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HIGHER-DIMENSIONAL WILLMORE ENERGIES VIA MINIMAL
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Abstract. A conformally invariant generalization of the Willmore energy for compact immersed
submanifolds of even dimension in a Riemannian manifold is derived and studied. The energy arises
as the coefficient of the log term in the renormalized area expansion of a minimal submanifold in a
Poincaré-Einstein space with prescribed boundary at infinity. Its first variation is identified as the
obstruction to smoothness of the minimal submanifold. The energy is explicitly identified for the
case of submanifolds of dimension four. Variational properties of this four-dimensional energy are
studied in detail when the background is a Euclidean space or a sphere, including identifications of
critical embeddings, questions of boundedness above and below for various topologies, and second
variation.
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1. Introduction. The Willmore energy
∫
Σ

|H|2 daΣ of a compact immersed sur-
face Σ ⊂ R

n measures the total bending of the surface. A basic property is its con-
formal invariance. In this paper we derive a conformally invariant generalization of
the Willmore energy for compact immersed submanifolds Σ of even dimension k ≥ 2
in a Riemannian manifold (M, g) of dimension n > k. Our energy E is defined via an
inductive algorithm which for k > 4 is prohibitively difficult to carry out to obtain
explicit formulae. However, we do derive the formula for the k = 4 energy, which we
use to study some of its basic variational properties when (M, g) is a Euclidean space
or a sphere.

Our energy arises upon consideration of a Plateau problem at infinity for minimal
submanifolds of dimension k+1 of an asymptotically Poincaré-Einstein space (X, g+)
of dimension n+1 whose boundary at infinity is (M, g). In case (M, g) is a Euclidean
space or a sphere, (X, g+) is the corresponding half-space or ball model of hyperbolic
space. Existence theory for minimal currents in the case that g+ is hyperbolic is
discussed in [A1], [A2]. Here we are concerned with formal asymptotics: we search
for a submanifold Y k+1 ⊂ X satisfying Y ∩M = Σ, which is minimal to high order
at infinity. It turns out that the minimality condition uniquely determines the Taylor
expansion of Y to order k + 2, at which point there is generically an obstruction
H ∈ Γ(NΣ) to existence of a smooth Y . Here NΣ denotes the normal bundle to Σ in
M .

The area of any such asymptotically minimal Y is infinite. However, finite quan-
tities can be obtained by consideration of an asymptotic expansion of the area. One
takes X =M×(0, ε0)r near infinity and writes the Poincaré-Einstein metric in normal
form relative to g as

g+ =
dr2 + gr
r2
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where gr is a 1-parameter family of metrics on M satisfying g0 = g. The area of
Y ∩ {r > ε} has an asymptotic expansion in ε, and the generalized Willmore energy E
is defined to be the coefficient of log 1

ε in the renormalized area expansion. This turns
out to be expressible as an integral over Σ of a scalar invariant of the local submanifold
geometry of Σ in (M, g). The integrand involves derivatives of the second fundamental
form of order up to (k − 2)/2.

This area renormalization procedure was described in [GW] and has been studied
in different contexts by various authors. A main focus has been the constant term in
the renormalized area expansion, usually called the renormalized area. When k is odd,
the renormalized area is a global invariant of a minimal submanifold of a Poincaré-
Einstein space and there is no log 1

ε term in the expansion. The primary interest
of [GW] was the anomaly for the renormalized area when k is even, measuring its
failure to be conformally invariant under rescaling of g. The paper [GW] did point
out the conformal invariance of the coefficient of the log 1

ε term and identified it as
the Willmore energy when k = 2. The contribution of the present paper, then, is to
follow up with further analysis of this energy for k > 2, particularly from the point of
view of regarding it as a generalization of the k = 2 Willmore energy.

As is well-known and described in [Gr1], there is an analogous renormalization
procedure for the volume of the asymptotically Poincaré-Einstein manifold (X, g+)
itself. In this case, when n is even, the coefficient of the log 1

ε term in the expansion
is a conformal invariant of (M, g) which equals a multiple of the integral of Branson’s
Q-curvature. A basic result ([HSS], [GH]) in this setting is that the metric variation
of this coefficient is a multiple of the ambient obstruction tensor, which is a multiple
of the coefficient of the first log term in the expansion of gr. In Theorem 4.3, we prove
the analogous result for the generalized Willmore energy E : its variational derivative
with respect to variations of Σ is the negative of the obstruction field H. In particular,
this identifies the Euler-Lagrange equation for the energy E as the equation H = 0.
As a consequence, in Proposition 4.5 we deduce that if (Mn, g) is Einstein and Σ
is a minimal submanifold, then Σ is critical for E . This generalizes a well-known
property of the k = 2 Willmore energy and produces many examples of E-critical
manifolds. This can be viewed as an analogue in this setting of the fact that the
ambient obstruction tensor vanishes for Einstein metrics.

In Corollary 5.3, we identify explicitly the k = 4 energy E for general background
(Mn, g) with n ≥ 5. When M = Rn with the Euclidean metric, our energy simplifies
to:

E = 1

128

∫
Σ

(
|∇H|2 − |LtH|2 + 7

16
|H|4

)
daΣ. (1.1)

Here L : S2TΣ → NΣ is the second fundamental form and H = trL ∈ Γ(NΣ)
is the mean curvature vector. Lt : NΣ → S2TΣ denotes the dual map and ∇ :
Γ(NΣ) → Γ(T ∗Σ ⊗ NΣ) the normal bundle connection induced by the Levi-Civita
connection of g. This energy was derived for Σ4 ⊂ R

5 in [Gu2] by calculating how
various quantities transform under conformal motions of R5 and searching for a linear
combination which is conformally invariant. However, that derivation dropped a
factor of −2 in the calculations, so ended up with incorrect coefficients for |LtH|2 and
|H|4; compare (1.1) above with (61) of [Gu2]. When M = Sn with the round metric
of sectional curvature 1, our general formula reduces to:

E = 1

128

∫
Σ

(
|∇H|2 − |LtH|2 + 7

16
|H|4 + 6|H|2 + 48

)
daΣ. (1.2)
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There are parallels that suggest that E should be regarded as the correct k = 4
analogue of the k = 2 Willmore energy, and that E-critical submanifolds of Rn or
Sn are analogues of Willmore surfaces. We mentioned above that E shares with the
k = 2 Willmore energy the fact that minimal submanifolds of Rn or Sn are critical.
For k = 4 this is evident from the fact that all the nonconstant terms in the integrands
of (1.1) and (1.2) are at least quadratic in H. So, as examples of 4-dimensional E-
critical manifolds we have: totally geodesic S4 ⊂ Sn, or any round S4 ⊂ R

n, or
the usual minimal 4-dimensional products of spheres in Sn. The latter give rise to
E-critical “anchor rings” in Euclidean spaces via stereographic projection. In light of
the interest of the Willmore conjecture, it is natural to ask about the behavior of E
as one varies over immersions of Σ4 having the topologies of these E-critical anchor
rings. We show:

Proposition 1.1. E is unbounded above and below over embeddings of any of
the following:

S2 × S2 ⊂ S5

S1 × S3 ⊂ S5

S1 × S1 × S2 ⊂ S6

S1 × S1 × S1 × S1 ⊂ S7.

Proposition 1.1 rules out the most naive formulations of a 4-dimensional Willmore
Conjecture for E . As we discuss in §6.4 (see also [Gu2]), it is possible to modify E to
obtain non-negative conformally invariant energies by adding appropriate multiples
of the fourth power of the norm of the trace-free second fundamental form. But then
one loses the property that minimal submanifolds of Rn and Sn are critical. This
seems to us an important geometric property of a higher-dimensional energy to be
regarded as a true analog of the Willmore energy.

We do not know whether E is bounded below over immersions of S4 in R5. It
is unbounded above: we used Mathematica to calculate E explicitly for the family of
ellipsoids in R5 with axes of length (1, 1, 1, 1, a) with a > 0. From this one can deduce
that E → ∞ as a → 0 and as a → ∞. Moreover, a numerical plot suggests that E is
convex as a function of a and has a unique minimum at a = 1, corresponding to the
round S4. As far as we know, it is plausible that a round S4 ⊂ R

5 minimizes E over
all immersions of S4 in R5; it would be interesting to resolve this question. Locally
this is the case:

Proposition 1.2. The second variation of E at a round S4 ⊂ R
5 is nonnegative,

and is positive in directions transverse to the orbit of the conformal group.

It might be interesting to study the boundedness properties of E over immersions
of S1 × S1 × S2 or

(
S1
)4
in S5. Likewise, to study variational properties of E for Σ

with other topologies, for instance, Σ = CP
2. The Veronese embedding CP2 → S7

is minimal; hence E-critical. We would like to think, without real concrete evidence,
that there should be some interesting variational problems for the energy E , perhaps
of min-max type.

Gover and Waldron have developed a program to study conformal hypersur-
face geometry based on the singular Yamabe problem and tractor calculus ([GoW1],
[GoW2], [GoW3], [GGHW], [GoW5]). This includes the derivation of conformally
invariant obstructions and energies for hypersurfaces in both parities of dimension,
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which in the even-dimensional case have the same leading part as those derived here.
The energies were made explicit in terms of underlying geometry for hypersurfaces of
dimension 2 and 3. In [V], Vyatkin used tractor methods to derive an explicit confor-
mally invariant energy for 4 dimensional hypersurfaces in conformally flat 5-manifolds.
In §6.4, we relate his energy to E in the case when the background manifold is R5.
Conformally invariant hypersurface energies based on volume renormalization of sin-
gular Yamabe metrics are defined and analyzed in [Gr2], [GoW4], where among other
things the singular Yamabe obstruction is identified as the first variation of the energy
which arises as the coefficient of the log term in the renormalized volume expansion.

The paper [Z] of Y. Zhang was posted while this paper was in final preparation.
Zhang also studies the expansion of minimal submanifolds of Poincaré-Einstein spaces
through the terms of order 4, derives a formula for E for k = 4, and obtains the critical
points we derive in §6.1 for products of spheres in Euclidean spaces.

This paper is organized as follows. In §3, we review the formal asymptotics
of minimal submanifolds of Poincaré-Einstein spaces up to the order of the locally
undetermined term in the expansion. The treatment in [GW] was incomplete in that
it derived non-invariant asymptotic expansions in local coordinates but provided no
explanation of how to formulate the results globally. Such a global formulation is
needed to construct the renormalized area expansion. In Theorem 3.1, we provide
an invariant formulation of the asymptotics using the normal exponential map of the
boundary submanifold. All the coefficients in the expansion are invariantly defined
sections of the normal bundle of Σ determined by its geometry as a submanifold of
(M, g). We conclude §3 by showing that the obstruction fieldH ∈ Γ(NΣ), which arises
as the coefficient of the first log term in the expansion, is invariant under conformal
rescalings of g.

In §4, we consider the renormalized area expansion, define the energy E , and
show that it is conformally invariant in Proposition 4.1. We then prove that the first
variation of E is the negative of the obstruction field H, and deduce that a minimal
Σ is E-critical if (M, g) is Einstein.

In §5, we derive formulas for the expansion of the minimal submanifold and the
renormalized area through order 4. This gives formulas for E for k = 2, 4 and and forH
for k = 2. We use a formalism of Guven to identify H for k = 4 when the background
is a Euclidean space. These formulas for H are in particular the negatives of formulas
for the first variation of E in the cases k = 2, 4. We conclude §5 by commenting on
the nonzero leading terms in the expansion coefficients, the obstruction field, and the
energy.

In §6, we analyze E when dimΣ = 4. In §6.1 we calculate explicitly the energy
of products of spheres in Sn as a function of the radii, and use the resulting formulas
to identify E-critical embeddings of products of spheres. This gives examples of some
non-minimal E-critical embeddings. We also make a remarkable observation concern-
ing the relationships between these energy formulas for the different topologies. In
§6.2, we stereographically project products of spheres to obtain 4-dimensional anchor
rings in Euclidean spaces, thereby obtaining E-critical anchor rings. We also analyze
the energy of a non-isotropically dilated family of such anchor rings to show that E is
unbounded above over embeddings of S2 × S2 in S5. This combined with the results
in §6.1 enable us to prove Proposition 1.1. In §6.3, we derive a general formula for
the second variation of E at a minimal immersed hypersurface in S5, precisely gen-
eralizing the corresponding formula derived in [W] for the classical Willmore energy.
We apply this formula to S4 ⊂ S5, thereby proving Proposition 1.2, and also to the
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standard minimal embedding S2 ×S2 ⊂ S5. Finally, in §6.4 we discuss other energies
obtained by modifying E by adding conformally invariant expressions. In particular,
we construct non-negative energies and we derive the relationship mentioned above
between E and Vyatkin’s energy.

Acknowledgements. Research of CRG was partially supported by NSF grant
# DMS 1308266. NR held a postdoctoral position at the University of Washington
while this work was carried out. His research was also supported by NSF RTG grant
# DMS 0838212 and a PIMS Postdoctoral Fellowship. He is grateful to all these
institutions for their support.

2. Notation and Conventions. For a Riemannian manifold (Mn, g), we de-
note the Levi-Civita connection by M∇, the curvature tensor by Rijkl, the Ricci tensor
by Ric(g) or Rij = R

k
ikj , and the scalar curvature by R = R

i
i. Our sign convention

for Rijkl is such that spheres have positive scalar curvature. S
n(r) denotes the Eu-

clidean sphere of dimension n and radius r, and the notation Sn is used for Sn(1).
The Schouten tensor of (M, g) is

Pij =
1

n− 2

(
Rij − R

2(n− 1)
gij

)
and the Weyl tensor is defined by the decomposition

Rijkl =Wijkl + Pikgjl − Pjkgil − Pilgjk + Pjlgik. (2.1)

The Cotton and Bach tensors are

Cijk =
M∇kPij − M∇jPik

and

Bij =
M∇kCijk − P klWkijl.

In invariant expressions such as these, each Latin index i, j, k can be interpreted as
a label for TM or its dual (Penrose abstract index notation).

Σ will denote an immersed submanifold of (M, g) of dimension k via an immersion
f : Σ → M . The pullback bundle f∗TM splits as f∗TM = TΣ ⊕ NΣ. We use α,
β, γ as index labels for TΣ and α′, β′, γ′ for NΣ. A Latin index i for an element or
section of f∗TM thus corresponds to a pair (α, α′). So, for instance, when restricted
to Σ, the Schouten tensor Pij splits into its tangential Pαβ , mixed Pαα′ , and normal
Pα′β′ components. Likewise, the restriction of the metric gij to Σ can be identified
with the metric gαβ induced on Σ together with the metric gα′β′ induced on NΣ. We
routinely use gαβ and gα′β′ and their inverses to lower and raise unprimed and primed
indices.

The second fundamental form is L : S2TΣ → NΣ, defined by L(X,Y ) =
(M∇XY )

⊥. We typically write it as Lα
′

αβ , or perhaps as Lαβα′ or Lα
β
α′ upon lowering

and/or raising indices. Since L has only one primed index and is symmetric in αβ, it
is not necessary to pay attention to the order of the three indices. The mean curvature
vector is H = trL, i.e. the section of NΣ given by Hα′

= gαβLα
′

αβ = Lα
αα′
.

