
ASIAN J. MATH. c© 2020 International Press
Vol. 24, No. 2, pp. 207–238, April 2020 002

A CLASS OF SINGULARITY OF ARBITRARY PAIRS AND LOG
CANONICALIZATIONS∗

KENTA HASHIZUME†

Abstract. We define a class of singularity on arbitrary pairs of a normal variety and an effective
R-divisor on it, which we call pseudo-lc in this paper. This is a generalization of the usual lc singularity
of pairs and log canonical singularity of normal varieties introduced by de Fernex and Hacon. By
giving examples of pseudo-lc pairs which are not lc or log canonical in the sense of de Fernex–Hacon’s
paper, we show that pseudo-lc singularity is a strictly extended notion of those singularities. We
prove that pseudo-lc pairs admit a small lc modification. We also discuss a criterion of log canonicity.

Key words. Singularity of pairs, log canonicalization, log canonical criterion.

Mathematics Subject Classification. 14J17, 14E30.

1. Introduction. Throughout this paper we will work over the complex number
field.

In the birational geometry, we often deal with not only algebraic varieties but
also pairs of an algebraic variety and a divisor. Pairs of a variety and a divisor
naturally appear, for example, a curve and marked points, or an open variety and the
boundary of its compactification. Even when we study geometric properties of higher-
dimensional algebraic varieties, pairs can be a very powerful tool to work induction
on dimension of varieties. When we deal with pairs (X,Δ), we usually assume that
the log canonical divisor KX +Δ is R-Cartier. Using this property, we often compare
log canonical divisors of two pairs which are birationally equivalent in a sense. For
example, when we are given pairs (X,Δ) and (X ′,Δ′) with a birational mapX ��� X ′,
we take a common resolution f : Y → X and f ′ : Y → X ′ of X ��� X ′ and compare
f∗(KX +Δ) and f ′∗(KX′ +Δ′). Some classes of pairs with R-Cartier log canonical
divisors and mild singularities, such as lc pairs, klt pairs, and so on (see [KM]), are
in particular important to study higher-dimensional algebraic varieties. In fact, a lot
of important results in the birational geometry were proved in the framework of lc or
klt pairs (for example, [BCHM], [F2], [F3], [B1], [HX], [HMX2], [B2]).

It is difficult to carry out similar arguments on pairs whose log canonical divisors
are not R-Cartier. In [dFH], de Fernex and Hacon defined the pullback of arbitrary Q-
divisors. Using it, they defined relative log canonical divisors, multiplier ideal sheaves
and classes of singularities on pairs (X,

∑
aiZi) of a normal quasi-projective variety

X and a formal R≥0-linear combination
∑

aiZi of subschemes Zi ⊂ X. They proved
that multiplier ideal sheaves, log canonical pairs and log terminal pairs in the sense of
[dFH] have various properties similar to those on the usual pairs. For instance, they
proved vanishing theorem of multiplier ideal sheaves and that log terminal singularities
have only rational singularities.

In this paper, we study an extension of lc singularity. The purpose of this paper is
to generalize lc singularity to a class of singularity of pairs whose log canonical divisor
is not necessarily R-Cartier and to investigate relations between the new singularity
and lc singularity or log canonical singularity introduced by [dFH].
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We deal with arbitrary pairs of a normal variety X and an effective R-divisor Δ on
it, which we denote 〈X,Δ〉 to distinguish them from pairs whose log canonical divisor
is R-Cartier. For any prime divisor P over X, we define discrepancy of P with respect
to 〈X,Δ〉, denoted by α(P,X,Δ) in this paper (Definition 4.1), and define pseudo-lc
singularity by using it (Definition 4.2). We show that α( · , X,Δ) is a generalization
of the usual discrepancy (Lemma 4.3), and that the b-divisor defined with α( · , X,Δ)
is a logarithmic analog of the relative canonical b-divisor as in [BdFF] (Theorem 4.9).
In particular, the class of pseudo-lc pairs contains the usual lc pairs and potentially lc
pairs (see [K, Definition 17]) as special cases. Also, we prove that pseudo-lc pairs are
closely related to log canonical singularity in the sense of [dFH] (Proposition 4.6) and
they appear in generalized lc pairs introduced in [BZ] (Proposition 4.12). By giving
an example of pseudo-lc pairs which are not lc or log canonical in the sense of [dFH]
(Example 4.11), we show that pseudo-lc singularity is a strictly extended notion of
those singularities. Furthermore, for any pair with a boundary R-divisor, we construct
a log canonicalization which only extracts bad divisors measured by discrepancy. The
following theorem is the main result of this paper.

Theorem 1.1 (=Theorem 4.14). Let 〈X,Δ〉 be a pair such that Δ is a boundary
R-divisor. Then, there is a projective birational morphism h : W → X from a normal
variety W such that

• any h-exceptional prime divisor Eh satisfies α(Eh, X,Δ) < −1,
• the reduced h-exceptional divisor Ered is Q-Cartier, and
• if we put ΔW = h−1

∗ Δ + Ered, then KW + ΔW is R-Cartier and the pair
(W,ΔW ) is lc.

In the case of pseudo-lc pairs, we have the following theorem:

Theorem 1.2 (see Theorem 4.17). Let 〈X,Δ〉 be a pseudo-lc pair. Then, there
is an lc modification h : (W,ΔW ) → X such that h is small.

For definition of lc modification, see Definition 2.3 (see also [K, Definition 18]).
In fact, we prove a stronger result than Theorem 1.2, and with the result we discuss
a sufficient condition of log canonicity for arbitrary pairs. The key ingredient of the
proof of Theorem 1.1 and Theorem 1.2 is the following theorem, a special kind of the
relative log MMP.

Theorem 1.3 (= Theorem 3.5). Let π : X → Z be a projective morphism of
normal quasi-projective varieties, and let (X,Δ) be an lc pair. Suppose that

• −(KX +Δ) is pseudo-effective over Z, and
• for any lc center S of (X,Δ) and its normalization Sν → S, the pullback of

−(KX +Δ) to Sν is pseudo-effective over Z.
Then, (X,Δ) has a good minimal model or a Mori fiber space over Z.

The proof of Theorem 1.3 is in Section 3, and the proof of the main result is in
Section 4. To prove the main result for a given pair 〈X,Δ〉, we take a log resolution
Y → X of 〈X,Δ〉, then we run a relative log MMP for an lc pair (Y,ΔY ) and apply
Theorem 1.3 to construct a log canonical model of (Y,ΔY ) over X. In our situation,
known results (for example, results in [B1], [HX] and [H2]) are insufficient for the
termination of the log MMP because lc centers of (Y,ΔY ) have only weak property.
Therefore, we need to establish a new relative log MMP in more general setting.
Theorem 1.3 is suitable for our situation, and it plays a crucial role in the proof of
the main result.
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We note that the notions of pseudo-lc pairs and lc pairs coincide in the case
of surfaces (Corollary 4.16), and pseudo-lc pairs in Example 4.10 or Example 4.11
include threefolds. So a gap between pseudo-lc singularity and lc singularity or log
canonical singularity in the sense of [dFH] arises when the dimension of the variety is
greater than 2.

By Theorem 1.2, we obtain two important theorem on pseudo-lc pairs.

Theorem 1.4 (=Theorem 4.19). Let 〈X,Δ〉 be a pseudo-lc pair such that Δ
is a Q-divisor. Then, the graded sheaf of OX-algebra

⊕
m≥0 OX(�m(KX + Δ)�) is

finitely generated. If X is projective and the minimal model theory holds, then the log
canonical ring

⊕
m≥0 H

0(X,OX(�m(KX +Δ)�)) is a finitely generated C-algebra.

Theorem 1.5 (=Theorem 4.20, Kodaira type vanishing theorem). Let π : X → Z
be a projective morphism of normal varieties and 〈X,Δ〉 be a pseudo-lc pair. Let D
be a Weil divisor on X such that D − (KX +Δ) is π-ample.

Then, Riπ∗OX(D) = 0 for any i > 0.

In Section 5, we study gaps between pseudo-lc and lc singularities in detail. As
an application of Theorem 4.17, which is a strong version of Theorem 1.2, we prove
the following theorem:

Theorem 1.6 (=Theorem 5.1). Let X be a normal quasi-projective variety, and
let Δ be a boundary R-divisor.

(1) There is D1 a finite set of prime divisors over X such that if

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier} ≥ −1

for all P ∈ D1, then 〈X,Δ〉 has a small lc modification. In particular, when
Δ is a Q-divisor, the graded sheaf of OX-algebra

⊕
m≥0 OX(�m(KX +Δ)�)

is finitely generated.
(2) Suppose that 〈X,Δ〉 has a small lc modification. Let x ∈ X be a closed point.

Then, there is D2 a finite set of prime divisors over X such that KX +Δ is
R-Cartier and (X,Δ) is lc in a neighborhood of x if and only if the following
relation holds for any P ∈ D2.

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier}
=inf{a(P,X,Δ−G′)|G′ ≥ 0,KX +Δ−G′ is R-Cartier}.

Theorem 1.6 gives a way to check local log canonicity in two steps by using the
usual discrepancies of finitely many prime divisors.

As a corollary of Theorem 1.6, we obtain a necessary and sufficient condition of
log canonicity for pseudo-lc pairs.

Theorem 1.7 (=Corollary 5.2). Let 〈X,Δ〉 be a pair such that X is quasi-
projective. Then, KX + Δ is R-Cartier and (X,Δ) is lc if and only if 〈X,Δ〉 is
pseudo-lc and the following equation holds for any prime divisor P over X.

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier}
=inf{a(P,X,Δ−G′)|G′ ≥ 0,KX +Δ−G′ is R-Cartier}.

We also give the proof of Theorem 1.7 using the notion of numerically Cartier
divisors (see [BdFFU, Definition 5.2]). As we will see, Theorem 1.7 can be regarded
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as an lc analog of [BdFFU, Corollary 5.17]. We would like to remark that the proof
is also an application of Theorem 1.3 (or Lemma 3.4). For details, see Section 5.

The contents of this paper are as follows: In Section 2, we collect definitions and
some results on the log MMP. In Section 3, we show a special kind of the relative
log MMP, which is a generalization of [H2, Theorem 1.1]. In Section 4, which is the
main part of this paper, we define pseudo-lc singularity and prove basic properties of
pseudo-lc pairs, the main theorem and other results. In Section 5, we prove Theorem
1.6 and Theorem 1.7.

Acknowledgments. The author was partially supported by JSPS KAKENHI
Grant Number JP16J05875. The topic of this paper came from a discussion with
Professor Yuji Odaka. The author would like to thank him for answering questions,
informing the author of the paper [dFH], and giving comments. The author is grateful
to Professor Kento Fujita for fruitful discussions, answering questions and giving com-
ments. The author is grateful to Professor Osamu Fujino for comments on previous
version of Theorem 1.6 and Theorem 1.7. The author thanks Professor János Kollár
for comments.

2. Preliminaries. In this section, we collect definitions and some important
theorems.

2.1. Definitions. We collect some definitions.

Divisors. Let π : X → Z be a projective morphism of normal varieties. We use
the standard definition of π-nef R-divisor, π-ample R-divisor, π-semi-ample R-divisor,
π-big R-divisor and π-pseudo-effective R-divisor.

Singularities of pairs. In this paper, we deal with two kinds of pairs.
We recall definition of the usual pairs. A sub-pair (X,Δ) consists of a normal

variety X and an R-divisor Δ such that KX +Δ is R-Cartier. When Δ is effective,
we call (X,Δ) a pair. When coefficients of Δ belong to [0, 1], the divisor Δ is called a
boundary divisor. When we write (X, SuppΔ), we pay attention to X and the support
of Δ. Therefore, (X, SuppΔ) simply denotes a pair of a variety and a subscheme of
pure codimension one.

Let (X,Δ) be a sub-pair and let P be a prime divisor over X, that is, a prime
divisor on a normal variety Y with a projective birational morphism Y → X. Then,
a(P,X,Δ) denotes the discrepancy of P with respect to (X,Δ). When (X,Δ) is a pair,
we use definitions of Kawamata log terminal (klt, for short) pair, log canonical (lc, for
short) pair and divisorially log terminal (dlt, for short) pair as in [KM]. An lc center
of (X,Δ) is the image on X of a prime divisor P over X satisfying a(P,X,Δ) = −1.

We also deal with arbitrary pairs of a normal variety X and an effective R-divisor
Δ on it. When we do not assume that KX +Δ is R-Cartier, we denote the pair of X
and Δ by 〈X,Δ〉 to distinguish from the usual pairs.

Models. We use the definition of weak lc model, log minimal model, good
minimal model and Mori fiber space as in [B1, Section 2]. We freely use the result of
dlt blow-up for usual pairs (see, for example, [F4, Theorem 4.4.21])

Remark 2.1. Let (X,Δ) be an lc pair and (X ′,Δ′) be a log minimal model of
(X,Δ). Let (X ′′,Δ′′) be a Q-factorial dlt pair such that KX′′ + Δ′′ is nef, X ′′ and
X ′ are isomorphic in codimension one, and Δ′′ is the birational transform of Δ′ on
X ′′. Then, (X ′′,Δ′′) is also a log minimal model of (X,Δ). Moreover, if (X ′,Δ′) is
a good minimal model of (X,Δ), then (X ′′,Δ′′) is a good minimal model of (X,Δ).
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Definition 2.2 (Log canonical model). Let X → Z be a projective morphism
from a normal variety to a variety, and let (X,Δ) be an lc pair. A weak log canonical
model (X ′,Δ′) of (X,Δ) over Z is a log canonical model if KX′ +Δ′ is ample over Z.

Definition 2.3 (Lc modification, [K, Definition 18]). Let 〈X,Δ〉 be a pair such
that Δ is a boundary R-divisor. Let f : Y → X be a projective birational morphism
from a normal variety Y , and let Γ be the sum of f−1

∗ Δ and all f -exceptional prime
divisors with coefficients 1. Then the pair 〈Y,Γ〉 is an lc modification of 〈X,Δ〉 if
KY + Γ is an f -ample R-Cartier divisor and the pair (Y,Γ) is lc. An lc modification
(Y,Γ) of 〈X,Δ〉 is small if f : Y → X is small.

From definition, an lc modification is unique up to isomorhpism if it exists.

2.2. Results related to the log MMP. In this subsection, we collect three
results on the log MMP.

In this paper, we use the following two results without any mention.

Theorem 2.4 ([B1, Theorem 4.1]). Let (X,Δ) be a Q-factorial lc pair such
that (X, 0) is klt. Let π : X → Z be a projective morphism of normal quasi-projective
varieties.

If there is a log minimal model of (X,Δ) over Z, any (KX + Δ)-MMP over Z
with scaling of an ample divisor terminates.

Lemma 2.5 ([H2, Lemma 2.15]). Let π : X → Z be a projective morphism of
normal quasi-projective varieties, and let (X,Δ) be an lc pair. Let (Y,Γ) be an lc
pair such that there is a projective birational morphism f : Y → X and we can write
KY + Γ = f∗(KX +Δ) + E with an f -exceptional divisor E ≥ 0.

