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CONWAY’S POTENTIAL FUNCTION VIA THE GASSNER
REPRESENTATION∗

ANTHONY CONWAY† AND SOLENN ESTIER‡

Abstract. We show how Conway’s multivariable potential function can be constructed using
braids and the reduced Gassner representation. The resulting formula is a multivariable generaliza-
tion of a construction, due to Kassel-Turaev, of the Alexander-Conway polynomial in terms of the
Burau representation. Apart from providing an efficient method of computing the potential func-
tion, our result also removes the sign ambiguity in the current formulas which relate the multivariable
Alexander polynomial to the reduced Gassner representation. We also relate the distinct definitions
of this representation which have appeared in the literature.
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1. Introduction. The one variable Alexander polynomial of an oriented link L is
a Laurent polynomial ΔL(t) ∈ Z[t±1] which is defined up to multiplication by ±tk with
k ∈ Z. Despite this indeterminacy, ΔL(t) has proved invaluable in low dimensional
topology and can be understood in a wealth of different ways. For instance, ΔL(t) can
be constructed using Seifert surfaces [33], the reduced Burau representation [6], Fox
calculus [16], Reidemeister torsion [25], quantum invariants [20, 14] and Heegaard-
Floer homology [29].

These considerations extend to the multivariable case. Indeed, the multivari-
able Alexander polynomial of an n-component ordered link L is a Laurent polynomial
ΔL(t1, . . . , tn) ∈ Z[t±1

1 , . . . , t±1
n ] which is defined up to multiplication by powers of ±ti.

Analogously to the one variable case, ΔL(t1, . . . , tn) can be constructed using gener-
alized Seifert surfaces [7], Fox calculus [16], the reduced Gassner representation [4],
Reidemeister torsion [34], quantum invariants [28] and Heegaard-Floer homology [30].

Regardless of the number of variables, the Alexander polynomial is palindromic,
i.e. it satisfies ΔL(t

−1
1 , . . . , t−1

n )
.
= ΔL(t1, . . . , tn), where

.
= denotes equality up to

multiplication by a unit of Z[t±1
1 , . . . , t±1

n ]. Consequently, the difficulty in removing

the indeterminacy lies in fixing a signed representative in Z[t
±1/2
1 , . . . , t

±1/2
n ]. In 1970,

J. Conway [13] suggested such a representative (later called the Conway potential
function) of the multivariable Alexander polynomial. Namely, the potential function
of an n-component ordered link L is a rational function ∇L(t1, . . . , tn) which satisfies

∇L(t1, . . . , tn) =

{
1

t1−t−1
1

ΔL(t
2
1) if n = 1,

ΔL(t
2
1, . . . , t

2
n) if n > 1.

In the one variable case, J. Conway further defined the reduced polynomial DL(t) ∈
Z[t±1] of a link by setting DL(t) = (t − t−1)∇L(t). The existence of this Laurent
polynomial (which is now called the Alexander-Conway polynomial) was first proved
by Kauffman [21] using Seifert surfaces. Subsequent constructions involve quantum
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invariants [20], Heegaard-Floer homology [29] and the Burau representation of the
braid group [19, Section 3.4].

In the multivariable case, the existence of the potential function was first proved
by Hartley [17] using Fox calculus. Furthermore, ∇L(t1, . . . , tn) can currently be
expressed by sign-refining the aforementioned constructions of ΔL(t1, . . . , tn) [7, 34,
28, 3]. In particular, generalizing the fact that the Alexander-Conway polynomial
can be constructed using the reduced Burau representation, a multivariable formula
is stated by Murakami [28, equation (6.10)], see also Remark 1.2.

In order to describe our main result in this setting, we start by recalling some
notions related to the Gassner representation. In fact, since we wish to obtain state-
ments which are valid both in the one variable case and in the multivariable case,
we shall work with colored braids and colored links. A μ-colored link L is an ori-
ented link L whose components are partitioned into μ sublinks L1 ∪ . . .∪Lμ; colored
braids are defined similarly: a braid β is μ-colored if each of its n components is
assigned (via a surjective map) an element in {1, 2, . . . , μ}. Such a coloring results in
two sequences c = (c1, c2, . . . , cn) and c = (c′1, c

′
2, . . . , c

′
n) of integers: each sequence

respectively encodes the colors of the top and bottom boundaries of the resulting
(c, c′)-braid. If one fixes such a sequence c, one obtains the group Bc of (c, c)-braids,
see Subsection 2.1 for details. As we shall review in Subsection 2.2, associating to
each n-stranded μ-colored (c, c)-braid its so-called reduced colored Gassner matrix
produces a homomorphism

B(c,c) : Bc → GLn−1(Z[t
±1
1 , . . . , t±1

μ ]).

When μ = 1, one recovers the reduced Burau matrices [6], while for μ = n, one

retrieves the reduced Gassner matrices [4]. The closure β̂ of a (c, c)-braid β is a
colored link and, as observed by Birman [4, Theorem 3.11] and Morton [26], if one
uses Ik to denote the identity matrix of size k, then the relation between B(c,c)(β)
and the Alexander polynomial reads as

Δ
̂β(t1, . . . , tμ)

.
=

{
t1−1
tn1−1 det(B(c,c)(β)− In−1) if μ = 1,

(tc1 · · · tcn − 1) det(B(c,c)(β)− In−1) if μ > 1.
(1)

Finally, we introduce some additional notation. Any (c, c)-braid β can be decomposed
into a product

∏m
j=1 σ

εj
ij
, where each σij denotes the ij-th generator of the braid group

(viewed as an appropriately colored braid) and each εj is equal to ±1. For each j,
use bj to denote the color of the over-crossing strand in the generator σ

εj
ij

and consider
the Laurent monomial

〈β〉 :=
m∏
j=1

t
−εj
bj

.

Set Λμ := Z[t±1
1 , . . . , t±1

μ ] and define g : Λμ → Λμ by extending Z-linearly the group
endomorphism of Zμ = 〈t1, . . . , tμ〉 which sends ti to t2i . Our main theorem reads as
follows:

Theorem 1.1. Given an n-stranded μ-colored (c, c)-braid β, the multivariable

potential function of its closure β̂ can be described as:

∇
̂β(t1, . . . , tμ) = (−1)n+1 · 1

tc1 · · · tcn − t−1
c1 · · · t−1

cn

· 〈β〉 · g(det(B(c,c)(β)− In−1)). (2)
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Theorem 1.1 has three main features. Firstly, it generalizes [19, Theorem 3.13]
(which deals with the Alexander-Conway polynomial and the Burau representation)
to the multivariable case. Secondly, it sign-refines the relation, described in (1),
between the colored Gassner representation and the multivariable Alexander polyno-
mial. Thirdly, it provides an efficient method to compute the multivariable potential
function (e.g. by sign refining Morton and Hodgson’s algorithm [27]).