The Levi-Civita connection on M induces connections on TΣ and NΣ together
with their duals and tensor products, all of which we denote ∇. So, for instance,
we can form the covariant derivative ∇αH

α′
, which is a section of T ∗Σ ⊗ NΣ. A

point which requires some attention is that if we have a tensor on M defined near Σ
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(such as the Schouten tensor Pij), we can form its covariant derivative M∇kPij and
then consider on Σ a component of this tensor such as M∇αPα′β . Alternately, we
can first consider on Σ the component Pα′β , which is a section of N

∗Σ ⊗ T ∗Σ, and
then differentiate with respect to the induced connection to obtain ∇αPα′β . Their
relationship

∇αPα′β =
M∇αPα′β + L

β′
αβPα′β′ − Lγαα′Pγβ (2.2)

is a consequence of the Gauss formula.
Norms are always taken with respect to the metric on tensor products induced

by the metric on the underlying bundle. So, for instance, in (1.1), we have

|∇H|2 = ∇αH
α′∇αHα′

|LtH|2 = Lα′
αβL

αβ
β′ Hα′Hβ′

|H|4 = (Hα′Hα′)2
.

We often compute in local coordinates. We always use a coordinate system
{(xα, uα′

) : 1 ≤ α ≤ k, 1 ≤ α′ ≤ n − k} for M near Σ, with the properties that
Σ = {uα′

= 0} and ∂α ⊥ ∂α′ on Σ. Hence, on Σ, the ∂α span TΣ, the ∂α′ span NΣ,
and the mixed metric components gαα′ vanish. So our use of indices for coordinates
is consistent with the abstract interpretation described above. When computing in
local coordinates, partial derivatives are expressed using either of the two notations
∂αuβ = uβ,α.

Our sign convention for Laplacians is that Δ =
∑
∂2i on Euclidean space.

When dealing with embedded submanifolds, as in §3, we typically identify Σ with
its image and suppress mention of the immersion f .

3. Formal Asymptotics. Let (Mn, [g]) be a conformal manifold, n ≥ 2, and
g a chosen metric in the conformal class. By a Poincaré metric g+ in normal form
relative to g, we will mean a metric g+ on X = M × (0, ε0)r, for some ε0 > 0, of the
form

g+ =
dr2 + gr
r2

, (3.1)

where gr is a smooth 1-parameter family of metrics on M for which g0 = g, and
satisfying

Ric(g+) + ng+ = O(r
n−2).

These conditions uniquely determine the Taylor expansion of gr mod O(rn), and it is
even to this order ([FG]). The form of the expansion changes at order n for solutions
to higher order, but that will not be relevant because these orders do not enter here.
Set g = r2g+ = dr2 + gr. We identify M with M × {0}, and view M = ∂X as the
boundary at infinity relative to g+. In case M = R

n and g = |dx|2 is the Euclidean
metric, gr = g is constant in r, and g+ is the upper-half space realization of the
hyperbolic metric.

In this section we consider local geometry of embedded submanifolds of M . In
the next section we will construct global invariants of immersed submanifolds by
integration of the local invariants derived here.

Let Σ ⊂ M be an embedded submanifold of dimension k, 2 ≤ k < n, with k
even. We consider the formal asymptotics of embedded submanifolds Y k+1 ⊂ X =
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M × [0, ε0) with ∂Y = Σ which are minimal with respect to g+. Such a submanifold
can be described invariantly in terms of a 1-parameter family of sections of the g-
normal bundle NΣ of Σ in M as follows.

The normal exponential map of Σ with respect to g, denoted expΣ, defines a
diffeomorphism from a neighborhood of the zero section in NΣ to a neighborhood of
Σ in M . Let Y k+1 ⊂ M × [0, ε0) be a smooth submanifold which is transverse to
M and satisfies Y ∩M = Σ. For r ≥ 0 small, let Yr ⊂ M denote the slice of Y at
height r, defined by Y ∩ (M × {r}) = Yr × {r}. Then Yr is a smooth submanifold
of M of dimension k and Y0 = Σ. There is a unique section Ur ∈ Γ(NΣ) so that
expΣ{Ur(p) : p ∈ Σ} = Yr. This defines a smooth 1-parameter family Ur of sections
of NΣ for which

Y =
{(
expΣ Ur(p), r

)
: p ∈ Σ, r ≥ 0

}
. (3.2)

In particular, U0 = 0. The submanifolds Y ⊂ X which we consider will all be
orthogonal to M at Σ with respect to g. Thus the tangent bundle to Y along Σ is
TΣ ⊕ span ∂r, and the normal bundle to Y along Σ can be identified with NΣ. In
this case we have ∂rUr|r=0 = 0, i.e. Ur = O(r

2).
The condition that Y is minimal becomes a system of partial differential equations

on the normal vector fields Ur. Recall that minimality of Y is equivalent to the
statement that HY = 0, where HY denotes the mean curvature vector field of Y ⊂ X
with respect to the metric g+.

Theorem 3.1. There is a smooth Ur so that |HY |g = O(rk+2). This condition
uniquely determines the Taylor expansion of Ur modulo O(rk+2), and this Taylor
expansion is even in r mod O(rk+2). The quantity H := r−k−2HY |r=0 defines a
section of NΣ which is independent of the choice of the O(rk+2) ambiguity in Ur. If
nonzero, H is therefore an obstruction to solving |HY |g = o(rk+2) with Ur a formal
power series.

There is a solution to |HY (Ur)|g = O(rk+3| log r|) of the form

Ur = Vr − (k + 2)−1Hrk+2 log r, (3.3)

where Vr is smooth. The rk+2 coefficient in the Taylor expansion of Vr is formally
undetermined.

Remark 3.2. The same result is true for k odd, but in that case H is always
identically zero.

Remark 3.3. Boundary regularity for minimal hypersurfaces in hyperbolic space
has been studied in [HL], [L1], [L2], [T], [HJ], and [HSW].

Proof. A local coordinate version of this result was derived in §2 of [GW]. We
show how to reformulate Theorem 3.1 in terms of local coordinates and outline the
proof, referring to [GW] for some details.

We will work in geodesic normal coordinates on M near Σ. Choose a local co-
ordinate system {xα : 1 ≤ α ≤ k} for an open subset V ⊂ Σ and a local frame
{eα′(x) : 1 ≤ α′ ≤ n − k} for NΣ|V . Let {uα′

: 1 ≤ α′ ≤ n − k} denote the corre-
sponding linear coordinates on the fibers ofNΣ|V . The map expΣ

(
uα

′
eα′(x)

) 
→ (x, u)

defines a coordinate system (xα, uα
′
) in a neighborhood W of V in M , with respect

to which Σ is given by uα
′
= 0. For each (x, u), the curve t 
→ (x, tu) is a geodesic for



578 C. ROBIN GRAHAM AND N. REICHERT

g normal to Σ. In particular, in these coordinates the mixed metric components gαα′

vanish on V. Extend the coordinates to W ×[0, ε) ⊂ X to be constant in r. If Ur is a 1-
parameter family of sections of NΣ and we define uα

′
(x, r) by Ur(x) = u

α′
(x, r)eα′(x),

then the description (3.2) of Y is the same as saying that in the coordinates (x, u, r)
on X, Y is the graph uα

′
= uα

′
(x, r).

The setting in [GW] was that (xα, uα
′
) is any local coordinate system on M

near a point of Σ with the properties that Σ = {uα′
= 0} and ∂α ⊥ ∂α′ on Σ, and

Y is described as the graph uα
′
= uα

′
(x, r). So our geodesic normal coordinates

constructed above and our description of Y in terms of them are of this form.
Let h denote the metric induced on Y by g+ and set h = r2h, so h is the metric

induced by g = dr2 + gr. Now (x
α, r) restrict to local coordinates on Y . In terms of

these coordinates, h is given by:

hαβ =gαβ + 2gα′(αu
α′
,β) + gα′β′uα

′
,αu

β′
,β

hα0 =gαα′uα
′
,r + gα′β′uα

′
,αu

β′
,r

h00 =1 + gα′β′uα
′
,ru

β′
,r.

(3.4)

We use a ’0’ index for the r-direction. The components of h and the derivatives of u
are evaluated at (x, r). We have written

gr = gαβ(x, u, r)dx
αdxβ + 2gαα′(x, u, r)dxαduα

′
+ gα′β′(x, u, r)duα

′
duβ

′
,

and in (3.4), all gij are understood to be evaluated at (x, u(x, r), r).
It was shown in [GW] that for g+ of the form (3.1) and for Y described as the

graph uα
′
= uα

′
(x, r), the usual minimal submanifold equation for a graph takes the

form M(u) = 0, where

M(u)γ′ =

[
r∂r − (k + 1) +

1

2
rL,r

] [
h
00
gα′γ′uα

′
,r + h

α0
(
gαγ′ + gα′γ′uα

′
,α

)]
+ r

[
∂β +

1

2
L,β

] [
h
0β
gα′γ′uα

′
,r + h

αβ
(
gαγ′ + gα′γ′uα

′
,α

)]
− 1

2
rh

αβ
[
gαβ,γ′ + 2gαα′,γ′uα

′
,β + gα′β′,γ′uα

′
,αu

β′
,β

]
− rhα0

[
gαα′,γ′uα

′
,r + gα′β′,γ′uα

′
,αu

β′
,r

]
− 1

2
rh

00
[
gα′β′,γ′uα

′
,ru

β′
,r

]
.

(3.5)

Here L = log(deth). Components of h and M(u) are evaluated at (x, r), and all gij
and derivatives thereof are evaluated at (x, u(x, r), r). The equation M(u) = 0 is the
equation we will use to study the asymptotics of Ur.

We next relate M(u) to the mean curvature HY . Recall that −HY is the first
variation of area of Y , in the sense that if Ft : Y → X is a compactly supported
variation of Y , then

A(Ft(Y ))˙= −
∫
Y

〈HY , Ḟ 〉g+daY .

Here A denotes the area and daY the area density, both with respect to g+, and ˙
denotes ∂t|t=0. The area A(Ft(Y )) itself is infinite, but A(Ft(Y ))˙ is well-defined and
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finite since the variation is compactly supported in X. The usual derivation of the
minimal submanifold equation (3.5) for a graph amounts to considering variations
of the form Ft(x, u, r) = (x, ut, r) relative to coordinates (x, u, r) as above. That
derivation shows that for such variations, one has

Ȧ = −
∫
Y

r−1M(u)γ′ u̇γ
′
daY .

Therefore

r−1M(u)γ′ u̇γ
′
= 〈HY , Ḟ 〉g+ = r−2〈HY , Ḟ 〉g.

If we write HY = H
β∂β +H

β′
∂β′ +H0∂r, then it follows that

gβγ′Hβ + gβ′γ′Hβ′
= rM(u)γ′ . (3.6)

On the other hand, HY is normal to Y , so

〈HY , ∂α + u
α′
,α ∂α′〉g = 0, 〈HY , ∂r + u

α′
,r ∂α′〉g = 0.

These can be rewritten(
gαβ + gα′βu

α′
,α

)
Hβ = −

(
gαβ′ + gα′β′uα

′
,α

)
Hβ′

,

H0 = −gα′βu
α′
,rH

β − gα′β′uα
′
,rH

β′
.

Since gαβ is smooth and nonsingular up to r = 0 and gα′β = 0 at r = 0, the first

equation can be solved to express Hβ as a linear function of Hβ′
near r = 0. The

second equation then gives H0 as a function of Hβ′
near r = 0. Then (3.6) can be

used to solve for Hβ′
in terms of rM(u)γ′ . It follows that r|M(u)|g and |HY |g vanish

to the same order at r = 0.
As discussed in [GW], the asymptotics of u(x, r) can be derived inductively from

the equation M(u) = 0, starting with the initial condition u(x, 0) = 0. For instance,
upon simply setting r = 0, the last four lines of (3.5) vanish and the first gives
uα

′
,r = 0. Suppose inductively that u satisfies M(u) = O(rm−1). It is not hard to

see directly from (3.5) that

M(u+ wrm)γ′ = M(u)γ′ +m(m− k − 2)gγ′α′wα
′
rm−1 +O(rm). (3.7)

(The only contribution at orderm−1 comes from the first term on the right-hand side.)
So if m < k + 2, one can uniquely determine w|r=0 to make M(u + wrm) = O(rm).
Hence the Taylor expansion of u mod O(rk+2) is uniquely determined by the equation
|M(u)|g = O(rk+1). By the discussion in the previous paragraph, this corresponds to
|HY |g = O(rk+2). That Ur is even follows by inspection of (3.5): the map u 
→ M(u)
reverses parity.

To analyze what happens at order k + 2, let v be smooth and satisfy M(v) =
O(rk+1). It follows from (3.7) with m = k+2 that r−k−1M(v)|r=0 is independent of
the choice of the order rk+2 ambiguity in v, and if nonzero, is therefore an obstruction
to solving M(u) = O(rk+2) with u smooth. To solve at this order it is necessary to
introduce a log term. One calculates from (3.5) that

M(v + wrk+2 log r)γ′ = M(v)γ′ + (k + 2)gγ′α′wα
′
rk+1 +O(rk+2| log r|).
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Hence wα
′
= −(k + 2)−1gα′γ′

r−k−1M(v)γ′ |r=0 is the unique choice to make u =
v + wrk+2 log r satisfy M(u) = O(rk+2| log r|).

Since v and u are unique mod O(rk+2) and the equation M(u) = 0 is a coordinate
representation of the invariant condition HY = 0, the corresponding 1-parameter
families Vr = v

α′
eα′ and Ur = u

α′
eα′ of sections of NΣ are globally and invariantly

defined mod O(rk+2). The normal space to Y at r = 0 is span{∂β′}, and it follows
from (3.6) that gγ′β′r−k−2Hβ′ |r=0 = r

−k−1M(v)γ′ |r=0. Hence the definition H :=
r−k−2HY |r=0 is equivalent to:

Hα′
= gα

′γ′
r−k−1M(v)γ′ |r=0. (3.8)

The determination of w above therefore shows that the coefficient of rk+2 log r in Ur
is −(k + 2)−1H.

We write the expansion of Ur in the form

Ur = U(2)r
2 + . . .+ U(k)r

k − (k + 2)−1Hrk+2 log r + . . . , (3.9)

where each U(2j), 1 ≤ j ≤ k/2, is a globally, invariantly defined section of NΣ deter-
mined by the choice of metric g in the conformal class. The U(2j) are not conformally
invariant, but H is:

Proposition 3.4. If ĝ = Ω2g with Ω ∈ C∞(M), then Ĥ = (Ω|Σ)−(k+2)H.

Proof. Write ĝ+ = r̂
−2(dr̂2+ ĝr̂) for the analogue of (3.1) with respect to ĝ. Then

there is a diffeomorphism ψ on a neighborhood of M in M × [0, ε0), restricting to
the identity on M × {0}, for which ψ∗ĝ+ = g+ mod O(rn−2) and ψ∗r̂ = Ωr +O(r2)
([FG]). If Y satisfies |HY |g = O(rk+2), then Ŷ = ψ(Y ) satisfies |H

̂Y |ĝ = O(r̂k+2),

where the mean curvature of Ŷ is taken with respect to ĝ+. Since ψ restricts to the
identity on M , it follows that

Ĥ = ψ∗Ĥ = ψ∗
(
r̂−k−2H

̂Y |r̂=0

)
= Ω−(k+2)r−k−2HY |r=0 = (Ω|Σ)−(k+2)H.