Then, (X,Δ) has a weak lc model (resp. a log minimal model, a good minimal
model) over Z if and only if (Y,Γ) has a weak lc model (resp. a log minimal model, a
good minimal model) over Z.

We close this section with the following lemma. It plays an important role in the
proof of Theorem 1.1.

Lemma 2.6. Let π : X → Z be a projective morphism of normal varieties, which
are not necessarily quasi-projective. Let (X,Δ) be a Q-factorial lc pair such that
(X, 0) is klt, and let D be an R-divisor on X such that (X,Δ+D) is lc. Suppose that
(X,Δ+ tD) has the log canonical model over Z for any 0 ≤ t < 1.

Then, there is a birational contraction φ : X ��� Y over Z and a positive real
number t0 such that for any 0 < t ≤ t0, the pair (Y,ΔY + tDY ) is the log canonical
model of (X,Δ+ tD) over Z, where ΔY and DY are the birational transforms of Δ
and D on Y , respectively. In particular, DY is R-Cartier.

Proof. Note that the divisor KX +Δ is big over Z by Definition 2.2.
First, we prove the lemma in the case when Z is quasi-projective. Since the

log canonical model is in particular a weak lc model with semi-ample log canonical
divisor, (X,Δ + tD) has a good minimal model over Z for any 0 ≤ t < 1. Let
(X,Δ) ��� (X ′,Δ′) be a sequence of steps of the (KX +Δ)-MMP over Z to a good
minimal model, and X ′ → Y0 be the contraction over Z induced by KX′ +Δ′, where
Δ′ is the birational transform of Δ on X ′. Let D′ (resp. ΔY0

) be the birational
transform of D (resp. Δ) on X ′ (resp. Y0). By construction, KY0 +ΔY0 is ample over
Z. We can find 0 < t′0 < 1 such that the birational map X ��� X ′ is a sequence of
steps of the (KX +Δ+ t′D)-MMP for any 0 ≤ t′ ≤ t′0. Since (X,Δ+ tD) has a good
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minimal model over Z for any 0 ≤ t < 1, we can run the (KX′ + Δ′ + t′0D
′)-MMP

over Z and get a good minimal model (X ′,Δ′ + t′0D
′) ��� (X ′′,Δ′′ + t′0D

′′). By
the argument of the length of extremal rays and replacing t′0 if necessary, we may
assume that in each step of the (KX′ +Δ′ + t′0D

′)-MMP, the birational transform of
KX′ + Δ′ is trivial over the exremal contraction. Since KX′ + Δ′ is the pullback of
KY0

+ ΔY0
, which is ample over Z, we see that the (KX′ + Δ′ + t′0D

′)-MMP is the
(KX′ +Δ′ + t′0D

′)-MMP over Y0. So we have the following diagram.

X ��

π
��

X ′ ��

��

X ′′

��
Z Y0

��

Since the divisor KX′′ + Δ′′ + t′0D
′′ is semi-ample over Z, it is semi-ample over Y0.

Let X ′′ → Y be the contraction over Y0 induced by KX′′ +Δ′′+ t′0D
′′. Let g : Y → Y0

be the natural morphism, and ΔY and DY be the birational transforms of Δ and
D on Y , respectively. Then, we have KY + ΔY = g∗(KY0 + ΔY0), and the divisor
KY +ΔY + t′0DY is ample over Y0. Since KY0 +ΔY0 is ample over Z, we can find t0
such that 0 < t0 < t′0 and for any 0 < t ≤ t0, the divisor

KY +ΔY + tDY =
t

t′0
(KY +ΔY + t′0DY ) +

(
1− t

t′0

)
g∗(KY0

+ΔY0
)

is ample over Z. By construction, for any 0 < t ≤ t0, the birational map X ��� X ′′ is
a sequence of steps of the (KX +Δ+ tD)-MMP over Z. Since KX′′ +Δ′′+ tD′′ is the
pullback of KY +ΔY + tDY , we see that the pair (Y,ΔY + tDY ) is the log canonical
model of (X,Δ + tD) over Z for any 0 < t ≤ t0. Therefore, the lemma holds true
when Z is quasi-projective.

From now on, we prove the general case. We cover Z by a finitely many affine
open subset {Ui}i, and we put Vi = π−1(Ui). By the quasi-projective case of the
lemma, for each i, there is ti > 0 and a birational contraction Vi ��� Yi over Ui

such that for any 0 < t ≤ ti, the pair (Yi,ΔYi
+ tDYi

) is the log canonical model of
(Vi,Δ|Vi + tD|Vi) over Ui. Set t′′ = min{ti}i and construct Y by gluing all Yi. By
construction, for any 0 < t ≤ t′′, the pair (Y,ΔY + tDY ) is the log canonical model
of (X,Δ+ tD) over Z. Therefore, the birational map X ��� Y over Z is the desired
one.

3. A spacial kind of relative log MMP. In this section, we show a special
kind of the relative log MMP (Theorem 3.5), which plays a crucial role in the proof
of Theorem 1.1.

Definition 3.1. Let X be a normal projective variety, and let D be an R-Cartier
R-divisor D on X.

First, we define the invariant Iitaka dimension of D, denoted by κι(X,D), as
follows (see also [F4, Definition 2.5.5]): If there is an R-divisor E ≥ 0 such that
D ∼R E, set κι(X,D) = κ(X,E). Here, the right hand side is the usual Iitaka
dimension of E. Otherwise, we set κι(X,D) = −∞. We can check that κι(X,D) is
well-defined, i.e., when there is E ≥ 0 such that D ∼R E, κι(X,D) does not depend
on the choice of E. By definition, we have κι(X,D) ≥ 0 if and only if D is R-linearly
equivalent to an effective R-divisor.
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Next, we define the numerical dimension of D, denoted by κσ(X,D), as follows
(see also [N, V, 2.5 Definition]): For any Cartier divisor A on X, we set

σ(D;A) = max

{
k ∈ Z≥0

∣∣∣∣ lim
m→∞sup

dimH0(X,OX(�mD�+A))

mk
> 0

}

if dimH0(X,OX(�mD� + A)) > 0 for infinitely many m > 0, and otherwise we set
σ(D;A) := −∞. Then, we define

κσ(X,D) := max{σ(D;A) |A is a Cartier divisor on X}.

Let X → Z be a projective morphism from a normal variety to a variety, and
let D be an R-Cartier R-divisor on X. Then, the relative numerical dimension of D
over Z is defined by κσ(F,D|F ), where F is a sufficiently general fiber of the Stein
factorization of X → Z (see [H2, 2.2]).

Remark 3.2. We write down basic properties of the invariant Iitaka dimension
and the numerical dimension.

(1) Let D1 and D2 be R-Cartier R-divisors on a normal projective variety X.
• Suppose that D1 ∼R D2. Then, we have κι(X,D1) = κι(X,D2) and

κσ(X,D1) = κσ(X,D2).
• Suppose that we have D1 ∼R N1 and D2 ∼R N2 for R-divisors N1 ≥ 0

and N2 ≥ 0 respectively such that SuppN1 = SuppN2. Then, we have
κι(X,D1) = κι(X,D2) and κσ(X,D1) = κσ(X,D2).

(2) Let f : Y → X be a surjective morphism of normal projective varieties and
D an R-Cartier R-divisor on X.

• We have κι(X,D) = κι(Y, f
∗D) and κσ(X,D) = κσ(Y, f

∗D).
• Suppose that f is birational. Let D′ be an R-Cartier R-divisor on Y such
that D′ = f∗D + E for some effective f -exceptional divisor E. Then,
we have κι(X,D) = κι(Y,D

′) and κσ(X,D) = κσ(Y,D
′).

Definition 3.3 (Relatively abundant and relatively log abundant divisor). Let
π : X → Z be a projective morphism from a normal variety to a variety, and let D
be an R-Cartier R-divisor on X. We say D is π-abundant or abundant over Z if the
equality κι(F,D|F ) = κσ(F,D|F ) holds, where F is a sufficiently general fiber of the
Stein factorization of π.

Let π : X → Z and D be as above, and let (X,Δ) be an lc pair. We say D is
π-log abundant with respect to (X,Δ) when D is π-abundant and the pullback of D
to the normalization of any lc center of (X,Δ) is abundant over Z.

The following lemma is the R-divisor version of [FG1, Theorem 4.12].

Lemma 3.4. Let π : X → Z be a morphism of normal projective varieties, and
let (X,Δ) be an lc pair such that Δ is an R-divisor. Suppose that KX + Δ is π-nef
and π-log abundant with respect to (X,Δ).

Then, KX +Δ is π-semi-ample.

Proof. We prove the lemma when (X,Δ) is not klt because the klt case of the
lemma can be proved with a very similar idea to non-klt case and a simpler argument
than the proof of non-klt case. By adding the pullback of a sufficiently ample divisor
on Z, we may assume that the divisor KX +Δ is globally nef and log abundant with
respect to (X,Δ). We show that KX +Δ is semi-ample by induction on dimX. So
we may assume that Z is a point.
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By taking a dlt blow-up, we may assume that (X,Δ) is Q-factorial dlt. Since
KX +Δ is abundant, there is N ≥ 0 such that KX +Δ ∼R N . Let L ⊂ WDivR(X)
be the set of boundary R-divisors Δ′ such that (X,Δ′) is lc, SuppΔ′ = SuppΔ and
�Δ′� = �Δ�. By an argument of convex geometry, we see that the set

⎧⎨
⎩Δ′ ∈ L

∣∣∣∣∣∣
• (X,Δ′) is dlt,
• KX +Δ′ is nef, and
• KX +Δ′ ∼R N ′ for an N ′ ≥ 0 such that SuppN ′ = SuppN.

⎫⎬
⎭

contains a rational polytope T(X) ⊂ L in which Δ is contained. By shrinking T(X), we
can assume that lc centers of (X,Δ′) coincide with those of (X,Δ) for any Δ′ ∈ T(X).
By Remark 3.2 (1), KX +Δ′ is abundant for any Δ′ ∈ T(X).

We fix an lc center S of (X,Δ). Note that S is also an lc center of (X,Δ′) for any
Δ′ ∈ T(X). By construction, any divisor Δ′ ∈ L can be written as �Δ� +

∑
i d

′
iDi,

where 0 ≤ d′i < 1 and Di are prime divisors which are components of Δ − �Δ�.
Then SuppDi � S. Since X is Q-factorial, for any component Di of Δ − �Δ�, the
restriction Di|S is well-defined as an effective Q-Cartier Q-divisor on S. We also see
that the divisor (KX + �Δ�)|S is a Q-Cartier Q-divisor on S. We define an R-divisor
ΔS by adjunction KS + ΔS = (KX + Δ)|S . Then, KS + ΔS is semi-ample by the
induction hypothesis. Therefore, if we write Δ = �Δ� +

∑
diDi with real numbers

0 < di < 1, we have KS +ΔS = (KX + �Δ�)|S +
∑

i di(Di|S) and it can be written
as an R>0-linear combination of finitely many (not necessarily effective) semi-ample
Q-divisors {Aj}j . We can write (KX +Δ′)|S = (KX + �Δ�)|S +

∑
i d

′
i(Di|S) for any

Δ′ ∈ L. From these facts and an argument of convex geometry, the set

{
Δ′ ∈ T(X)

∣∣ (KX +Δ′)|S =
∑

j ajAj , where aj ∈ R≥0

}

contains a rational polytope T(S) � Δ.
We consider

T =
⋂

S: lc center
of (X,Δ)

T(S),

which is a rational polytope containing Δ. We pick positive real numbers r1, · · · , rm
and Q-divisors Δ(1), · · · ,Δ(m) ∈ T such that

∑m
k=1 rk = 1 and

∑m
k=1 rkΔ

(k) = Δ.
By construction of T , for any Δ′ ∈ T , the divisor KX +Δ′ is nef and log abundant
with respect to (X,Δ′). By [FG1, Theorem 4.12], KX +Δ(k) are semi-ample. Since
KX +Δ =

∑m
k=1 rk(KX +Δ(k)), we see that KX +Δ is semi-ample. So we complete

the proof.

Theorem 3.5. Let π : X → Z be a projective morphism of normal quasi-
projective varieties and (X,Δ) be an lc pair. Suppose that

• −(KX +Δ) is pseudo-effective over Z, and
• for any lc center S of (X,Δ) and its normalization Sν → S, the pullback of

−(KX +Δ) to Sν is pseudo-effective over Z.
Then, (X,Δ) has a good minimal model or a Mori fiber space over Z.

Proof. We may assume that (X,Δ) is not klt because otherwise the theorem
follows from [H2, Theorem 1.2]. We prove Theorem 3.5 by induction on the dimension
of X. The basic strategy is the same as [H2, Proof of Theorem 1.2]. We can assume
that π is a contraction and KX +Δ is pseudo-effective over Z.
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Step 1. In this step, we show that we may assume X and Z are projective.
Let Z ↪→ Zc be an open immersion to a normal projective variety Zc. Thanks

to [H2, Corollary 1.3], there is an lc closure (Xc,Δc) of (X,Δ), that is, a projective
lc pair (Xc,Δc) such that X is an open subset of Xc and (Xc|X ,Δc|X) = (X,Δ),
and there is a projective morphism πc : Xc → Zc. By construction of lc closures, we
have πc|X = π and πc−1(Z) = X. Furthermore, we can construct (Xc,Δc) so that
any lc center Sc of (Xc,Δc) intersects X (see [H2, Corollary 1.3]). Then, the divisor
−(KXc + Δc) is pseudo-effective over Zc and for any lc center Sc of (Xc,Δc), the
pullback of −(KXc+Δc) to the normalization of Sc is pseudo-effective over Zc because
relative numerical dimension of any R-Cartier R-divisor is determined on a sufficiently
general fiber of the given morphism. Hence, we see that the morphism (Xc,Δc) → Zc

satisfies the hypothesis of Theorem 3.5. If (Xc,Δc) has a good minimal model over
Zc, by restricting it over Z, we obtain a good minimal model of (X,Δ) over Z.

In this way, by replacing (X,Δ) and Z with (Xc,Δc) and Zc, we may assume
that X and Z are projective.

Step 2. From this step to Step 6, we prove that (X,Δ) has a log minimal model
over Z. In this step, we construct a dlt blow-up with good properties. The strategy
is the same as in [H2, Step 3 in the proof of Theorem 1.2].

By the hypothesis, the relative numerical dimension of KX + Δ over Z is 0. So
there is E ≥ 0 on X such that KX +Δ ∼R,Z E. Since Z is projective, by adding the
pullback of an ample divisor to E, we may assume that SuppE contains any lc center
of (X,Δ) which is vertical over Z.

