy

r—ieb—

W, ZQ/(Z1)2 *)peiu'ib, ]./Zl — —e27b,

Z3/(Z1Z2) —
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THEOREM 3.1. Let the function F : M — R belong to the image of the Penrose—
Radon transform (3.15). Then

1

1
AgF =~ F, OF = g dF. (3.17)

Proof. This must follow from the abstract machinery of the Penrose transform [2],
but here we present a concrete proof based on an explicit computation which hinges on
a link between plane conics and the geometry of a certain fifth-order ODE. We start
with the integral (3.15) and transform it by observing that each Z* is homogeneous
of degree 2 in the pair [s,], while f is homogeneous of degree —1 in the Z?. Thus,
with A = t/s,

F(m) = § #(Z'()ax

Introduce z(\) = Z1(\)/Z3(N),y(\) = Z%(\)/Z3()\) to obtain
Fim) = ¢ o)z

where f(z,y) = f(z,y,1).

The pair (z(X),y()\)) defines a conic in parametric form but the conic can also be
defined by giving y as a function of z. In this case, with overdot for d/d\, we may
calculate

Ay P77
P ™ pop— gz
and then
B d2y - A(Z3)3
Todx? (2321 — Z173)3’

q:

where
A =2 7223 — Z322) + Z2(Z° 2" — 2" Z3) + Z3(Z' 22 — Z°ZY),

which can be calculated from §2.2, with the result A = 8¢, in particular A is constant.
It is now easy to see that

dX dx 1/3 A-1/3
e A~1/3q
730 28 ¢ “

and so, up to a multiplicative constant, which we ignore
F(m) = § Fo (@) da. (3.18)
This will be the form of the integral with which we calculate. Both y(x) and ¢ depend

on m, the conic on which the integral is performed. It is straightforward to see that
(3.18) agrees with the formula on p47 of [28].
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For the next stage we review and revise some theory from [9]. Consider the
following differential equation for dependent variable y(z):

40 3 TS
G) _ A _ 2 grs 3.19
Y (T, 9,0, 4,7, ) o2 0 (3.19)
withp=v',q=1vy",r =y",s=19"". It is well-known, but in any case easy to see, that
the solutions of (3.19) are the conics (first observe that the equation can be written
as (¢~2/3)"" = 0). Write the solution as

y=2Z(x,X?*), a=1,...,5,

so that X# are coordinates on the solution space, that is on the space of conics, and
concrete indices are bold. It will be convenient to choose the X to be the derivatives
of y from order zero to order four at some fixed but arbitrary choice of z. Call these

(v,p.q,r,s).
Following [9], we suppose that there is a metric and spin-structure on the solution

space such that the gradient of Z is a quartic with a quadrupole root
Yai=Zq=1lalBlolD, (3.20)

for some spinor ¢4 (and abstract indices are italic). There is an abstract justification
for this assumption, as the space of conics admits the GL(2) structure of Proposition
2.2. With prime for d/dz we may suppose

/'y = Poga

for some P to be found, where 04 completes a spinor basis, so that o4t = 1 and
€AB = 0alp — 0pLa. Now necessarily

0oy = Qua,
for some @ also to be found. Next we calculate
Pa = (¥.a) =4Poatpictpy,

and continue in the same way to express q q,r 5 and s 4 in the spinor dyad. One more
derivative together with (3.19) gives a set of identities which fix P and Q.
Defining the metric gqp from €4 p in the standard way as

~ ~ W_X_Y_ Z
Yap = YABCD.PQRS = €4 €B €C €pD)CPWEQXERYESZ

we may express all coordinate gradients X, in the spinor dyad and hence calculate

all inner products §*°X X l?b, and then deduce the metric in these coordinates. For
the covariant metric we find

x?s _ 5r*  s®  rs _ r® 18 s _ _r_ 1
2495 162q% 72q4 72q4 545 72 q% 12q3 8q3 24q2)
% s r? r 1 0
( ) 24q3 18q% 24q3 24q92)
- _ !
Jab * * 24q?) 0 0 ’
* * 0 0
* * * O

where asterisked terms are determined by symmetry. It is straightforward to check
that this metric is Einstein with R = —60 and that it is indeed the metric of §2.2
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multiplied by the constant factor 1/64. The corresponding éabc with indices arranged
like that is readily found to be 8G,*¢, again with G ,*¢ as in §2.3. These changes modify
the eigenvalues in (3.16) so that those equations become

AF = —EF OF = de (3.21)

and our aim is to deduce these equations from the integral expression (3.18) for F,
which can now be written

F(X?) = j{f(x, Z(z, X?))q 3 dx.

Calculating in abstract indices we obtain
- L
V.F = % gZaql/?) + *fq_2/3% dx
y 3

2
V.V, F = f (g J;Z Zy + g—fv Z ) q'/3dz

1 of 1
+% <q2/3f(ZaQb + Zyqa) + 3

. - 2
2/3 _ = 75/3
3 3y fa™*"Va.qp 34 qaqb)> dz.

For AF we need to note
3 2.2y =0 =02 = 5" Z.qy = Da, §°daqy — 244° =0,
all of which follow from the expressions for §**X 2.X "”b, for then

- 2 . 1
AF=—3 ]{24q1/3fd1: =— 36F

as required. .
For OF we need expressions for G,**X%X¢ which can be obtained from the
coordinate gradients X?, in the spinor dyad. In particular we find

G2, 7. =0= Gabcqch —2qZ, = GV T+ 7, = éabc@ch +Qqa = éabcqch +2qq,-

Then
iF:/( a'’?f,dz + q1/3fydz 54 *2/3qu 54 *5/3f( 2qdq)> dx
. . 1
_ - 1/3 A - —2/3 — ZJF
/<3q fyd +9fq dq) dx 3d )

again as required, establishing the claim. O

In the Appendix (formula (A5)) we give explicit expressions for the second order
operator anihilating the functions in the range of (3.15).

The next proposition shows that the two sets of equations (3.17) are not inde-
pendent: AjF = —ﬁF is implied by OF = idF. We shall establish a slightly more
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general result applicable to other forms of integrable SO(3)-structures with arbitrary

constant and non—zero Ricci scalar

PROPOSITION 3.2. Let (M, g,G) be a five-dimensional integrable SO(3) structure
such that the Ricci scalar R of g is constant, and different than zero. Let F': M — R
satisfy

G V)V F = KV, F (3.22)

for some constant k. Then

R
A F = puF, where p=6r>+ 0 (3.23)

Proof. Consider the SO(3) structure (2.13), and trace (2.13) to obtain

ef _ l d abe __ %
GepaG™y 129ab and  GupcG Tk
Commute derivatives on G . to obtain
d € C
Rabc ( G Pe = 0, (324)

where Rp.? is the Riemann tensor of g. Define
Xabed = 6G° 1, Gedey Focad = Xalbelds

and claim

2 2
Xabed = X(abed) T ngcad + ngdam (3.25)

with
X(abed) = 6G° (44 Gedye = Ga(bYed)-
Expand (3.24):
Ry, "G + R, °GT + R, fdee _
and contract with Gy, to deduce