4. Energy. In this section we consider immersed submanifolds of M . Thus let
Σ be a manifold of even dimension k and f : Σ → M an immersion. Relative to the
metric g on M , the pullback bundle f∗TM splits as

f∗TM = TΣ⊕NΣ.
f is locally an embedding, so the considerations of the previous section apply. In
particular, Theorem 3.1 determines a 1-parameter family of sections Ur mod O(rk+2)
of NΣ and an obstruction field H ∈ Γ(NΣ). In this section we set Y = Σ × [0, ε0)

immersed in X =M × [0, ε0) via the map f̃ : Σ× [0, ε0) → X given by:

f̃(p, r) =
(
expΣ Ur(p), r

)
. (4.1)

Consider the asymptotics of the area density daY for the metric induced by g+.
We have daY = ϕdaΣdr for an invariantly defined function ϕ on Σ × (0, ε0). Here
daΣ denotes the area density of Σ with respect to the metric induced by g. In terms
of local coordinates (xα, uα

′
) introduced in the proof of Theorem 3.1, we have

ϕ(x, r) =

√
deth(x, r)

dethαβ(x, 0)
= r−k−1

√
deth(x, r)

dethαβ(x, 0)
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with h given by (3.4). Since Ur is even in r to order k+2, it follows that the expansion

of

√
deth(x,r)

dethαβ(x,0)
has only even terms through order k. Hence we can write

daY = r
−k−1

[
a(0) + a(2)r2 + . . .+ a(k)rk + . . .

]
daΣdr (4.2)

for invariantly defined functions a(2j), 1 ≤ j ≤ k/2, on Σ determined by√
deth(·, r)
dethαβ(·, 0)

= a(0) + a(2)r2 + . . .+ a(k)rk + . . . . (4.3)

In particular, a(0) = 1. The a(2j) are called the renormalized area coefficients for Σ.
Assume now that Σ is compact. It follows upon integration of (4.2) that for ε0

fixed,

Area(Y ∩ {ε < r < ε0}) = A0ε
−k +A2ε

−k+2 + . . .+Ak−2ε−2 + E log 1
ε
+O(1) (4.4)

as ε → 0, with

A2j =
1

k − 2j

∫
Σ

a(2j) daΣ, 0 ≤ j ≤ k/2− 1, E =
∫
Σ

a(k) daΣ. (4.5)

Proposition 4.1. E is independent of the choice of representative metric g.

Proof. Let ĝ be a conformally related metric. There is a uniquely determined
defining function r̂ in a neighborhood of M in X such that r̂2g+|TM = ĝ and

|dr̂/r̂|g+ = 1. The difference E − Ê is the coefficient of log 1
ε in the expansion of

Area(Y ∩ {ε < r})−Area(Y ∩ {ε < r̂}). Now r̂ > ε is equivalent to r > εb(x, ε) for a
smooth positive function b(x, ε). Writing Area(Y ∩ {ε < r}) − Area(Y ∩ {ε < r̂}) as
an integral, it follows without difficulty that the coefficient of log 1

ε in its expansion is
equal to zero. See Proposition 2.1 of [GW] for details.

The motivation for viewing E as a version of the Willmore energy is the fact,
derived in [GW], that when k = 2 and (M, g) is 3-dimensional Euclidean space, E
reduces to a multiple of the usual Willmore energy of Σ. This derivation will be
reviewed in §5.

Remark 4.2. There are other natural invariant immersions Σ × [0, ε0) → M ×
[0, ε0) having the same image as f̃ , which give rise to different coefficients a

(2j) in (4.2).
The quantity Area(Y ∩ {ε < r < ε0}) is independent of the choice of parametrization,
so it follows that as long as the immersion takes the form (p, r) → (Φr(p), r) for a
1-parameter family of immersions Φr : Σ → M satisfying Φ0 = f , the coefficients A2j

given by (4.5) will be the same. The corresponding a(2j) will differ by a divergence.
Consequently, one might not expect that the specific coefficients a(2j) will play as
fundamental a role as they do for the case of volume renormalization, where the
product identification M × [0, ε0) is a canonical parametrization.

Next we consider the variational derivative of E on the space of immersions of
Σ into M . Let Ft : Σ → M , 0 ≤ t < δ be a variation of Σ, i.e. a smooth 1-
parameter family of immersions with F0 = f . Denote by F : Σ × [0, δ) → M the

map F (p, t) = Ft(p). Let Σt denote Σ immersed into M via Ft, let a
(k)
t be the



582 C. ROBIN GRAHAM AND N. REICHERT

corresponding renormalized volume coefficient, and set Et =
∫
Σt
a
(k)
t daΣt

. Also set

Ḟ = ∂tF |t=0 ∈ Γ(f∗TM) and Ė = ∂tEt|t=0.

Theorem 4.3. If k ≥ 2, then

Ė = −
∫
Σ

〈Ḟ ,H〉g daΣ.

Proof. For each t, let U tr be the 1-parameter family of sections of NΣt determined
by Σt modulo O(r

k+2) as in Theorem 3.1. For definiteness, we fix the indeterminacy
in U tr by truncating the expansion (3.9) after the log term:

U tr(p) = U
t
(2)(p)r

2 + . . .+ U t(k)(p)r
k − (k + 2)−1Ht(p)rk+2 log r, p ∈ Σ. (4.6)

Let F̃t : Σ× [0, ε0) → X be the immersion defined by analogy to (4.1):

F̃t(p, r) =
(
expΣt

U tr(p), r
)
, (4.7)

and denote by Yt be the corresponding immersed submanifold of X. Then Y0 = Y
and U0

r = Ur.
Fix ε0 small and let 0 < ε < ε0. Set Y

ε
t = Yt ∩ {ε < r < ε0} and Y ε = Y ε0 . Then

F̃t|Σ×(ε,ε0) : Σ × (ε, ε0) → Y εt is a variation of the manifold-with-boundary Y
ε. The

first variation of area formula for F̃t|Σ×(ε,ε0) with background metric g+ states

A(Y εt )˙= −
∫
Y ε

〈HY ,
˙̃
F 〉g+ daY +

(∫
Y ∩{r=ε0}

+

∫
Y ∩{r=ε}

)
〈n, ˙̃F 〉g+da∂ , (4.8)

where da∂ denotes the induced area density and n the outward pointing normal on
∂Y ε = (Y ∩ {r = ε0}) ∪ (Y ∩ {r = ε}). Both sides of this equation blow up as ε → 0.
We consider their asymptotic expansions in ε.

According to (4.4), we have

A(Y εt )˙= Ȧ0ε
−k + Ȧ2ε

−k+2 + . . .+ Ȧk−2ε−2 + Ė log 1
ε
+O(1).

So Ė occurs as the coefficient of log 1
ε in the asymptotic expansion of the left-hand

side of (4.8). The proof will be concluded by showing that the coefficient of log 1
ε

on the right-hand side is − ∫
Σ

〈Ḟ ,H〉g daΣ. It suffices to assume that Ḟ is supported
in a small open set in Σ. In the following argument, we sometimes reduce ε0 and δ
without mention.

We begin by analyzing
˙̃
F , a section of f̃∗TX. Certainly ˙̃

F |Σ = Ḟ . The decom-
position X =M × [0, ε0) induces a decomposition TX = TM ⊕ T ([0, ε0)). It is clear
from (4.7) that the T ([0, ε0))-component of

˙̃
F vanishes at each point. Choose V ⊂ Σ

open and local coordinates z = (z1, . . . , zn) forM in a neighborhood of f(V). We can
write

˙̃
F =

˙̃
F i∂zi (4.9)

with coefficients
˙̃
F i which are functions on V × [0, ε0).
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Lemma 4.4. Each
˙̃
F i has an asymptotic expansion of the form

f0 + f2r
2 + . . .+ fkr

k + flogr
k+2 log r +O(rk+2) (4.10)

with coefficients f2j , flog ∈ C∞(V).
Proof. As bundles on Σ × [0, δ), the pullback bundle splits as F ∗TM = T ⊕ N ,

where T(p,t) = TpΣt, N(p,t) = NpΣt. We define exp : N → M near the zero section
by exp v = expΣt

v for v ∈ N(p,t) = NpΣt. Let eα′(p, t), 1 ≤ α′ ≤ n− k, be a smooth
frame for N |V×[0,δ). This frame determines a diffeomorphism χ : V × [0, δ)× U → N

onto its image, for U a neighborhood of the origin in Rn−k, by

χ(p, t, u) =
(
p, t, uα

′
eα′(p, t)

)
.

If we represent points of M using the local coordinates z = (z1, . . . , zn), then in these
coordinates the map exp can be expressed as

(exp ◦χ)(p, t, u) = z(p, t, u),

where z(p, t, u) is a smooth Rn-valued function on V × [0, δ)× U . In these terms, the
definition (4.7) of F̃t becomes

(F̃t)(p, r) =
(
z
(
p, t, ur(p, t)

)
, r
)
,

where ur : V × [0, δ) → U denotes the components of U tr in the frame eα′ , defined by

U tr(p) = u
α′
r (p, t)eα′(p, t). (4.11)

Now z is a smooth function of (p, t, u). So the asymptotic expansion in r of the

z-components of F̃t can be obtained by composing the Taylor expansion of z about
u = 0 with the expansion of the uα

′
r , which are determined by combining (4.6) with

(4.11). It follows that each z-component of F̃t has an expansion of the form (4.10)
with coefficients depending smoothly on t. Differentiation in t at t = 0 yields the

stated claim concerning
˙̃
F .

Return now to consider the right-hand side of (4.8). According to Theorem 3.1,

we have |HY |g = O(rk+3| log r|). Lemma 4.4 shows that | ˙̃F |g = O(1). Consequently
|〈HY ,

˙̃
F 〉g+ | = O(rk+1| log r|). Since daY = O(r−k−1)daΣdr, we deduce that∣∣∣ ∫

Y ε

〈HY ,
˙̃
F 〉g+ daY

∣∣∣ = O(1)
as ε → 0. In particular, this term does not contribute to the log 1

ε term in the expan-
sion of the right-hand side of (4.8). Likewise, the integral over Y ∩{r = ε0} is indepen-
dent of ε, so does not contribute to the log 1

ε term. So the log
1
ε term in the asymptotic

expansion of the right-hand side of (4.8) equals that for
∫
Y ∩{r=ε}〈n,

˙̃
F 〉g+ daε. Here

we denote the induced area density on Y ∩ {r = ε} by daε. We regard Y ∩ {r = ε} as
the immersed submanifold of X defined by the immersion f̃ε : Σ → X, f̃ε(p) = f̃(p, ε).

We study the pointwise asymptotics in ε of 〈n, ˙̃F 〉g+ |r=ε and of daε using local coor-
dinates.
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Choose a local coordinate system {xα : 1 ≤ α ≤ k} for an open subset V ⊂ Σ and
a local frame {eα′(x) : 1 ≤ α′ ≤ n−k} for NΣ|V as in the proof of Theorem 3.1. In the
corresponding local coordinates (x, u) for M near f(V), Y is given by uα′

= uα
′
(x, r),

where uα
′
(x, r) are the components of Ur(x) in the frame {eα′(x)}. The metric on Y

induced by g+ takes the form h = r−2h in the local coordinates (x, r) on Σ× [0, ε0),
with h given by (3.4). The outward unit conormal to {r = ε} is −dr/|dr|h, so the
outward unit normal is given in these (x, r) coordinates by

− 1√
h00

(
h0α ∂α + h

00 ∂r
)
= −

(
h0α√
h00

∂α +
√
h00 ∂r

)
.

Thus

−n = f̃∗
(
h0α√
h00

∂α +
√
h00 ∂r

)
=
h0α√
h00

(
∂α + u

α′
,α ∂α′

)
+

√
h00
(
∂r + u

α′
,r∂α′

)
=
h0α√
h00
∂α +

(
h0γ√
h00
uα

′
,γ +

√
h00uα

′
,r

)
∂α′ +

√
h00 ∂r.

All metric coefficients h0α, h00 are evaluated at (x, ε).
Take the coordinates z in (4.9) to be z = (x, u). Then (4.9) becomes

˙̃
F =

˙̃
Fα∂α +

˙̃
Fα

′
∂α′ .

Recalling (3.1), it follows that

−ε〈n, ˙̃F 〉g+ = gαβ ˙̃Fα
h0β√
h00

+ gαβ′
˙̃
Fα
(
h0γ√
h00
uβ

′
,γ +

√
h00uβ

′
,r

)
+ gβα′

˙̃
Fα

′ h0β√
h00

+ gα′β′
˙̃
Fα

′
(
h0γ√
h00
uβ

′
,γ +

√
h00uβ

′
,r

)
.

(4.12)

All gij are evaluated at (x, u(x, ε), ε). Likewise,

daε =
√
dethαβ(x, ε) dx = ε

−k
√
dethαβ(x, ε) dx = ε

−k
√
dethαβ(x, ε)

dethαβ(x, 0)
daΣ. (4.13)

Consider the asymptotic expansion in ε of each of the terms appearing in the

right-hand sides of (4.12), (4.13). In (4.12), the factors gij ,
˙̃
F i, h0β ,

√
h00, 1/

√
h00,

uβ
′
,γ and u

β′
r all have expansions in nonnegative powers of ε and positive powers of

log ε. We analyze the powers of ε multiplying the log ε terms in the expansions.
First consider gij(x, u(x, ε), ε). Since gij(x, u, r) is smooth, the asymptotic ex-

pansion of gij(x, u(x, ε), ε) is obtained by composing the Taylor expansion of gij in u
and r about u = 0, r = 0 with the asymptotic expansion of u in r, and then setting
r = ε. Thus it follows from (4.6) with t = 0 that each log ε term in gij(x, u(x, ε), ε)
occurs multiplied by ε to a power at least k + 2. Next consider the induced metric
coefficients hαβ , hα0, h00 given by (3.4). We claim likewise that log ε occurs in each
of these multiplied by ε to a power at least k + 2. For hαβ this is clear since the

derivatives of uα
′
which appear are tangential to Σ. Now uα

′
,r has a term of the form

εk+1 log ε. However, since gαα′ , uα
′
,α and u

α′
,r all vanish at ε = 0, the log terms in

the expansions of the uα
′
,r occurring in hα0 and h00 all get multiplied by at least one
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extra factor of ε, and the claim follows. We conclude that each log ε in the inverse

metric coefficients h
αβ
, h

α0
, h

00
also is multiplied by ε to a power at least k + 2.

Lemma 4.4 shows that each log ε in
˙̃
Fα and

˙̃
Fα

′
is multiplied by ε to a power at least

k + 2.