We take a log resolution f : X → X of (X, Supp(Δ+E)) and a log smooth model
(X,Δ) of (X,Δ) (see [H1, Definition 2.9] for definition of log smooth model). As
in [H1, Proof of Lemma 2.10], by replacing (X,Δ) with a higher model, we may

assume that we can write Δ = Δ
′
+ Δ

′′
with Δ

′ ≥ 0 and Δ
′′ ≥ 0 such that Δ

′′

is reduced and vertical over Z, and all lc centers of (X,Δ
′
) dominate Z. We can

decompose f∗E = G+H with G ≥ 0 and H ≥ 0 such that G and H have no common
components, SuppG ⊂ Supp�Δ� and no component of H is a component of �Δ�.
Since (X, Supp(Δ+H)) is log smooth, for any t > 0, if Δ+ tH is a boundary divisor
then (X,Δ+ tH) is dlt. Since support of E contains any lc center of (X,Δ) vertical

over Z, we have SuppΔ
′′ ⊂ SuppG . Moreover, since all lc centers of (X,Δ

′
) dominate

Z, all lc centers of (X,Δ− tG) dominate Z for any t > 0.
We construct a dlt blow-up (X0,Δ0) → (X,Δ) by running the (KX +Δ)-MMP

over X. Let G0 and H0 be the birational transforms of G and H on X0, respectively.
By arguments of the log MMP, we can find t0 > 0 such that for any 0 < t ≤ t0, the
pair (X0,Δ0 + tH0) is dlt and all lc centers of (X0,Δ0 − tG0) dominate Z.

In this way, by replacing (X,Δ), we can assume that (X,Δ) is Q-factorial dlt and
KX +Δ ∼R,Z G+H such that G and H satisfy

• G ≥ 0, H ≥ 0, and G and H have no common components,
• SuppG ⊂ Supp�Δ�,
• any lc center of (X,Δ− tG) dominates Z for any 0 < t, and
• there is t0 > 0 such that for any 0 < t ≤ t0, the pair (X,Δ+ tH) is dlt.

Step 3. Pick 0 < ε ≤ t0 so that Δ−εG ≥ 0, where t0 is as in the fourth condition
in Step 2. In this step, we construct a strictly decreasing infinite sequence {ei}i≥1 of
real numbers and a sequence of birational maps over Z

X ��� X1 ��� X2 ��� · · · ��� Xi ��� · · ·
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such that if we put Δi and Hi as the birational transforms of Δ and H on Xi respec-
tively, then

(1) 0 < ei < ε and limi→∞ei = 0,
(2) X ��� X1 is a sequence of steps of the (KX + Δ + e1H)-MMP over Z to a

good minimal model,
(3) the sequence X1 ��� · · · ��� Xi ��� · · · is a sequence of finitely many steps

of the (KX1
+Δ1)-MMP over Z with scaling of e1H1, and

(4) for any i, the pair (Xi,Δi+eiHi) is a good minimal model of (X1,Δ1+eiH1)
over Z and it is also a good minimal model of (X,Δ+ eiH) over Z.

By (4), if we set λi = inf{μ ∈ R≥0 |KXi
+Δi + μHi is nef over Z}, then λi ≤ ei.

Pick a strictly decreasing infinite sequence {ei}i≥1 of positive real numbers such
that ei < ε for any i ≥ 1 and limi→∞ei = 0. By conditions of Step 2, the pairs
(X,Δ+ eiH) and (X,Δ− ei

1+ei
G) are dlt, and we have

KX +Δ+ eiH ∼R,Z (1 + ei)
(
KX +Δ− ei

1 + ei
G
)
.

Moreover, all lc centers of (X,Δ − ei
1+ei

G) dominate Z and the relative numerical
dimension of KX +Δ− ei

1+ei
G over Z is 0 for any i. By [H2, Proposition 3.3], the pair

(X,Δ − ei
1+ei

G) has a good minimal model over Z, hence (X,Δ + eiH) has a good
minimal model over Z for any i. By running the (KX +Δ+ eiH)-MMP over Z, we
obtain a good minimal model (X,Δ+ eiH) ��� (Xi,Δi+ eiHi) over Z. Then, the log
MMP only occurs in Supp(G+H), which does not depend on i. By replacing {ei}i≥1

with a subsequence, we may assume that all birational maps X ��� Xi contract the
same divisors, which implies that all Xi are isomorphic in codimension one.

For any 0 < t ≤ e1, the pair (X1,Δ1 + tH1) has a good minimal model over Z.
Indeed, we have KX1

+Δ1 + tH1 ∼R,Z (1 + t)(KX1
+Δ1 − t

1+tG1) and the relative

numerical dimension of KX1
+ Δ1 − t

1+tG1 over Z is 0, where G1 is the birational

transform of G on X1. Moreover, all lc centers of (X1,Δ1 − t
1+tG1) dominate Z. To

check this, pick any prime divisor P over X1 such that a(P,X1,Δ1 − t
1+tG1) = −1.

Since (X1,Δ1) is lc, we have a(P,X1,Δ1 − e1
1+e1

G1) = −1. Since the birational
map X ��� X1 is also a sequence of steps of the (KX +Δ − e1

1+e1
G)-MMP, we have

a(P,X,Δ − e1
1+e1

G) = −1. By the third condition in Step 2, P dominates Z. Thus,

all lc centers of (X1,Δ1 − t
1+tG1) dominate Z. By [H2, Proposition 3.3], the pair

(X1,Δ1 − t
1+tG1) has a good minimal model over Z, and so does (X1,Δ1 + tH1).

Put X ′
1 = X1 (resp. Δ′

1 = Δ1, H ′
1 = H1). By [H2, Lemma 2.14], we get a

sequence of steps of the (KX′
1
+Δ′

1)-MMP over Z with scaling of e1H
′
1

(X ′
1,Δ

′
1) ��� · · · ��� (X ′

j ,Δ
′
j) ��� · · ·

such that if we set λ′
j = inf{μ ∈ R≥0 |KX′

j
+ Δ′

j + μH ′
j is nef over Z}, where H ′

j is

the birational transform of H ′
1 on X ′

j , then the (KX′
1
+ Δ′

1)-MMP terminates after
finitely many steps or we have limj→∞λ′

j = 0 when it does not terminate.
For any i ≥ 1, pick the minimum ki such that KX′

ki
+Δ′

ki
+ eiH

′
ki

is nef over Z.

Such ki exists since limj→∞λ′
j = 0, and we have k1 = 1. By construction, the pair

(X ′
ki
,Δ′

ki
+eiH

′
ki
) is a good minimal model of (X ′

1,Δ
′
1+eiH

′
1) over Z. We check that

(X ′
ki
,Δ′

ki
+ eiH

′
ki
) is a good minimal model of (X,Δ+ eiH) over Z. Recall that for

any i, the pair (Xi,Δi+eiHi) is a good minimal model of (X,Δ+eiH) over Z, which
was constructed at the start of this step, and all Xi are isomorphic in codimension
one. Since we put X1 = X ′

1, X
′
1 and Xi are isomorphic in codimension one for any
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i. Since limi→∞ei = 0, the divisor KX′
1
+Δ′

1 is the limit of movable divisors over Z.
Then, the (KX′

1
+Δ′

1)-MMP contains only flips, and hence X ′
ki

and Xi are isomorphic
in codimension one. By Remark 2.1, the pair (X ′

ki
,Δ′

ki
+ eiH

′
ki
) is a good minimal

model of (X,Δ+ eiH) over Z.
By abuse of notations, we put Xi = X ′

ki
(resp. Δi = Δ′

ki
, Hi = H ′

ki
) for any i.

Note that after putting them, for any i ≥ 2, the birational map X ��� Xi may not be
a sequence of steps of the (KX +Δ+ eiH)-MMP. By construction, {ei}i≥1 and

X ��� X1 ��� X2 ��� · · · ��� Xi ��� · · ·
satisfy (1), (2), (3) and (4) stated at the start of this step. Indeed, (1) and (2) follow
from the argument in the second paragraph. The conditions (3) and (4) follow from
the arguments in the fourth paragraph and the fifth paragraph, respectively.

Step 4. Suppose that the above (KX1
+Δ1)-MMP over Z with scaling of e1H1

terminates. Then Xl � Xl+1 � · · · for some l, and hence, for any i ≥ l, the pair
(Xl,Δl + eiHl) is a good minimal model of (X,Δ + eiH) over Z by (4) in Step 3.
Then, we have a(P,X,Δ + eiH) ≤ a(P,Xl,Δl + eiHl) for any prime divisor P over
X. By considering the limit i → ∞, we have a(P,X,Δ) ≤ a(P,Xl,Δl). So the pair
(Xl,Δl) is a weak lc model of (X,Δ) over Z, and thus, we see that (X,Δ) has a log
minimal model over Z.

Therefore, to show the existence of log minimal model of (X,Δ) over Z, we only
have to prove the termination of the (KX1

+Δ1)-MMP.

Step 5. Since we have KX1
+ Δ1 + e1H1 ∼R,Z (1 + e1)(KX1

+ Δ1 − e1
1+e1

G1)
and SuppG1 ⊂ Supp�Δ1�, the (KX1 +Δ1)-MMP only occurs in Supp�Δ1� (see, for
example, [H1, Step 2 in the proof of Proposition 5.4]).

Suppose that the (KX1
+Δ1)-MMP does not terminate. We get a contradiction

by the argument of the special termination ([F1]). We note that (X1,Δ1 + e1H1) is
Q-factorial dlt and any lc center of the pair is an lc center of (X1,Δ1). Therefore, for
any i, the pair (Xi,Δi) is Q-factorial dlt and any lc center of it is normal. There is
m > 0 such that for any lc center Sm of (Xm,Δm) and any i ≥ m, the indeterminacy
locus of the birational map Xm ��� Xi does not contain Sm and the restriction of
the map to Sm induces a birational map. For any lc center Sm of (Xm,Δm), let Si

be the lc center of (Xi,Δi) birational to Sm, and we define ΔSi
on Si by adjunction

KSi
+ ΔSi

= (KXi
+ Δi)|Si

. In this step and the next step, we prove that for any
Sm, there is i0 ≥ m such that the induced birational map (Si,ΔSi) ��� (Si+1,ΔSi+1)
is an isomorphism for any i ≥ i0. If we can prove this, the (KX1 + Δ1)-MMP must
terminate (see [F1]), and we get a contradiction.

We prove the assertion by induction on the dimension of Sm. Let Υm ⊂ Sm

be an lc center of (Xm,Δm). As in [F1], by replacing m, we may assume that for
any i ≥ m, if Υm � Sm then the map (Υm,ΔΥm

) ��� (Υi,ΔΥi
) is an isomorphism.

Moreover, as in [F1], by replacing m again, we may assume that if Υm = Sm then
the map Υm ��� Υi is small and the birational transform of ΔΥm on Υi is ΔΥi . Let
(Tm,Ψm) → (Sm,ΔSm

) be a dlt blow-up. We set HTm
as the pullback of Hm|Sm

to
Tm. By the argument as in [F1] (see also [B1, Remark 2.10]), we obtain a diagram

(Tm,Ψm)

��

�� · · · �� (Ti,Ψi)

��

�� · · ·

(Sm,ΔSm) �� · · · �� (Si,ΔSi) �� · · ·
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such that

• (Ti,Ψi) → (Si,ΔSi
) is a dlt blow-up, and

• the upper horizontal sequence of birational maps is a sequence of steps of the
(KTm +Ψm)-MMP over Z with scaling of emHTm .

We prove that the (KTm
+ Ψm)-MMP over Z must terminate. If we can prove this,

then we can find i0 ≥ m such that the induced map (Si,ΔSi) ��� (Si+1,ΔSi+1) is an
isomorphism for any i ≥ i0. By [B1, Theorem 4.1 (iii)], to prove the termination of
the (KTm

+Ψm)-MMP, it is sufficient to prove that (Tm,Ψm) has a log minimal model
over Z. Since the morphism (Tm,Ψm) → (Sm,ΔSm

) is a dlt blow-up, it is sufficient
to prove that (Sm,ΔSm

) has a log minimal model over Z.

Step 6. We prove that (Sm,ΔSm
) has a log minimal model over Z by using the

induction hypothesis of Theorem 3.5. Since (Xm,Δm) is Q-factorial dlt, Sm and all lc
centers of (Sm,ΔSm) are lc centers of (Xm,Δm) contained in Sm. Since the divisors
KSi +ΔSi + eiHi|Si are nef over Z and since the map Sm ��� Si is small, by recalling
limi→∞ei = 0, we see that KSm

+ΔSm
is pseudo-effective over Z. From these facts,

it is sufficient to check that −(KXm
+ Δm)|Υm

is pseudo-effective over Z for any lc
center Υm ⊂ Sm of (Xm,Δm).

Recall that for any i ≥ m and any lc center Υm ⊂ Sm of (Xm,Δm), the induced
map Υm ��� Υi is in particular small and the birational transform of ΔΥm

on Υi

is ΔΥi We put HΥi = Hi|Υi . Then HΥi ≥ 0 and the birational transform of HΥm

on Υi is HΥi . By construction of the map (X,Δ + eiH) ��� (Xi,Δi + eiHi) (see
(2) and (3) in Step 3), there is an lc center Υ of (X,Δ) such that the birational
map X ��� Xi induces a birational map Υ ��� Υi. We put HΥ = H|Υ, and we
define ΔΥ on Υ by adjunction KΥ + ΔΥ = (KX + Δ)|Υ. Then HΥ ≥ 0. By (2)
and (3) in Step 3, for any i ≥ m, there is a common log resolution Yi → X and
Yi → Xi of X ��� Xi and a subvariety ΥYi ⊂ Yi birational to Υ and Υi such that
the induced morphisms ΥYi → Υ and ΥYi → Υi form a common resolution of the
map Υ ��� Υi. Using (4) in Step 3 and the negativity lemma, by taking pullbacks of
KX +Δ+ eiH and KXi

+Δi + eiHi to ΥYi
and comparing coefficients, we see that

a(Q,Υ,ΔΥ + eiHΥ) ≤ a(Q,Υi,ΔΥi
+ eiHΥi

) for any prime divisor Q over Υ.

Since (Xm,Δm) is Q-factorial dlt, the pair (Υm,ΔΥm
) is dlt. So there is a small

Q-factorialization Υ′ → Υm. Then, Υ′ and Υi are isomorphic in codimension one for
any i ≥ m because Υm and Υi are isomorphic in codimension one. We denote the
pullback of KΥm+ΔΥm to Υ′ by KΥ′+ΔΥ′ . We take a common resolution ϕ : Υ → Υ
and ϕ′ : Υ → Υ′ of the birational map Υ ��� Υ′. For any i ≥ m, we take a common
resolution τ : Υi → Υ and τi : Υi → Υi of the birational map Υ ��� Υi. We have the
following diagram.

Υ

ϕ

��

ϕ′
��

Υi
τ��

τi

��

Υ′

��
Υ �� Υm

�� · · · �� Υi
�� · · ·

Since we have a(Q,Υ,ΔΥ + eiHΥ) ≤ a(Q,Υi,ΔΥi
+ eiHΥi

) for any prime divisor Q
over Υ, we have

τ∗ϕ∗(KΥ +ΔΥ + eiHΥ)− τ∗i (KΥi +ΔΥi + eiHΥi) ≥ 0.
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Therefore,

−τ∗i (KΥi
+ΔΥi

) + eiτ
∗ϕ∗HΥ ≥ −τ∗ϕ∗(KΥ +ΔΥ) + eiτ

∗
i HΥi

.