7
RapedF = = Rabpgs (3.26)

rq 4

after relabeling of indices.
The system of interest is (3.22, 3.23) Compress notation by writing F, = V,F
then from (3.22)

6K2F* = 6G°G %V .V F, = X%V .V 4F,

_ (ga(cgde) + chdae + %Fcead)vcvdFe_

Here the first term is

1 1
g(gacgcle + gudgec + g“eng)VchFe _ g(vaAF 4 2vcvaFc)

1
= g(va + 2R®Fy, + 2V°AF)

2
= V*AF + —RF).
AV +15R)
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The other two terms become

chdachvdFe _ _%chaeRcdfeFf
= —%.ZR‘” b = —%R” Fl = —%RF“
Putting them together
6K%F, = V,(AF — %RFL
whence
p= 65>+ n (3.27)

Conversely, a solution F' of (3.22) with some s will necessarily satisfy (3.23) with the
value of u given by (3.27), possibly after adding a constant to F. O

3.2. Examples. The general solution of the system (3.17) is given by integrating
the cohomology classes of functions on suitable U ¢ CP? along conics. An explicit
formula for F' seems to be out of reach, but there is a class of solutions of the form

F=(y1+7p+7r+ (ya+75p)(a+2b)e " + (v6 +v7g +7s7)e 2%, (3.28)

where (91,...,7s) are arbitrary constants. In particular all solutions which are inde-
pendent of (g, r) are of this form with 3 = vz = 75 = 0.

Another class is obtained by looking for ' which does not depend on r. Setting
u = /p2e2(b—a) 4 ¢=2(2a+b) Jeads to a general solution of the form

’K  0’K

0q? + ou? 0

1
F=—¢2K(u,q) + Fi(a,b,p), where

u
and Fj(a,b,p) is of the form (3.28) with v3 = 7 = 73 = 0. More examples arise
from utilising the SL(3) action on solutions to (3.17) induced by the action (2.3). For

example by taking F = re 2% = (2‘372:)2, and replacing A by A = NANT.

4. Anti-self-dual conformal structures in dimension four. This is the
main section of our paper. Given a function F' in the range of the Penrose-Radon
transform from §3, we shall construct an anti-self-dual metric v on the hypersurface
X given by the zero set of F'in M. The twistor space of (X, ) fibers holomorphically
over CP?, and the twistor curves project to the four—parameter family of conics in
CP? such that the cohomology class corresponding to F' vanishes on this family. The
resulting conformal structure is equivalent to that constructed by Moraru [27], but
our procedure is different and leads to an explicit metric (which we call barycenter
in §4.3), which admits three linearly independent solutions to the conformal Killing—
Yano equations. Thus the barycenter metric is conformal to Kéhler in three different
ways. In §4.4 we shall give several examples of this construction. We shall prove

THEOREM 2. Let F': M — R, and let X be a four-manifold defined by
X ={me M,F(m) =0}

Let [y] be a conformal structure on X such that V€ C®@ TM is null if p(V) =h &1
where h € Sym*(C?) is such that < h, p(dF) >3=0 and t € C. Then
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(1) The Weyl tensor of [y] is anti-self-dual if F satisfies (1.1).

(2) There exists a basis {QM), Q2 QG of A%, (X) such that QP = 0,i =
1,2,3 if and only if F satisfies (1.1).

(3) The conformal class [] is tri-Kahler: given any metric v € [y] there exist
three scalar—flat Kihler structures (v, Q®), where v = QW] .

This theorem will follow from Theorems 4.3 and 4.4.
Define a four-manifold by

X ={m e M,F(m) =0}, (4.29)

where the function F : M — R satisfies (3.17). Let p(dF) € Sym*(C?) be the quartic
corresponding to dF € A'(M) by the GL(2) structure (2.5). Let H € Sym®(C?) be a
cubic and let [ € C? be a linear form. The conformal structure [y] on X is determined
by specifying the null cone to be the set of quartics

N={H®Il, where < p(dF),H >3=0}. (4.30)
This will be non—degenerate iff the J—invariant of the quartic p(dF’) given by
J =<< p(dF), p(dF’) >o,p(dF) >4 (4.31)

does not vanish, as then the space of solutions to the linear system of equations (4.30)
for the four components of H is two—dimensional.

We shall now rephrase this in the spinor notation (see Appendix A). Let F :
M — R and let Fapcp be defined by dF = FapcpePCP  where eABCD {5 defined
by (A1).

A vector VABCD g null on X iff VABCD = p(ABC D) where FypcphdBC = 0.
Instead of solving this system for h4B¢ we use projections

hABC N |F|2hABC _ QhPQRFPQRSFSABC,

of (for example) 040P0® and 141B1¢. To construct the explicit frame for [] set

H = hys® + 3h1s%*t + 3host? + hst?,

and solve (4.30) for (hy, he) in terms of (hg, h3). Let Hy be the cubic corresponding to
(ho,h3) = (1,0), and let H; corresponds to (hg,hs) = (0,1). Let V00 /10 y/0L /11
be four vector fields on M corresponding to the quartics Hys, Hot, Hys, Hit. By
construction, these vector fields annihilate the one—form dF’, and so they span TX.
To construct the conformal stucture explicitly, let Ve € TM be a vector field such
that Vg 1S = dF, where S is the GL(2) structure (2.11), and let €0, €%, 10 !l dV
be a basis of T*M dual to V0, VO V10 VI V.. Then the ASD conformal structure
is

b/] — 92(601610 _ 600611) (432)

where Q: X — RT.

4.1. Conformal structure from self-dual two—forms. First recall the
‘usual’ twistor picture [31], but with primed and unprimed indices swapped round.
Let (X,v) be an oriented Riemannian four-manifold with volume form volyx. The
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integrable twistor distribution is L4 = 74V 4,4, and the self-dual (SD) two forms
are RAB = 1/26AB€A A A eB B The relation between L 4 and 245 is

Vle(LA/,LB/,~,~) =€A/B/7TA7TBEAB. (4.33)

Conversely, given ¥ = 747348, the twistor distribution (and so the conformal
structure) arises as the kernel of ¥, and the conformal structure can be recovered
from the Urbantke formula [37]: Let [y] be a conformal structure on a four—manifold
X such that the two—forms ¥4 are self-dual. Then v(V,V) = 0 for any v € [y] if
and only if

Sap(V, ) AEBO(V, ) A S = 0.
In Theorem 4.3 below we shall reproduce (4.33) for the twistor discribution arising
on the space of conics.
We make use of the isomorphisms
C® T M = Sym*(C?),  A(Sym(C2) = Sym®(C?) @ Sym?(C2)
to introduce a basis of A%(M)
AB _ ieACDE ANePopp, oABCDEF _ }ec(ABc A ePEF) .

48 8
ABCDEF

a

where 0% and o are defined in the Appendix.