The first term on the right-hand side of (4.12) is gαβ
˙̃
Fαh0β/

√
h00. From the above

observations it is clear that each log ε term in its asymptotic expansion is multiplied

by ε to a power at least k + 2. Likewise for the third term gβα′
˙̃
Fα

′
h0β/

√
h00. The

second and fourth terms of (4.12) include a factor uβ
′
,r, whose expansion has a term

of the form εk+1 log ε. Now the second term has a leading factor gαβ′ , which vanishes
at ε = 0. So each log ε term in the asymptotic expansion of the second term is
multiplied by ε to a power at least k + 2. However, this is not the case for the

fourth term. According to (4.6), uβ
′
,r has a term −Hβ′

εk+1 log ε. Since
˙̃
F |Σ = Ḟ

and h
00|Σ = 1, it follows that the expansion of the fourth term of (4.12) has a term

−gα′β′ Ḟα
′Hβ′

εk+1 log ε. Putting all this together, we conclude that the expansion of

〈n, ˙̃F 〉g+ has a term 〈Ḟ ,H〉g εk log ε, and all other log ε terms appear with a coefficient
of εk+1 or higher.

It is clear that the factor
√
dethαβ(x, ε)/ dethαβ(x, 0) in (4.13) has an expansion

with a leading term of 1 and with all log ε terms multiplied by a power of ε at least
k + 2. Combining with the conclusion of the above paragraph, it follows that the

log ε coefficient in the expansion of 〈n, ˙̃F 〉g+daε is 〈Ḟ ,H〉g daΣ. Integrating over Σ
concludes the proof of Theorem 4.3.

As a consequence of Theorem 4.3, we deduce the following proposition.

Proposition 4.5. Let k ≥ 2 be even and suppose (Mn, g) is Einstein. If Σk is
a minimal immersed submanifold of (M, g), then Σ is critical for E.

Proof. The Poincaré metric for an Einstein metric can be written explicitly: if
Ric(g) = 2λ(n− 1)g, then gr = (1− λr2/2)2g (see [GL], [FG]). So

g+ = r
−2(dr2 + (1− λr2/2)2g) = ds2 + (es − λe−s/2)2g, s = − log r.

It is easy to verify the general fact that if Σ is a minimal submanifold of a Riemannian
manifold (M, g), then Σ×R is a minimal submanifold of M ×R with respect to any
warped product metric of the form g+ = ds2 + A(s)g, where s denotes the variable
in R and A(s) is a positive function. Thus when g is Einstein and Σ is minimal, the
minimal extension Y in Theorem 3.1 is simply Y = Σ×R. That is, the corresponding
normal field is Ur = 0 mod O(rk+2). (An alternate, equivalent way to see this is
simply to note that if gr = B(r)g for some positive function B(r) and Σ is minimal,
then u = 0 solves M(u) = 0 exactly, where recall M(u) is given by (3.5)).

Since Ur = 0 has no log term in its expansion, it must be that H = 0. By
Theorem 4.3, it follows that Σ is critical for E .
Proposition 4.5 implies in particular that minimal submanifolds of Rn or Sn are
critical for E .

5. Derivation of Formulas. In this section we derive formulas for the renor-
malized area coefficients a(2), a(4) in the expansion (4.3), and for the coefficients U(2),
U(4) in the expansion (3.9) of Ur. This gives formulas for the energy E for k = 2, 4
by integration, and for the obstruction H for k = 2. We also use Theorem 4.3 and a
formalism of Guven to identify H for k = 4 when (M, g) is a Euclidean space.
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The coefficients U(2j) are determined by solving the equation M(u) = 0 induc-

tively order by order, where M(u) is given by (3.5). Using the fact that uα
′
,r = 0 at

r = 0, one sees easily that all terms on the right-hand side of (3.5) are O(r2) except
for the first and third. Thus

(r∂r − (k + 1))(h
00
gα′γ′uα

′
,r)− 1

2rh
αβ
gαβ,γ′ = O(r2).

Applying ∂r|r=0 and raising an index gives ku
α′
,rr = − 1

2g
α′γ′
gαβgαβ,γ′ at r = 0.

Therefore

U(2) =
1

2k
H. (5.1)

We next turn to the identification of a(2) and a(4). We will return later to the
determination of U(4) by further differentiation of (3.5).

Proposition 5.1. If k ≥ 1, then

a(2) = −1
2

(
k − 1

k2
|H|2 + Pαα

)
a(4) =

1

8k2

(
|∇H|2 − Lα′

αβL
αβ
β′ Hα′Hβ′

+
k2 − 2k − 1

k2
|H|4

−Wα
α′αβ′Hα′

Hβ′ − 2kgαβM∇α′PαβH
α′ − 4kPαα′∇αH

α′

+ (2k − 3)Pαα|H|2 − (k + 4)Pα′β′Hα′
Hβ′
)

+
1

8

(
− PαβPαβ + Pαα′

Pαα′ + (Pαα)
2 − 1

n− 4
Bαα

)
+
4− k
k
Hα′Uα

′
(4).

In the last line of the expression for a(4), one should substitute the formula for
U(4) given in Proposition 5.5 and combine like terms. However, we are primarily

interested in a(4) for k = 4, when it is the integrand for E . When k = 4, the U(4) term
does not appear. Consequently we have left the expression in the above form.

Proposition 5.1 will be proved by calculating in special coordinates. Recall the
geodesic normal coordinate systems (x, u) on M near Σ constructed at the beginning
of the proof of Theorem 3.1 which are associated to a choice of local coordinates xα for
Σ and a choice of frame eα′ for NΣ. Given p ∈ Σ, choose the xα so that gαβ,γ(p) = 0
for 1 ≤ α, β, γ ≤ k. (For instance, take xα to be geodesic normal coordinates at p for
the induced metric on Σ.) Choose the frame eα′ so that ∇αeα′(p) = 0 for 1 ≤ α ≤ k,
1 ≤ α′ ≤ n− k, where ∇α denotes the normal bundle connection on NΣ.

Lemma 5.2. In such coordinates (x, u), the following all vanish at p:

gαβ,γ gαα′,β gα′β′,α gαα′,β′ gα′β′,γ′ .

At p we also have

gαβ,α′ = −2Lαβα′ (5.2)
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and

gαβ,α′β′ = 2Rα′(αβ)β′ + Lαγβ′Lβ
γ
α′ + Lβγβ′Lα

γ
α′ . (5.3)

If v is a section of NΣ, then at p we have

∇α∇βv
α′
=
(
vα

′
,βα + g

α′γ′
gβγ′,β′αv

β′)
. (5.4)

Proof. The x coordinates were chosen so that gαβ,γ = 0 at p. We have gαα′,β = 0
on all of Σ since gαα′ = 0 on Σ and ∂β acts tangentially. Recall from the construction
of (x, u) that each curve t 
→ (x, tu) is a geodesic. This implies in particular that

Γγα′β′ = 0 and Γ
γ′
α′β′ = 0 on Σ. The latter equation is equivalent to gα′β′,γ′ = 0 on Σ.

The former is equivalent to

gα′β′,α = gαα′,β′ + gαβ′,α′ on Σ. (5.5)

Since eα′ = ∂α′ on Σ, the equation ∇αeα′(p) = 0 is equivalent to Γβ
′
αα′(p) = 0, which

is equivalent to gα′β′,α = gαα′,β′ − gαβ′,α′ at p. The left-hand side is symmetric in
α′β′ and the right-hand side is skew, so both must vanish. Combining with (5.5), we
conclude that in fact gα′β′,α = gαα′,β′ = 0 at p.

Equation (5.2) holds on all of Σ in any coordinates (x, u) for which Σ = {u = 0}
and ∂α ⊥ ∂α′ on Σ. In fact, in this case ∇∂α∂β = Γγαβ∂γ + Γ

γ′
αβ∂γ′ , so Lγ

′
αβ = Γγ

′
αβ =

− 1
2g

γ′α′
gαβ,α′ .

For (5.3), the curvature tensor is given in local coordinates by

−2Rijkl = gik,jl + gjl,ik − gil,jk − gjk,il − 2gpq(ΓilpΓjkq − ΓikpΓjlq).

The Christoffel symbols all vanish at p except for

Γαβα′ = Lαβα′ , Γαα′β = Γα′αβ = −Lαβα′ . (5.6)

So specializing the indices and evaluating at p gives

−2Rαα′ββ′ = gαβ,α′β′ + gα′β′,αβ − gαβ′,βα′ − gβα′,αβ′ − 2gγδLαγβ′Lβδα′ .

Symmetrizing in αβ gives

2Rα′(αβ)β′ = gαβ,α′β′ + Symαβ

[
(gα′β′,β − gββ′,α′ − gβα′,β′), α

]− Lαγβ′Lβ
γ
α′ − Lβγβ′Lα

γ
α′ .

But

(gα′β′,β − gββ′,α′ − gβα′,β′),α = 0 on Σ (5.7)

since gα′β′,β −gββ′,α′ −gβα′,β′ = 0 on Σ by (5.5), and ∂α acts tangentially. Thus (5.3)
holds.

For (5.4), write ∇βv
α′
= vα

′
,β + Γ

α′
ββ′vβ

′
, apply ∇α, and expand the right-hand

side again in terms of partial derivatives and Christoffel symbols. Using the fact that
all Christoffel symbols vanish at p except for (5.6), one obtains at p:

∇α∇βv
α′
= vα

′
,βα + Γ

α′
ββ′ ,αv

β′
= vα

′
,βα +

1

2
gα

′γ′(
gγ′β′,β + gβγ′,β′ − gββ′,γ′

)
,αv

β′
.

But (5.7) gives gγ′β′,βα =
(
gββ′,γ′ + gβγ′,β′

)
,α on Σ, so substituting yields (5.4).
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Proof of Proposition 5.1. Since the definition (4.2) of the a(2j) and the formulae
in Proposition 5.1 are coordinate-invariant, it suffices to prove them at p in the co-
ordinates (x, u) constructed above. Choose the x coordinates on Σ so that x(p) = 0.
Then p is represented by (0, 0, 0) in the coordinates (x, u, r) on X.

The induced metric components are given by (3.4), and according to (4.3), we

need to calculate the Taylor expansion of
√
deth(x, r). Now gij is given ([FG]) by

gij(x, u, r) = gij(x, u, 0)− Pij(x, u, 0)r2 + B̃ij(x, u, 0)r4 + . . . , (5.8)

where

B̃ij =
1

4

[
Bij
4− n + Pi

kPkj

]
. (5.9)

By (5.1), we have

uα
′
(x, r) = 1

2kH
α′
(x)r2 + uα

′
(4)(x)r

4 + . . . . (5.10)

All gij in (3.4) are evaluated at (x, u(x, r), r). Since gαα′(x, 0, 0) = 0, it follows from
(5.8) and (5.10) that gαα′(x, u(x, r), r) = O(r2). Then (3.4) shows that hα0 = O(r

3).
Thus

deth = (dethαβ) · h00 +O(r6). (5.11)

Staring at (3.4) and recalling that u = O(r2), it is clear that in order to evaluate
hαβ and h00 through order r

4, we need to know gαβ through order r
4 and gαα′ and

gα′β′ through order r2. Taking x = 0, corresponding to the point p, we have

gα′β′(0, u(0, r), r) = gα′β′(0, u(0, r), 0)− Pα′β′r2 + o(r2)

= gα′β′(0, 0, 0) + gα′β′,γ′(0, 0, 0)uγ
′
(0, r)− Pα′β′r2 + o(r2)

= gα′β′(0, 0, 0)− Pα′β′r2 + o(r2),

(5.12)

where we used gα′β′,γ′(0, 0, 0) = 0 from Lemma 5.2. Likewise

gαα′(0, u(0, r), r) = −Pαα′r2 + o(r2).

Now (5.8) gives

gαβ(0, u(0, r), r) = gαβ(0, u(0, r), 0)− Pαβ(0, u(0, r), 0)r2 + B̃αβr4 + o(r4). (5.13)

Expanding the first term and substituting from Lemma 5.2 and (5.10) gives

gαβ(0, u(0, r), 0) = gαβ(0, 0, 0) + gαβ,α′(0, 0, 0)uα
′
(0, r) + 1

2
gαβ,α′β′(0, 0, 0)uα

′
uβ

′
+ o(r4)

= gαβ(0, 0, 0)− 2Lαβα′
(
1
2k
Hα′

r2 + uα
′
(4)r

4
)

+ 1
4k2

(Rα′αββ′ + Lαγβ′Lβ
γ
α′)Hα′

Hβ′
r4 + o(r4)

= gαβ(0, 0, 0)− 1
k
Lαβα′Hα′

r2

+
(
−2Lαβα′uα

′
(4) +

1
4k2

(Rα′αββ′ + Lαγβ′Lβ
γ
α′)Hα′

Hβ′)
r4 + o(r4).

For use in the second term in (5.13), we have

Pαβ(0, u(0, r), 0) = Pαβ(0, 0, 0) + Pαβ,α′uα
′
+ o(r2) = Pαβ(0, 0, 0) +

1
2k
Pαβ,α′Hα′

r2 + o(r2).
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Substituting these into (5.13) gives

gαβ(0, u(0, r), r) = gαβ(0, 0, 0) +
(
− 1

k
Lαβα′Hα′ − Pαβ(0, 0, 0)

)
r2

+
(
−2Lαβα′uα

′
(4) +

1
4k2

(Rα′αββ′ + Lαγβ′Lβ
γ
α′)Hα′

Hβ′ − 1
2k
Pαβ,α′Hα′

+ B̃αβ

)
r4 + o(r4).

Now substitute all these into (3.4). Henceforth, all gij and Pij are understood to
be evaluated at p. One obtains

hαβ =gαβ +Dαβr
2 +Qαβr

4 + o(r4)

h00 =1 + Er
2 + Fr4 + o(r4)

(5.14)

with

Dαβ =− 1
kL

α′
αβHα′ − Pαβ

Qαβ =− 2Lαβα′uα
′

(4) +
1

4k2Rα′αββ′Hα′
Hβ′

+ 1
4k2L

α′
αγLβ

γ
β′Hα′Hβ′

− 1
2kPαβ,α′Hα′

+ B̃αβ − 1
kPα′(αH

α′
,β) +

1
4k2 gα′β′Hα′

,αH
β′
,β

E = 1
k2 |H|2

F =− 1
k2Pα′β′Hα′

Hβ′
+ 8

kHα′uα
′

(4).

(5.15)

However, again by Lemma 5.2 and using (5.6), at p we have Hα′
,α = ∇αH

α′
and

Pαβ,α′ = M∇α′Pαβ − Lαγα′P γβ − Lβγα′P γα. So Pαβ,α′Hα′
= M∇α′PαβH

α′ −
2Lα

′
γ(αPβ)

γHα′ . Thus the formula for Qαβ above becomes

Qαβ =− 2Lαβα′uα
′

(4) +
1

4k2Rα′αββ′Hα′
Hβ′

+ 1
4k2L

α′
αγLβ

γ
β′Hα′Hβ′ − 1

2k
M∇α′PαβH

α′

+ 1
kL

α′
γ(αPβ)

γHα′ + B̃αβ − 1
kPα′(α∇β)H

α′
+ 1

4k2 gα′β′∇αH
α′∇βH

β′
.

(5.16)

We need to calculate dethαβ to use in (5.11). Taylor expanding the determinant
function shows that for hαβ of the form (5.14), we have

dethαβ = det gαβ
[
1 +Dα

αr2 +
(
Qα

α − 1
2DαβD

αβ + 1
2 (Dα

α)2
)
r4 + o(r4)

]
.