By the hypothesis of Theorem 3.5, −(KΥ + ΔΥ) is pseudo-effective over Z. Thus,
the divisor −τ∗i (KΥi + ΔΥi) + eiτ

∗ϕ∗HΥ is pseudo-effective over Z since HΥi ≥
0. We have ϕ′

∗τ∗τ
∗
i (KΥi + ΔΥi) = KΥ′ + ΔΥ′ since Υ′ and Υi are isomorphic in

codimension one. By taking the birational transform on Υ′, we see that the divisor
−(KΥ′ + ΔΥ′) + eiϕ

′
∗ϕ

∗HΥ is pseudo-effective over Z for any i. Note that Υ′ is Q-
factorial. Since limi→∞ei = 0, the divisor −(KΥ′ + ΔΥ′) is pseudo-effective over Z.
So we see that −(KΥm +ΔΥm) is pseudo-effective over Z.

In this way, the restriction −(KXm
+Δm)|Υm

is pseudo-effective over Z for any
lc center Υm ⊂ Sm of (Xm,Δm). By the induction hypothesis of Theorem 3.5,
(Sm,ΔSm

) has a log minimal model over Z. Therefore, we can find i0 ≥ m such
that the induced birational map (Si,ΔSi) ��� (Si+1,ΔSi+1) is an isomorphism for
any i ≥ i0 (see Step 5). Then, by the argument of the special termination ([F1]), the
(KX1

+Δ1)-MMP over Z must terminate.
In this way, we see that (X,Δ) has a log minimal model (see Step 4).

Step 7. By running the (KX + Δ)-MMP over Z, we can obtain a log minimal
model (X,Δ) ��� (Xmin,Δmin) over Z. Then, the numerical dimension of KXmin +
Δmin over Z is 0, and for any lc center S′ of (Xmin,Δmin), the numerical dimension
of (KXmin

+Δmin)|S′ over Z is 0. Since X and Z are both projective, we can apply
Lemma 3.4. Therefore, the divisor KXmin

+Δmin is semi-ample, and (Xmin,Δmin) is
a good minimal model over Z.

So we are done.

The following result is not used in this paper, but it is interesting on its own.

Corollary 3.6. Let π : X → Z be a projective morphism of normal quasi-
projective varieties, and let (X,Δ) be an lc pair. Suppose that there is an R-divisor
B ≥ 0 on X such that

• −(KX +Δ+B) is nef over Z, and
• (X,Δ+ εB) is lc for a real number ε > 0.

Then, (X,Δ) has a good minimal model or a Mori fiber space over Z.

Proof. We can check that the morphism (X,Δ) → Z satisfies the hypothesis of
Theorem 3.5. Therefore, the corollary follows from Theorem 3.5.

4. Pseudo-lc pairs. In this section, a pair 〈X,Δ〉 simply denotes a pair of a
normal variety X and an R-divisor Δ ≥ 0 on it. In particular, we do not assume
KX +Δ to be R-Cartier. When KX +Δ is R-Cartier, we denote the pair of X and
Δ by (X,Δ) as usual.

Definition 4.1. Let 〈X,Δ〉 be a pair and let P be a prime divisor over X, that
is, a prime divisor on a higher birational model Y → X. We define the discrepancy
α(P,X,Δ) of P with respect to 〈X,Δ〉 as follows:

We fix KX as a Weil divisor. We denote the image of P on X by cX(P ). Let
f : Y → X be a projective birational morphism from a normal variety Y such that
P is a prime divisor on Y . We fix KY so that f∗KY = KX as Weil divisors. The
divisor KY depends on the choice of KX . For any affine open subset U ⊂ X such
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that U ∩ cX(P ) �= ∅, we put KU = KX |U , V = f−1(U), fV = f |V and KV = KY |V .
For any R-divisor BU ≥ 0 on U such that KU +Δ|U +BU is R-Cartier, we define

α〈X,Δ〉(P,U,BU ) = coeffP |V
(
KV − f∗

V (KU +Δ|U +BU )
)
.

By the standard argument, α〈X,Δ〉(P,U,BU ) does not depend on the choice of KX

and f : Y → X. We define

α(P,X,Δ) := sup
U,BU

{α〈X,Δ〉(P,U,BU )},

where U runs over all affine open subsets of X such that U ∩ cX(P ) �= ∅, and BU runs
over all effective R-divisors on U such that KU +Δ|U +BU is R-Cartier.

Definition 4.2. Let 〈X,Δ〉 be a pair. We say the pair 〈X,Δ〉 is pseudo-lc if the
inequality α(P,X,Δ) ≥ −1 holds for any prime divisor P over X.

We show three basic properties of discrepancy defined above.

Lemma 4.3. Let 〈X,Δ〉 be a pair and P be a prime divisor over X.
(i) If KX +Δ is R-Cartier, then α(P,X,Δ) = a(P,X,Δ), where the right hand

side is the usual discrepancy.
(ii) If P is a divisor on X, then α(P,X,Δ) = −coeffP (Δ).
(iii) Let 0 ≤ Δ′ ≤ Δ be an R-divisor. Then α(P,X,Δ) ≤ α(P,X,Δ′).

In particular, if 〈X,Δ〉 is pseudo-lc and KX +Δ is R-Cartier, then (X,Δ) is lc.

Proof. These are proved by the standard arguments.
Firstly, we prove (i). The inequality α(P,X,Δ) ≥ a(P,X,Δ) follows from the

definition of α(P,X,Δ). So we prove the inverse inequality. Let f : Y → X be
a projective birational morphism such that P is a prime divisor on Y . Let U be
an affine open subset of X such that U ∩ cX(P ) �= ∅. We set V = f−1(U) and
fV = f |V . For any R-Cartier R-divisor BU ≥ 0 on U , a(P,X,Δ)− α〈X,Δ〉(P,U,BU )
is the coefficient of P |V in

(KV − f∗
V (KU +Δ|U ))− (KV − f∗

V (KU +Δ|U +BU )) ≥ 0.

Hence, we have a(P,X,Δ) ≥ α〈X,Δ〉(P,U,BU ) for any U and BU . By taking the
supremum, we have a(P,X,Δ) ≥ α(P,X,Δ). So the equality holds.

Secondly, we show (ii). For any affine open subset U ⊂ X with P ∩ U �= ∅
and any R-divisor BU ≥ 0 on U such that KU + Δ|U + BU is R-Cartier, we have
α〈X,Δ〉(P,U,BU ) ≤ −coeffP (Δ). Then α(P,X,Δ) ≤ −coeffP (Δ) by Definition 4.1.
We pick an affine open subset U such that P ∩ U �= ∅ and U is contained in the
smooth locus of X. Such U exists since X is normal. Then, the divisor KU + Δ|U
is R-Cartier, and we have α〈X,Δ〉(P,U, 0) = −coeffP (Δ). By Definition 4.1, we have
α(P,X,Δ) ≥ −coeffP (Δ). Thus, the equality of (ii) holds.

Finally, we show (iii). Put G = Δ −Δ′ ≥ 0, and pick any prime divisor P over
X. For any affine open subset U ⊂ X with U ∩ cX(P ) �= ∅ and any R-divisor BU ≥ 0
on U such that KU +Δ|U +BU is R-Cartier, we have

α〈X,Δ〉(P,U,BU ) = α〈X,Δ′〉(P,U,G|U +BU ) ≤ α(P,X,Δ′)

by Definition 4.1. By taking the supremum, we have α(P,X,Δ) ≤ α(P,X,Δ′). So
we are done.
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By Lemma 4.3, we see that the usual lc pairs and potentially lc pairs are pseudo-lc
pairs (for definition of potentially lc pairs, see [K, Definition 17]). We will see later
that the notion of pseudo-lc singularity is closely related to log canonical singularity
introduced in [dFH] and generalized lc pairs introduced in [BZ] (Proposition 4.6 and
Proposition 4.12).

Before showing results on pseudo-lc pairs, we recall notations and definitions
in [dFH]. In [dFH], de Fernex and Hacon defined log canonical and log terminal
singularities for pairs (X,

∑
aiZi) of a normal quasi-projective variety X and a formal

R≥0-linear combination
∑

aiZi of subschemes Zi ⊂ X. In this paper, we deal with
the case when the subscheme part is zero. We note that the definition of log canonical
singularity in the sense of [dFH] (Definition 4.5) is only used for comparison to pseudo-
lc singularity.

Notation 4.4. For any prime divisor P over X, we denote by vP : C(X) → Z
the corresponding divisorial valuation on the field of rational functions C(X).

Firstly, for any Weil divisor D on X, we define

v�P (D) := min

{
vP (φ)

∣∣∣∣ φ ∈ OX(−D)(U), U ⊂ X is open,
U ∩ cX(P ) �= ∅.

}
. (1)

([dFH, Definition 2.1 and Definition 2.2]).
Secondly, for any birational morphism f : Y → X from a normal variety Y , we

define

f �D :=
∑

E: prime divisor
onY

v�E(D)E (2)

([dFH, Definition 2.6]).
Thirdly, for any Q-divisor D, we can define vP (D) by

vP (D) := inf
k≥1

v�P (kD)

k
= lim

k→∞
inf

v�P (kD)

k
= lim

k→∞
v�P (k!D)

k!
(3)

([dFH, Lemma 2.8 and Definition 2.9]). When D is Q-Cartier, vP (D) coincides with
the usual valuation along P .

Fourthly, we fix a birational morphism f : Y → X from a normal variety Y and
Weil divisors KX and KY such that f∗KY = KX . For any m ≥ 1, we put

Km,Y/X := KY − 1

m
f �(mKX) (4)

([dFH, Definition 3.1]). Note that Km,Y/X does not depend on the choice of KX and
KY .

Finally, for any Q-divisor D on X and any birational morphism f : Y → X from
a normal variety Y , the pullback of D is defined by

f∗D :=
∑

E: prime divisor
onY

vE(D)E, (5)

where vE(D) is as in Notation 4.4 (3). If D is Q-Cartier, f∗D coincides with the
usual pullback.
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Definition 4.5 ([dFH, Definition 7.1]). Let X be a normal variety. We say the
pair 〈X, 0〉 is log canonical in the sense of [dFH] if X is quasi-projective and there is
m ≥ 1 such that for any projective birational morphism f : Y → X and any prime
divisor P on Y , coefficient of P in Km,Y/X is not less than −1.

By [dFH, Proposition 7.2], 〈X, 0〉 is log canonical in the sense of [dFH] if and only
if there is a boundary Q-divisor Δ such that KX + Δ is Q-Cartier and (X,Δ) is lc.
Therefore, by Lemma 4.3 (i) and (iii), if X is log canonical in the sense of [dFH] then
〈X, 0〉 is pseudo-lc.

Moreover, we also have the following statement:

Proposition 4.6. Let 〈X,Δ =
∑

diΔi〉 be a pair, where Δi are (not necessarily
prime or effective) Weil divisors. If there is m ≥ 1 such that

coeffP (Km,Y/X)−
∑

di · v�P (Δi) ≥ −1

for any projective birational morphism f : Y → X and any prime divisor P on Y ,
then 〈X,Δ〉 is pseudo-lc.

Proof. We pick any P over X and fix f : Y → X such that P is a prime divisor
on Y . By Notation 4.4 (1), there is an open subset U0 ⊂ X and a rational function φ0

such that U0∩cX(P ) �= ∅, φ0 ∈ OX(−mKX)(U0) and vP (φ0) = v�P (mKX). Similarly,
for any i, we can find Ui and φi such that Ui ∩ cX(P ) �= ∅, φi ∈ OX(−Δi)(Ui) and

vP (φi) = v�P (Δi). By shrinking U0 and Ui, we may assume that U0 = Ui for any i
and U0 is affine. We put U = U0. We define divisors B0 and Bi on U by

B0 :=
1

m
(div(φ0)−mKU ) and Bi := div(φi)−Δi|U .

By construction of φ0 and φi, we have B0 ≥ 0 and Bi ≥ 0. Set BU = B0 +
∑

diBi.
Then, the divisor KU +Δ|U +BU is R-Cartier because

KU +Δ|U +BU = (KU +B0) +
∑

di(Δi|U +Bi)

=
1

m
div(φ0) +

∑
di · div(φi).

Moreover, if we set V = f−1(U) and fV = f |V , we have

α〈X,Δ〉(P,U,BU ) =coeffP |V
(
KV − f∗

V (KU +Δ|U +BU )
)

=coeffP |V
(
KV − (

1

m
f∗
V (div(φ0)) +

∑
dif

∗
V (div(φi)))

)

=coeffP (KY )−
1

m
vP (φ0)−

∑
di · vP (φi).

We recall that vP (φ0) = v�P (mKX) and vP (φi) = v�P (Δi). With the above equation,
we obtain

α〈X,Δ〉(P,U,BU ) =coeffP (KY )−
1

m
vP (φ0)−

∑
di · vP (φi)

=coeffP (KY )−
1

m
v�P (mKX)−

∑
di · v�P (Δi)

≥− 1.
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By Definition 4.1, we have α(P,X,Δ) ≥ −1 for any prime divisor P over X. In this
way, we see that 〈X,Δ〉 is pseudo-lc.

We discuss other formulations of discrepancy in Definition 4.1 (Proposition 4.7,
Theorem 4.8 and Theorem 4.9). In Proposition 4.7 below, we give a very simple
description of discrepancy with Notation 4.4 (5).

Proposition 4.7. Let 〈X,Δ〉 be a pair such that Δ is a Q-divisor, and let
P be a prime divisor over X. Let f : Y → X be a projective birational morphism
from a normal variety Y such that P is a divisor on Y . Fix KX and KY such that
f∗KY = KX . Then,

α(P,X,Δ) = coeffP

(
KY − f∗(KX +Δ)

)
= coeffP (KY )− vP (KX +Δ).

Proof. The second equality is obvious from the definition of f∗(KX + Δ). We
prove the equality α(P,X,Δ) = coeffP (KY ) − vP (KX + Δ). Pick any m such that
m = k! for some integer k > 0 and mΔ is a Weil divisor. By Notation 4.4 (1), we can
find an open subset U ⊂ X and a rational function φ ∈ OX(−m(KX +Δ))(U) such

that U ∩ cX(P ) �= ∅ and vP (φ) = v�P (m(KX +Δ)). By shrinking U , we may assume
that U is affine. We set BU = 1

m (div(φ) − m(KU + Δ|U )). Then BU ≥ 0 and the
divisor KU +Δ|U +BU is Q-Cartier. If we put V = f−1(U) and fV = f |V , then

α(P,X,Δ) ≥ α〈X,Δ〉(P,U,BU ) =coeffP |V
(
KV − f∗

V (KU +Δ|U +BU )
)

=coeffP (KY )−
1

m
vP (φ)

=coeffP (KY )−
1

m
v�P (m(KX +Δ)).