Let us define three two—forms 48 = X(45) on M by

15
EAB _ FABCDO_CD + ?FCDEFUABCDEF' (434)

These will pull back to two—forms on the four-manifold X defined by (4.29).
LEMMA 4.1. Let T4 be the spin—connection of (M,g). The following identity

1
dxAB 4 §F<AC AEBC (4.35)
5v6
= V607 cpF x 0P + 5600 pprF + o POPEE — —\({AQF Y
holds for any F' : M — R.
Proof. We find that
doP + %F(AC NP =0, dotPOPEF grmg NoPOPERE =0, (4.36)
where
= 1% = 1(60000 . 61111>7 [ly = —el001 0, — _ 011

4

In five dimensions A%(M) = A3(M) by Hodge isomorphism, and we take
x0AB xgABCDEE {4 he the basis of A3(M). The following identities can be estab-
lished by an explicit computation

V6 26
eABcpD N o = 5 * UABCDEF - TE(E(AEF)B *0CD)s (4.37)
EFGHIJ _ _@ (

E _F H I E _F HI
eapcp N\ o €7 (A€ Bche D)*a‘])—l—\/ée( (A€ B*O'G J)CD).

5
The identity (4.35) can now be verified directly. O
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4.2. The double fibration picture. Consider a double fibration
M¢ +— F 25 CP?,

where F C Mc x CP? is the sixdimensional manifold of incident pairs (m, &) such
that &€ € C,,, where £ € CP?, and the conic C,, C CP? corresponds to a point
m € Mc. A point & € CP? corresponds to a hyper-surface § C T Mc¢ which is totally
null in the sense of [9]: the normal vector to 5 is a polynomial with a quadruple
root. The map p is the quotient by the rank-four distribution Ogp:(—1) @ C* given
by Dapc = 7PVapcp. Consider the projection of this distribution to a rank-two
distribution on F

Dapc — Lapc = |F|*Dapc — 2Fapcp FPTRDpg. (4.38)

In the next Theorem we shall establish the integrability of the distribution Dapc
assuming that the system (3.17) holds for F'.

THEOREM 4.2. Let [y] be a conformal structure on the four-manifold X (4.29)
such that V € TX is null iff VABCP = p(ABC,D) where Fapcph?PC = 0. Then []
is ASD if equations (3.17) hold.

Proof. In the proof we shall use the constant rescaling of the metric by 1/64 which
leads to equations (3.21).

Given M and the zero-locus X of F', consider the two-dimensional distribution
spanned by h(4B¢,P) on X where ¢ is the spinor field on M introduced in (3.20) for
one fixed choice of z and h4B€ is any solution of

WP Fapep =0,
then this distribution is integrable provided F satisfies the system
UapcpF = kFapcp, AF = pF, (4.39)

with Kk =1/3 and p = —16/3.
Evidently vectors of the form A(ABC,P) are tangent to X. Choose two such
vectors

X — h(ABCLD), ye — ?L(ABCLD)

)

and consider their commutator Z = [X,Y], or

ZABCD XPQRSVPQRSYABCD YPQRSVPQRSXABCD

)

where VABQD is the metric cgvariant derivative on M. We wish to show that
ZABCD — p(ABC,D) for some hAPC annihilating Fapcp. From [13] we quote the
formula

1
LSVPQRSLD = §LPLQLROD + YLPLQLRLD, (4.40)

for some ~ which is known but will turn out to be irrelevant, and (o,:4) is a nor-

malised spinor dyad. We calculate
7ABCD _ XPQRSVPQRsyABCD _ YPQRSVPQRSXABCD
_ LS(hPQRVPQRSiL(ABC o EPQRVPQRSI’L(ABC)LD)

1S (RPQRR(ABC _ jPQRR(ABCYy b o, D).
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It will be convenient to introduce a spinor field XQR po»> Symmetric on each pair of
spinor indices and with the interchange symmetry, by

hWPRRhape — WP hape = 5((§XQR)BC)~

From the definition of XQR pe it follows that

0= Fpors(h"?Fhapc — WP PFhapc) = FPQRS5E§XQR)BC) = FQRS(AXQR BC)»

which also implies that

1
FQRABXQRCD = §¢(€AC€BD + eBcean)

for some ¢, when by tracing on AC

3
Forspx@P = 54555 :

and, by tracing again,

1
¢ = gFPQRSXPQRS-

Thus

Q)

1
FQRABXQRCD = E(FPQRSXP €EACEBD + €BCEAD). (4.41)

With these we deduce that

ZABC'D _ ¢(ABCLD)
with

- - 1
¢ABC _ LS(hPQRvPQRShABC . hPQRVPQRShABC) n LQLRXQR(AB(i()C) 4 %0))’

(4.42)
where the last term uses (4.40). It remains to check that (;SAB € Fapcp vanishes. From
(4.42) we calculate

AB
FapcpdPC =

- - 1
Fanop (LS(hPQRVPQRShABC _ hPQRvPQRShABC) + LQLRXQR(AB(ioc) + “YLC)>

and then, using hABC¢Fypep =0 = hABCFapep,
Fapcp¢P© = (4.43)

- - 1
— S (WPRRRABC _ pPRRpABCYG b ps Fapep + FABCDLQLRXQR(AB(EOC) + ).

Now we need to notice, again by symmetry, that there is a spinor field Q%% .
symmetric in both pairs of spinor indices and with the interchange symmetry satisfying

VARRSpy pop = VACRSY 4 popF = 5E§QRS)(;D)-
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Contractions then show that

3 1
QS o = SO o + LAF(556 + 550%).

when with the aid of the system (4.39),

3K K o(R oS
Q™ op =T F " op + GO F.

With these in hand, (4.43) reduces to

1 1
Fapep¢™PC = iﬂ(XABCDFABCD)LD - E(XABCDFABCD)LDy
where we have dropped the term proportional to p as it vanishes on X. Evidently
this vanishes if k = 1/3 (and we have seen elsewhere that with this value of x the
other part of the system (4.39) automatically holds with y = —16/3). O

The leaves of the distribution (4.38) are a—surfaces of (X, [y]). The set of conics
through a given point in CP? in a given direction is a three-dimensional surface in
M. The intersection of this surface with the hyper—surface F' = 0 is two—dimensional.
This is an a—surface in X or equivalently a point in the twistor space Z of (X, [v]).

In the next Theorem we shall give a direct way to construct the ASD conformal
structure on X in terms of a preferred basis of self-dual two—forms on X. Let 7 :
X — M be the map given by (4.29).

THEOREM 4.3. Let [v] be the conformal structure on the four—-manifold X (4.29)
such that Ve CRTX is null iﬁVABCD = h(ABCLD), where Fapcph®B€ = 0. Then
the two—forms S4B given by (4.34) pull back to two—forms which are self-dual w.r.t
the orientation given by the pull back of xsdF from M to X.

Conversely, let AP be given by (4.84). Then

)

and so 4B = (1/2)eap e A eBB for some tetrad e on X which is non—
degenrate iff J # 0. The corresponding conformal structure is given by [7].