Multiplying by h00 and recalling (5.11), we get

deth

det gαβ
=

dethαβ

det gαβ
· h00 +O(r6)

= 1 + (Dα
α + E) r2 +

(
Qα

α − 1
2
DαβD

αβ + 1
2
(Dα

α)2 + F + EDα
α
)
r4 + o(r4).

(5.17)

Finally, using
√
1 + x = 1 + 1

2x− 1
8x

2 + o(x2) gives√
deth

det gαβ
= 1 + 1

2 (Dα
α + E) r2

+ 1
2

(
Qα

α − 1
2DαβD

αβ + 1
4 (Dα

α)2 + F + 1
2EDα

α − 1
4E

2
)
r4 + o(r4).

Recalling (4.3) and that hαβ = gαβ when r = 0, we conclude

a(2) = 1
2 (Dα

α + E)

a(4) = 1
2

(
Qα

α − 1
2DαβD

αβ + 1
4 (Dα

α)2 + F + 1
2EDα

α − 1
4E

2
)
.
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The formula for a(2) in Proposition 5.1 follows upon substituting (5.15) for Dαβ and
E. To obtain the formula for a(4), one substitutes (5.15) for Dαβ , E, and F , (5.16)

for Qαβ , (5.9) for B̃αβ in (5.16), writes Rα′αββ′ in (5.16) in terms of the Weyl and
Schouten tensors via (2.1), and collects terms.

Corollary 5.3. If k = 2, then

E = −1
8

∫
Σ

(|H|2 + 4Pαα
)
daΣ.

If k = 4, then

E = 1

128

∫
Σ

(
|∇H|2 − Lα′

αβL
αβ
β′ Hα′Hβ′

+
7

16
|H|4 −Wα

α′αβ′Hα′
Hβ′

− 8Pαα′∇αH
α′ − 8Cααα′Hα′ − 8PαβLα

′
αβHα′ + 5Pαα|H|2

− 16PαβPαβ + 16P
αα′
Pαα′ + 16(Pαα)

2 − 16

n− 4
Bαα

)
daΣ.

Proof. Recall that E =
∫
Σ
a(k)daΣ for Σ of dimension k. The result for k = 2

follows immediately upon setting k = 2 in Proposition 5.1 and integrating. For k = 4,
integrating the formula in Proposition 5.1 and comparing with that in Corollary 5.3
shows that the result reduces to the following identity:∫

Σ

(
gαβM∇α′PαβH

α′
+ Pαα′∇αH

α′
+ Pα′β′Hα′

Hβ′)
daΣ

=

∫
Σ

(
Cααα′Hα′

+ PαβLα
′

αβHα′
)
daΣ.

(5.18)

We intend to integrate the ∇α by parts in the second term on the left-hand side
to obtain −∇αP

α
α′Hα′

. This ∇α denotes the normal bundle connection, so we are
obliged here to interpret Pαα′ as a section of TΣ⊗N∗Σ on Σ and ∇α as the induced
connection on this bundle. It follows from (2.2) that

−∇αP
α
α′Hα′

= −gαβM∇αPβα′Hα′ − Pα′β′Hα′
Hβ′

+ Lα
′

αβP
αβHα′ .

So integrating by parts as described and substituting for −∇αP
α
α′Hα′

, one concludes
that the left-hand side of (5.18) equals∫

Σ

(
gαβM∇α′PαβH

α′ − gαβM∇αPβα′Hα′
+ Lα

′
αβP

αβHα′
)
daΣ

=

∫
Σ

(
Cααα′Hα′

+ PαβLα
′

αβHα′
)
daΣ

as desired.

Remark 5.4. The coefficients in Proposition 5.1 and Corollary 5.3 become
simpler when written in terms of the alternate convention for the mean curvature:
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H = 1
kH. In particular, one has

a(4) =
1

8

(
|∇H|2 − Lα′

αβL
αβ
β′ Hα′H

β′
+ (k2 − 2k − 1)|H|4

−Wα
α′αβ′H

α′
H
β′

− 2gαβM∇α′PαβH
α′

− 4Pαα′∇αH
α′

+ (2k − 3)Pαα|H|2 − (k + 4)Pα′β′H
α′
H
β′

− PαβPαβ + Pαα′
Pαα′ + (Pαα)

2 − 1

n− 4
Bαα

)
+ (4− k)Hα′Uα

′
(4)

and for k = 4

E = 1

8

∫
Σ

(
|∇H|2 − Lα′

αβL
αβ
β′ Hα′H

β′
+ 7|H|4 −Wα

α′αβ′H
α′
H
β′

− 2Pαα′∇αH
α′

− 2Cααα′H
α′

− 2PαβLα
′

αβHα′ + 5Pαα|H|2

− PαβPαβ + Pαα′
Pαα′ + (Pαα)

2 − 1

n− 4
Bαα

)
daΣ.

Recall that equation (5.1) identifies U(2). The next proposition identifies U(4).

Proposition 5.5. If k > 2, then

Uα
′

(4) =
1

8k(k − 2)

(
(ΔH)α

′
+ Lα

′
αβL

αβ
β′ H

β′ − 2

k2
|H|2Hα′

+Wαα′
αβ′Hβ′ − PααHα′

+ (k − 4)Pα
′
β′Hβ′

+ 2kPαβLα
′

αβ

+ kgα
′β′
gαβ(M∇β′Pαβ − 2M∇αPββ′)

)
.

If k = 2, then

Hα′
=
1

4

(
(ΔH)α

′
+ Lα

′
αβL

αβ
β′ H

β′ − 1

2
|H|2Hα′

+Wαα′
αβ′Hβ′ − PααHα′ − 2Pα

′
β′Hβ′

+ 4PαβLα
′

αβ

+ 2gα
′β′
gαβ(M∇β′Pαβ − 2M∇αPββ′)

)
.

Proof. Just as in the proof of Proposition 5.1, since these formulas are coordinate-
invariant, it suffices to prove them at p in our special adapted coordinates (x, u). Now
U(4) is determined by applying ∂

3
r |r=0 to the equation M(u) = 0, with M(u) given

by (3.5). Recall that in (3.5), we have h
0α
= O(r3), gαγ′ = O(r2) and uα

′
= O(r2).
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Therefore

M(u)γ′ =

(
r∂r − (k + 1) +

1

2
rL,r

)(
h
00
gα′γ′uα

′
,r

)
+ r

(
∂β +

1

2
L,β

)[
h
αβ
(
gαγ′ + gα′γ′uα

′
,α

)]
− 1

2
rh

αβ
(
gαβ,γ′ + 2gαα′,γ′uα

′
,β

)
− 1

2
rh

00
gα′β′,γ′uα

′
,ru

β′
,r +O(r

5).

Apply ∂3r |r=0 to the equation M(u) = 0. Keeping in mind the orders of vanishing

and the parity of the various terms and the fact that h
00
= 1 on Σ, one obtains at

r = 0:

0 =(2− k)∂3r
(
h
00
gα′γ′uα

′
,r

)
+ 3L,rrgα′γ′uα

′
,rr

+ 3

(
∂β +

1

2
L,β

)[
h
αβ
(
∂2rgαγ′ + gα′γ′uα

′
,αrr

)]
− 3

2
h
αβ
(
∂2rgαβ,γ′ + 2gαα′,γ′uα

′
,βrr

)
− 3

2

(
∂2rh

αβ
)
gαβ,γ′ − 3gα′β′,γ′uα

′
,rru

β′
,rr.

(5.19)
Expanding the derivatives gives

∂3r

(
h
00
gα′γ′uα

′
,r

)
= gα′γ′∂4ru

α′
+ 3
(
gα′γ′∂2rh

00
+ ∂2rgα′γ′

)
uα

′
,rr

at r = 0. Since hαβ = gαβ on Σ, it follows from Lemma 5.2 that L,β = g
αγgαγ,β = 0 at

p. Lemma 5.2 also implies that ∂βh
αβ
, gαα′,γ′ and gα′β′,γ′ vanish at p. So evaluating

(5.19) at p and solving for ∂4ru
α′
yield

(k − 2)gα′γ′∂4ru
α′
=3(2− k)

(
gα′γ′∂2rh

00
+ ∂2rgα′γ′

)
uα

′
,rr + 3L,rrgα′γ′uα

′
,rr

+ 3gαβ∂β

(
∂2rgαγ′ + gα′γ′uα

′
,αrr

)
− 3

2
gαβ∂2rgαβ,γ′ − 3

2

(
∂2rh

αβ
)
gαβ,γ′ .

Expanding the derivative on the second line and reordering terms gives

(k − 2)gα′γ′∂4ru
α′
=3gα′γ′gαβuα

′
,rrαβ + 3g

αβ∂β∂
2
rgαγ′

+ 3(2− k)gα′γ′
(
∂2rh

00
)
uα

′
,rr + 3(2− k) (∂2rgα′γ′

)
uα

′
,rr

+ 3L,rrgα′γ′uα
′
,rr − 3

2
gαβ∂2rgαβ,γ′ − 3

2

(
∂2rh

αβ
)
gαβ,γ′ .

(5.20)
We have already evaluated many of the ingredients on the right-hand side. For

instance, gαβ,γ′ = −2Lαβγ′ by (5.2) and ∂2ru
α′
= 1

kH
α′
by (5.1). Also ∂2rh

00
= −2E

and ∂2rh
αβ
= −2Dαβ by (5.14). Similarly, taking the log and differentiating in (5.17)

gives L,rr = 2(Dα
α +E). We have ∂2rgα′γ′ = −2Pα′γ′ by (5.12). The terms that still

need to be evaluated are gαβuα
′
,rrαβ , ∂β∂

2
rgαγ′ and ∂2rgαβ,γ′ . Using (5.4), we have at

p:

gαβuα
′
,rrαβ =

1

k
gαβHα′

,αβ =
1

k
ΔHα′ − 1

k
gα

′γ′
gαβgαγ′,ββ′Hβ′

.
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For ∂β∂
2
rgαγ′ and ∂2rgαβ,γ′ , recall that in (3.5), all components of g and its derivatives

which appear are evaluated at (x, u(x, r), r). We can evaluate ∂2rgαβ,γ′ by the same
procedure we used in the proof of Proposition 5.1. First differentiate (5.8) to obtain

gαβ,γ′(x, u, r) = gαβ,γ′(x, u, 0)− Pαβ,γ′r2 + o(r2).

Evaluate at u = u(x, r):

gαβ,γ′(x, u(x, r), r) =gαβ,γ′(x, u(x, r), 0)− Pαβ,γ′r2 + o(r2)

=gαβ,γ′(x, 0, 0) + gαβ,γ′β′(x, 0, 0)uβ
′
(x, r)− Pαβ,γ′r2 + o(r2)

=gαβ,γ′(x, 0, 0) +
1

2k
gαβ,γ′β′Hβ′

r2 − Pαβ,γ′r2 + o(r2).

Thus

∂2rgαβ,γ′ =
1

k
gαβ,γ′β′Hβ′ − 2Pαβ,γ′ .

For ∂β∂
2
rgαγ′ , begin as above by differentiating (5.8):

gαγ′,β(x, u, r) = gαγ′,β(x, u, 0)− Pαγ′,βr
2 + o(r2).

So the chain rule gives

∂β
(
gαγ′(x, u(x, r), r)

)
=gαγ′,β(x, u(x, r), r) + gαγ′,β′(x, u(x, r), r)uβ

′
,β(x, r)

=gαγ′,β(x, u(x, r), 0)− Pαγ′,βr
2 +

1

2k
gαγ′,β′(x, 0, 0)Hβ′

,βr
2 + o(r2)

=gαγ′,β(x, 0, 0) + gαγ′,ββ′uβ
′
(x, r)− Pαγ′,βr

2 +
1

2k
gαγ′,β′(x, 0, 0)Hβ′

,βr
2 + o(r2)

=gαγ′,β(x, 0, 0) +
1

2k
gαγ′,ββ′Hβ′

r2 − Pαγ′,βr
2 +

1

2k
gαγ′,β′(x, 0, 0)Hβ′

,βr
2 + o(r2).

At x = 0, corresponding to the point p, we have gαγ′,β′ = 0. Thus at p we obtain

∂β∂
2
rgαγ′ =

1

k
gαγ′,ββ′Hβ′ − 2Pαγ′,β .

Now substitute all of these into (5.20) and raise the free index. The two terms
involving gαγ′,ββ′ cancel, and one obtains

(k − 2)∂4ru
α′

=
3

k
ΔHα′

+ 3gα
′γ′
gαβ
(
Pαβ,γ′ − 2Pαγ′,β

)− 6(2− k)
k

EHα′ − 6(2− k)
k

Pα
′
β′Hβ′

+
6

k

(
Dα

α + E
)
Hα′ − 3

2k
gα

′γ′
gαβgαβ,γ′β′Hβ′ − 6DαβLα

′
αβ .

(5.21)
Expanding the covariant derivatives in terms of partial derivatives and Christoffel
symbols shows that at p:

gαβ
(
Pαβ,γ′ − 2Pαγ′,β

)
= gαβ

(
M∇γ′Pαβ − 2M∇βPαγ′

)− 2Pγ′β′Hβ′
. (5.22)

The formula for U(4) in Proposition 5.5 is obtained as follows. In (5.21), substitute

(5.22) for gαβ
(
Pαβ,γ′ − 2Pαγ′,β

)
, substitute (5.15) for Dαβ and E, substitute (5.3) for
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gαβ,γ′β′ , write the resulting Rγ′αββ′ in terms of the Weyl and Schouten tensors via
(2.1), collect terms, and finally note that U(4) =

1
24∂

4
rU |r=0.

Equation (5.21) confirms that ∂3rM(u)|r=0 is independent of ∂
4
ru

α′ |r=0 when k =
2. In this case, the above calculation shows that gα

′γ′
∂3rM(u)γ′ |r=0 equals the right-

hand side of (5.21). However, by (3.8) we have

gα
′γ′
∂3rM(u)γ′ |r=0 = ∂

3
r (r

3Hα′
)|r=0 = 6Hα′

.

This gives the formula for H in Proposition 5.5.

We have also calculated the variation for k = 4 when the background M is Rn

with the Euclidean metric. In [Gu1], [Gu2], Guven developed a very nice formalism
for identifying the variation of functionals of hypersurfaces in Euclidean space, using
Lagrange multipliers to encode the data of the embedding. As he suggested, it is
straightforward to extend his formalism to submanifolds of higher codimension. We
refer to his papers for the details of the method and formulate the following conse-
quences.

Let S(gαβ , gα′β′ , Lαβα′) be a smooth function of gαβ ∈ S2
+R

k∗, gα′β′ ∈ S2
+R

n−k∗,
and Lαβα′ ∈ S2

R
k∗ ⊗ R

n−k∗. Here S2
+R

l∗ denotes the cone of positive definite sym-
metric bilinear forms on Rl. It is assumed that S is invariant under the natural action
of GL(k,R) × GL(n − k,R) on S2

+R
k∗ ⊕ S2

+R
n−k∗ ⊕ (S2

R
k∗ ⊗ R

n−k∗). Let Σ be a
compact k-manifold and let

F =

∫
Σ

S(gαβ , gα′β′ , Lαβα′) daΣ (5.23)

be a functional on the space of immersions of Σ into Rn, where at each point gαβ
is taken to be the induced metric, gα′β′ the metric on the normal space, and Lαβα′

the second fundamental form with all indices lowered, all written in some choice of
local frames for TΣ and for NΣ. By the assumed invariance of S, the integrand is
independent of the choice of frames and is a globally defined density on Σ depending
on the immersion f .