Remark 1.2. As we mentioned above, apart from relating the multivariable
potential function to quantum invariants, Murakami also states a formula similar
to (2) in [28, equation (6.10)]. Unfortunately, the sign (−1)n+1 does not appear and,
in particular, the resulting polynomial is not invariant under the second Markov move.
Regardless of this sign issue, Murakami refers to [17, equation (2.4)] for a proof of
his claim (i.e. for the proof of [28, equation (6.10)]). As it turns out, combining
others parts of [17] with Morton’s work [26] does indeed provide a shorter proof of
Theorem 1.1 than the one given in Section 3. This proof is discussed in Appendix A
and was generously provided by an anonymous referee.

The proof of Theorem 1.1 uses a blend of Jiang’s axiomatic characterization of
∇L [18], the homological interpretation of the reduced colored Gassner matrices [23]
and ideas of [19]. More precisely, given a colored link L, we use the colored version of
the classical theorem of Alexander [1] in order to write L as the closure of a colored
braid β. We then associate to L a rational function fL which is defined in terms of
the reduced colored Gassner representation B(c,c)(β). The fact that this construction
provides a well-defined link invariant follows from the colored version of Markov’s
theorem [24] coupled with homological considerations. Finally, we check that fL
satisfies Jiang’s five axioms [18] which characterize the potential function ∇L.

The careful reader might have noticed that (up to now) we have only discussed
the reduced colored Gassner matrices, intentionally avoiding to mention the reduced
colored Gassner representation. Indeed the latter terminology already refers to a
slightly different object which appears in [23, 9, 10, 8]. The aim of the second part
of this paper is to clarify the relation between these two objects as well as to provide
a more intrinsic description of the reduced colored Gassner matrices. Let us give a
brief outline of our results on these issues.

Let Dn denote the n times punctured disk and use x1, . . . , xn to denote the
generators of π1(Dn, z) depicted in Figure 1 (this figure also shows the basepoint
z ∈ ∂Dn). Given a sequence (c1, . . . , cn) of integers in {1, . . . , μ}, consider the

regular cover p : D̂n → Dn corresponding to the kernel of the homomorphism
π1(Dn) → Z

μ, xi �→ tci . Each braid β can be represented by an orientation preserv-
ing homeomorphism hβ of Dn fixing ∂Dn pointwise. The unreduced colored Gassner
representation

B(c,c) : Bc → AutΛμ(H1(D̂n, p
−1({z})))

is obtained by lifting hβ to a homeomorphism h̃β : D̂n → D̂n and defining B(c,c)(β)

as the induced Λμ-linear homomorphism on H1(D̂n, p
−1({z})).

This intrinsic definition contrasts sharply with the coordinate-dependent descrip-
tion of the reduced colored Gassner matrices [4]. Indeed, for i = 1, . . . , n, lifts g̃i
of the loops gi := x1 · · ·xi to D̂n provide a free basis for H1(D̂n, p

−1({z})) and the
reduced colored Gassner matrix of β is defined as the restriction of B(c,c)(β) to the
free Λμ-module generated by g̃1, . . . , g̃n−1.
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One might conjecture that the reduced colored Gassner matrices simply represent
the Λμ-automorphism of H1(D̂n) induced by h̃β . While this is true for μ = 1, it
cannot hold for μ > 2: the former Λμ-module is not free. For this reason, one
considers the localization ΛS of Λμ with respect to the multiplicative subset generated

by S = {1− t1, . . . , 1− tμ}. Indeed, it now turns out that ΛS ⊗Λμ
H1(D̂n) is free of

rank n− 1 and the reduced colored Gassner representation

Bc → AutΛμ(ΛS ⊗Λμ H1(D̂n))

is defined by considering the ΛS-linear map induced by h̃β on ΛS ⊗Λμ
H1(D̂n) (note

that Kirk-Livingston-Wang [23, Definition 2.2] initially defined this representation
over the field of fractions Q of Λμ). In order to state our second result, we introduce

one last piece of terminology: we write ∂D̂n → ∂Dn for the restriction of the cover
to ∂Dn and we refer to the ΛS-linear map induced by h̃β on ΛS ⊗Λμ

H1(D̂n, ∂D̂n) as
the map induced by the braid β.

Our second result reads as follows.

Theorem 1.3. Given a (c, c)-braid β with n strands, the following statements
hold:

(1) The map induced by β on ΛS ⊗Λμ H1(D̂n, ∂D̂n) is represented by the reduced

colored Gassner matrix B(c,c)(β).

(2) The inclusion induced homomorphism Φ: ΛS ⊗Λμ
H1(D̂n) → ΛS ⊗Λμ

H1(D̂n, ∂D̂n) intertwines the reduced colored Gassner representation with the
map induced by β. Furthermore, after tensoring with Q, the induced map
idQ⊗Φ is an isomorphism which conjugates the two representations.

Summarizing, Theorem 1.3 not only clarifies the relation between the several nat-
ural definitions of the “reduced colored Gassner representation” which have appeared
in the literature, it also gives a more intrinsic definition of the reduced colored Gassner
matrices which are used in Theorem 1.1. Conversely, note that Theorem 1.3 can also
be viewed as providing a practical way of computing the reduced colored Gassner
representation. Finally, note that the second point of Theorem 1.3 implies that The-
orem 1.1 also holds for the reduced colored Gassner representation: indeed since both
representations are conjugated over Q, their determinants agree.

This paper is organized as follows. Section 2 reviews colored braids and the
colored Gassner representation, Section 3 gives the proof of Theorem 1.1 and Section 4
provides the proof of Theorem 1.3.

Acknowledgments. Both authors wish to thank David Cimasoni for suggesting
the project and for several helpful discussions. We are particularly grateful to two
anonymous referees: the first pointed us toward [28, equation (6.10)], while the second
provided us with a second shorter proof of Theorem 1.1. The first named author was
supported by the NCCR SwissMap funded by the Swiss FNS.

2. Colored braids and the colored Gassner representation.

2.1. Colored braids. Following Birman [4], we start by recalling some well-
known properties of the braid group. Afterwards, we discuss colored braids, following
the conventions of [12].

Let D2 be the closed unit disk in R
2. Fix a set of n ≥ 1 punctures p1, p2, . . . , pn

in the interior of D2. We shall assume that the pi lie in (−1, 1) = Int(D2) ∩ R
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z

x3x2x1

Figure 1. The punctured disk D3.

and p1 < p2 < . . . < pn. A braid with n strands is an oriented n-component one-
dimensional smooth submanifold β of the cylinder D2×[0, 1] whose oriented boundary
is
⊔n

i=1(pi × {0)} � (−⊔n
i=1(pi × {1})), and where the projection to [0, 1] maps each

component of β homeomorphically onto [0, 1]. Two braids β1 and β2 are isotopic if
there is a self-homeomorphism of D2 × [0, 1] which keeps ∂(D2 × [0, 1]) fixed, such
that h(β1) = β2. The braid group Bn consists of the set of isotopy classes of braids.
The identity element is given by the trivial braid {p1, p2, . . . , pn} × [0, 1] while the
composition of β1β2 consists in gluing β1 on top of β2 and shrinking the result by a
factor 2 as in Figure 4.