Proof. Consider the rank 2 distribution Lpc given by (4.38). Therefore for any
vABC the vector field V = vABCL 4o is a null vector field on (X, [y]) in the sense of
Moraru:

VABCD _ n(ApBOD)  where RBCD = |F|2yBCD _ 9pBCDE o o PRR

so that hBPFypcp = 0, where we have used the identity 2F4pcpFABCF =
SpZ|F2.
Let volx = 7*(*x5dF') be a volume form on X. Consider the Ogp: (2)-valued two
form on CP' x X given by
S = (*sdF')(Looos L111, ) (4.44)

We have verified using MAPLE that S = s7*(mampX4F), where the scalar multiple
s is, up to a constant numerical factor, given by

S = ﬂ'*(‘F‘QFPQRsFPQMNOROIVILSLN),
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and the twoforms 45 are given by (4.34). To establish the second part compute

YOARONGF =20 ASMAdF =S A AdFE = S AR AdF =0,

251/6

2592 J

*(ZOASTAAF) = 2% (B AXY AdF) =

|

4.3. The barycenter metric, and the tri—-Kahler structure. According to
Moraru [27] there is a sphere of scalar—flat—Kéahler metrics in every conformal class
arising from conics. In Theorem 4.4 below we shall construct these Kéahler forms
explicitly, but let us first explain why one should expect them to exist from the
twistor perspective.

Pick a section of Ogp2(1) which is of the form w = W; Z for some [W] € CP?",
and restrict it to a conic C), given by (2.12) and such that F(m) = 0. This gives
a quadratic polynomial - a section of O(2) restricted to a twistor line - given by
wapm?mB, where wap depends on m € M, as well as W. There is a two—parameter
family of Ws, as linear functions on CP? are defined up to scale of C?, so there is a (at
least) three-dimensional space of solutions to the twistor equation V 4 (4awpcy = 0 on
the four-manifold X given by (4.29).

Let Z = [Z',Z%, Z3] be homogeneous coordinates on CP?, and let a rational
parametrisation of the conic ZAZ”T = 0 be Z' = ZZBWAWB, where 1 = 1,2,3, and
7Y are functions of the components of the symmetric determinant-one matrix A
which defines the conic. Set

o) = (Zx(ﬁgZ(i)AB)_g/2 (no summation over 7).

THEOREM 4.4. The two—forms
00 = H(i)ZXJ)BEAB (no summation over %) (4.45)

pull-back to self-dual, closed two—forms on X if and only if F satisfies (3.17).

Proof. Let m: X — M be given by F = 0, where ' : M — R. Then, for any
differential form €2, 7*Q = 0 iff (QAdF')|p=p = 0. Consider the parametrisation (with
A =1[8,t])

Z = [e®tP(s?—1%),2e P st—e (52 —12), e (pr—q) (s —t%) —2re Ust+ie” (s> +1%)),
and compute

o) — e—3a=3b, 92 — (4p262a+2b +4e*2b)*3/2,
p3) — (2€2a+2b(p’r - q>2 +9e20 4 2T26_2b)_3/2_

Now use the identity (4.35) to compute
(dQD A dF)|p—o,

and find, using MAPLE, that it vanishes for ¢ = 1,2,3 if OF = (1/24)dF (this is
the second set of equations (3.17)) and A F = cF for any c¢. Thus the constant ¢
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(which should be —1/12 to agree with (3.17)) has not been determined. We have
however shown in Proposition 3.2 that this constant is determined by the second set
of equations together with the scalar curvature of g. O

Let v C [v] be any metric in the conformal class. Then the conformal class [7]
contains three scalar-flat Kihler structures (v, Q@) where

Y =190, 5, where |2, = 1/QapQy572775. (4.46)

For any metric v in the ASD conformal class [y] construct the barycenter metric
v = (1QW], - 103, - 10®)],)1/3. (4.47)

Then

(|Q(l) |’7 : |Q(2) |’y) :

3)
STy,
3
(2) <|Q(1)|’y : |Q(3)|'y) (2)
B - )
2],
1
|Q(3)|’y : |Q(2)|'y) ’
(1) _ ( (1)
S O R

are self-dual conformal Killing—Yano tensors for v5. Each such form gives rise [10] to
a Kéhler class, and the resulting tri-Kéhler structure is (4.46)

4.4. Examples of tri-K&hler metrics. In this Section we shall construct some
examples of anti-self-dual conformal structures containing (at least) three Kahler
metrics, and corresponding to particular subcases of the solution (3.28).

4.4.1. An ASD Einstein example. Consider
F=e 2 4 peab
which is (3.28) with 72 = 76 = 1, and the remaining constants equal to zero. The
quartic corresponding to dF' via the isomorphism C @ T*M = Sym4(S) is
(pe_a_b+2€_2a)84+4€_2a_3b83t+(46_2a—2p€_a_b)52t2—46_2a_3b8t3+(pe_a_b+2€_2a)t4.

Computing the J—invariant of this quartic, and restricting it to the surface F =
0 yields e %(¢+?) which is nowhere zero. Therefore the condition (4.30) has two
linearly independent solutions Hy and H; which lead to a non-degenerate frame
€% €0 eV el and the conformal structure (4.32) on the four-manifold X. It is
given by

e = (%" — e da — (e® +2¢7")db — i(** T Pdg + (14 2°%)e* Pdr), e'' = —e00
e’ =2da + db +i(**dg + e*TPdr), €' =el0,

and it gives rise to a metric (4.32). It is possible to chose the conformal factor € such
that the resulting metric is ASD and Einstein, with scalar curvature equal to —24

v = (da+2db)? + e (da—db)* +e** T80 dg? + 4¢3 dgdr + (4% +1)e** 40 dr?. (4.48)
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This metric is Kahler, but with opposite orientation: the ASD Kéhler two form is
¥ = 4 (da + 2db) A dq + €**T(da + 5db) A dr-.

All anti-self-dual Einstein manifolds which are K&hler with opposite orientation have

constant holomorphic sectional curvature, i.e. they are diffeomorphic to CP? with its
— 2

Fubini-Study metric, its non—compact form CP = SU(2,1)/U(2) with the Bergman

metric, or flat space C2. Our metric has negative scalar curvature so it is the Bergman

—a—2b

2
space CP . Setting y = e’ %,z =c¢ puts it in the form

2 2 2
v = % (ZzhHS + %(dq + 2yd7")2), where hgs = w, (4.49)
z z z
and the 8—dimensional group of isometries can be constructed explicitly. Any ASD
Einstein metric with symmetry is conformal to a Kéhler metric [10], so (4.48) contains
eight Kéhler metrics with SD Kéhler forms in its conformal class. Only three of these
correspond to the tri-Kahler structure arising from conics. Below we shall examine
one of these three, and put it in the canonical SU(co)-Toda form. The conformaly
rescaled metric

,? _ €—4a—8b,y
has vanishing scalar curvature, and is Kéhler with the ‘correct’ orientation. The SD
Kéhler form is

Q = e 277 (da + 2db) A dq + 3¢ 373 (da + db) A dr-.