By Notation 4.4 (3), we have vP (KX + Δ) = limk→∞
v�
P (k!(KX+Δ))

k! . Therefore, con-
sidering the limit k → ∞, we obtain α(P,X,Δ) ≥ coeffP (KY )− vP (KX +Δ).

On the other hand, pick an affine open subset U ′ ⊂ X and an R-divisor CU ′ ≥ 0
on U ′ such that U ′ ∩ cX(P ) �= ∅ and KU ′ + Δ|U ′ + CU ′ is R-Cartier. Then, there
are positive real numbers r1, · · · , rn and effective Q-divisors C1, · · · , Cn on U ′ such
that

∑n
j=1 rj = 1,

∑n
j=1 rjCj = CU ′ and KU ′ +Δ|U ′ + Cj are Q-Cartier. By defini-

tion of α〈X,Δ〉(P,U ′, CU ′), we have α〈X,Δ〉(P,U ′, CU ′) =
∑n

j=1 rj · α〈X,Δ〉(P,U ′, Cj).
Therefore, we have α〈X,Δ〉(P,U ′, CU ′) ≤ α〈X,Δ〉(P,U ′, Cj′) for some index j′. Pick
a sufficiently large and divisible integer m > 0 such that mΔ and mCj′ are both
Weil divisors and m(KU ′ + Δ|U ′ + Cj′) is Cartier. By shrinking U ′, we may write
m(KU ′ + Δ|U ′ + Cj′) = div(σ) with a rational function σ. Since Cj′ ≥ 0, we have

σ ∈ OX(−m(KX + Δ))(U ′), and therefore we obtain vP (σ) ≥ v�P (m(KX + Δ)) by
Notation 4.4 (1). With Notation 4.4 (3), we have

1

m
vP (σ) ≥

1

m
v�P (m(KX +Δ)) ≥ vP (KX +Δ).

We put V ′ = f−1(U ′) and fV ′ = f |V ′ . From the above facts, for any U ′ and CU ′ , we
have

α〈X,Δ〉(P,U ′, CU ′) ≤α〈X,Δ〉(P,U ′, Cj′)

=coeffP |V ′
(
KV ′ − f∗

V ′(KU ′ +Δ|U ′ + Cj′)
)

=coeffP (KY )−
1

m
vP (σ)

≤coeffP (KY )− vP (KX +Δ).
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By taking the supremum, we have α(P,X,Δ) ≤ coeffP (KY ) − vP (KX + Δ). So we
obtain the desired equality.

Next, we prove that for any pair 〈X,Δ〉 such that X is quasi-projective, the
discrepancy α( · , X,Δ) of 〈X,Δ〉 can be approximated by the usual discrepancy of
pairs (X,Δ+G) with G ≥ 0.

Theorem 4.8. Let 〈X,Δ〉 be a pair such that X is quasi-projective. Then, for
any projective birational morphism f : Y → X from a normal quasi-projective variety
Y and any real number ε > 0, there is an effective R-divisor G on X such that

• Δ and G have no common components, and
• KX +Δ+G is R-Cartier and α(P,X,Δ)−a(P,X,Δ+G) ≤ ε for any prime
divisor P on Y , where a(P,X,Δ+G) is the usual discrepancy.

In particular, for any prime divisor P over X, we have

α(P,X,Δ) = sup{a(P,X,Δ+G) |G ≥ 0 such that KX +Δ+G is R-Cartier}.
Proof. The second assertion immediately follows from the first assertion. So we

only prove the first assertion. Pick f : Y → X and ε > 0 as in Theorem 4.8. By
replacing Y by a higher smooth model, we may assume that Y is smooth. Fix Weil
divisors KX and KY such that f∗KY = KX . We prove Theorem 4.8 in two steps.

Step 1. First we prove Theorem 4.8 when Δ is a Q-divisor. We borrow the idea
of [dFH, Proof of Theorem 5.4].

Let {Ei}i be the set of all f -exceptional prime divisors on Y . Since the set {Ei}i
is a finite set, by Notation 4.4 (3), there is a sufficiently large and divisible integer

m > 0 such that mΔ is a Weil divisor and 1
mv�Ei

(m(KX + Δ)) ≤ vEi
(KX + Δ) + ε

for all Ei. We pick m > 0 such that 1
m ≤ ε and m satisfies the above condition. By

Proposition 4.7, we have

α(Ei, X,Δ) =coeffEi
(KY )− vEi

(KX +Δ)

≤coeffEi
(KY )−

1

m
v�Ei

(m(KX +Δ)) + ε.

Pick a Weil divisor D ≥ 0 on X such that m(KX + Δ) −D is Cartier, and take an
ample Cartier divisor A such that the sheaf OX(A − D) is globally generated. We
can find such D and A since X is quasi-projective. By construction of OX(A −D),
we have

min{vP (ψ)|ψ ∈ H0(X,OX(A−D))} = v�P (D −A)

for any prime divisor P on Y , where v�P ( · ) is as in Notation 4.4 (1). We define a
linear system

|A−D| = {A′ ∈ |A| |A′ −D ≥ 0} = {div(ψ) +A |ψ ∈ H0(X,OX(A−D))}
and consider its pullback f∗|A − D| := {f∗A′ |A′ ∈ |A − D|}. Then, the fixed part
Fix(f∗|A−D|) is

Fix(f∗|A−D|) =
∑
P

(
min{coeffP (f

∗A′) |A′ ∈ |A−D| }
)
P

=
∑
P

(
min{vP (ψ)|ψ ∈ H0(X,OX(A−D))}+ coeffP (f

∗A)
)
P

=f∗A+
∑
P

v�P (D −A) · P = f∗A+ f �(D −A)

=f �D,
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where the final equality follows from [dFH, Lemma 2.4]. Therefore, we can find a
movable Cartier divisor M such that M + f �D ∼ f∗A. Then, f∗M + D is Cartier.
Thus, the divisor m(KX +Δ)+ f∗M = m(KX +Δ)−D+ (D+ f∗M) is Cartier and
we have M + f �D = f∗(f∗M + D). We pick M ≥ 0 so that M is reduced and it
contains no f -exceptional divisors or components of f−1

∗ Δ in its support. Then

KY − 1

m
M − 1

m
f �(m(KX +Δ))

=KY − 1

m
M − 1

m
f �(m(KX +Δ)−D +D)

=KY − 1

m
M − 1

m
f �D − 1

m
f∗(m(KX +Δ)−D)

=KY − 1

m
f∗(f∗M +D)− 1

m
f∗(m(KX +Δ)−D)

=KY − f∗(KX +Δ+
1

m
f∗M),

where the second equality follows from [dFH, Lemma 2.4] and that the divisorm(KX+
Δ) − D is Cartier. We recall that m satisfies 1

m ≤ ε, and also recall that we have

α(Ei, X,Δ) ≤ coeffEi(KY ) − 1
mv�Ei

(m(KX + Δ)) + ε for any f -exceptional prime
divisor Ei on Y . Pick any prime divisor P on Y . Since M contains no f -exceptional
divisors, if P is f -exceptional, we have

a(P,X,Δ+
1

m
f∗M) =coeffP

(
KY − 1

m
M − 1

m
f �(m(KX +Δ))

)

=coeffP (KY )−
1

m
v�P (m(KX +Δ))

≥α(P,X,Δ)− ε.

If P is a divisor on X, we have

α(P,X,Δ)− a(P,X,Δ+
1

m
f∗M) =

1

m
· coeffP (f∗M) ≤ 1

m
≤ ε,

where the first equality follows from Lemma 4.3 (ii) and the second inequality follows
from that M is reduced. So 1

mf∗M satisfies the conditions of Theorem 4.8.

Step 2. From now on, we prove Theorem 4.8 when Δ is an R-divisor.
Let {Ei}i be the set of all f -exceptional prime divisors on Y . By Definition 4.1,

there are affine open subsets Ui ⊂ X with cX(Ei) ∩ Ui �= ∅ and R-divisors Bi ≥ 0 on
Ui such that KUi +Δ|Ui +Bi are R-Cartier and α(Ei, X,Δ)− ε

3 ≤ α〈X,Δ〉(Ei, Ui, Bi)
for all i. Let E ⊂ WDivR(X) be the set of effective R-divisors on X whose support is
contained in SuppΔ. For any i, let Bi ⊂ WDivR(Ui) be the set of effective R-divisors
on Ui whose support is contained in SuppBi. We identify E (resp. Bi) with a subset
of the R-vector space whose basis is given by all components of Δ (resp. the R-vector
space whose basis is given by all components of Bi). Consider the set

{(
Δ′, (B′

i)i
)
∈ E ×

∏
i

Bi

∣∣∣ KUi
+Δ′|Ui

+B′
i is R-Cartier for any i

}

which contains
(
Δ, (Bi)i

)
. By an argument of convex geometry, we see that the set

contains a rational polytope in E × ∏
i Bi containing

(
Δ, (Bi)i

)
. Therefore, we can
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find positive real numbers r1, · · · , rn, effective Q-divisors Δ(1), · · · ,Δ(n) on X and

effective Q-divisors B
(1)
i , · · · , B(n)

i on Ui such that
∑n

l=1 rl = 1,
∑n

l=1 rlΔ
(l) = Δ,∑n

l=1 rlB
(l)
i = Bi and KUi + Δ(l)|Ui + B

(l)
i is Q-Cartier for any i. By choosing

those Q-divisors sufficiently close to Δ and Bi, we may assume that the inequality

α〈X,Δ〉(Ei, Ui, Bi)− ε
3 ≤ α〈X,Δ(l)〉(Ei, Ui, B

(l)
i ) holds for any i and l. Then

α(Ei, X,Δ(l)) ≥α〈X,Δ(l)〉(Ei, Ui, B
(l)
i ) ≥ α〈X,Δ〉(Ei, Ui, Bi)−

ε

3

≥α(Ei, X,Δ)− 2

3
ε,

where the first inequality follows from Definition 4.1. Furthermore, we can assume
that SuppΔ = SuppΔ(l) and all coefficients of Δ − Δ(l) belong to [− 2

3ε,
2
3ε] for any

1 ≤ l ≤ n. Then, by Lemma 4.3 (ii) and the above inequality, we obtain

α(P,X,Δ)− α(P,X,Δ(l)) ≤ 2

3
ε

for any prime divisor P on Y . By the case of Q-divisors of Theorem 4.8, we can find
effective R-divisors G(1), · · · , G(n) on X such that

• Δ(l) and G(l) have no common components, and
• KX +Δ(l)+G(l) is R-Cartier and α(P,X,Δ(l))− a(P,X,Δ(l)+G(l)) ≤ ε

3 for
any prime divisor P on Y

for any 1 ≤ l ≤ n. We set G =
∑n

l=1 rlG
(l). By construction, we have

KX +Δ+G =
n∑

l=1

rl(KX +Δ(l) +G(l)),

and so KX + Δ + G is R-Cartier. Since SuppΔ = SuppΔ(l) for any 1 ≤ l ≤ n
and since Δ(l) and G(l) have no common components, we see that Δ and G have no
common components. We pick any prime divisor P on Y . By construction, we have
a(P,X,Δ+G) =

∑n
l=1 rl · a(P,X,Δ(l) +G(l)). Recalling

∑n
l=1 rl = 1, we obtain

α(P,X,Δ)− a(P,X,Δ+G)

=

n∑
l=1

rl
(
α(P,X,Δ)− a(P,X,Δ(l) +G(l))

)

=

n∑
l=1

rl
(
α(P,X,Δ)− α(P,X,Δ(l)) + α(P,X,Δ(l))− a(P,X,Δ(l) +G(l))

)

≤
n∑

l=1

rl

(
2

3
ε+

1

3
ε

)
= ε.

In this way, G satisfies the conditions of Theorem 4.8.

So we are done.

We also see that the b-divisor defined with discrepancies is a logarithmic analog
of the relative log canonical b-divisor in [BdFF, Definition 3.1].

Theorem 4.9. Let 〈X,Δ〉 be a pair, and let f : Y → X be a projective birational
morphism from a normal variety Y . Put D =

∑
P α(P,X,Δ), where P runs over all

prime divisors on Y .
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Then, we have D = KY + (EnvX(−(KX +Δ)))Y , where (EnvX(−(KX +Δ)))Y
is the trace of the nef envelope EnvX(−(KX + Δ)) on Y (for the definition of nef
envelope, see [BdFF, Definition 2.3]).

Proof. The inequality D ≥ KY + (EnvX(−(KX +Δ)))Y follows from Definition
4.1 and [BdFF, Definition 2.3] (see also [BdFF, Lemma 2.2]), and the equality holds
when Δ is a Q-divisor (Proposition 4.7 and [BdFF, Remark 2.4]). Furthermore, by
the same argument as in Step 2 in the proof of Theorem 4.8, for any ε > 0, we can find
positive real numbers r1, · · · , rn and Q-divisors Δ(1), · · · ,Δ(n) such that

∑n
l=1 rl = 1,∑n

l=1 rlΔ
(l) = Δ and α(P,X,Δ) − α(P,X,Δ(l)) ≤ ε for any l and any prime divisor

P on Y . Then α(P,X,Δ)−∑n
l=1 rlα(P,X,Δ(l)) ≤ ε, and therefore

coeffP

(
KY + (EnvX(−(KX +Δ)))Y

)

≥
n∑

l=1

rl · coeffP

(
KY + (EnvX(−(KX +Δ(l))))Y

)
=

n∑
l=1

rlα(P,X,Δ(l))

≥α(P,X,Δ)− ε = coeffP (D)− ε,

where the first inequality follows from [BdFF, Proposition 2.6], and the second equal-
ity follows because Δ(l) are Q-divisors. Since ε is any positive real number, we have
D ≤ KY + (EnvX(−(KX +Δ)))Y . So the equality holds.

We give two examples of pseudo-lc pairs. First one is pseudo-lc pairs 〈Z,ΔZ〉
which are not lc.

Example 4.10. Let (X,Δ) be a projective Q-factorial klt pair such that the
Picard number ρ(X) is greater than 1 and −(KX + Δ) is nef but not numerically
trivial. We pick a very ample Cartier divisor A on X such that there is no real number
r satisfying rA ∼R KX +Δ. Note that we only use ρ(X) > 1 for the existence of A.
Set Y = PX(OX ⊕OX(−A)), and let f : Y → X be the natural morphism. Then

KY + 2S + f∗Δ+ f∗A = f∗(KX +Δ),

where S is the unique section corresponding to OY (1). We note that S is Cartier,
S � X and the pair (Y, S + f∗Δ) is plt. We construct a cone Z by contracting S.
Let π : Y → Z be the natural morphism. By construction, the image π(S) is a point.
Moreover, we can write S + f∗A ∼Q π∗H for an ample Q-divisor H on Z. We put
ΔZ = π∗f∗Δ.