The braid group Bn can also be identified with the group of isotopy classes of
orientation-preserving homeomorphisms of Dn := D2 \ {p1, . . . , pn} fixing the bound-
ary pointwise (note that with our conventions, the punctures do not contribute any
boundary components: ∂Dn = ∂D2). To understand this fact, first note that a
braid β induces a deformation retraction of its exterior Xβ := (D2 × [0, 1]) \ νβ
onto Dn × {0}. Denoting this retraction by Hβ : Xβ × [0, 1] → Xβ , it turns
out that the isotopy class (rel ∂D2) of the orientation-preserving homeomorphism
hβ : Dn × {1} → Dn × {0}, x �→ Hβ(x, 1) depends only on the isotopy class of the
braid (see [4] for details).

D2 × {1}

D2 × {0}

Figure 2. The generator σ2 of B4.

Either way, Bn admits a presentation with n− 1 generators σ1, σ2, . . . , σn−1 sub-
ject to the relations σiσi+1σi = σi+1σiσi+1 for each i, and σiσj = σjσi if |i− j| > 2.
Topologically, the generator σi is the braid whose i-th component passes over the
i+1-th component as shown in Figure 2. Sending a braid to its underlying permuta-
tion produces a surjection from the braid group into the symmetric group. The kernel
Pn of this map is called the pure braid group.

Remark 2.1. Although we have chosen to follow Birman’s convention regarding
the topological interpretation of σi [4], this convention is by no means standard: the
opposite convention is also widespread in the literature. To only name two examples,
both Morton’s article [26] and Birman and Brendle’s survey [5] assume that σi is
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represented by the braid whose i-th component passes under the i+1-th component.

Fix a base point z of Dn in ∂Dn and denote by xi the simple loop based at
z turning once around pi counterclockwise for i = 1, 2, . . . , n as in Figure 1. The
group π1(Dn, z) can then be identified with the free group Fn on the xi. If hβ is a
homeomorphism of Dn representing a braid β, then the induced automorphism hβ∗
of the free group Fn only depends on β. It follows from the way we compose braids
that h(γβ)∗ = hβ∗hγ∗, and the resulting anti -representation Bn → Aut(Fn) can be
explicitly described by

(hσi)∗xj =

⎧⎪⎨⎪⎩
xixi+1x

−1
i if j = i,

xi if j = i+ 1,

xj otherwise.

The closure of a braid β is the link β̂ obtained from β by adding parallel strands in
S3 \ (D2 × [0, 1]) as in Figure 3. While Alexander’s theorem [1] ensures that every
link can be obtained as the closure of a braid, the correspondence between braids and
links is not one-to-one: non-isotopic braids can have isotopic closures. As we shall
recall below, Markov’s theorem [24] describes a complete set of moves which relates
braids whose closures are isotopic.

Remark 2.2. In fact, a close inspection of the proof of Alexander’s theorem
leads to the following refined statement. If an oriented link contains a braid α in a
small cylinder, then it can be obtained as the closure of a braid which contains α in
a small cylinder (with orientations as shown in Figure 3 below).

β β̂

Figure 3. The closure of a braid.

A braid β is μ-colored if each of its components is assigned (via a surjective map)
an integer in {1, 2, . . . , μ} (which we call a color). A μ-colored braid induces a coloring
on the punctures of D2×{0, 1}. For emphasis, we shall denote the resulting punctured
disks by Dc and Dc′ , and call a μ-colored braid a (c, c′)-braid, where c and c′ are the
sequences of 1, 2, . . . , μ induced by the coloring of the braid. Two colored braids are
isotopic if the underlying isotopy is color preserving, and we shall denote by idc the
isotopy class of the trivial (c, c)-braid. The composition of a (c, c′)-braid β1 with a
(c′, c′′)-braid β2 is the (c, c

′′)-braid β1β2 depicted in Figure 4. Thus, for any sequence c,
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β2

β1

β1β2
c′

c′′

c

c′

c′′

c

Figure 4. A (c, c′)-braid β1, a (c′, c′′)-braid β2 and their composition, the (c, c′′)-braid β1β2.

the set Bc of isotopy classes of (c, c)-braids is a group which interpolates between the
braid group Bn = B(1,1,...,1) and the pure braid group Pn = B(1,2,...,n). Additionally,
we shall often use the map icn+1

: Bc ↪→ B(c1,...,cn,cn+1) which sends α to the disjoint
union of α with a trivial strand of color cn+1, see Figure 5. Here, note that cn+1 can
very well be equal to one of the n first ci’s.

Finally, the closure of a μ-colored braid β is the μ-colored link β̂ obtained from β
by adding colored parallel strands in S3 \ (D2 × [0, 1]). We refer to [28, Theorem 3.3]
for the colored version of Alexander’s theorem (which states that every colored link
can be obtained as the closure of a colored braid) and instead focus on the colored
version of Markov’s theorem, referring to [28, Theorem 3.5] for details.

Proposition 2.3. Two (c, c)-braids have isotopic closures if and only if they are
related by a sequence of the following moves and their inverses:

(1) replace αβ by βα, where α is a (c, c′)-braid and β is a (c′, c)-braid,
(2) replace α by σε

nicn(α), where α is a (c, c)-colored braid with n strands, σn is
viewed as a ((c1, . . . , cn, cn), (c1, . . . , cn, cn))-braid, and ε is equal to ±1.

ic4(α)α

c1 c2 c3 c1 c2 c3 c4

c1 c2 c3 c1 c2 c3 c4

Figure 5. An example of the inclusion map ic4 .

2.2. The colored Gassner representation. In this subsection, we review the
homological definition of the unreduced colored Gassner representation (following [23,
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35, 12]) and of the reduced colored Gassner matrices (following [4, 26, 28, 12]). A
more leisurely exposition can also be found in [11, Chapter 9]. It must however be
mentioned that our conventions are actually closest to those used in [2]; in particular
the unreduced colored Gassner representation is in fact an anti -representation. Other
appearances of the colored Gassner representation include work of Penne [31, 32].

Fix a sequence (c1, . . . , cn) of elements in {1, . . . , μ} and a basepoint z of the punc-
tured disk Dc which lies in ∂Dc. Consider the map ψc : π1(Dc) → Z

μ = 〈t1, . . . , tμ〉
which sends each xi to tci . Let D̂c → Dc be the regular cover corresponding to ker(ψc)

and let P be the fiber over z. The homology groups of D̂c are naturally modules over
Λμ = Z[t±1

1 , . . . , t±1
μ ]. Given a homeomorphism hα : Dc → Dc′ representing a (c, c′)-

braid α, one can check that hα lifts to a unique homeomorphism h̃α : D̂c → D̂c′ fixing
P = P ′ pointwise. Taking the induced map on homology produces a well-defined
Λμ-homomorphism

B(c,c′)(α) : H1(D̂c, P )→ H1(D̂c′ , P
′).

In the case where c = c′, we obtain a map Bc → AutΛμ
(H1(D̂c, P )) which we call

the unreduced colored Gassner representation. When μ = 1, the unreduced colored
Gassner representation recovers the unreduced Burau representation of the braid
group Bn while if μ = n, we retrieve the unreduced Gassner representation of the
pure braid group described in [4], see [12] and [11, Chapter 9] for details.