To recognise this metric we shall put it into a general framework of [26]. Any scalar—
flat Kéhler metric with symmetry can be locally put in the form

1
y = P(e*(dr® + dy*) + d¢?) + 5 (dg + a)? (4.50)
where u = u(r,y, () is a solution of the SU(oco) Toda equation

Upp + Uyy + (6“)(( =0,

the function P is a solution to the linearised SU(o0) Toda, and « is a one—form which
satisfies the generalised monopole equation. Set z? = 2(, and consider 7 = 4(?7,
where 7 is given by (4.49). Then 4 is of the form (4.50) where e* = 2(, and P = 1.

4.4.2. Towards the flat model. Consider the one-parameter family of solu-
tions

F=e24 (p+rr)e o?

which is a special case of (3.28), and which contains the conformal class (4.48) as the
particular case x = 0. Using the conformal factor Q2 = 6'2(e% (k% + 1) + 1)e =860
gives an ASD Einstein metric with scalar curvature —24(k? + 1). It is Kihler with
the opposite orientation, and the ASD Ké&hler form

2t (1 + wr)(da + 2db) A dg + €57 (da + 5db) A dr — 3ke5Pda A db.

The metric 4 = e =478 is scalar-flat and Kihler. The analytic continuation (q,7) —

(iq,ir) of this example to imaginary + gives a one parameter family of SL(3)-invariant
Einstein metrics in neutral signature on SL(3,R)/GL(2,R). The special case k = i
gives a flat metric in neutral signature.
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4.4.3. An ASD Ricci-flat example. The most general element of Ker(CJ) N
Ker(A + (1/12)Id) which depends only on (a,b) is given by a special case of (3.28)

F = (714 72(a+2b)e """ + y3e7%%,

where 71,72, v3 are constants, and o # 0 for J(dF') # 0. This class is characterised
by invariance under the three-dimensional group generated by the Heisenberg algebra
(Xl,XQ,Xg), in (A2)

Translating (a, b) using the 2-parameter group generated by X4, X5 in (A2) can
be used to set v; = 0, and an overall rescaling of F' allows setting v, = 1, which leaves
a one—parameter family of solutions depending on one constant x = 73 which must be
non-zero for J # 0. The four-manifold (4.29) is a hypersurface in M parametrised
by

1 1
a= g(s —2lns+2Ink), b= g(s +1Ins —1Ink).
The ASD conformal structure (4.32) contains the Ricci—flat metric
v = (s —1)(e ?*ds* + k%e™2*dr* + dp?) + (s — 1) "' r%(dgq — pdr)?.

The constant x can be set to 1 by rescaling (g, 7). Setting (X +iY = e %" Z = p)
we recognise this as a Gibbons-Hawking metric

v =V(dX?+dY? +dZ?) + V" (dg + ®)?,

where dV = %3d®, and the harmonic function V on R? given by V = —In (X2 + Y?)—
1. Thus we have arrived at the Ooguri—Vafa metric [30] which arises by putting N
centres in the ALF Gibbons-Hawking gravitational instanton on a line, and taking a
limit when N — oo.

4.4.4. A Scalar—flat Kahler example. We shall give one more example, where
the barycentre metric (4.47) does not contain either Einstein or Ricci-flat metrics in
its conformal class.

Consider

F =pe " re 22,

which is (3.28) with 5 = 75 = 1, and remaining constants set to zero. The J—-invariant
of the quartic Q(dF) is a constant multiple of e~=6%r Thus, using (a, b, r, q) as local
coordinates on X we expect the conformal class to degenerate on the hyper—surface
r=0.

The resulting ASD conformal class (4.32) admits three scalar—flat K&hler metrics
with Kéhler forms given by (4.45). One of these is

_ r 2 2 2 2 2
7= g 2T A y)(dr + dyT) 4 d)
r2 4 o2
Lty

2 Y 2
(dq —y dy + 2rydr + Tt dz) , (4.51)

where
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The Kéaher form is given by

%
Q =2d(ryz) Ndr + dz /\d(q - ?)

The singularity on the r = 0 surface is a fold in the sense of Hitchin [23]. The points
on this surface correspond to twistor curves with normal bundle O @ O(2). The metric
blows up, but the Kéhler form remains regular and drops its rank.

Comparing this expression for v with the general form of the scalar-flat Kahler
metric with symmetry (4.50) allows us to read—off the corresponding solutions to the
SU(c0) Toda equation, and its linearisation:

r

=22 +9?), P=—5—3.
e z(r* +y°) R

4.4.5. ASD Einstein cohomogeneity—one metrics. Moraru [27] claims
(without giving a proof) that all ASD conformal classes which contain three different
Kéhler (but not hyper—Kéahler) metrics arises from some solution to (3.17).

It is known [35] that all ASD Einstein cohomogeneity—one metrics arise from the
Painlevé VI equation with parameters (1/8,—1/8,1/8,3/8). This case is actually not
transcendental, and all solutions can be expressed in terms of the Weierstrass elliptic
function. This is because this particular PVTI is related by a Béacklund transformation
[29] to PVI with parameters (0,0, 0,1/2) and that case corresponds to a projectively—
flat projective structure and has been solved by Picard.

With any symmetry generator we can associate a Kéahler scale (by taking the SD
derivative), so (if the claim of [27] is right) it should arise from the linear system
(3.17), and a contour integral formula. If the Painlevé solution was transcendental it
would be a contradiction, but as it is not, it only shows that there is some integral
formula for the elliptic functions.

5. Conics in CP? from lines in CP?. The anti-self-dual tri-Kéhler metrics
arising from Theorem 2 admit twistor spaces which holomorphically fiber over CP?
(this is Moraru’s starting point, [27]), and the twistor curves with the normal bun-
dle O(1) @ O(1) project to the four-parameter family conics in CP? such that the
cohomology class corresponding to the function (3.15) vanishes on this family. Some
twistor spaces with this property appeared in [6]. In this Section we shall consider a
simple case where the twistor space CP? \ C, where C = CP! is the rational normal
curve. The holomorphic projection to CP? can in this case be described by classical
projective geometry of Poncelet pairs.

In this section we shall use the notation introduced in §2.1.1 and regard V; =
Sym'(C2) as (k + 1)-dimensional representation space of SL(2,C).

5.1. A quadratic map. Consider CP? as the projectivisation P(Sym®(C?)) of
the space V3 of homogeneous cubic polynomials. We will define a holomorphic pro-
jection to CP? = P(Sym?(C?)) by picking three quadrics in CP? and declaring them
to be the homogeneous coordinates on CP?. This triple of quadrics gives a point in
CP? which (perhaps rather confusingly) is identified with a quadric as CP? = P(V53).

Let C be the rational normal curve in CP? consisting of all cubics with a triple
root (axz — by)® € V3. Let the quadratic map @ be defined on the complement of the
rational normal curve by (in this section we shall use the notation from §2.1.1, but
applied to homogeneous polynomials in two variables [z, y])

Q:CP3\C — CP?, Q(p) =<p,p>2. (5.52)
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Thus in spinor notation (see Appendix), the quadric (a point in (CIF’Q) corresponding to
a cubic page (a point in CP?/C) is paPFpppr. The map (5.52) is given by a choice
of three quadrics in CP?. The choice is not generic, as the zero locus of a generic
triple of quadrics in four variables is eight points in CP?, and our triple vanishes on
a curve.