We show that 〈Z,ΔZ〉 is pseudo-lc. For any real number t > 0, pick a general
ample R-divisor At ∼R tA − (KX +Δ). Since we have KX +Δ + At ∼R tA, we see
that KZ + ΔZ + π∗f∗At is R-Cartier ([F4, Proposition 7.2.8]). Then, by a simple
calculation, we obtain

KY + f∗At + f∗Δ+ (1 + t)S = π∗(KZ +ΔZ + π∗f∗At).

Let P be any prime divisor over Z. By replacing At if necessary, we may assume
cY (P ) �⊂ Suppf∗At. Then, we have a(P,Z,ΔZ + π∗f∗At) = a(P, Y, (1 + t)S + f∗Δ),
where both hand sides are the usual discrepancies. By definition of α(P,Z,ΔZ) (see
Definition 4.1), we have α(P,Z,ΔZ) ≥ a(P,Z,ΔZ + π∗f∗At) for any t > 0. Thus,
we obtain α(P,Z,ΔZ) ≥ a(P, Y, (1 + t)S + f∗Δ) for any t > 0. By the standard
argument of discrepancies and since the pair (Y, S + f∗Δ) is plt, the function R �
t′ �→ a(P, Y, (1+ t′)S+ f∗Δ) is continuous and a(P, Y, S+ f∗Δ) ≥ −1. Since we have
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α(P,Z,ΔZ) ≥ a(P, Y, (1 + t)S + f∗Δ) for any t > 0, by considering the limit t → 0,
we obtain α(P,Z,ΔZ) ≥ −1. Thus, we see that 〈Z,ΔZ〉 is pseudo-lc.

We show that 〈Z,ΔZ〉 is not lc. It is sufficient to show that KZ + ΔZ is not
R-Cartier. Recall that there is no real number r such that rA ∼R KX + Δ. Then,
KZ +ΔZ is not R-Cartier by [F4, Proposition 7.2.8]. Thus, 〈Z,ΔZ〉 is not lc.

Next example is pseudo-lc pairs which are not log canonical in the sense of [dFH].

Example 4.11 (see also [Z, Theorem 1.3]). Let X be a normal projective variety
such that (X, 0) is Q-factorial klt, −KX is nef and there is no effective Q-divisor
Δ ∼Q −KX such that (X,Δ) is lc. Such variety X exists even if X is a smooth
surface ([S, Example 1.1]). As in Example 4.10, we pick a very ample divisor A on
X and set Y = PX(OX ⊕ OX(−A)). Note that there is no real number r such that
KX ∼R rA by the assumption on KX . Let f : Y → X be the natural morphism and
π : Y → Z be the contraction of the section S corresponding to OY (1). We have
KY + 2S + f∗A = f∗KX and S + f∗A ∼Q π∗H for an ample H on Z. We also have
S � X, and π(S) is a point.

Since −KX is nef, as in the argument in the second paragraph of Example 4.10,
we see that 〈Z, 0〉 is pseudo-lc. We show that 〈Z, 0〉 is not log canonical in the sense of
[dFH]. If 〈Z, 0〉 is log canonical in the sense of [dFH], by [dFH, Proposition 7.2], there
is a Q-divisor B ≥ 0 on Z such that KZ +B is Q-Cartier and (Z,B) is lc. Then, we
can write KY +aS+π−1

∗ B = π∗(KZ +B) with an a ≤ 1, and the pair (Y, aS+π−1
∗ B)

is sub-lc. If a < 1, by using S + f∗A ∼Q π∗H, we obtain

KY + S + π−1
∗ B + (1− a)f∗A ∼Q π∗(KZ +B + (1− a)H).

By restricting to S, we obtain KS ∼R −π−1
∗ B|S − (1 − a)f∗A|S . We recall S � X.

Since π−1
∗ B|S ≥ 0 and 1 − a > 0, we see that −KX is big. Because −KX is nef

and (X, 0) is Q-factorial klt by the hypothesis, we can find a Q-divisor Δ ∼Q −KX

such that (X,Δ) is klt. But it contradicts the hypothesis of X. Thus, we see that
a = 1. Then KY + S + π−1

∗ B = π∗(KZ + B) and the pair (Y, S + π−1
∗ B) is lc. By

restricting to S, we obtain KS ∼Q −π−1
∗ B|S , and if we set ΔS = π−1

∗ B|S , then ΔS

is a Q-divisor and the pair (S,ΔS) is lc by adjunction. Since S � X, there is an
Q-divisor ΔX ∼Q −KX such that (X,ΔX) is lc. But it contradicts the hypothesis of
X. Therefore, 〈Z, 0〉 is not log canonical in the sense of [dFH].

The following proposition says that pseudo-lc pairs appear in generalized lc pairs.
For definition of generalized lc pairs, see [BZ, Definition 4.1].

Proposition 4.12. Let (X ′,Δ′ +M ′) be a generalized lc pair which comes with
a data X → X ′ → Z and M . Then, the pair 〈X ′,Δ′〉 is pseudo-lc.

Proof. By definition of pseudo-lc pairs, we can shrink X ′ and Z. Therefore, we
may assume that Z is affine and there is an ample divisor on X ′. We fix a prime
divisor P over X ′, and we show α(P,X ′,Δ′) ≥ −1. We denote X → X ′ by f . By
replacing X, we may assume that f is a log resolution of 〈X ′, SuppΔ′〉 such that P
is a divisor on X. We can write KX +Δ+M = f∗(KX′ +Δ′ +M ′), where (X,Δ) is
sub-lc. Pick an ample divisor A′ on X ′ and write f∗A′ ∼R H +G, where H is ample
and G ≥ 0. For any t > 0, we pick a general member Ht ∼R tH+M such that Ht ≥ 0
and SuppHt � P . Then, we have KX′ +Δ′ + f∗(Ht + tG) ∼R KX′ +Δ′ +M ′ + tA′

and so KX′ +Δ′ + f∗(Ht + tG) is R-Cartier. We also have f∗(Ht + tG) ≥ 0 and

KX +Δ+Ht + tG = f∗(KX′ +Δ′ + f∗(Ht + tG))
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for any t > 0. Since (X,Δ) is sub-lc, by definition of α(P,X ′,Δ′), we have

α(P,X ′,Δ′) ≥ coeffP (−Δ− tG) ≥ −1− t · coeffP (G)

for any t > 0. So α(P,X ′,Δ′) ≥ −1, and we see that 〈X ′,Δ′〉 is pseudo-lc.

Remark 4.13. We give two remarks on Example 4.11.
(1) Example 4.11 shows that there is a generalized lc pair with zero boundary

part (Z,MZ) such that there is no divisor B with which the pair (Z,B) is lc.
Indeed, with notation as in Example 4.11, put N = −f∗KX + π∗H, which is
nef by construction of X. Then we have KY +S+N ∼Q 0. Since (Y, S) is plt,
(Z,MZ := π∗N) is a generalized lc pair which comes with the data π : Y → Z
and N . But, as we have seen in Example 4.11, there is no boundary divisor
B such that the pair (Z,B) is lc ([dFH, Proposition 7.2]).

(2) Example 4.11 gives a negative answer to question (b) in [BdFF, Section 0].
Indeed, with notation as in Example 4.11, take X as a smooth surface as in
[S, Example 1.1]. Then Z has only one isolated singular point z0 = π(S).
Since 〈Z, 0〉 is pseudo-lc and by Theorem 4.9, we see that the log discrepancy
b-divisor as in [BdFF, Definition 3.4] is effective. Therefore, if Vol(Z, z0) is
the volume defined in [BdFF, Definition 4.18], then we have Vol(Z, z0) = 0
by [BdFF, Proposition 4.19]. But there is no boundary divisor B such that
the pair (Z,B) is lc. For argument using notions of volumes, see [Z].

From now on, we prove the main result of this paper.

Theorem 4.14. Let 〈X,Δ〉 be a pair such that Δ is a boundary R-divisor. Then,
there is a projective birational morphism h : W → X from a normal variety W such
that

• any h-exceptional prime divisor Eh satisfies α(Eh, X,Δ) < −1,
• the reduced h-exceptional divisor Ered is Q-Cartier, and
• if we put ΔW = h−1

∗ Δ + Ered, then KW + ΔW is R-Cartier and the pair
(W,ΔW ) is lc.

Proof. We prove it in several steps.

Step 1. In this step, we construct a special log resolution of 〈X, SuppΔ〉 used in
this proof.

Let f : Y → X be a log resolution of 〈X, SuppΔ〉, and let Γ be the sum of
f−1
∗ Δ and the reduced f -exceptional divisor. Let G be the reduced divisor on Y
which is the sum of all f -exceptional prime divisors whose discrepancy α( · , X,Δ) is
less than −1. By construction, we have Γ − G ≥ 0 and α(D,X,Δ) ≥ −1 for any
component D of Γ − G (see Lemma 4.3 (ii)). Suppose that there is an lc center
S0 of (Y,Γ − G) such that for any prime divisor P0 over Y with cY (P0) = S0 and
a(P0, Y,Γ − G) = −1, we have α(P0, X,Δ) < −1. We take the blow-up f1 : Y1 → Y
along S0 and we set Γ1 = f−1

1∗ Γ + E1 and G1 = f−1
1∗ G + E1, where E1 is the unique

f1-exceptional divisor. Note that α(E1, X,Δ) < −1 since we have cY (E1) = S0 and
a(E1, Y,Γ−G) = −1. We also see that G1 is the sum of all (f ◦f1)-exceptional prime
divisors on Y1 whose discrepancy α( · , X,Δ) is less than −1. Suppose that there
is an lc center S1 of (Y1,Γ1 − G1) such that for any prime divisor P1 over Y1 with
cY1(P1) = S1 and a(P1, Y1,Γ1 − G1) = −1, we have α(P1, X,Δ) < −1. We take the
blow-up f2 : Y2 → Y1 along S1 and we set Γ2 = f−1

2∗ Γ1 + E2 and G2 = f−1
2∗ G1 + E2,

where E2 is the unique f2-exceptional divisor. Then α(E2, X,Δ) < −1, and G2 is
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the sum of all exceptional prime divisors over X whose discrepancy α( · , X,Δ) is less
than −1. By the standard argument, this process eventually stops.

In this way, we obtain a log resolution f : Y → X of 〈X, SuppΔ〉, an effective
R-divisor Γ and an effective f -exceptional divisor G on Y such that

• Γ is the sum of f−1
∗ Δ and the reduced f -exceptional divisor,

• G = 0 or it is a reduced divisor,
• for any f -exceptional prime divisor Ef on Y , Ef is a component of G if and

only if α(Ef , X,Δ) < −1, and
• for any lc center S of (Y,Γ−G), there is a prime divisor Q over X such that
cY (Q) = S, a(Q, Y,Γ−G) = −1 and α(Q,X,Δ) ≥ −1.

Step 2. From this step to Step 4, we prove that for any 0 < t ≤ 1, there
is the log canonical model (Wt,ΓWt

− tGWt
) of (Y,Γ − tG) over X such that any

exceptional prime divisor P of the morphism Wt → X satisfies α(P,X,Δ) < −1. We
fix 0 < t ≤ 1. Note that the conditions of Γ and G stated in Step 1 hold even if we
restrict f : Y → X over an affine open subset of X. Since the log canonical model can
be constructed locally, from this step to Step 4, we assume that X is affine.

We run the (KY + Γ− tG)-MMP over X with scaling of an ample divisor. After
finitely many steps, we obtain a model f ′ : (Y ′,Γ′−tG′) → X such that KY ′+Γ′−tG′

is the limit of movable divisors over X, where Γ′ and G′ are the birational transforms
of Γ and G on Y ′, respectively. Then, for any f ′-exceptional prime divisor E′ on Y ′,
we have α(E′, X,Δ) ≤ −1. Indeed, if α(E′, X,Δ) > −1 for an f ′-exceptional prime
divisor E′, by Theorem 4.8, there is an R-divisor B ≥ 0 on X such that KX +Δ+B
is R-Cartier and a(E′, X,Δ+B) > −1. Then,

KY ′ + Γ′ − tG′ =f ′∗(KX +Δ+B) +M ′ − f ′−1
∗ B − tG′,

where M ′ is an f ′-exceptional divisor on Y ′. Since a(E′, X,Δ + B) > −1 and Γ′

contains the reduced f ′-exceptional divisor, the effective part of M ′ contains E′ in
its support. By construction of G (see the third condition of Step 1 in this proof)
and since α(E′, X,Δ) > −1, we see that E′ is not a component of G′. Therefore, the
divisor M ′−f ′−1

∗ B−tG′ has non-zero effective f ′-exceptional part. But it contradicts
[B1, Lemma 3.3] because KY ′ + Γ′ − tG′ is the limit of movable divisors over X. So
we have α(E′, X,Δ) ≤ −1 for any f ′-exceptional prime divisor E′.

By the above argument, for any R-divisor C ≥ 0 on X such that KX +Δ+ C is
R-Cartier, we can write

KY ′ + Γ′ − tG′ = f ′∗(KX +Δ+ C)−N

with an N ≥ 0. Then a(P ′, Y ′,Γ′ − tG′) ≥ a(P ′, X,Δ+ C) for any prime divisor P ′

over X, where both hand sides are the usual discrepancies. By Theorem 4.8, we have
a(P ′, Y ′,Γ′ − tG′) ≥ α(P ′, X,Δ) for any prime divisor P ′ over X.

Step 3. We check with Theorem 3.5 that (Y ′,Γ′ − tG′) has a good minimal
model over X. Note that in this step, we assume that X is affine.

It is clear that −(KY ′ +Γ′− tG′) is pseudo-effective over X. Pick any lc center S′

of (Y ′,Γ′ − tG′). Then S′ is normal since (Y ′,Γ′ − tG′) is Q-factorial dlt. We prove
that the divisor −(KY ′+Γ′−tG′)|S′ is pseudo-effective overX. By construction, there
is an lc center S of (Y,Γ−tG) such that the indeterminacy locus of the birational map
Y ��� Y ′ does not contain S and Y ��� Y ′ induces a birational map S ��� S′. Since
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(Y,Γ) is lc, S is also an lc center of (Y,Γ−G). By the fourth condition of Step 1 in this
proof, we can find a prime divisor Q over X such that cY (Q) = S, a(Q, Y,Γ−G) = −1
and α(Q,X,Δ) ≥ −1. Since (Y,Γ) is lc, we have a(Q, Y,Γ − tG) = −1. Since the
indeterminacy locus of the map Y ��� Y ′ does not contain S, we see that cY ′(Q) = S′

and a(Q, Y ′,Γ′ − tG′) = −1.
Let f : Y → Y ′ be a log resolution of (Y ′,Γ′− tG′) such that Q is a prime divisor

on Y . We define an R-divisor Ψ on Y by KY + Ψ = f
∗
(KY ′ + Γ′ − tG′). We set

fQ = f |Q : Q → S′. Then, fQ is surjective and we have

−(KY +Ψ)|Q ∼R f
∗
Q

(
−(KY ′ + Γ′ − tG′)|S′

)
.

Therefore, to prove the pseudo-effectivity of −(KY ′+Γ′−tG′)|S′ overX, it is sufficient
to prove that −(KY +Ψ)|Q is pseudo-effective over X.