Since the proof of the following proposition can be found in [12], we only sketch
it here.

Proposition 2.4. Given a (c, c′)-braid β and a (c′, c′′)-braid γ, we have

B(c,c′′)(βγ) = B(c′,c′′)(γ)B(c,c′)(β).

In particular, B(c′,c)(β
−1) = B(c,c′)(β)

−1 and, restricting to (c, c)-braids, B(c,c) is an
anti-representation.

Proof. Fix an arbitrary lift of z to D̂c. Since the lift of hαβ coincides with the lift
of hβ ◦hα, the first assertion follows. The second and third statements are immediate
consequences of the first.

Note that the homology Λμ-module H1(D̂c, P ) is free of rank n: it is easily shown
that lifts x̃1, . . . , x̃n of the x1, . . . , xn provide a Λμ-basis [12, Lemma 2.2]. With
respect to this basis, the transpose of the matrix for the unreduced colored Gassner
representation of the generator σi (viewed as a (c, c′)-braid) can be found in [12,
Example 3.5].

Next following [4] and [12, Section 3 (c)], we deal with the reduced colored Gassner
matrices. Instead of working with the free generators x1, x2 . . . , xn of π1(Dc), one can
consider the elements g1, g2, . . . , gn, defined by gi := x1x2 · · ·xi. For i = 1, . . . , n,
let g̃i be the lift of gi to D̂c starting at a fixed lift of z. One obtains the splitting

H1(D̂c, P ) =

n−1⊕
i=1

Λμg̃i ⊕ Λμg̃n.

As gn is always fixed by the action of the braid group, its lift g̃n is fixed by the lift h̃β

of a homeomorphism hβ representing a colored braid β.
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Definition 2.5. The reduced colored Gassner matrix of a (c, c′)-braid β is the
restriction B(c,c′)(β) of the unreduced colored Gassner map to the free Λμ-module of
rank (n− 1) generated by g̃1, . . . , g̃n−1.

As an immediate consequence of Definition 2.5, observe that the reduced colored
Gassner matrices satisfy the relations described in Proposition 2.4. Furthermore,
using B(c,c′)(β) to denote the matrix of the unreduced colored Gassner representation
of a braid β with respect to the basis g̃1, . . . , g̃n, it follows that

B(c,c′)(β) =

(B(c,c′)(β) 0
v 1

)
(3)

for some length (n−1) row vector v. In particular, as explained in [12, Example 3.10],
the reduced colored Gassner matrix of the generator σi (viewed as a (c, c′)-braid) is
given by

B(c,c′)(σi) = Ii−2 ⊕
⎛⎝1 tc′i+1

0

0 −tc′i+1
0

0 1 1

⎞⎠⊕ In−i−2 (4)

for 1 < i < n− 1, and for σ1 and σn−1 by

B(c,c′)(σ1) =

(−tc′2 0
1 1

)
⊕ In−3,

B(c,c′)(σn−1) = In−3 ⊕
(
1 tc′n
0 −tc′n

)
.

We conclude this section by emphasizing once more that the description of the reduced
colored Gassner matrices given here differs from the “reduced colored Gassner repre-
sentation” of [23, 10, 9]. The relation between these constructions will be clarified in
Section 4.

3. The multivariable potential function. In this section, we prove Theo-
rem 1.1 by giving a construction of the multivariable potential function which involves
the reduced colored Gassner matrices. As we mentioned in the introduction, the proof
uses a blend of Jiang’s axiomatic characterization of ∇L [18], the homological inter-
pretation of the reduced colored Gassner matrices and ideas of Kassel-Turaev [19,
Section 3.4].

The proof decomposes into three steps: first, given a link L, we define a rational
function fL, secondly we show that fL is a link invariant (see Proposition 3.5) and
thirdly we show that fL coincides with the multivariable potential function ∇L, prov-
ing Theorem 1.1. Subsection 3.1 deals with the first two steps while Subsection 3.2
is concerned with the third. Finally, note that an alternative proof of Theorem 1.1 is
presented in Appendix A.

3.1. The invariant f . Any (c, c)-braid β can be decomposed into a product of
generators

∏m
j=1 σ

εj
ij
, where each σij denotes the ij-th generator of the braid group

(viewed as an appropriately colored braid) and each εj is equal to ±1. For each j,
use bj to denote the color of the over-crossing strand in the generator σ

εj
ij

and consider
the Laurent polynomial

〈β〉 :=
m∏
j=1

t
−εj
bj

.
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Finally, define g : Λμ → Λμ by extending Z-linearly the group endomorphism of Zμ =
〈t1, . . . , tμ〉 which sends ti to t2i .

Definition 3.1. For any (c, c)-braid β with n strands, set

f(β) := (−1)n+1 · 1

tc1 · · · tcn − t−1
c1 · · · t−1

cn

· 〈β〉 · g(det(B(c,c)(β)− In−1)).

In order to define f on a colored link L, proceed as follows: use the colored
Alexander theorem in order to write L as the closure of a (c, c)-braid β and set

fL := f(β).

Observe that f is only well-defined provided it takes the same value on colored braids
whose closures are isotopic. The proof of this result will be given in Proposition 3.5.
However, accepting this fact for the time being, we provide some sample computations.

Example 3.2. Set c = (1, 2) and view the 2-colored positive Hopf link H
as the closure of the 2-stranded (c, c)-braid σ−2

1 . Since 〈σ−2
1 〉 is given by t1t2 and

B(c,c)(σ
−2
1 ) = t−1

1 t−1
2 (here we used (4) and Proposition 2.4), we deduce from Defini-

tion 3.1 that

fH = (−1)3 t1t2

t1t2 − t−1
1 t−1

2

(t−2
1 t−2

2 − 1) = 1.

Next, we give a slightly more involved example:

Example 3.3. Set c = (1, 2, 3) and view the link L depicted in Figure 6 as the
closure of the 3-stranded (c, c)-braid σ−2

1 σ−2
2 . Using (4) and Proposition 2.4, we can

compute B(c,c)(σ
−2
1 σ−2

2 ). After subtracting the identity, taking the determinant and

applying g, we obtain 1− t−2
2 − t−2

1 t−2
2 t−2

3 + t−2
1 t−4

1 t−2
1 . Moreover, since 〈σ−2

1 σ−2
2 〉 is

equal to t1t
2
2t3, Definition 3.1 implies that

fL = (−1)4 t1t
2
2t3

t1t2t3 − t−1
1 t−1

2 t−1
3

(1− t−2
2 − t−2

1 t−2
2 t−2

3 + t−2
1 t−4

1 t−2
1 ) = t2 − t−1

2 .

Figure 6. The link L used in Example 3.3.