In Lemmas 5.1 and 5.2 we shall give two more equivalent characterisations of the
map (5.52). In the Lemma 5.1 below we shall make use of the map CP' x CP* — CP?
which assigns a quadratic polynomial (up to an overall scale) to a pair of roots, i. e.
(aa,BB) = aaBp). This is a double covering branched over a conic B C CP? which
is the locus of all points corresponding to quadratics with a repeated root?, i. e.

B ={[t?2st,s%], [s,t] € CP'}. (5.53)

LEMMA 5.1. Any point p € CP? \ C lies on a unique secant of C, and thus gives
a pair of points on C (or a tangent in a limiting case). These are the roots of the

quadric Q(p).
Proof. Given p not in C, seek two points (u,v) € C such that (p,u,v) lie on the
same line in CP®. Therefore

PABC = tuAUuBUC + SVAVBVC (5.54)

and Q(p)ap = tsuavp)(u - v)? which is a quadratic with roots (u,v). The points
(u,v) necessarily exist, as given p the equation (5.54) is a system of four equations
with four unknowns (¢, s, u,v). Tangents and secants of C are pairwise disconnected,
so p belongs to a unique secant. For the uniqueness consider

ugupuc + t(vavpve — ugupuc) = wawpwe + s(kakpke — wawpwe),

and contract both sides with u(AvPw®). This gives (k- w)(k - u)(k - w)s = 0. So (if
all points are distinct) s = 0, and then ¢ = 0.

(z—vf
(z=0 )(zB Nz )

F1G. 1. Secant of the twisted cubic
0

In Lemma 5.2 we shall regard V3 as the 4—dimensional symplectic representation
space of SL(2,C).

3Using affine coordinates
(u,v) € CPt x CP! = (2 —u)(z — v) = [1, —u — v, uv].

The branch conic B corresponding to the diagonal v = v is (22)2 —4z173 = 0.
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LEMMA 5.2. The map (5.52) is the projectivisation of the moment map for the
symplectic SL(2,C) action on the space of cubics C* = Sym?(C?).

Proof. Let papc = piapc) be coordinates on C*. The SL(2,C)-invariant sym-
plectic form on C* is

Q =dpapc A dp*PC.

It is preserved by the action generated by the three vector fields

0
Hap = 2p(ACD83)CD, where Opcp = W (5.55)

Therefore

HapdQ=dpa""pepE)
=d(&aB)-

This extends to the projectivisaton, where [£0, &o1, &11] € CP? are homogeneous coor-
dinates of a point Q(p), where the quadratic map @Q : C* — sl(2) is the projectivisation
of the moment map. O

There are three orbits of the SL(2) symplectic action on CP?. The generic orbit
corresponding to cubics with three distinct roots, the one dimensonal orbit C, and
the two dimensional orbit B of cubics with two roots. The union of C and B is the
discriminant divisor which meets any line in four points. This divisor is a quartic
surface in CP? - the union of all tangents to C.

5.2. The Gergonne conic. Let p(z) = (z — a)(z — 5)(z — ) be a cubic with
three distinct roots*. Three quadratics with roots (o, 3), (o, ) and (3,7v) correspond
to vertices of a triangle T(, 3. in CP?. This triangle is circumscribed about the conic
B c CP? given by (5.53).

The triangle T(, 3. is tangent to B at three points corresponding to quadratics
(z—a)?, (z—B)? and (z—~)2. Connect each point of tangency with the opposite vertex
of the triangle by a line, i. e. (z — a)? connects to (z — 3)(z — ) etc. The limiting
case of the Brianchon’s theorem® implies that the resulting three lines intersect at one
point. If the conic B were a circle, Q(p) would be the Gergonne point of the triangle
T(a,8,~)- We shall call Q(p) the Gergonne point in general.

The map (5.52) singles out a point in CP?, and the following Lemma shows that
this is the Gergonne point of the triangle T{, 3 +)-

LEMMA 5.3. The Gergonne point is the image of p under the map (5.52).

Proof.
4In this section we shall use z as an affine coordinate on CP'. Thus if 24 = [z,y] and ay =
[@o, 1] then < z,a >1= (2 — a), where z = z/y and oo = —a1 /.

5Brianchon’s theorem is a converse to Pascal’s theorem in projective geometry. It states that
principal diagonals of a hexagon circumscribed around a conic section meet at a single point. In the
limiting case one edge of the hexagon degenerates to a point, and the opposite three edges degenerate
to a segment of a line. In this limit the hexagon becomes a triangle.
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oy

oo

op BB
By
Fi1G. 2. The Gergonne point

Consider a line joining the vertices of T{,,g,) to the opposite tangency points

Li(ty) = (z = a)(z = B) + t5((z = a)(z = B) — (2 = 7)?)
La(tp) = (2 — a)(z 7)+tﬁ((2—a)( =) = (= B)?)
Ls(ta) = (z = 7)(z = B) + ta((z = 7)(z = B) = (2 = a)?).

The system of equations Li(ty) = Lao(ts) = Ls(tn) admits a unique solution for

(ta,ts,ty) so the Gergonne point indeed exists, and the corresponding element of V3
is a quadric with the roots®

a?(B+7) + e +7) + 7 (e + B) — 6aBy £ V3i(a? (B —7) + B2 (Y — a) + (e — B))
(@=PB)2 4+ (a=7)2+(B—7)? '

(5.56)
Now compute Q(p), where p = (2 — a)(z — §)(z — ), and find that the roots of the
resulting quadric conicide with (5.56). O

Consider a line L, 4y C CP? containing two distinct cubics p and ¢ not in C. This
is given by
Lp,g) = tp + 54,
where the cubic on the RHS has roots «a(s,t), 5(s,t),v(s,t). The corresponding conic
in CP? is
Q(L(p,q) = 12 < p,p >p 428t < p,qg >0 +5° < q,q >0 . (5.57)

This conic intersects the branch conic B at four points which correspond to zeros of
the quartic (in [t,s]) < Q(L(p,qg)), @(L(p,q)) >2 - The conic Q(L) is the locus of the
Gergonne points of triangles T(q(s,¢),3(s,¢),4(s,))- Let us call Q(L) the Gergonne conic.