We recall that a(Q, Y ′,Γ′ − tG′) ≥ α(Q,X,Δ) (see the last sentence of Step 2 in
this proof). Thus, we have

−1 = a(Q, Y ′,Γ′ − tG′) ≥ α(Q,X,Δ) ≥ −1,

and therefore, we see that α(Q,X,Δ) = −1. By Theorem 4.8, for any k ∈ Z>0,
we can find an R-divisor Ck ≥ 0 on X such that KX + Δ + Ck is R-Cartier and
a(Q,X,Δ + Ck) ≥ −1 − 1

k . We set βk = 1 + a(Q,X,Δ + Ck). Then − 1
k ≤ βk ≤ 0

because we have a(Q,X,Δ+ Ck) ≤ α(Q,X,Δ) = −1 by Definition 4.1.
We recall that for any R-divisor C ≥ 0 on X such that KX +Δ+C is R-Cartier,

we can write KY ′ + Γ′ − tG′ = f ′∗(KX + Δ + C) − N with an N ≥ 0. This fact
is stated in the last paragraph of Step 2 in this proof. Therefore, with an effective
R-divisor Nk on Y ′, we can write KY ′ + Γ′ − tG′ = f ′∗(KX + Δ + Ck) − Nk. By a
simple calculation of discrepancies, we have

coeffQ(−f
∗
Nk) = a(Q,X,Δ+ Ck)− a(Q, Y ′,Γ′ − tG′) = a(Q,X,Δ+ Ck) + 1 = βk.

Therefore, if we put Nk = f
∗
Nk + βkQ, we have Nk ≥ 0 and −f

∗
Nk = βkQ − Nk.

We also see that SuppNk � Q for any k because we have coeffQ(−f
∗
Nk) = βk.

Furthermore, since we have KY + Ψ = f
∗
(KY ′ + Γ′ − tG′) by construction, we can

write

KY +Ψ = f
∗
(KY ′ + Γ′ − tG′) = f

∗
f ′∗(KX +Δ+ Ck)− f

∗
Nk ∼R,X βkQ−Nk.

From these facts, we have

−(KY +Ψ)|Q + βkQ|Q ∼R,X Nk|Q ≥ 0.

Since limk→∞βk = 0, we see that −(KY + Ψ)|Q is pseudo-effective over X. By the
argument in the third paragraph of this step, −(KY ′ +Γ′− tG′)|S′ is pseudo-effective
over X. Since S′ is any lc center of (Y ′,Γ′ − tG′), the morphism (Y ′,Γ′ − tG′) → X
satisfies the hypothesis of Theorem 3.5. We note again that in this step, X is assumed
to be affine. In this way, we see that (Y ′,Γ′− tG′) has a good minimal model over X.

Step 4. We successively assume that X is affine. We run the (KY ′ + Γ′ − tG′)-
MMP over X, and we get a good minimal model (Y ′,Γ′−tG′) ��� (Y ′′,Γ′′−tG′′) over
X. Let Y ′′ → Wt be the contraction over X induced by KY ′′ +Γ′′− tG′′. Because the
birational map Y ��� Y ′′ is a sequence of steps of the (KY + Γ− tG)-MMP over X,
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the pair (Wt,ΓWt
− tGWt

) is the log canonical model of (Y,Γ− tG) over X, where ΓWt

and GWt are the birational transforms of Γ and G on Wt, respectively. We denote
the morphism Y ′′ → X by f ′′. Now we have the following diagram.

(Y,Γ− tG) ��

f

		

(Y ′,Γ′ − tG′) ��

f ′

��

(Y ′′,Γ− tG′′) ��

f ′′





(Wt,ΓWt
− tGWt

)

��X

We prove that any exceptional prime divisor P of the morphism Wt → X satisfies
α(P,X,Δ) < −1. To prove this, we prove that the morphism Y ′′ → Wt contracts
all f ′′-exceptional prime divisors E′′ satisfying α(E′′, X,Δ) ≥ −1. By construction,
Γ′′ is the sum of f ′′−1

∗ Δ and the reduced f ′′-exceptional divisor. We recall the third
condition on Γ and G stated in Step 1 in this proof. From the condition, E′′ is not a
component of G′′, and hence E′′ is an lc center of (Y ′′,Γ′′− tG′′). We also recall that
the restriction −(KY ′ +Γ′ − tG′)|S′ is pseudo-effective over X for any lc center S′ of
(Y ′,Γ′ − tG′), which is proved in Step 3. Therefore, by taking a common resolution
of the map Y ′ ��� Y ′′ and applying [F1, Lemma 4.2.10], we see that the divisor
−(KY ′′ + Γ′′ − tG′′)|E′′ on E′′ is pseudo-effective over X. On the other hand, since
(Y ′′,Γ′′ − tG′′) is a good minimal model over X, the divisor KY ′′ +Γ′′ − tG′′ is semi-
ample over X. From these facts, we see that the restriction of (KY ′′ + Γ′′ − tG′′)|E′′

to any sufficiently general fiber of the morphism E′′ → X is numerically trivial.
This implies that the morphism Y ′′ → Wt contracts all sufficiently general fibers of
E′′ → X. In particular, E′′ is contracted by Y ′′ → Wt. In this way, we see that the
morphism Y ′′ → Wt contracts all f

′′-exceptional prime divisors E′′ on Y ′′ satisfying
α(E′′, X,Δ) ≥ −1.

Step 5. In this step, X is not necessarily affine. Let f : (Y,Γ) → X and G be
as in Step 1. By steps 2, 3 and 4, for any 0 < t ≤ 1, there exists the log canonical
model (Wt,ΓWt − tGWt) of (Y,Γ− tG) over X such that any exceptional prime divisor
P of the morphism Wt → X satisfies α(P,X,Δ) < −1. Since GWt is the birational
transform of G on Wt, it is the reduced exceptional divisor of Wt → X (see the second
condition of Step 1 in this proof).

Let {en}n≥1 be a strictly decreasing sequence of positive real numbers such that
en ≤ 1 and limn→∞en = 0. We apply Lemma 2.6 to (Y,Γ − enG) → X and enG.
For each n, we can find tn ∈ (0, en) and a birational contraction Y ��� Wtn such that
(Wtn ,ΓWtn

− tnGWtn
) is the log canonical model of (Y,Γ − tnG) over X and GWtn

is Q-Cartier. By construction, the pair (Wtn ,ΓWtn
−GWtn

) is lc, limn→∞tn = 0 and
the log canonical threshold lct(Wtn ,ΓWtn

−GWtn
;GWtn

) is not less than 1− tn. By
[HMX1, Theorem 1.1], we can find n such that lct(Wtn ,ΓWtn

− GWtn
;GWtn

) = 1.
For this n, put W = Wtn , ΔW = ΓWtn

and GW = GWtn
. We denote the morphism

W → X by h.
We check that h : (W,ΔW ) → X satisfies all the conditions of Theorem 4.14. The

first condition of Theorem 4.14 follows from construction of h : W → X (see steps 2, 3
and 4, or the third sentence of this step). Recall that GW is the reduced h-exceptional
divisor (see the last sentence in the first paragraph of this step). We put Ered = GW ,
which is Q-Cartier. Therefore, Ered satisfies the second condition of Theorem 4.14.
We have ΔW = h−1

∗ Δ + Ered by construction of Γ in Step 1 in this proof. Since
KW +ΔW − Ered is R-Cartier and lct(W,ΔW − Ered;Ered) = 1, the third condition
of Theorem 4.14 is satisfied.
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So we complete the proof.

Remark 4.15. The proof of Theorem 4.14 shows that for any pair 〈X,Δ〉 such
that Δ is a boundary R-divisor and any t > 0, we can construct h : W → X as in
Theorem 4.14 such that KW + ΔW − t′Ered is h-ample for some t′ ∈ (0, t). Indeed,
when we carry out the argument in Step 5, we pick a strictly decreasing sequence
{en}n≥1 so that e1 < t. With notations as in Step 5, by construction of h : W → X
the pair (W,ΔW − tnEred) is the log canonical model of (Y,Γ− tnG) over X for some
tn ∈ (0, en). Since en < e1 < t, putting t′ = tn the divisor KW + ΔW − t′Ered is
h-ample.

Corollary 4.16. Let 〈X,Δ〉 be a pair. If X is a surface, then 〈X,Δ〉 is pseudo-
lc if and only if KX +Δ is R-Cartier and (X,Δ) is lc.

Note that (W,ΔW ) in Theorem 4.14 is not an lc modification of 〈X,Δ〉. If there
is an lc modification (X ′,Δ′) of 〈X,Δ〉, then the pair (X ′,Δ′) satisfies the first and
third conditions of Theorem 4.14.

By the arguments in steps 2, 3 and 4 in the proof of Theorem 4.14, we obtain the
following theorem:

Theorem 4.17. Let 〈X,Δ〉 be a pair such that Δ is a boundary R-divisor. Let
f : Y → X be a log resolution of 〈X,Δ〉, and let Γ be the sum of f−1

∗ Δ and the reduced
f -exceptional divisor. Suppose that

• for any f -exceptional prime divisor E, we have α(E,X,Δ) ≥ −1, and
• for any lc center S of (Y,Γ), there is a prime divisor Q over X such that
cY (Q) = S, a(Q, Y,Γ) = −1 and α(Q,X,Δ) ≥ −1.

Then, (Y,Γ) has the log canonical model (W,ΔW ) over X such that the natural mor-
phism W → X is small. In particular, if 〈X,Δ〉 is pseudo-lc, then there is an lc
modification h : (W,ΔW ) → X such that h is small.

Proof. Let 〈X,Δ〉 and f : Y → X be as in the theorem. Then we are in the same
situation as the case where G = 0 in the final paragraph of Step 1 in the proof of
Theorem 4.14. So the arguments in steps 2, 3 and 4 in the proof of Theorem 4.14
work with no changes.

We would like to remark about lc modifications of 〈X,Δ〉. If Δ is a Q-divisor and
KX +Δ is Q-Cartier, an lc modification of 〈X,Δ〉 exists ([OX, Theorem 1.1]). But,
as we see in Example 4.18 below, the existence of lc modifications for non-Q-Cartier
pairs is in general a very difficult problem.

Example 4.18 ([FG2, Proof of Lemma 3.2]). Let X be a smooth projective
variety such that KX is pseudo-effective. Let A, f : Y → X, S and π : Y → Z be
as in Example 4.10. By construction, we have KY + 2S + f∗A ∼Q,Z KY + S. Since
S � X, we have κ(S) = κ(X), where both hand sides are Kodaira dimensions.

Suppose that the pair 〈Z, 0〉 has an lc modification (Z ′,ΔZ′) → Z. Then, ΔZ′

is the reduced exceptional divisor over Z, KZ′ +ΔZ′ is Q-Cartier and ample over Z,
and (Z ′,ΔZ′) is lc. We show that (Y, S) has a good minimal model over Z. Indeed,
since (Z ′,ΔZ′) is lc, we have a(S,Z ′,ΔZ′) ≥ −1 = a(S, Y, S). By taking a common
resolution of the birational map Y ��� Z ′ and by the negativity lemma, we see that
(Z ′,ΔZ′) is a weak lc model of (Y, S) over X with relatively ample log canonical
divisor. Note that S is the unique exceptional divisor of the map Y ��� Z ′ because S
is the unique exceptional divisor of π. By [H2, Remark 2.10], we see that (Y, S) has
a good minimal model over Z.
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Let (Y, S) ��� (Y ′, S′) be a sequence of steps of the (KY + S)-MMP over Z to
a good minimal model. Then, S is not contracted by the log MMP because KS is
pseudo-effective. Furthermore, we have (KY ′ + S′)|S′ = KS′ and κ(S) ≥ κ(S′) by
construction. Since KS′ is semi-ample, we have κ(S′) ≥ 0. Then κ(X) ≥ 0.

In this way, the existence of an lc modification of 〈Z, 0〉 implies the non-vanishing
theorem for X.

By using Theorem 4.17, we see that two important theorems for lc pairs hold true
in the setting of pseudo-lc pairs.

Theorem 4.19. Let 〈X,Δ〉 be a pseudo-lc pair such that Δ is a Q-divisor.
Then, the graded sheaf of OX-algebra

⊕
m≥0 OX(�m(KX +Δ)�) is finitely generated.

If X is projective and the minimal model theory holds, then the log canonical ring⊕
m≥0 H

0(X,OX(�m(KX +Δ)�)) is a finitely generated C-algebra.

Proof. The first assertion follows from Theorem 4.17 and [KM, Lemma 6.2]. Let
h : (W,ΔW ) → 〈X,Δ〉 be as in Theorem 4.17. Suppose that X is projective and
the minimal model theory holds. Then, the log canonical ring of (W,ΔW ) is finitely
generated. Since H0(W,OW (�m(KW + ΔW )�)) � H0(X,OX(�m(KX + Δ)�)), the
second assertion holds.

Theorem 4.20 (Kodaira type vanishing theorem). Let π : X → Z be a projective
morphism of normal varieties and 〈X,Δ〉 be a pseudo-lc pair. Let D be a Weil divisor
on X such that D − (KX +Δ) is π-ample.

Then Riπ∗OX(D) = 0 for any i > 0.

Proof. We put A = D − (KX +Δ). Let h : (W,ΔW ) → 〈X,Δ〉 be the lc modifi-
cation as in Theorem 4.17, and take a log resolution g : Y → W of (W,ΔW ). We can
write KY +Γ = g∗(KW +ΔW )+E, where Γ ≥ 0 and E ≥ 0 have no common compo-
nents. We set DW = h−1

∗ D = KW +ΔW +h∗A. Then KY +Γ+g∗h∗A = g∗DW +E.
Since DW is a Weil divisor, the divisor g∗DW +E − �(g∗DW +E)� is g-exceptional.
If we set E′ = g∗DW + E − �(g∗DW + E)�, the divisor Γ − E′ is sub-boundary and
the negative part of Γ− E′ is g-exceptional. Therefore, there is a g-exceptional Weil
divisor E′′ ≥ 0 such that Γ − E′ + E′′ is a boundary R-divisor. By construction, we
have

KY + (Γ− E′ + E′′) + g∗h∗A = �(g∗DW + E)�+ E′′

and

(h ◦ g)∗OY (�(g∗DW + E)�+ E′′) = h∗OW (DW ) = OX(D),

where the second equality follows from that h is small. By [F4, Theorem 5.6.2 (ii)],
we have Riπ∗Rj(h ◦ g)∗OY (�(g∗DW + E)� + E′′) = 0 for any i > 0 and j ≥ 0. By
considering the case when j = 0, we have Riπ∗OX(D) = 0 for any i > 0.

5. A criterion of log canonicity. In this section, we discuss about a sufficient
condition of log canonicity.

Theorem 5.1. Let X be a normal quasi-projective variety, and let Δ be a bound-
ary R-divisor.