As in Theorem 4.3, let F : Σ× [0, δ) → R
n be a variation of Σ with infinitesimal

variation Ḟ ∈ Γ(f∗TM). Guven’s method shows that

Ḟ =

∫
Σ

〈Ḟ ,K〉g daΣ,

where K is the section of NΣ given by

Kα′
= ∇α∇β

( ∂S

∂Lαβα′

)
+ Lα

′
αγL

γ
ββ′

∂S

∂Lαββ′
− SHα′

. (5.24)

For instance, for S = 1, F is the area functional and K = −H is the negative of the
mean curvature. For another example, the integrand for the Willmore energy is

S = |H|2 = gα′β′
gαβgγδLαβα′Lγδβ′ .

So ∂S
∂Lαβα′ = 2g

αβHα′
, and (5.24) gives the usual formula for its variation:

Kα′
= 2ΔHα′

+ 2Lα
′

αβL
αβ
β′ H

β′ − |H|2Hα′
.
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We apply Guven’s formalism to the energy functional E for k = 4. If M = R
n,

then all background curvature vanishes, so the formula in Corollary 5.3 for the k = 4
energy becomes (1.1). Consider separately the variation of each of the three terms in
the integrand. For S = |H|4, we have ∂S

∂Lαβα′ = 4g
αβ |H|2Hα′

, so

Kα′
= 4Δ

(|H|2Hα′)
+ 4Lα

′
αβL

αβ
β′ |H|2Hβ′ − |H|4Hα′

.

For S = Lα
′

αβL
αβ
β′ Hα′Hβ′

, we have ∂S
∂Lαβα′ = 2g

αβLα
′

γδL
γδ
β′Hβ′

+ 2Lαββ
′
Hβ′Hα′

, so

Kα′
= 2Δ

(
Lα

′
αβL

αβ
β′ H

β′)
+ 2∇α∇β

(
Lαββ

′
Hβ′Hα′)

+ 2Lα
′

γδL
γδ
β′Lαβγ′Lαββ

′
Hγ′

+ 2Lα
′

αγL
γ
ββ′L

αβγ′
Hβ′

Hγ′ − Lγ′
αβL

αβ
β′ Hγ′Hβ′

Hα′
.

In addition to functionals of the form (5.23), Guven’s formalism applies to functionals
involving covariant derivatives of Lα

′
αβ . For S = |∇H|2, it gives (see [Gu2]):

Kα′
= −2Δ2Hα′

+ 2Lαβα
′∇αH

β′∇βHβ′ − 2Lαβα
′
Lαββ′ΔHβ′ − |∇H|2Hα′

.

Recalling that Theorem 4.3 identifies H as the negative of the variation of E and
combining the above ingredients yields the following.

Proposition 5.6. When k = 4 and M = Rn with the Euclidean metric, we have

128Hα′
= 2Δ2Hα′ − 2Lαβα

′∇αH
β′∇βHβ′ + 2Lαβα

′
Lαββ′ΔHβ′

+ |∇H|2Hα′

+ 2Δ
(
Lα

′
αβL

αβ
β′ H

β′)
+ 2∇α∇β

(
Lαββ

′
Hβ′Hα′)

+ 2Lα
′

γδL
γδ
β′Lαβγ′Lαββ

′
Hγ′

+ 2Lα
′

αγL
γ
ββ′L

αβγ′
Hβ′

Hγ′ − Lγ′
αβL

αβ
β′ Hγ′Hβ′

Hα′

− 7

4
Δ
(|H|2Hα′)− 7

4
Lα

′
αβL

αβ
β′ |H|2Hβ′

+
7

16
|H|4Hα′

.

We checked this formula by evaluating it on the anchor ring embeddings T 2,2
R,r and

T 3,1
R,r discussed in §6.2. It vanishes exactly for the values of R and r corresponding to
the E-critical anchor ring embeddings described there.

We close this section by noting that modulo linear terms in background curvature
and quadratic terms in derivatives of g, we have

(2l)!Uα
′

(2l) =
1 · 3 · 5 · · · (2l − 1)

k(k − 2) · · · (k + 2− 2l)
Δl−1Hα′

, 1 ≤ l ≤ k/2

k!Hα′
=
1 · 3 · 5 · · · (k − 1)

k(k − 2) · · · 2 Δk/2Hα′
, k ≥ 2

These follow by induction keeping track only of the linear terms in the calculations
indicated above. Modulo terms involving background curvature and terms of higher
homogeneity degree in the second fundamental form and its derivatives, the energy
has the form

E = ck
∫
Σ

〈H,Δ(k−2)/2H〉 daΣ, k ≥ 2, ck �= 0.
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6. Dimension Four. In this section we take k = 4 throughout (so n ≥ 5),
and M will be either Rn with the Euclidean metric or Sn with the round metric of
sectional curvature 1. Σ is a compact 4-dimensional immersed submanifold of M .

IfM = Rn, then all background curvature vanishes, so the formula in Corollary 5.3
for the k = 4 energy becomes (1.1). If M = Sn, then the Weyl, Cotton and Bach
tensors all vanish, and the Schouten tensor is given by P = 1

2g. In this case the
formula in Corollary 5.3 reduces to (1.2). Set E = 128 E .

Proposition 4.5 shows that if Σ is a 4-dimensional immersed submanifold of either
R
n or Sn and Σ is minimal, then Σ is critical for E . As noted in the introduction,

this also follows immediately from (1.1) and (1.2), since all terms are quadratic in H
except for the constant term in (1.2), which corresponds to a multiple of the area of
Σ. Of course there are no compact minimal submanifolds of Rn. But the statement
holds also for noncompact minimal submanifolds in the sense that the Euler-Lagrange
equation for E holds, corresponding to compactly supported variations. Note that in
the case that Σ ⊂ Sn is minimal, we have E(Σ) = 48Area(Σ).

6.1. Products of Spheres. Proposition 4.5 provides many examples of E-
critical submanifolds. Just as for the classical k = 2 Willmore energy, minimal sub-
manifolds of Sn or their images in Rn under stereographic projection are E-critical.
So a totally geodesic S4 ⊂ Sn, or any round S4 ⊂ R

n, is E-critical. Likewise, the
standard examples of minimal embeddings of 4-dimensional products of spheres in Sn

are E-critical. These are:
S2
(

1√
2

)× S2
(

1√
2

) ⊂ S5

S1
(
1
2

)× S3
(√

3
2

) ⊂ S5

S1
(
1
2

)× S1
(
1
2

)× S2
(

1√
2

) ⊂ S6

S1
(
1
2

)× S1
(
1
2

)× S1
(
1
2

)× S1
(
1
2

) ⊂ S7

E = 192π2
E = 36

√
3π3

E = 96π3
E = 48π4

(6.1)

For each of the four topologies appearing in (6.1), there is a family of embeddings
generalizing (6.1) obtained by varying the radii of the factor spheres. Namely, we
have

S2(r1)× S2(r2) ⊂ S5

S1(r1)× S3(r2) ⊂ S5

S1(r1)× S1(r2)× S2(r3) ⊂ S6

S1(r1)× S1(r2)× S1(r3)× S1(r4) ⊂ S7,

(6.2)

where in each case
∑
r2k = 1. In this section we calculate explicitly the energy of these

embeddings as a function of the rk. We deduce two consequences. One consequence is
that in the three families other than S2 ×S2 ⊂ S5, E is already unbounded above and
below when restricted to the family. This will prove Proposition 1.1 in these cases.
The other consequence is that we identify a non-minimal critical point of E in each of
the three families other than S2 × S2. Specifically, we prove

Proposition 6.1. In addition to (6.1), the following are critical for E:

S1
(√

3
8

)× S3
(√

5
8

) ⊂ S5

S1
(√

5
24

)× S1
(√

9
24

)× S2
(√

10
24

) ⊂ S6

S1
(√

5
24

)× S1
(√

5
24

)× S1
(√

5
24

)× S1
(√

9
24

) ⊂ S7

E = 16
√
15π3

E = 128
√
5

3 π3

E = 64
√
5

3 π4

(6.3)
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Zhang ([Z]) asserts that (6.1) together with (6.3) constitute all E-critical embeddings
in the families (6.2).

Consider first S2(r1) × S2(r2) ⊂ S5. Parametrize S2(r1) ⊂ R
3 using spherical

coordinates:

y1 = r1(sinφ1 cos θ1, sinφ1 sin θ1, cosφ1)

and likewise S2(r2) ⊂ R
3:

y2 = r2(sinφ2 cos θ2, sinφ2 sin θ2, cosφ2)

where 0 ≤ θ1, θ2 < 2π, 0 ≤ φ1, φ2 ≤ π. Then x = (y1, y2) is our embedding S2(r1)×
S2(r2) ⊂ S5(1) ⊂ R

6.

The following is an orthonormal basis for the tangent space to S2(r1)× S2(r2):

e1 =
xφ1

|xφ1 | =
1

r1
xφ1

=(cosφ1 cos θ1, cosφ1 sin θ1,− sinφ1, 0, 0, 0)
e2 =

xθ1
|xθ1 | =

1

r1 sinφ1
xθ1

=(− sin θ1, cos θ1, 0, 0, 0, 0)
e3 =

xφ2
|xφ2 | =

1

r2
xφ2

=(0, 0, 0, cosφ2 cos θ2, cosφ2 sin θ2,− sinφ2)
e4 =

xθ2
|xθ2 | =

1

r2 sinφ2
xθ2

=(0, 0, 0,− sin θ2, cos θ2, 0).

Set

ν =
(− r2

r1
y1,
r1
r2
y2
)
. (6.4)

It is easily checked that e1, e2, e3, e4, ν is an orthonormal basis for the tangent space
to S5 along S2(r1)×S2(r2). In the subsequent discussion in which a unit normal has
been chosen for a particular hypersurface embedding, we identify L and H with their
scalar counterparts determined by the chosen normal. The second fundamental form
in this basis is thus given by

Lαβ = 〈∇eαeβ , ν〉. (6.5)

Now

∇eαeβ = ∇ ∂αx
|∂αx|

eβ =
1

|∂αx|∂αeβ ,

where ∂1 = ∂φ1 , ∂2 = ∂θ1 , ∂3 = ∂φ2 , ∂4 = ∂θ2 . From the expressions given above for
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eα, it is easy to see that ∇eαeβ = 0 except for the following cases:

∇e1e1 =
1

r1
(− sinφ1 cos θ1,− sinφ1 sin θ1,− cosφ1, 0, 0, 0)

∇e2e1 =
1

r1 sinφ1
(− cosφ1 sin θ1, cosφ1 cos θ1, 0, 0, 0, 0)

∇e2e2 =
1

r1 sinφ1
(− cos θ1,− sin θ1, 0, 0, 0, 0)

∇e3e3 =
1

r2
(0, 0, 0,− sinφ2 cos θ2,− sinφ2 sin θ2,− cosφ2)

∇e4e3 =
1

r2 sinφ2
(0, 0, 0,− cosφ2 sin θ2, cosφ2 cos θ2, 0)

∇e4e4 =
1

r2 sinφ2
(0, 0, 0,− cos θ2,− sin θ2, 0).

Therefore, in this basis,

Lαβ =

⎛⎜⎜⎝
r2
r1

0 0 0

0 r2
r1

0 0

0 0 − r1
r2

0

0 0 0 − r1
r2

⎞⎟⎟⎠ . (6.6)

Thus

H = 2
(r2
r1

− r1
r2

)
, |L|2 = 2

(r21
r22
+
r22
r21

)
.

Substituting into (1.2) and simplifying using r21 + r
2
2 = 1 gives

E = −16π2 r
4
1 + r

4
2 − 14r21r

2
2

r21r
2
2

= −16π2
(
t2 + t−2 − 14

) (6.7)

with r1
r2
= t. The function t2 + t−2 of t ∈ (0,∞) has a unique critical point at t = 1,

a global minimum. Thus E is unbounded below on this family, with a maximum of
192π2 achieved at the minimal embedding. We remark that since the formula for E
above is homogeneous of degree 0 in (r1, r2), it is valid by conformal invariance for
the embedding S2(r1)× S2(r2) ⊂ S5(

√
r21 + r

2
2) for all r1, r2 > 0.

The calculations for the other families in (6.2) are similar. We briefly outline the
computations in each case.

For S1 × S3, parametrize S1(r1) ⊂ R
2 as

y1 = r1(cos θ1, sin θ1)

and S3(r2) ⊂ R
4 as

y2 = r2(sinφ1 sinφ2 sin θ2, sinφ1 sinφ2 cos θ2, sinφ1 cosφ2, cosφ1).

Then x = (y1, y2) is our embedding S
1(r1)× S3(r2) ⊂ S5(1) ⊂ R

6. The vectors

e1 =
xθ1

|xθ1 | , e2 =
xφ1

|xφ1 | , e3 =
xφ2

|xφ2 | , e4 =
xθ2

|xθ2 | , ν =
(− r2

r1
y1,
r1
r2
y2
)
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form an orthonormal basis for the tangent space to S5 along S1(r1) × S3(r2). The
second fundamental form (6.5) in this basis now takes the form

Lαβ =

⎛⎜⎜⎝
r2
r1

0 0 0

0 − r1
r2

0 0

0 0 − r1
r2

0

0 0 0 − r1
r2

⎞⎟⎟⎠ .
So

H =
r2
r1

− 3
r1
r2
, |L|2 = r

2
2

r21
+ 3
r21
r22
.

This time substituting into (1.2) and simplifying using r21 + r
2
2 = 1 gives

E = 9π3

4

15r41r
2
2 + 14r

2
1r

4
2 − r62

r31r
3
2

=
9π3

4

15t4 + 14t2 − 1

t3

with t = r1
r2
. This function of t goes to +∞ as t → ∞ and goes to −∞ as t → 0.

So it is unbounded above and below. It has two critical points, a local maximum at

t = 1√
3
, corresponding to the minimal embedding, and a local minimum at t =

√
3
5 .

The Principle of Symmetric Criticality ([P]), or alternately Hsiang’s argument [H]
concerning critical orbits of compact groups of isometries, which applies equally well

to E as to the area functional, implies that S1
(√

3
8

)× S3
(√

5
8

) ⊂ S5 is critical for E .
This is the first example in (6.3).

For S1 × S1 × S2, parametrize S1(r1) ⊂ R
2 and S1(r2) ⊂ R

2 by

y1 = r1(cos θ1, sin θ1), y2 = r2(cos θ2, sin θ2)

and S2(r3) ⊂ R
3 by

y3 = r3(sinφ cos θ3, sinφ sin θ3, cosφ).