5.2.1. Characterisation of Gergonne conics. We want to characterise the
conics of the form (5.57) as a hypersurface in the space P® of all conics. Attempting
to do it by brute force leads to 9 quadratic equations

Q(Lp,q) = [G18” + 2East + €357, &at® + 2655t + E65°, Ert” + 2Lgst + Eos”)]

6These two roots are the fixed points of the Mobius transformation which permutes the roots of
the cubic: (o, 8,7) = (v, a, B).
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ABC ABC)
)

for 8 coefficients (p q , and in principle a sequence of resultants should give
a condition. We shall instead make use of the isomorphism

Sym?(C?) = Sym?(Sym?(C?)) = Sym*(C?) @ Sym’(C?), (5.58)

and express quadratic forms on C? as pairs consisting of a binary quartic, and a scalar.
To make (5.58) explicit set

1

V2

so that 2277 =< £,£ >,.
Let 8 € Sym?(Sym?(C?)), so that in spinor notation

7

Zl
V2

(€ +¢h), 22 (€0 -¢h, Z2=ivV2" (559

Bascp = BaBycp = Bapcp) = Bepas-

Let ¢4 = ¢(4B) be homogeneous coordinates on CP?. Any conic then takes the form

Bapcp&*PECP =0,
or
24fo(6M)? — 96 f1EMEM + 48 2206 + 96 £2(€"1)% — 96£56°°¢™
+2414(6%)% +4G(£2€! — (7)) =0 (5.60)
where

U = for' + 412y + 6 fo2’y? + A fs29y° + fay®

is the binary quartic corresponding to S4pcp) and G is a multiple of ﬁABAB. The
equation (5.60) can be equivalently written as

<, E2 >, +G < £, >9=0, (5.61)

where £2 =< £,€ >.

PROPOSITION 5.4. Let (¥,G) € Sym*(C?) @ Sym®(C?) represent a conic in CP?.
This conic is an image of a line in CP® under the map (5.52) iff

T:=4<U, V>, -G*=0. (5.62)

Proof. We aim to characterise conics of the form (5.57) as a hypersurface in the
space of all conics. One can verify (using MAPLE) the following identity”

<< p,q>1,Q(tp+ 5q)* >4 +6 < p,q >3< Q(tp + 59), Q(tp + sq) >2= 0,

where < p, ¢ >1 is nonzero as long as p and ¢ are linearly independent in V3. Therefore
the conic in CP? traced out by Q(tp + sq) satisfies the quadratic equation

<< p,q >1,< Q(tp+5q), Q(tp+5q) >0>4 +6 < p,q >3< Q(tp+5q), Q(tp+sq) >2= 0.

"We are grateful to Robert Bryant for pointing out this identity to us.
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Thus, it follows that the equation of the Gergonne conics is given by pairs
(< p,q>1,6 < p,g >3) € Sym*(C?) & Sym’(C?).

The pairs (¥,G) = (< p,q >1,6 < p,q >3) satisfy the quadratic relation (5.62) so
that this equation defines the hypersurface in the space of conics. O

We shall now replace (5.62) by a condition on the 3 by 3 symmetric matrix
representing a conic.

PROPOSITION 5.5. Let A= AT € Sym?(C?) represent a conic
ZAZT =0, (5.63)
where Z = [Z', 2%, Z%) € CP?. This conic is the image of a line in CP* under (5.52)
it
1

2 1 2 _
I:= éTr(A ) — ﬁTr(A) =0. (5.64)

Proof. Consider (5.63), and substitute the expressions (5.59) for Z¢. Comparing
(5.63) and (5.60) yields

1 . 1 . 1 .
fo= ZS(AM — App 4+ 2iA12), fi= ZS(A23 —id3), f2= m(An + Ao — 2iA3z3),
1 . 1 X 1
f3 = —@(A% + 2A13)7 f4 = @(An — Ao — 211412), G = ETI”(A).

We now use the result of Propositon 5.4, and verify that
IT=4<U, 0>, -G
1
= 15 (AlL + AGy + A3y + 4AT, + 4AT, + 443, — 2411 Agy — 2411 Agy — 245 Agg

_lnany o1 2
= 6Tr(A) 12Tr(A) .

We are now ready to establish Theorem 1 from the Introduction

THEOREM 5.6. Let the conic A given by (5.61) be the image of a line in CP?
under the map (5.52). Then the matrices (A, 1) form a Poncelet pair with a triangle®:

8Hitchin argues that the vertices of all triangles T(a(s,t),B(s,t),v(s,t)) SWeep a conic - call this one
the Hitchin conic H(L) - so that the Hitchin conic, and the branch conic B form a Poncelet pair. On
page 17 in [20] he takes

tp(a(s,1)) + sq(a(s,t)) =0, tp(B(s,t)) + sq(B(s,t)) =0
so that

0 =p(a(s,1))q(B(s,t)) — qlals, 1))p(als, 1)) =< a(s, t), B(s, ) > R(a(s, t), B(s, 1))

where R € (Sym*(C?) @ Sym®(C?) is polynomial in «, 3, which defines a conic H(L). We claim that
the Hitchin conic does not coincide with the Gergonne conic. To see this consider the Gergonne
conic (5.57) corresponding to cubics p = (z —a)(z — b)(z — ¢) and ¢ = (z — A)(z — B)(z — C). Now
consider the vertices of the triangles T(qsc) and T(apc), i- €. quadrics (z — a)(z — b) ete. Do they
belong to the Gergonne conics? If they do, then the Hitchin and Gergonne conics must coincide, as
five points determine a conic. It is sufficient to verify it for one vertex, say (z —a)(z —b) - the others
will follow by symmetry. Consider the transvectant < Q(L), (z — a)? >5. This gives a quadratic in
[t, 5] with two roots. Do the same with (z — b)? - another two roots. Computation shows that there
is no pair of common roots, so (z — a)(z — b) does not belong to Q(L) for any [t,s]. A combination
of Hitchin’s porism with our result shows that the locus of Gergonne points of a poristic family of
triangles is itself a conic. If the conics are coaxial circles, this was noted in [16].
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there exists a triangle inscribed in A and circumscribed about the base conic (Zl)2 +
(22 + (2%)° = 0.

Proof. Let A and D be symmetric matrices defining two conics A and D. Cayley
[7, 17] gave an algebraic conditions for (A, D) in order for a polygon with N vertices
inscribed in A and circumscribed about D exist. Consider the expansion

det(sA — D) = ag + sa; + s%ap + . ..

Assume that N = 2n + 1 is odd (a similar formula exists for even N). Then the
necessary and sufficient condition for the existence of an N—gon is

an . Ap+41
= 0.
Ap+1 - a2n,

We need to consider the special case when N = 3, and D = diag(1,1,1). The
characteristic polynomial for 3 by 3 matrices with unit determinant is

det(sA —T) =1+ sTr(A) + %sz(Tr(A)z — Tr(A?)) + s°.
Comparing this with
det(sA —1) =1+ sa; + s%ag + ...

gives

ay; = %Tr(A), as = é(Tr(A)2 — 2Tr(A?)).

The vanishing of as is the Cayley condition? for (A, I) to form a Poncelet pair with a
triangle, and we see that ag is a constant multiple of (5.64). The result now follows
from Proposition 5.5. O

Appendix.

Two—component spinors. A convenient way to represent binary quartics and
the associated invariants uses the two—component spinor notation [12].