In order to prove the invariance of f , we shall show that it is invariant under
the colored Markov moves described in Proposition 2.3. To do so, we start with a
preliminary lemma. Given a (c, c)-braid β, recall from (3) that in the basis g̃1, . . . , g̃n
of H1(D̂c, P ), the unreduced colored Gassner matrix of β can be written as

B(c,c)(β) =

(B(c,c)(β) 0
v 1

)
,

where v is a row vector. The next lemma shows that this vector can be expressed in
terms of the reduced colored Gassner matrix.
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Lemma 3.4. Given a (c, c)-braid β with n strands, use ri to denote the ith row
of the matrix B(c,c)(β)− In−1. The following equality holds:

n−1∑
i=1

(tc1 · · · tci − 1)ri = −(tc1 . . . tcn − 1)v. (5)

Proof. Fix a basepoint z in ∂Dc and let P be its fiber in the cover D̂c → Dc. Let
hβ be a self-homeomorphism of Dc representing β, fix an arbitrary lift of z to D̂c and

let h̃β : D̂c → D̂c be the lift of hβ fixing P pointwise. Using ∂ to denote the connecting

homomorphism in the long exact sequence of the pair (D̂c, P ), the following diagram
commutes by naturality of the long exact sequence in homology:

H1(D̂c, P )

B(c,c)(β)

��

∂ �� H0(P )

(˜hβ)∗

��
H1(D̂c, P )

∂ �� H0(P ).

Since h̃β fixes P pointwise, it induces the identity on degree zero homology. With

respect to the basis g̃1, . . . , g̃n of H1(D̂c, P ) the connecting homomorphism ∂ is rep-
resented by the 1 × n matrix (tc1 − 1, tc1tc2 − 1, . . . , tc1tc2 . . . tcn − 1). Writing out
explicitly the equation ∂◦B(c,c)(β) = ∂ yields (5), concluding the proof of the lemma.

Given a sequence c = (c1, . . . , cn) of integers in {1, . . . , μ}, recall that icn : Bc ↪→
B(c1,...,cn,cn) denotes the natural inclusion which sends α to the disjoint union of α
with a trivial strand of color cn. We can now prove the main result of this subsection,
namely the invariance of f under the colored Markov moves.

Proposition 3.5. The rational function f is invariant under both colored Markov
moves. More precisely, we have the following equalities:

(1) f(αβ) = f(βα) for all (c, c′)-braids α and all (c′, c)-braids β.
(2) f(α) = f(σε

nicn(α)) for all n-stranded (c, c)-braids α, where the n-th genera-
tor σn of Bn+1 is viewed as a ((c1, . . . , cn, cn), (c1, . . . , cn, cn))-braid and ε is
equal to ±1.

Proof. To show the first statement, given a (c, c′)-braid α and a (c′, c)-braid β,
our goal is to show that f(αβ) and f(βα) coincide. Since 〈αβ〉 = 〈βα〉, this clearly
reduces to showing

det(B(c,c)(αβ)− In−1) = det(B(c′,c′)(βα)− In−1). (6)

Using the equality αβ = αβαα−1 and Proposition 2.4, we deduce that B(c,c)(αβ) −
In−1 is equal to B(c,c′)(α)

−1(B(c′,c′)(βα) − In−1)B(c,c′)(α). This immediately im-
plies (6).

To prove the second statement, fix a (c, c)-braid α, set ε = +1 (the case ε = −1
is treated identically), and write c′ for (c1, . . . , cn, cn). Our goal is to show that
f(α) = f(σnicn(α)). Using Definition 3.1 and the equality

〈
σnicn(α)

〉
= t−1

cn

〈
α
〉
, it is

enough to show that

g(det(B(c,c)(α)− In−1))

tc1 · · · tcn − t−1
c1 · · · t−1

cn

=
−t−1

cn · g
(B(c′,c′)(σnicn(α))− In

)
tc1 · · · tcn−1

t2cn − t−1
c1 · · · t−1

cn−1t
−2
cn

. (7)
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Our aim is now to compare the determinants of B(c′,c′)(σnicn(α)) − In and of

B(c,c)(α)−In−1. To do so, we start by investigating B(c′,c′)(icn(α)). Since hicn (α)(g̃i) =

hα(g̃i) for i = 1, . . . , n, we deduce that B(c′,c′)(icn(α)) is given by
(
B(c,c)(α) 0

v 1

)
, where

v is a length (n − 1) row vector. The goal is now to express the determinant of
B(c′,c′)(σnicn(α)) − In in terms of the determinant of B(c,c)(α) − In−1. To that end,

we write B(c,c)(α) as
(
B b1
b2 a

)
and B(c′,c′)(icn(α)) as

B(c′,c′)(icn(α)) =

⎛⎝B b1 0
b2 a 0
v1 v2 1

⎞⎠ , (8)

where B is a square matrix of size n − 2, b1 is a (n − 2) × 1 matrix, b2 and v1 are
1 × (n − 2) matrices, and a and v2 belong to Λμ. Using successively Proposition 2.4
and (4), we deduce that

B(c′,c′)(σnicn(α))− In =

⎛⎝B − In−2 b1 tcnb1
b2 a− 1 tcna
v1 v2 tcn(v2 − 1)− 1

⎞⎠ .

Our plan is to use Lemma 3.4 and a sequence of elementary operations in order
to remove the vectors v1 and v2. Firstly, we subtract the second-to-last column
multiplied by tcn to the last column. Secondly, using Ai to denote the rows of the
resulting matrix, we multiply the last row of this matrix by (tc1 · · · tcn − 1) and add

to it
∑n−1

i=1 (tc1 · · · tci − 1)Ai. Using Lemma 3.4, the result of these two operations is

X :=

⎛⎝B − In−2 b1 0
b2 a− 1 tcn
0 0 e

⎞⎠ ,

where e stands for (1 − tc1 · · · tcn−1
t2cn). Notice that the second operation we per-

formed yields a factor of (tc1 · · · tcn − 1)−1 to the determinant; more precisely,
det(X) = (tc1 · · · tcn − 1) det(B(c′,c′)(σnicn(α)) − In). Combining these observations
and computing det(X) by expanding along the last row, we obtain

det(B(c′,c′)(σnicn(α))− In) =
1− tc1 · · · tcn−1

t2cn
tc1 · · · tcn − 1

det(B(c,c)(α)− In−1).

Plugging this equality into the right hand side of (7), the verification of the second
Markov move reduces to checking the following equality:

g(det(B(c,c)(α)− In−1))

tc1 · · · tcn − t−1
c1 · · · t−1

cn

=
−t−1

cn g(det(B(c,c)(α)− In−1))

tc1 · · · tcn−1
t2cn − t−1

c1 · · · t−1
cn−1t

−2
cn

g

(
1− tc1 · · · tcn−1

t2cn
tc1 · · · tcn − 1

)
.

Simplifying the g(det(B(c,c)(α) − In−1), this latter equation can easily be verified to
hold.