Then x = (y1, y2, y3) is our embedding S
1(r1) × S1(r2) × S2(r3) ⊂ S6(1) ⊂ R

7. The
vectors

e1 =
xθ1

|xθ1 | , e2 =
xθ2

|xθ2 | , e3 =
xθ3

|xθ3 | , e4 =
xφ

|xφ|

form an orthonormal basis for the tangent space to S1(r1) × S1(r2) × S2(r3). The
vectors

ν1 =
(

− r2

r1
√
r21 + r

2
2

y1,
r1

r2
√
r21 + r

2
2

y2, 0
)

ν2 =
( r3√

r21 + r
2
2

y1,
r3√
r21 + r

2
2

y2,−
√
r21 + r

2
2

r3
y3

)
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form an orthonormal basis for the normal space. The second fundamental forms
Lα

′
αβ = 〈∇eαeβ , να′〉, α′ = 1, 2, are given by

L1
αβ =

⎛⎜⎜⎜⎝
r2

r1
√
r21+r

2
2

0 0 0

0 − r1
r2

√
r21+r

2
2

0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

L2
αβ =

⎛⎜⎜⎜⎜⎜⎝
− r3√

r21+r
2
2

0 0 0

0 − r3√
r21+r

2
2

0 0

0 0

√
r21+r

2
2

r3
0

0 0 0

√
r21+r

2
2

r3

⎞⎟⎟⎟⎟⎟⎠
and the mean curvatures by

H1 =
r22 − r21

r1r2
√
r21 + r

2
2

, H2 =
2(r21 + r

2
2 − r23)

r3
√
r21 + r

2
2

.

We used Mathematica and r21 + r
2
2 + r

2
3 = 1 to calculate that

E = − π3

r31r
3
2r

3
3

[
16r41r

4
2r3 − 56(r41r

2
2 + r

4
2r

2
1)r

3
3 +
(
9(r41 + r

4
2)− 14r21r

2
2

)
r53

]
= − π3

t31t
3
2

[
16t41t

4
2 − 56(t41t

2
2 + t

4
2t

2
1) + 9(t

4
1 + t

4
2)− 14t21t

2
2

]
with t1 =

r1
r3
, t2 =

r2
r3
. It is easily seen that this function of (t1, t2) ∈ (0,∞)× (0,∞) is

unbounded above and below (for instance, this is already the case when restricted to

t2 = 1) and has critical points at (t1, t2) =
(

1√
2
, 1√

2

)
and (t1, t2) =

(√
5
10 ,
√

9
10

)
. (By

symmetry, another critical point is obtained from the latter by interchanging t1 and
t2.) The first critical point corresponds to the minimal embedding r1 = r2 =

1
2 , r3 =

1√
2
. The second corresponds to the non-minimal E-critical embedding S1

(√
5
24

) ×
S1
(√

9
24

)× S2
(√

10
24

) ⊂ S6. This is the second example in (6.3).

For (S1)4, parametrize S1(rα) ⊂ R
2, 1 ≤ α ≤ 4, by

yα = rα(cos θα, sin θα).

Then x = (y1, y2, y3, y4) is our embedding S
1(r1)×S1(r2)×S1(r3)×S1(r4) ⊂ S7(1) ⊂

R
8. The vectors

eα =
xθα
rα
, 1 ≤ α ≤ 4,

form an orthonormal basis for the tangent space to S1(r1)×S1(r2)×S1(r3)×S1(r4).
The vectors

ν1 =
(

− r2
r1
y1,
r1
r2
y2,−r4

r3
y3,
r3
r4
y4

)
ν2 =

(
− r3
r1
y1,
r4
r2
y2,
r1
r3
y3,−r2

r4
y4

)
ν3 =

(
− r4
r1
y1,−r3

r2
y2,
r2
r3
y3,
r1
r4
y4

)
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form an orthonormal basis for the normal space. The second fundamental forms
Lα

′
αβ = 〈∇eαeβ , να′〉 are given by

L1
αβ =

⎛⎜⎜⎝
r2
r1

0 0 0

0 − r1
r2

0 0

0 0 r4
r3

0

0 0 0 − r3
r4

⎞⎟⎟⎠ , L2
αβ =

⎛⎜⎜⎝
r3
r1

0 0 0

0 − r4
r2

0 0

0 0 − r1
r3

0

0 0 0 r2
r4

⎞⎟⎟⎠ ,

L3
αβ =

⎛⎜⎜⎝
r4
r1

0 0 0

0 r3
r2

0 0

0 0 − r2
r3

0

0 0 0 − r1
r4

⎞⎟⎟⎠
and the mean curvatures by

H1 =
r22 − r21
r1r2

+
r24 − r23
r3r4

, H2 =
r23 − r21
r1r3

+
r22 − r24
r2r4

, H3 =
r24 − r21
r1r4

+
r23 − r22
r2r3

.

We used Mathematica and
∑4

α=1 r
2
α = 1 to calculate that

E = − π4

r31r
3
2r

3
3r

3
4

[
36 Sym(r41r

4
2r

4
3)− 84 Sym(r41r

4
2r

2
3r

2
4)
]

= − π4

t31t
3
2t

3
3

[
9t41t

4
2t

4
3 + 27Sym(t

4
1t

4
2)− 42 Sym(t41t

4
2t

2
3)− 42 Sym(t41t

2
2t

2
3)
]
,

where tk =
rk
r4
, 1 ≤ k ≤ 3. Here we write

Sym(ra1r
b
2r
c
3r
d
4) =

1

4!

∑
σ∈S4

raσ(1)r
b
σ(2)r

c
σ(3)r

d
σ(4)

Sym(ta1t
b
2t
c
3) =

1

3!

∑
σ∈S3

taσ(1)t
b
σ(2)t

c
σ(3)

for the symmetrization of monomials. It is easily seen that E , viewed as a function of
(t1, t2, t3) ∈ (0,∞)3, is unbounded above and below (for instance, this is already the
case when restricted to t2 = t3 = 1) and has critical points at (t1, t2, t3) = (1, 1, 1)

and (t1, t2, t3) =
(√

5
9 ,
√

5
9 ,
√

5
9

)
. The first critical point corresponds to the minimal

embedding r1 = r2 = r3 = r4 =
1
2 . The second corresponds to the non-minimal

E-critical embedding S1
(√

5
24

)× S1
(√

5
24

)× S1
(√

5
24

)× S1
(√

9
24

) ⊂ S7. This is the

third example in (6.3).

We close our discussion of the energy of the embeddings (6.2) with an observation
that we find truly remarkable. Namely, the energy and critical points for the first three
of the families in (6.2), as well as for equatorial S4 ⊂ S5, can all be derived from the
energy and critical points for the 4-torus family S1(r1)×S1(r2)×S1(r3)×S1(r4) ⊂ S7
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by specializing the radii. Precisely, the following relations hold:

E(S1(r1)× S1(r2)× S1(r3)× S1(r3)) =
π

2
E(S1(r1)× S1(r2)× S2(

√
2r3))

E(S1(r1)× S1(r2)× S1(r2)× S1(r2)) =
4π

3
√
3

E(S1(r1)× S3(
√
3r2))

E(S1(r1)× S1(r1)× S1(r2)× S1(r2)) =
π2

4
E(S2(

√
2r1)× S2(

√
2r2))

E(S1(r1)× S1(r1)× S1(r1)× S1(r1)) =
3π2

8
E(S4(2r1)).

Moreover, the constants appearing in these relations are the corresponding ratios of
the areas of the factor spheres. Namely,

π

2
=
A(S1(r1))A(S

1(r2))A(S
1(r3))

2

A(S1(r1))A(S1(r2))A(S2(
√
2r3))

4π

3
√
3
=
A(S1(r1))A(S

1(r2))
3

A(S1(r1))A(S3(
√
3r2))

π2

4
=

A(S1(r1))
2A(S1(r2))

2

A(S2(
√
2r1))A(S2(

√
2r2))

3π2

8
=
A(S1(r1))

4

A(S4(2r1))
.

It is clear that these relations enable the deduction of the critical points of any of the
families from those for S1(r1)×S1(r2)×S1(r3)×S1(r4). Also, one may deduce direct
relations between the energy of any one of the families and any other family with
fewer factors. That is, the energy of the family S1(r1) × S1(r2) × S2(r3) determines
the energy of the S1 × S3, S2 × S2, and S4 families, and the energy of either family
S1 × S3 or S2 × S2 determines that of the S4 family, by similar relations.

We also note that the same sort of relation holds for the usual 2-dimensional
Willmore energy, with the same rule for the constant. Namely, for the 2-dimensional
energy E given in Corollary 5.3, we have

E(S1(r1)× S1(r1)) =
π

2
E(S2(

√
2r1))

with π
2 =

A(S1(r1))
2

A(S2(
√
2r1))

. (No such relation seems to hold for the Willmore energy in the

form
∫
Σ

|L̊|2 owing to the extra term involving the Euler characteristic.) We have no
understanding of why these relations should be true other than verifying them from
the formulas. It would be interesting to provide a geometric explanation.

6.2. Anchor Rings. We first indicate how the embeddings Sj × Sk ⊂ Sj+k+1

considered in §6.1 can be composed with stereographic projection to obtain embed-
dings Sj × Sk ⊂ R

j+k+1 which are higher dimensional versions of anchor rings. We
then construct a family of embeddings of S2 × S2 in R5 for which E → ∞ by dilating
such an anchor ring in only some of the variables. This combined with the results in
§6.1 enables us to prove Proposition 1.1.

Fix R > 0 and 0 < r < R. Define the anchor ring embedding Sj × Sk → R
j+k+1

by

Sj × Sk � (y, z) → (
(R+ rw)y, rv

)
, (6.8)
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where we have written z = (v, w) ∈ Sk ⊂ R
k+1 with v ∈ Rk, w ∈ R. The image T j,kR,r

is the tube of radius r about Sj(R) ⊂ R
j+1 × {0}. Note that j and k are not treated

symmetrically: for j �= k the two embeddings T j,kR,r and T k,jR,r of S
j × Sk into Rj+k+1

are distinct (even disregarding the interchange of the factors).
Next let r21+r

2
2 = 1 and recall the product embedding S

j(r1)×Sk(r2) ⊂ Sj+k+1 ⊂
R
j+1×Rk+1. Consider its image under stereographic projection, where the base point

for the stereographic projection is a point of Sj+k+1 lying in {0} × R
k+1, which we

can take to be (0, . . . , 0, 1) by a rotation of Rk+1. Thus the stereographic projection
π : Sj+k+1 → R

j+k+1 is

π(x′, xj+k+2) =
x′

1− xj+k+2
, x′ = (x1, . . . , xj+k+1).

It is an easy verification which we leave to the reader that π
(
Sj(r1) × Sk(r2)

)
=

T j,kR,r with R = 1/r1 and r = r2/r1. Since π is conformal, E(Sj(r1) × Sk(r2)) =
E(T j,kR,r). Thus the E-critical embeddings of S2 ×S2 and S1 ×S3 in S5 discussed above

give E-critical “anchor ring” tubes in R5. For S2 × S2, we obtain the single critical
anchor ring tube T 2,2√

2,1
, which is the stereographic image of the minimal S2

(
1√
2

) ×
S2
(

1√
2

) ⊂ S5. For S1 × S3, we obtain the two critical anchor ring tubes T 1,3

2,
√
3
and

T 3,1

2/
√
3,1/
√
3
corresponding to the minimal embedding, and T 1,3√

8/3,
√

5/3
and T 3,1√

8/5,
√

3/5

corresponding to the non-minimal embedding. Note that T j,kR,r is a dilate of T
j,k
cR,cr for

any c > 0, so we conclude from the last three embeddings that T 3,1
2,1 , T

1,3√
8,
√
5
, and

T 3,1√
8,
√
3
are E-critical.

We have written down generalizations of the above embeddings to “generalized
anchor rings” which arise as the images under stereographic projection of Sj1(r1) ×
· · ·Sjl(rl) ⊂ Sj1+...+jl+l−1 ⊂ R

j1+...+jl+l for
∑l

i=1 r
2
i = 1. Specializing to the E-

critical products S1(r1)×S1(r2)×S2(r3) ⊂ S6 and S1(r1)×S1(r2)×S1(r3)×S1(r4) ⊂
S7 discussed above gives E-critical generalized anchor ring embeddings in R6 and R7.

We next exhibit a family of embeddings of S2 ×S2 in R5 with energy unbounded
above. For a > 0, let δa : R

5 → R
5 be given by δa(y, v) = (y, av) for y ∈ R3, v ∈ R2.

Proposition 6.2.

E(δa(T 2,2√
2,1
)
)
=
2π2

35
a4 + o(a4)

as a → ∞.

Proof. Conformal invariance implies E(δa(T√2,1)
)
= E(δa(T1,1/√2)

)
. (We sup-

press the 2,2 on T 2,2
R,r throughout this proof.) Consider δa(T1,r) for 0 < r < 1; we will

set r = 1/
√
2 later.

Parametrize δa(T1,r) by introducing spherical coordinates for y, z in (6.8):

x =
(
(1 + r cosφ2)y, arv

)
with

y = (sinφ1 cos θ1, sinφ1 sin θ1, cosφ1)

v = sinφ2(cos θ2, sin θ2),
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where 0 ≤ θ1, θ2 < 2π, 0 ≤ φ1, φ2 ≤ π. The tangent vectors e1 = xφ1 , e2 = xθ1 ,
e3 = xφ2 , e4 = xθ2 are orthogonal with

|xφ1 |2 = (1 + r cosφ2)2
|xθ1 |2 = (1 + r cosφ2)2 sin2 φ1
|xφ2 |2 = r2(a2 cos2 φ2 + sin2 φ2)
|xθ2 |2 = a2r2 sin2 φ2.

(6.9)

A unit normal is

ν =
1

�(φ2)

(
a(cosφ2)y, v

)
where �(φ2) =

√
a2 cos2 φ2 + sin

2 φ2 =
√
1 + (a2 − 1) cos2 φ2. The second fundamen-

tal form (6.5) in this basis is

Lαβ = − a

�(φ2)

⎛⎜⎜⎝
cosφ2(1 + r cosφ2) 0 0 0

0 cosφ2(1 + r cosφ2) sin
2 φ1 0 0

0 0 r 0
0 0 0 r sin2 φ2

⎞⎟⎟⎠ .
Recalling (6.9), contraction gives:

H = − a

�(φ2)

[
2 cosφ2

1 + r cosφ2
+

1

r�(φ2)2
+

1

ra2

]
|L|2 = a2

�(φ2)2

[
2 cos2 φ2

(1 + r cosφ2)2
+

1

r2�(φ2)4
+

1

r2a4

]
.

Since H depends only on φ2, it follows that

|∇H|2 = r−2�(φ2)−2
(
∂φ2H

)2
.

This information is sufficient to calculate the integrand |∇H|2 − |L|2H2 + 7
16H

4 of
E(δa(T1,r)), and clearly it depends only on φ2. Now (6.9) also gives

da = ar2(1 + r cosφ2)
2�(φ2) sinφ2 sinφ1dφ1dθ1dφ2dθ2.