Let the capital letters A, B, ... denote indices taking values 0 and 1. The general
quartic is represented by a symmetric spinor of valence 4. Let w4 = [s,t] be homoge-
neous coordinates on (C?)* (the dual of C?). A homogeneous quartic corresponding
to a vector V€ T'M is given by

V = VABCDﬂ'Aﬂ'Bﬂ'CT('D = at* + 46t3s + 6’yt232 + 46ts> + 684,

9Robert Bryant has suggested that if the projection (5.52) is replaced by a generic triple of
quadric, the relation (5.62) becomes quartic (and not quadratic). If this quartic is SO(3) invariant,
then it must take the form

coTr(A3)Tr(A) 4 1 Tr(A%)(Tr(A))? + c2(Tr(A2))? + c3(Tr(A)L

We have checked that (dehomogenising with det(A)) this quartic does not satisfy the system (3.17)
for any choice of the ¢;. Thus if there is a quartic relation, then it is not expressible by traces.
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where 74 = [t, —s]. The spinor indices are lowered by the anti-symmetric matrix €43
with e91 = 1, so that

PQ...
wAB...C:'(/J Q REPAEQB...ERc.

Let e',...,e® be oneforms on M. Define eAB¢P by

1 1111 2 _ 60111

el =l 3 _ 0011

e et = 0001 5 0000, (A1)
The G L(2)-structure on M is given by S = mamprcmpetBCP and the SO(3) struc-
ture (2.14) is given by

_ ABCD

AB cD EF
g ®eapcp, G=e"“cocpOe”"pr®e’ " 4B.

Miscellanous formulae. Let (a,b,p,q,r) be local coordinates on M =
SL(3,R)/SO(3) such that a symmetric matrix A € M with det(A) = 1 is given

by

efafb peb qea
A=BB?, where B= 0 e’ re?
0 0 e

The Riemannian Einstein metric on M is given by

g=4Tr(A 'dA- A~1dA)
= 8[(2da + db)? + 3db* + > T4 dp® 4+ 2072 dr? 4 22 (dg — pdr)?).

The 8 dimensional isometry group SL(3,R) of g is generated by the Killing vector
fields

X1 =0,+710;, Xo=0, X3s=0,
Xy =0y —p0y — 290y — 10,, X5 = 0p —2p0, — qOy + 10,
Xg =pdy — (L+p* — e 27 )0, — 10y + g0,
X7 =710, — 10 — (1417 =720, + (*"*p — rq) 0y + (pr — q)0,
Xs = q0q — rpdy + (p*r — re 274 — )3,
+(p?e? T e — 2 — 19, + (€ — rq) ;.

The group of rotations SO(3) C SL(3,R) is generated by X¢, X7, Xg as
(X6, X7] = X3, [X6,Xs] = X7, [X7,Xs]=Xs.

There are two invariants of the SO(3) action on M which we chose to be Tr(A) and
Tr(A?%). We have verified that there is no non—zero function of these which satisfies
the system (3.17).

Let (M, g,G) be the SO(3) structure from Proposition 2.5. The associated dif-
ferential operators which characterise the range of the Penrose-Radon transform in
Theorem 3.1 are given by

1
F— (A + EId) F, where (A2)
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Ay =gV, V,
2 2 2
=513 * 38~ 5a * ¥30) a9
+ %€2b72a <p283q22 i (%22 T 2p8§;q +e2a4b§q22 Jr661783;2),
and
F — G V,V,F — ivcp (A4)
A function F : M — R is in the kernel of the operator (A4) if
(7 3e2b—2a 268;2 _ ge2b—2a af;q 4 362&4!736;2 _3 2b72a887:2
2 2
+2% - % +3% - 2%)Fda
+( o 362b2ap286:2 o 662b2apaf;q + 3640,21)88:2 -3 2b72a5i:2 o %
2
+ 28‘2% + %)de
B (362b2apaaq22 3% 0?2(] + afgp B 28}?;@ B %)de
2 2 2 2
*(3pajap + 82&1 - 2826(9 + 3afap + Qa%)qu
(307 - €2a4b)8j;p + 3‘”62;9 - 3pai29p i Bf;b i Bf;a + 2%)&” =0

The generalised Legendre transform. In this paper we have studied the
interplay between the SO(3) structure on M = SL(3,R)/SO(3,R), the Penrose-
Radon transform on conics, and the tri-Kahler metrics whose twistor spaces admit
a holomorphic fibration over CP?. In this Appendix we shall put an analogous, but
simpler construction of the generalised Legendre transform [24, 3, 8] in this framework.
Here M = R®, the SO(3)-structure consists of a flat metric and a three—form preseved
by an 8—dimensional subgroup of the full isometry group, and the twistor space is an
affine bundle over the total space of O(4) — CP'. Let Z — O(4) by one such affine
bundle corresponding to a cohomology class [f] € H*(O(4), O¢pr (—2)). The sections
of O(4) — CP' are binary quartics parametrised by points in M¢ = Sym*(C?) = C®.
Let L,, be a section of O(4) corresponding to a point m € Mc¢. The real sections are
preserved by an anti-holomorphic involution on O(4) which restricts to an antipodal
map on each section. They are of the form

[s,t] = w = s'1 +ts®2 + 1252y — 357 + t'7, (A5)
where [s, ] are homogeneous coordinates on CP*, and (z,%,7,7,y) are coordinates on
M = R5. The GL(2) structure (2.5) on Mc is given by T,,Mc = H°(L,,,0(4)) =
Sym*(C?), which restricts to

S = stdr + ts*dz + t2s%dy — t3sdz + t1d7,
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on M. This gives rise to an SO(3) structure (2.13), where the metric g and the
three—form G are given by (2.14) with
9 1

1 1
el = dr, e*= _idz, e3 = gdy, et = Zdz, e® = dr.

The range of the Penrose-Radon transform
Feznmy) = ¢ fe st~ tds)
r'cCp!

(where w is given by (Ab)) is characterised by the over—determined system of linear
PDEs

AF =0, GV,V,F=0 (A6)
(note that x and R in (3.22) and (3.23) both vanish in this case), or explicitly

FyT_FZZ:Oa FTE+Fyz:0a FT?+FzZ:O7
FzE"’Fyy :07 F?z‘f'ng :07 F?y_FﬁZO

Assuming that the J-invariant (4.31) of the binary quartic corresponding to dF is
not zero, we can now apply Theorem 4.4 to construct the tri-Kahler structure on the
four—fold X = {m € M, F(m) = 0}. The metric g on M is flat, and '* 5 = 0. The
identity (4.35) implies that the two—forms Y47 are closed iff equations (A6) hold.
The pull-backs of 45 to M are also normalised such that (45 A 2B = 0 and of
constant length. Thus they define a hyper—Kahler structure.

The original set-up of [24] would lead to a Kéhler potential as follows. Let H :
M — R be a function such that F = 0H/Jy. Now perform the Legendre transform
u = 0H/Jz, and eliminate the cordinates (z, %, y), using (7, u, 7, @) as holomorphic and
antiholomorphic coordinates on X. The Kahler potential K(7,u,7,u) = H — Tu —Tu
satisfies

KKz — Krakur = 1,
and the barycentre metric
YB = ICT?de? + Kugdudﬂ + ICTﬂdeﬂ + /Cu?dud?

on X is hyper-Kahler.
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