3.2. Proof of Theorem 1.1. By Proposition 3.5, we know that fL is a link
invariant. In order to prove Theorem 1.1 (which states that fL is equal to the mul-
tivariable potential function ∇L) we shall use Jiang’s characterization theorem [18]
which states that ∇L is uniquely determined by the following set of five local relations:

(R1) ∇H = 1, where H is the positive Hopf link.
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L0 L′

i i

j

(R2) ∇L�U = 0, where L�U denotes the disjoint union of L and a trivial knot U .
(R3) ∇L′ = (ti − t−1

i )∇L0
, where L′ is obtained from L0 by the local operation

given by
(R4) ∇L++

+ ∇L−− = (titj − t−1
i t−1

j )∇L0
, where L++, L−− and L0 differ by the

local relation

L++ L−− L0

i j i j i j

(R5) (t−1
i t−1

j − titj)(∇L(1) +∇L(2)) + (tjtk − t−1
j t−1

k )(∇L(3) +∇L(4))

+(tit
−1
k −t−1

i tk)(∇L(5)+∇L(6)) = 0,

where L(1), L(2), L(3), L(4), L(5) and L(6) differ by the local operation

j
ki

j
k

i
j

ki
j

ki
j

ki
j

ki

L(1) L(2) L(3) L(4) L(5) L(6)

Since each of Jiang’s axioms is written in terms of local relations, we wish to
find braids whose closures realize these relations. Even though the end result is
independent of such choices (thanks to Proposition 3.5), we will check the axioms by
placing the braids which realize the local moves on the top of the braid diagrams.
The following lemma justifies the use of this simplification.

Lemma 3.6. Let L be a colored link which coincides with a colored braid α in a
small cylinder. Then there exist a colored braid βr (resp. βl) whose closure is isotopic
to L, and in which α is located at the top right (resp. left) of the braid.

Proof. Let L be a colored link which coincides with a colored braid α in a small
cylinder. Remark 2.2 ensures the existence of a braid whose closure is L, containing
α in a small cylinder. First, by conjugation, we bring α to the top of the braid. Then,
performing the isotopy depicted in the third diagram of Figure 7, we move α to the
top right (resp. left) of the braid. Finally, as illustrated in the rightmost diagram of
Figure 7, we use conjugation one last time to conclude the proof.

We now check that fL satisfies Jiang’s axioms (R1) . . . (R5). Once the process is
completed, we will have concluded the proof of Theorem 1.1.

Axioms (R1) and (R2). The fact that f verifies Axiom (R1) was proved in Ex-
ample 3.2. To check that f verifies Axiom (R2), suppose L can be written as the clo-
sure of some n-stranded (c, c)-braid α. Use Lemma 3.6 to assume that L�U is obtained
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β′

β

αγ γ′

β

β′

α

γ γ′

β

β′

β

β′

α

γ

α

γ γ′

γ′

Figure 7. Constructing the braid βr by moving α to the upper right.

as the closure of the (c′, c′)-braid icn+1
(α), where c′ is obtained from c by adding an

arbitrary additional color cn+1. As explained in the proof of Proposition 3.5, the last
column of B(c′,c′)(icn+1

(α)) is (0, . . . 0, 1)T . It follows that det(B(c′,c′)(icn+1
(α))− In)

vanishes and thus so does f(icn+1
(α)), as required.

Axiom (R3). The proof of Axiom (R3) is similar to the proof (given in Proposi-
tion 3.5) of the invariance of fL under the second colored Markov move. Suppose L0

is obtained as the closure of some n-stranded (c, c)-braid α. We use Lemma 3.6
to assume that L′ is obtained as the closure of σ−2

n icn+1(α); here, σn is viewed as a
(c′, c′)-braid, where c′ is obtained from c by adding an arbitrary extra color cn+1. The
equality we wish to prove is (tcn − t−1

cn )f(α) = f(σ−2
n icn+1(α)). Using Definition 3.1

and the equality 〈σ−2
n α〉 = tcntcn+1〈α〉, this reduces to showing the relation

(tcn − t−1
cn )g(det(B(c,c)(α)− In−1))

tc1 · · · tcn − t−1
c1 · · · t−1

cn

=
−tcn tcn+1g(det(B(c′,c′)(σ

−2
n icn+1(α))− In))

tc1 · · · tcn+1 − t−1
c1 · · · t−1

cn+1

. (9)

The aim is now to express the determinant of B(c′,c′)(σ
−2
n icn+1(α))−In in terms of the

determinant of B(c,c)(α) − In−1. As in Proposition 3.5, we write B(c,c)(α) as
(
B b1
b2 a

)
and B(c′,c′)(icn+1

(α)) as

B(c′,c′)(icn+1
(α)) =

⎛⎝B b1 0
b2 a 0
v1 v2 1

⎞⎠ , (10)

where B is a square matrix of size n − 2, b1 is a (n − 2) × 1 matrix, b2 and v1 are
1 × (n − 2) matrices, and a and v2 belong to Λμ. Using successively Proposition 2.4
and (4), we deduce that

B(c′,c′)(σ
−2
n icn+1(α))− In =

⎛⎝B − In−2 b1 (1− t−1
cn+1

)b1
b2 a− 1 (1− t−1

cn+1
)a

v1 v2 (1− t−1
cn+1

)v2 + t−1
cn+1

t−1
cn − 1

⎞⎠ .

Just as in the proof of Proposition 3.5, our goal is to use Lemma 3.4 and a sequence of
elementary operations in order to remove the vectors v1 and v2. Firstly, we subtract
to the last column the next-to-last column multiplied by (1− t−1

cn+1
). Secondly, using

Ai to denote the rows of the resulting matrix, we multiply the last row of this matrix
by (tc1 · · · tcn − 1) and add to it

∑n−1
i=1 (tc1 · · · tci −1)Ai. Using Lemma 3.4, we obtain

det(B(c′,c′)(σ
−2
n icn+1(α))− In) = (tc1 · · · tcn − 1)−1 det

⎛
⎝B − In−2 b1 0

b2 a− 1 (1− t−1
cn+1

)

0 0 e

⎞
⎠,
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where e is given by (t−1
cn+1

t−1
cn −1)(tc1 · · · tcn−1)+(tc1 · · · tcn−1

−1)(1− t−1
cn+1

). Finally,
computing this latter determinant by expanding along the last row, we deduce that
det(B(c′,c′)(σ

−2
n icn+1(α))− In) is equal to

(t−1
cn+1

t−1
cn − 1)(tc1 · · · tcn − 1) + (tc1 · · · tcn−1 − 1)(1− t−1

cn+1
)

(tc1 · · · tcn − 1)
det(B(c,c)(α)− In−1).

The verification of (R3) is concluded by plugging this result back into (9).

Axiom (R4). Suppose L0 is obtained as the closure of some n-stranded
(c, c)-braid α. Using Lemma 3.6, we can assume that L−− is obtained as
the closure of σ2

1α and L++ as the closure of σ−2
1 α; here σ1 is viewed as

a ((c1, c2, c3, . . . , cn), (c2, c1, c3, . . . , cn))-braid. The relation we wish to prove is
f(L−−) + f(L++) = f(L0). Using Definition 3.1 and performing some simplifica-
tions, this reduces to

g(det(B(c,c)(σ
2
1α)− In−1))

tc1tc2
+

g(det(B(c,c)(σ
−2
1 α)− In−1))

t−1
c1 t−2

c2

= (tc1tc2 + t−1
c1 t−1

c2 )g(det(B(c,c)(α)− In−1)).