(1) There is D1 a finite set of prime divisors over X such that if

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier} ≥ −1
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for all P ∈ D1, then 〈X,Δ〉 has a small lc modification. In particular, when
Δ is a Q-divisor, the graded sheaf of OX-algebra

⊕
m≥0 OX(�m(KX +Δ)�)

is finitely generated.
(2) Suppose that 〈X,Δ〉 has a small lc modification. Let x ∈ X be a closed point.

Then, there is D2 a finite set of prime divisors over X such that KX +Δ is
R-Cartier and (X,Δ) is lc in a neighborhood of x if and only if the following
relation holds for any P ∈ D2.

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier}
=inf{a(P,X,Δ−G′)|G′ ≥ 0,KX +Δ−G′ is R-Cartier}.

Proof. First, we prove (1). Let f : Y → X be a log resolution of 〈X, SuppΔ〉. Let
{Ei}i be the set of all f -exceptional prime divisors. We set Γ = f−1

∗ Δ+
∑

i Ei. For
any lc center S of (Y,Γ), fix a prime divisor E′

S over X such that the center of E′
S on

Y is S and a(E′
S , Y,Γ) = −1. We set D1 = {Ei}i ∪ {E′

S}S , where S runs over all lc
centers of (Y,Γ). Then D1 satisfies the condition of Theorem 5.1 (1). Indeed, if

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier} ≥ −1

for any P ∈ D1, by Theorem 4.8, the morphism f : (Y,Γ) → 〈X,Δ〉 satisfies the
conditions of Theorem 4.17. So, (Y,Γ) has the log canonical model (W,ΔW ) over X
such that the induced morphism h : W → X is small. By Definition 2.3, (W,ΔW ) is
a small lc modification of 〈X,Δ〉. Thus, we complete the proof of (1).

Next, we prove (2). Let h : (W,ΔW ) → 〈X,Δ〉 be a small lc modification. Note
that ΔW = h−1

∗ Δ. Let f : Y → X be a log resolution of 〈X, SuppΔ〉 such that f−1(x)
is a simple normal crossing divisor and the induced map g : Y ��� W is a morphism.
Let D2 be the set of all f -exceptional prime divisors whose centers on X contain x.
We prove that D2 satisfies the condition of Theorem 5.1 (2). Since Theorem 5.1 (2) is
a local problem, shrinking X, we may assume that D2 is the set of all f -exceptional
prime divisors. Suppose that KX +Δ is R-Cartier and (X,Δ) is lc in a neighborhood
of x. By shrinking X again, we can assume (X,Δ) is lc. Then, as in the proof of
Lemma 4.3, for any P ∈ D2, we obtain

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier}
=inf{a(P,X,Δ−G′)|G′ ≥ 0,KX +Δ−G′ is R-Cartier}
=a(P,X,Δ) ≥ −1.

Therefore, the first condition implies the second condition.
Conversely, suppose that the equation as in Theorem 5.1 (2) holds for all P ∈ D2.

We check a(P,W,ΔW ) = α(P,X,Δ) for any P ∈ D2, where α( · , X,Δ) is as in
Definition 4.1. By Theorem 4.8, we only have to show

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier}
≤a(P,W,ΔW )

≤inf{a(P,X,Δ−G′)|G′ ≥ 0,KX +Δ−G′ is R-Cartier}
(∗)

for any P ∈ D2. We only show the first relation because the second relation can be
obtained similarly. Since h is small, for any G ≥ 0 on X such that KX + Δ + G is
R-Cartier, we have h∗(KX + Δ + G) − (KW + ΔW ) ≥ 0. By [KM, Lemma 2.27],
we have a(P,X,Δ + G) ≤ a(P,W,ΔW ) for any G and P ∈ D2. Therefore, the first
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relation of (∗) holds. Thus, we see that the relation (∗) holds. In this way, we have
a(P,W,ΔW ) = α(P,X,Δ) for any P ∈ D2.

From now on, we prove that KX +Δ is R-Cartier and (X,Δ) is lc near x. Since
(W,ΔW ) is lc by construction, it is sufficient to prove that the morphism h : W → X
is an isomorphism over x. To prove this, we only have to show that h−1(x) is a
point. Suppose by contradiction that h−1(x) is not a point. Then h−1(x) contains a
curve. We may write KY + f−1

∗ Δ −∑
P∈D2

a(P,W,ΔW )P = g∗(KW + ΔW ). Since
a(P,W,ΔW ) = α(P,X,Δ), for any integer n > 0, we can find Gn ≥ 0 on X such
that KX +Δ+Gn is R-Cartier and a(P,W,ΔW )− a(P,X,Δ+Gn) ∈ [0, 1

n ] for any
P ∈ D2 (Theorem 4.8). Therefore, if we put βn,P = a(P,W,ΔW )− a(P,X,Δ+Gn)
for any P ∈ D2, we have 0 ≤ βn,P ≤ 1

n . Moreover, we can write

g∗(KW +ΔW ) = KY + f−1
∗ Δ−

∑
P∈D2

(
a(P,X,Δ+Gn) + βn,P

)
P

= f∗(KX +Δ+Gn)− f−1
∗ Gn −

∑
P∈D2

βn,PP

∼R,X −f−1
∗ Gn −

∑
P∈D2

βn,PP.

Now we recall that g−1(h−1(x)) = f−1(x) is a simple normal crossing divisor and
h−1(x) contains a curve. Pick any sufficiently general curve ξ ⊂ f−1(x) such that
g(ξ) is a curve on W . Then, for any n, we obtain

(g∗(KW +ΔW )) · ξ = −(f−1
∗ Gn · ξ)−

∑
P∈D2

βn,P (P · ξ) ≤ −
∑

P∈D2

βn,P (P · ξ).

Since 0 ≤ βn,P ≤ 1
n , considering the limit n → ∞, we have (g∗(KW +ΔW )) · ξ ≤ 0.

Now recall that (W,ΔW ) is an lc modification of 〈X,Δ〉. So KW +ΔW is ample over
X. Since g(ξ) is a curve on W and f(ξ) = x, we have (g∗(KW + ΔW )) · ξ > 0. In
this way, we get a contradiction.

In this way, we see that h−1(x) is a point. So h is an isomorphism over x, and
KX +Δ is R-Cartier and (X,Δ) is lc near x. Thus we complete the proof.

Corollary 5.2. Let 〈X,Δ〉 be a pair such that X is quasi-projective. Then
KX + Δ is R-Cartier and (X,Δ) is lc if and only if 〈X,Δ〉 is pseudo-lc and the
following equation holds for any prime divisor P over X.

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier}
=inf{a(P,X,Δ−G′)|G′ ≥ 0,KX +Δ−G′ is R-Cartier}.

Proof. It follows from Theorem 5.1.

In the rest of this paper, we give an other proof of the Corollary 5.2. We prove
it using the notion of numerically Cartier divisors (see [BdFFU, Definition 5.2]) and
the minimal model theory.

First, we recall the notion of numerically Cartier divisors.

Definition 5.3 ([BdFFU, Definition 5.2], see also [BdFF, Definition 2.26]). Let
X be a normal variety, and let D be an R-divisor on it. Then D is numerically
Cartier if there is a resolution f : Y → X and an R-divisor DY on Y such that DY is
numerically trivial over X and f∗DY = D.
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The following lemma connects the notion of numerically Cartier divisors and the
usual discrepancy.

Lemma 5.4. Let 〈X,Δ〉 be a pair such that X is quasi-projective. Then, KX +Δ
is numerically Cartier if and only if for any prime divisor P over X, the following
equality holds:

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier}
=inf{a(P,X,Δ−G′)|G′ ≥ 0,KX +Δ−G′ is R-Cartier}.

Proof. We use notations in [BdFF]. Let EnvX( · ) be the nef envelope. We set

α′(P,X,Δ) = inf{a(P,X,Δ−G′)|G′ ≥ 0,KX +Δ−G′ is R-Cartier},

and for any log resolution f : Y → X of 〈X, SuppΔ〉, we put DY =
∑

P α(P,X,Δ)
and D′

Y =
∑

P α′(P,X,Δ), where P runs over all prime divisors on Y . Then, we have
DY = KY + (EnvX(−(KX +Δ)))Y by Theorem 4.8 and Theorem 4.9. By the same
arguments, we also obtain D′

Y = KY − (EnvX(KX +Δ))Y . Therefore, the equality

sup{a(P,X,Δ+G)|G ≥ 0,KX +Δ+G is R-Cartier}
=inf{a(P,X,Δ−G′)|G′ ≥ 0,KX +Δ−G′ is R-Cartier}

is equivalent to EnvX(−(KX + Δ)) = −EnvX(KX + Δ) as b-R-divisors. But this
is equivalent to that KX + Δ is numerically Cartier. For details, see the proof of
[BdFFU, Proposition 5.9]. Note that the proof of [BdFFU, Proposition 5.9] is carried
out with Q-divisors, but the argument works for R-divisors without any change.

By Lemma 5.4, Corollary 5.2 is equivalent to the following statement, which is
an lc analog of [BdFFU, Corollary 5.17].

Theorem 5.5. Let 〈X,Δ〉 be a pair such that X is quasi-projective. Suppose
that KX +Δ is numerically Cartier. Suppose in addition that for any log resolution
f : Y → X of 〈X,Δ〉, the coefficient of any P in KY + (EnvX(−(KX +Δ)))Y is not
less than −1.

Then, KX +Δ is R-Cartier and (X,Δ) is lc.

Proof. Fix a log resolution f : Y → X of 〈X,Δ〉. Then, we may write

KY + f−1
∗ Δ+ E+ − E− = −(EnvX(−(KX +Δ)))Y ,

where E+ and E− are effective f -exceptional R-divisors which have no common com-
ponents, and E+ is a boundary divisor. Since KX +Δ is numerically Cartier, we see
that KY + f−1

∗ Δ+ E+ − E− is numerically trivial over X.
We set Γ = f−1

∗ Δ + E+. Then (Y,Γ) is lc. We run the (KY + Γ)-MMP over
X with scaling of an ample divisor. After finitely many steps, we reach a model
(Y,Γ) ��� (Y ′,Γ′) over X such that KY ′ + Γ′ is the limit of movable divisors over
X. Let E′

− be the birational transform of E− on Y ′. By the contraction theorem
[F4, Theorem 4.5.2 (4)], we see that KY ′ + Γ′ − E′

− is numerically trivial over X.
Then, for any sufficiently general curve ξ whose image on X is a point, we have
(E′

− · ξ) = (KY ′ + Γ′) · ξ ≥ 0. Since E′
− is effective and exceptional over X, by [B1,

Lemma 3.3], we have E′
− = 0. Therefore, we see that KY ′ + Γ′ is numerically trivial

over X. By Theorem 3.5, KY ′ +Γ′ is semi-ample over X. So there is the log canonical
model (W,ΔW ) of (Y ′,Γ′) over X such that W is isomorphic to X, where ΔW is the
birational transform of Γ′ on W . By construction, ΔW is the birational transform of
Δ on W . So we see that KX +Δ is R-Cartier and (X,Δ) is lc.



238 K. HASHIZUME

REFERENCES

[B1] C. Birkar, Existence of log canonical flips and a special LMMP, Publ. Math. Inst.

Hautes Études Sci., 115:1 (2012), pp. 325–368.
[B2] C. Birkar, Singularities of linear systems and boundedness of Fano varieties, preprint

(2016), arXiv:1609.05543v1.
[BCHM] C. Birkar, P. Cascini, C. D. Hacon and J. M

c
Kernan, Existence of minimal models

for varieties of log general type, J. Amer. Math. Soc., 23:2 (2010), pp. 405–468.
[BZ] C. Birkar and D. Q. Zhang, Effectivity of Iitaka fibrations and pluricanonical systems

of polarized pairs, Publ. Math. Inst. Hautes Études Sci., 123:1 (2016), pp. 283–331.
[BdFF] S. Boucksom, T. de Fernex and C. Favre, The volume of an isolated singularity, Duke

Math. J., 161:8 (2012), pp. 1455–1520.
[BdFFU] S. Boucksom, T. de Fernex, C. Favre and S. Urbinati, Valuation spaces and multi-

plier ideals on singular varieties, Recent advances in algebraic geometry, pp. 29-51,
London Math. Soc. Lecture Note Ser., 417, Cambridge Univ. Press, Cambridge, 2015.

[dFH] T. de Fernex and C. D. Hacon, Singularities on normal varieties, Compos. Math.,
145:2 (2009), pp. 393–414.

[F1] O. Fujino, Special termination and reduction to pl flips, in Flips for 3-folds and 4-folds,
Oxford University Press (2007).

[F2] O. Fujino, Non-vanishing theorem for log canonical pairs, J. Algebraic Geom., 20:4
(2011), pp. 771–783.

[F3] O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst.
Math. Sci., 47:3 (2011), pp. 727–789.

[F4] O. Fujino, Foundations of the minimal model program, MSJ Mem., 35, Mathematical
Society in Japan, Tokyo, 2017.

[FG1] O. Fujino and Y. Gongyo, Log pluricanonical representations and abundance conjec-
ture, Compos. Math., 150:4 (2014), pp. 593–620.

[FG2] O. Fujino and Y. Gongyo, On log canonical rings, Adv. Stud. Pure Math., 74 (2017),
Higher dimensional algebraic geometry in honour of Professor Yujiro Kawamata’s
sixtieth birthday, pp. 159–169.

[HMX1] C. D. Hacon, J. M
c
Kernan and C. Xu, ACC for log canonical thresholds, Ann. of

Math. (2), 180:2 (2014), pp. 523–571.
[HMX2] C. D. Hacon, J. M

c
Kernan and C. Xu, Boundedness of moduli of varieties of general

type, J. Eur. Math. Soc., 20:4 (2018), pp. 865–901.
[HX] C. D. Hacon and C. Xu, Existence of log canonical closures, Invent. Math., 192:1 (2013),

pp. 161–195.
[H1] K. Hashizume, Minimal model theory for relatively trivial log canonical pairs, Ann. Inst.

Fourier (Grenoble), 68:5 (2018), pp. 2069–2107.
[H2] K. Hashizume, Remarks on special kinds of the relative log minimal model program,

Manuscripta Math., 160:3 (2019), pp. 285–314.
[K] J. Kollár, Log-plurigenera in stable families, Peking Math. J., 1:1 (2018), pp. 81–107.
[KM] J. Kollár and S. Mori, Birational geometry of algebraic varieties, with the collabo-

ration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original.
Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge,
1998.

[N] N. Nakayama, Zariski-decomposition and abundance, MSJ Mem., 14, Mathematical So-
ciety of Japan, Tokyo, 2004.

[OX] Y. Odaka and C. Xu, Log-canonical models of singular pairs and its applications, Math.
Res. Lett., 19:2 (2012), pp. 325–334.

[S] V. V. Shokurov, Complements on surfaces, Algebraic geometry, 10. J. Math. Sci. (New
York), 102:2 (2000), pp. 3876–3932.

[Z] Y. Zhang, On the volume of isolated singularities, Compos. Math., 150:8 (2014),
pp. 1413–1424.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 100
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 100
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