It follows that we can write(
|∇H|2 − |L|2H2 +

7

16
H4
)
da = I(cosφ2) sinφ1 sinφ2dφ1dθ1dφ2dθ2

where I(cosφ2) is a function only of cosφ2 (depending on a and r). Upon making the
substitution s = cosφ2, it follows that

E(δa(T1,r)) = 8π2 ∫ 1

−1
I(s) ds. (6.10)

We used Mathematica to calculate I(s) for r = 1/
√
2. The result is

I(s) = − 1

8a3
p(a, s)(

1 + s√
2

)2 (
1 + (a2 − 1)s2

)11/2 , (6.11)
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where p(a, s) is the polynomial in a, s given by:

p(a, s) = 4s12a16

+
(

− 24s12 − 24
√
2s11 − 24s10 − 24

√
2s9
)
a14

+
(
54s12 + 92

√
2s11 − 16s10 − 128

√
2s9 − 218s8 − 172

√
2s7 − 132s6

)
a12

+
(

− 50s12 − 106
√
2s11 + 226s10 + 502

√
2s9 + 246s8 − 162

√
2s7 − 234s6

− 286
√
2s5 − 380s4 − 188

√
2s3 − 144s2

)
a10

+
(9s12
4

− 7
√
2s11 − 354s10 − 440

√
2s9 +

541s8

2
+ 632

√
2s7 + 25s6

− 350
√
2s5 − 847s4

4
+ 95

√
2s3 + 327s2 + 118

√
2s+ 9

)
a8

+
(
27s12 + 88

√
2s11 + 208s10 − 34

√
2s9 − 478s8 − 42

√
2s7 + 816s6

+ 398
√
2s5 − 241s4 − 302

√
2s3 − 304s2 − 108

√
2s− 28

)
a6

+
(

− 25s12

2
− 38

√
2s11 − 16s10 + 146

√
2s9 + 165s8 − 322

√
2s7 − 570s6

+ 254
√
2s5 +

1523s4

2
+ 64

√
2s3 − 318s2 − 104

√
2s− 10

)
a4

+
(

− 3s12 − 14
√
2s11 − 42s10 − 4

√
2s9 + 100s8 + 84

√
2s7 − 22s6 − 88

√
2s5

− 69s4 + 10
√
2s3 + 32s2 + 12

√
2s+ 4

)
a2

+
(9s12
4

+ 9
√
2s11 + 18s10 − 18

√
2s9 − 171s8

2
− 18

√
2s7 + 117s6 + 72

√
2s5

− 207s4

4
− 63

√
2s3 − 9s2 + 18

√
2s+ 9

)
.

(6.12)

Observe that p(a, s) has degree 16 in a and any monomial siaj occurring in p has
j − i ≤ 8. Moreover, the only terms with j − i = 8 are 9a8 − 144s2a10.

In order to derive the asymptotics of E(δa(T1,1/√2)
)
as a → ∞, we have the

following lemma. Set

Ii,j(a) =
∫ 1

−1

ajsi ds(
1 + s√

2

)2 (
1 + (a2 − 1)s2

)11/2 .
Lemma 6.3.

lim
a→∞ Ii,j(a) =

{∫∞
−∞

ti dt
(t2+1)11/2

j − i = 1, i < 10
0 j − i < 1, j < 11

.

Proof. Make the substitution t = as to rewrite

Ii,j(a) = aj−i−1
∫ a

−a

ti dt(
1 + t

a
√
2

)2 (
1 + t2 − (t/a)2

)11/2 .



606 C. ROBIN GRAHAM AND N. REICHERT

If j − i = 1 and i < 10, dominated convergence shows that lima→∞ Ii,j(a) =∫∞
−∞

ti dt
(t2+1)11/2

. If j − i < 1 and i < 10, the same argument shows that the limit

is 0. If j − i < 1, j < 11, and i ≥ 10, choose ε with 0 < ε < 11− j. Then∣∣∣∣∣
∫ a

−a

aj−i−1ti dt(
1 + t

a
√
2

)2 (
1 + t2 − (t/a)2

)11/2
∣∣∣∣∣ ≤
∫ a

−a

aj−i−1|t|10−ε|t|i+ε−10 dt(
1 + t

a
√
2

)2 (
1 + t2 − (t/a)2

)11/2 .
Since |t| ≤ a and i+ ε ≥ 10, we have

aj−i−1|t|10−ε|t|i+ε−10 ≤ aj−i−1|t|10−εai+ε−10 = aj+ε−11|t|10−ε.

Thus dominated convergence again shows that the limit is 0.

According to (6.10), (6.11), (6.12), a−4E(δa(T1,1/√2)
)
is a linear combination of

integrals of the form Ii,j(a) with j ≤ 9 and j− i ≤ 1. Lemma 6.3 shows that the limit
vanishes for all terms with j − i < 1. As indicated above, this is all but two terms.
Thus

lim
a→∞ a

−4E(δa(T1,1/√2)
)
= −π2 lim

a→∞
(
9 I0,1(a)− 144 I2,3(a)

)
=
256π2

35
.

The result follows upon recalling that E = 128E .
Proof of Proposition 1.1. It was shown in §6.1 that in the three cases other

than S2 × S2 ⊂ S5, E is already unbounded above and below when restricted to the
families considered there. It was also shown in §6.1 that E is unbounded below when
restricted to the corresponding family for S2 × S2 ⊂ S5. Proposition 6.2 shows that
E is unbounded above over embeddings S2 × S2 ⊂ S5.

6.3. Second Variation in S5. In this section we calculate the second variation
of E at a minimal immersed hypersurface Σ in S5. We specialize the general formula
to Σ = S4 and Σ = S2(1/

√
2)× S2(1/

√
2)1.

Let f : Σ → S5 be a minimal immersion of Σ4 in S5, and F : Σ × (−ε, ε) be a
variation of f , i.e. F0 = f . Let V = ∂tFt|t=0 denote the variational vector field. We
assume throughout that V is normal. Recall the first and second variations of area:

∂tA
(
Ft(Σ)

)|t=0 = −
∫
Σ

〈H,V 〉 daΣ
∇∂tH|t=0 = −JV

∂2tA
(
Ft(Σ)

)|t=0 =

∫
Σ

〈JV, V 〉 daΣ.

Here ∇∂t refers to the pullback connection on the pullback of the normal bundle
and J = −Δ − 4 − |L|2 is the Jacobi operator, where Δ denotes the normal bundle
Laplacian.

Proposition 6.4. If Σ is a minimal immersed hypersurface in S5, then

∂2t E(Ft(Σ))|t=0 =

∫
Σ

〈J V, V 〉 daΣ

1The results of this section have been generalized in [Ta].
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where

J = 2J(J + 4)(J + 6). (6.13)

Proof. Recall that E is given by (1.2) and E = 128 E . Since H|t=0 = 0, the |H|4
term does not contribute to the second variation. Since |∇H|2 − |L|2|H|2 + 6|H|2
vanishes to second order at t = 0, we have

∂2t E(Ft(Σ))|t=0 =

∫
Σ

∂2t |t=0

(
|∇H|2 − |L|2|H|2 + 6|H|2

)
daΣ + 48

∫
Σ

〈JV, V 〉 daΣ.

Again using that H|t=0 = 0, we have

∂2t |t=0

(
|∇H|2 − |L|2|H|2 + 6|H|2

)
= 2|∇∇∂tH|2 − 2|L|2|∇∂tH|2 + 12|∇∂tH|2

= 2
(

|∇JV |2 − |L|2|JV |2 + 6|JV |2
)
.

So

∂2t E(Ft(Σ))|t=0 = 2

∫
Σ

〈−ΔJV − |L|2JV + 6JV + 24V, JV 〉 daΣ

= 2

∫
Σ

〈(J + 4)JV + 6JV + 24V, JV 〉 daΣ

= 2

∫
Σ

〈J(J + 4)(J + 6)V, V 〉 daΣ.

Proposition 6.4 shows that the second variation of E is determined by the spectral
decomposition of the self-adjoint Jacobi operator J . We identify this for Σ = S4 and
Σ = S2(1/

√
2) × S2(1/

√
2). The subsequent argument follows closely that of [W],

where the second variation of the classical Willmore energy at a minimal surface is
identified. We refer to [W] for elaboration and proofs of some of the statements which
follow.

Let K denote the 15-dimensional space of Killing fields of S5 and let KΣ ⊂ Γ(NΣ)
denote the space of normal projections of restrictions to Σ of elements of K. The
kernel of the restriction-projection map K → KΣ is the space of Killing fields whose
restriction to Σ is everywhere tangent to Σ. Its dimension equals the dimension of the
space of isometries of S5 which map Σ to itself. For Σ = S4 this dimension is 10, while
for Σ = S2(1/

√
2)×S2(1/

√
2) it is 6. So dimKS4 = 5 and dimKS2(1/

√
2)×S2(1/√2) = 9.

For any Σ, KΣ ⊂ ker J .
Let C denote the 6-dimensional space of tangential projections of restrictions to

S5 of constant vector fields on R6, and let CΣ ⊂ Γ(NΣ) denote the space of normal
projections of restrictions to Σ of elements of C. Every element of C is a conformal
Killing field of S5 and the space of conformal Killing fields of S5 equals K ⊕ C. The
dimension of CΣ is 1 if Σ is a totally geodesic S4 ⊂ S5, and is 6 otherwise. For any
Σ, CΣ ⊂ ker(J + 4).

The space of conformal directions to Σ is KΣ ⊕ CΣ ⊂ Γ(NΣ). These are in the
kernel of J by conformal invariance; this is consistent with (6.13) and the facts that
KΣ ⊂ ker J , CΣ ⊂ ker(J + 4).

Proof of Proposition 1.2. The normal bundle to S4 ⊂ S5 has a parallel non-
vanishing section. So its space of sections can be identified with C∞(S4) and the
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normal bundle Laplacian with the scalar Laplacian. The eigenvalues of −Δ are
j(j + 3) = 0, 4, 10, · · · with multiplicities (j+4

4

) − (j+2
4

)
= 1, 5, 14, · · · . So the eigen-

values of J = −Δ − 4 are −4, 0, 6, · · · with the same multiplicities. By comparing
dimensions we see that ker J = KS4 and ker(J + 4) = CS4 . So the kernel of J is
exactly the conformal directions. Since all other eigenvalues of J are positive, we
conclude that J is positive transverse to the conformal directions.

Proposition 6.5. The second variation of E at S2(1/
√
2)× S2(1/

√
2) ⊂ S5 has

one negative eigendirection, the direction of the family S2(r1)× S2(r2) considered in
§6.1. It is positive in all eigendirections transverse to this direction and to the tangent
space to the orbit of the conformal group.

Proof. The normal bundle to Σ = S2(1/
√
2) × S2(1/

√
2) ⊂ S5 has a parallel

nonvanishing section given by (6.4) with r1 = r2. So its Laplacian can be identified
with two copies of the scalar Laplacian of S2(1/

√
2). The eigenvalues of −ΔS2(1/

√
2)

are 2j(j + 1) = 0, 4, 12, · · · with multiplicities (j+2
2

) − (j2) = 2j + 1 = 1, 3, 5, · · · . So
the eigenvalues of −ΔΣ are 0, 4, 8, 12, · · · with multiplicities 1, 6, 9, 10, · · · . We have
|L|2 = 4 from (6.6), so J = −Δ − 8. Hence the eigenvalues of J are −8,−4, 0, 4, · · ·
with multiplicities 1, 6, 9, 10, · · · . Comparing dimensions shows that ker J = KΣ and
ker(J + 4) = CΣ. Thus J has exactly one negative direction, its kernel consists
precisely of the conformal directions, and there is a complementary space to these on
which J is positive. The −8 eigenspace of J is spanned by constant multiples of ν
from (6.4). This is the variation field of the family S2(r1)× S2(r2) analyzed in §6.1.
We noted there that the family had a local maximum at r1 = r2 = 1/

√
2 and it is

easily seen from (6.7) that the second derivative at this maximum is negative. So for
S2(1/

√
2)× S2(1/

√
2), this is the only eigendirection in which E decreases.

6.4. Other Energies. Other conformally invariant energies of Σ4 ⊂ Mn can
be constructed by adding to E conformally invariant expressions. The trace-free part
L̊ scales upon conformal transformation of the metric, so

∫
Σ
p(L̊) daΣ is conformally

invariant for any quartic scalar contraction p(L̊) of the trace-free second fundamental
form. The following proposition shows that upon adding appropriate multiples of
|L̊|4, one obtains non-negative energies. Recall that E = 128E with E given by (1.1)
when M is a Euclidean space.

Proposition 6.6. Suppose (M, g) is Rn with the Euclidean metric. If β ≥ 4
3 ,

then the energy

E + β
∫
Σ

|L̊|4daΣ

is non-negative.

Proof. Decomposing Lα
′

αβ = L̊
α′
αβ +

1
4H

α′
gαβ gives

E =
∫
Σ

(
|∇H|2 − |L̊tH|2 + 3

16
|H|4

)
daΣ. (6.14)

Now β|L̊|4 − |L̊tH|2 + 3
16 |H|4 ≥ 0 since the quadratic form βx2 − xy + 3

16y
2 is non-

negative for β ≥ 4
3 .

For the subsequent discussion, we denote by W and P the Weyl and Schouten
tensors of the induced metric on Σ. If dimΣ = 4, then

∫
Σ

|W |2daΣ is conformally
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invariant. The Chern-Gauss-Bonnet formula in dimension 4 states

32π2χ(Σ) =

∫
Σ

[|W |2 + 16σ2(P )
]
daΣ, (6.15)

where σ2(P ) =
1
2

(
(trP )2 − |P |2) is the second elementary symmetric function of the

eigenvalues of the Schouten tensor. In particular,
∫
Σ
σ2(P ) daΣ is also conformally

invariant. So further conformally invariant energies can be obtained by adding a
linear combination of the integrals of |W |2 and σ2(P ). The Gauss equation can be
used to express W and P in terms of L and curvature of g.

In [V], Vyatkin has used tractor calculus to derive a conformally invariant energy
for 4-dimensional hypersurfaces in conformally flat 5-manifolds. By Theorem 5.2.4
and Lemma 5.2.7 of [V], his energy takes the form V =

∫
Σ
V daΣ, where

V = − 2
3 L̊

αβ∇α∇γL̊γβ − 4Pα
γL̊αβL̊γβ + 2Pα

α|L̊|2 − 2
9∇βL̊β

α∇γL̊αγ .

Vyatkin’s energy can be related to E in the case that M is 5-dimensional Euclidean
space as follows. The contracted Codazzi-Mainardi equation gives ∇αL̊αβ =

3
4∇βH.

Integrating by parts one of the derivatives in the first term and then combining the
first and last terms shows that

V =

∫
Σ

(
1
4 |∇H|2 − 4Pα

γL̊αβL̊γβ + 2Pα
α|L̊|2

)
daΣ. (6.16)

The intrinsic Schouten tensor P can be expressed as a linear combination of quadratic
terms in L via the Gauss equation. Doing so, substituting and simplifying gives

−4PαγL̊αβL̊γβ + 2Pαα|L̊|2 = 2 tr L̊4 − 2
3 |L̊|4 −H tr L̊3 + 1

8H
2|L̊|2. (6.17)

Similar calculations express |W |2 and σ2(P ) in terms of L:

|W |2 = 7
3 |L̊|4 − 4 tr L̊4

4σ2(P ) = tr L̊
4 − 1

3 |L̊|4 −H tr L̊3 + 3
8H

2|L̊|2 − 3
64H

4.
(6.18)

Combining (6.14), (6.15), (6.16), (6.17), and (6.18) gives

V = 1
4E + 8π2χ(Σ) +

∫
Σ

(
2 tr L̊4 − 11

12 |L̊|4
)
daΣ.
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