(11)

In order to check (11), we must compute g(det(B(c,c)(σ
±2
1 α) − In−1)). To this end,

we write B(c,c)(α) =
( a c p

b d q
x y M

)
, where a,b,c and d are elements of Λμ, p and q are rows

of length (n− 3), x and y are columns of length (n− 3), and M is a square matrix of
size (n− 3). Using successively (4) and Proposition 2.4, we deduce that

B(c,c)(σ
2
1α)− In−1 =

⎛⎝tc1tc2a+ (1− tc1)c− 1 c p
tc1tc2b+ (1− tc1)d d− 1 q
tc1tc2x+ (1− tc1)y y M − In−3

⎞⎠
and we use A+ to denote the first column of this matrix. A similar computation yields

B(c,c)(σ
−2
1 α)− In−1 =

⎛⎝t−1
c1 t−1

c2 a+ (t−1
c2 − t−1

c2 t−1
c1 )c− 1 c p

t−1
c1 t−1

c2 b+ (t−1
c2 − t−1

c2 t−1
c1 )d d− 1 q

t−1
c1 t−1

c2 x+ (t−1
c2 − t−1

c2 t−1
c1 )y y M − In−3

⎞⎠
and we use A− (resp. A0) to denote the first column of this latter matrix (resp.
B(c,c)(α)−In−1). Furthermore, a direct computation shows that the following relation
holds:

1

tc1tc2
g(A+) +

1

t−1
c1 t−1

c2

g(A−) = (tc1tc2 + t−1
c1 t−1

c2 )g(A0). (12)

We can now check (11). Indeed, as the three matrices involved in (11) differ only in
their first column, this relation follows by expanding the determinants with respect to
their first column and applying (12). This concludes the verification of Axiom (R4).

Axiom (R5). Using Lemma 3.6, assume that L(1), . . . , L(6)
are respectively obtained as the closures of β1α, . . . , β6α for some
((c3, c2, c1, c4, . . . , cn), (c1, c2, c3, c4, . . . , cn))-braid α, and where β1, . . . , β6 are
the ((c1, c2, c3, c4, . . . , cn), (c3, c2, c1, c4, . . . , cn))-braids depicted in Figure 8.
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β1 = σ1σ2σ
−1
1 β2 = σ−11 σ−12 σ1 β3 = σ−11 σ2σ1 β4 = σ1σ

−1
2 σ−11 β5 = σ−11 σ−12 σ−11 β6 = σ1σ2σ1

Figure 8. The braids β1, . . . , β6 involved in the verification of axiom (R5).

As usual, we start by rewriting the axiom in a more convenient fashion. Namely,
after using Definition 3.1 and simplifying the signs and the 〈α〉’s, the axiom reduces
to verifying the following equation:

(t−1
c1 t−1

c2 − tc1 tc2)

[
1

t2c1 t
−1
c3

g(det(B(c,c)(β1α)− In−1)) +
1

t−1
c3

g(det(B(c,c)(β2α)− In−1))

]

+ (tc2 tc3 − t−1
c2 t−1

c3 )

[
1

tc1
g(det(B(c,c)(β3α)− In−1)) +

1

tc1 t
−2
c3

g(det(B(c,c)(β4α)− In−1))

]

+ (tc1 tc3 − t−1
c1 t−1

c3 )

[
1

t−1
c2 t−2

c3

g(det(B(c,c)(β5α)− In−1)) +
1

t2c1 tc2
g(det(B(c,c)(β6α)− In−1))

]

= 0.

(13)

Since our aim is to compute each of the g(det(B(c,c)(βiα) − In−1), we start by

writing out B(c,c)(α) as the matrix

(
a
b
e
D

)T

where a, b and e are rows of length (n−1),

and D is a matrix of size (n−4)× (n−1). Using successively (4) and Proposition 2.4,
we deduce that the reduced colored Gassner matrices B(c,c)(β1α), . . . ,B(c,c)(β6α) are
respectively given by⎡⎢⎢⎣

−tc1b+ e
−tc1t−1

c3 a+ (tc1t
−1
c3 − tc1)b+ e

e
D

⎤⎥⎥⎦
T ⎡⎢⎢⎣

−t−1
c2 t−1

c3 b+ t−1
c2 t−1

c3 e
−tc2a+ (1− t−1

c3 )b+ t−1
c3 e

e
D

⎤⎥⎥⎦
T

⎡⎢⎢⎣
(1− tc1)a− t−1

c2 b+ t−1
c2 e

−tc1tc2a+ e
e
D

⎤⎥⎥⎦
T ⎡⎢⎢⎣

−t−1
c3 (1− tc1)a− tc1t

−1
c3 b+ t−1

c3 e
−t−1

c3 a+ t−1
c3 e

e
D

⎤⎥⎥⎦
T

⎡⎢⎢⎣
−t−1

c2 t−1
c3 b+ t−1

c2 t−1
c3 e

−t−1
c3 a+ t−1

c3 e
e
D

⎤⎥⎥⎦
T ⎡⎢⎢⎣

−tc1b+ e
−tc1tc2a+ e

e
D

⎤⎥⎥⎦
T

.

Our first goal is to get rid of the e in the first and second columns of B(c,c)(β1α) −
In−1, . . . ,B(c,c)(β6α)− In−1. This is done by subtracting the appropriate multiple of
the third column from the first and second columns (notice that this operation does



POTENTIAL FUNCTIONS AND GASSNER REPRESENTATIONS 111

not change the determinant). We denote the resulting matrices by M1, . . . ,M6. As
an illustration, we perform this operation on

B(c,c)(β6α)− In−1 =

⎡⎢⎢⎢⎢⎣
−tc1b1 + e1 − 1 −tc1tc2a1 + e1 e1 d1

−tc1b2 + e2 −tc1tc2a2 + e2 − 1 e2 d2

−tc1b3 + e3 −tc1tc2a3 + e3 e3 − 1 d3

. . . . . . . . .
−tc1bn−1 + en−1 −tc1tc2an−1 + en−1 en−1 D′ − In−4

⎤⎥⎥⎥⎥⎦ ,

where d1, d2, and d3 are the first three rows of DT , and D′ is the (n− 4)× (n− 4)-
matrix made of the remaining rows of DT . Subtracting the third column from the
first and second columns, we get:

M6 =

⎡⎢⎢⎢⎢⎣
−tc1b1 − 1 −tc1tc2a1 e1 d1

−tc1b2 −tc1tc2a2 − 1 e2 d2

−tc1b3 −tc1tc2a3 e3 − 1 d3

. . . . . . . . .
−tc1bn−1 −tc1tc2an−1 en−1 D′ − In−4

⎤⎥⎥⎥⎥⎦ .

In order to conclude the verification of (R5), the idea is now to consider a subset M l
i,j

of the collection of all 2× 2 minors of the matrices M1, . . . ,M6 and to show (13) for
the M l

i,j . In more details, for 0 ≤ i < j ≤ n − 1, and l ∈ {1, 2, . . . 6}, we use M l
i,j to

denote the determinant of the 2×2 matrix obtained from M l by removing all columns
but the first two, and all rows except the ith and jth. As we shall argue below, the
following claim implies (13):

Claim. For each i and j as above, we have the following equality:

(t−1
c1 t−1

c2 − tc1tc2)

[
1

t2c1t
−1
c3

g(M1
i,j) +

1

t−1
c3

g(M2
i,j)

]

+ (tc2tc3 − t−1
c2 t−1

c3 )

[
1

tc1
g(M3

i,j) +
1

tc1t
−2
c3

g(M4
i,j)

]
+ (tc1tc3 − t−1

c1 t−1
c3 )

[
1

t−1
c2 t−2

c3

g(M5
i,j) +

1

t2c1tc2
g(M6

i,j)

]
= 0.

The proof of this claim is a tedious but direct calculation since (despite the high
number of minors) it actually only involves 7 distinct types of computations. Indeed,
for i, j ≥ 4, all the Mi,j are computed from matrices of the same form (albeit with
different indices). We refer to [15, Appendix] for examples of these computations.

It remains to argue why the claim concludes the verification of axiom (R5). As
we explained above, the axiom will follow once we show that (13) holds with each
B(c,c)(βlα)−In−1 replaced by the corresponding M l. To obtain this latter equality, we
successively expand each determinant along its columns (starting from the rightmost
column and progressing to the left) until there remain six sums of the aforementioned
2× 2 minors. The assertion then follows by grouping up the determinants according
to their coefficients, and using the claim. This concludes the proof of Theorem 1.1.

4. Homological interpretation of the reduced colored Gassner represen-
tation. The aim of this section is to prove Theorem 1.3 which provides an intrinsic
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definition of the reduced colored Gassner matrices and relates them to the so-called
reduced colored Gassner representation [22, 9]. To achieve this, Subsection 4.1 starts
by providing a homological interpretation of the elements g̃1, . . . , g̃n−1, while Subsec-
tion 4.2 concludes the proof of Theorem 1.3.

4.1. Preliminary lemmas. Fix a sequence c = (c1, . . . , cn) of integers in
{1, . . . , μ} and a basepoint z for Dc which lies in its (unique) boundary component

∂Dc. Recall that p : D̂c → Dc denotes the regular cover corresponding to the kernel
of ψc : π1(Dc)→ Z

μ, xi �→ tci . We still write P for the fiber p−1(z) over z and we use

the notation ∂D̂c → ∂Dc for the restriction of p to ∂Dc. Finally, recall from Section 2
that π1(Dn, z) is freely generated either by the loops x1, . . . , xn depicted in Figure 1
or by g1, . . . , gn, where gi = x1 · · ·xi. From now on, we will assume that gn lies in
∂Dc.

In order to provide a homological interpretation of the g̃i, we start with a prelim-
inary lemma.

Lemma 4.1. The long exact sequence of the triple (D̂c, ∂D̂c, P ) gives rise to the
short exact sequence

0→ H1(∂D̂c, P )
j→ H1(D̂c, P )

π→ H1(D̂c, ∂D̂c)→ 0.

Furthermore, im(j) is freely generated by g̃n.

Proof. To prove both claims, we must understand the Λμ-module Hi(∂D̂c, P ) for

i = 0, 1. Since the covering ∂D̂c → ∂Dc arises from the restriction of the homomor-
phism ψc : π1(Dc) → Z

μ to π1(∂Dc), it consists in a disjoint union of copies of the
regular cover R→ ∂Dc with deck transformation generator tc1 · · · tcn . It follows that
H0(∂D̂c, P ) vanishes (give the circle ∂Dc its usual cell structure with z as its unique

0-cell; it follows that the 0-skeleton of D̂c is given by P ). The first assertion is now

immediate since H2(D̂c, ∂D̂c) also vanishes. The second assertion follows from similar
topological considerations.

Just as in Lemma 4.1, we use π to denote the inclusion induced map H1(D̂c, P )→
H1(D̂c, ∂D̂c).

Lemma 4.2. The Λμ-module H1(D̂c, ∂D̂c) is freely generated by
π(g̃1), . . . , π(g̃n−1).

Proof. In order to show that π(g̃1), . . . , π(g̃n−1) are linearly independent, assume

that the linear combination
∑n−1

i=0 λiπ(g̃i) vanishes for some λi in Λμ. By exactness

of the sequence displayed in Lemma 4.1, there is an x in H1(∂D̂c, P ) such that j(x) =∑n−1
j=1 λig̃i. Since Lemma 4.1 implies that im(j) is freely generated by g̃n, we deduce

that there is a λ ∈ Λμ for which j(x) = λg̃n. The result now follows from the fact

that g̃1, . . . , g̃n form a basis of H1(D̂c, P ).

Next, we show that π(g̃1), . . . , π(g̃n−1) generate H1(D̂c, ∂D̂c). Given x ∈
H1(D̂c, ∂D̂c), we can find some λ1, . . . , λn in Λμ such that x = π(

∑n
i=1 λig̃i): indeed

π is surjective thanks to Lemma 4.1 and the g̃1, . . . , g̃n form a basis of H1(D̂c, P ). To
prove the assertion, we must show that π(g̃n) vanishes, but this is immediate since g̃n
lies in ∂D̂c.



POTENTIAL FUNCTIONS AND GASSNER REPRESENTATIONS 113

4.2. Relation to the reduced colored Gassner representation. Let S be
the multiplicative subset of Λμ generated by (1 − t1), . . . , (1 − tμ) and let ΛS be the
localization of Λμ with respect to S. Fix a self-homeomorphism hβ representing a

(c, c)-braid β. Lifting hβ to D̂c gives rise to a well-defined automorphism (h̃β)∗ of

ΛS ⊗Λμ
H1(D̂c). The reduced colored Gassner representation

Bc → AutΛS
(ΛS ⊗Λμ H1(D̂c))

is obtained by mapping a braid β to (h̃β)∗. Kirk-Livingston-Wang [23] initially defined
this representation using coefficients in Q, the field of fractions of Λμ. To the best
of our knowledge, the first use of ΛS-coefficients in this setting occured in [9], see

also [11, Section 9.4]. Note that these localizations are performed because H1(D̂c) is

not free for μ > 2 while the ΛS-module ΛS ⊗Λμ
H1(D̂c) is always free [11, Lemma

9.4.6].
Finally, given a (c, c)-braid β, recall that a homeomorphism hβ representing β

induces a map on ΛS ⊗Λμ
H1(D̂c, ∂D̂c). We are ready to prove Theorem 1.3 whose

statement we recall for the reader’s convenience.

Theorem 1.3. Given a (c, c)-braid β, the following statements hold:

(1) The map induced by β on ΛS ⊗Λμ H1(D̂c, ∂D̂c) is represented by the reduced

colored Gassner matrix B(c,c)(β).

(2) The inclusion induced homomorphism Φ: ΛS ⊗Λμ H1(D̂c) → ΛS ⊗Λμ

H1(D̂c, ∂D̂c) intertwines the reduced colored Gassner representation with the
map induced by β. Furthermore, after tensoring with Q, the induced map
idQ⊗Φ is an isomorphism which conjugates the two representations.

Proof. To prove the first assertion, recall that by definition, the reduced colored
Gassner matrix is the restriction of the unreduced colored Gassner representation to
the free submodule of H1(D̂c, P ) generated by the g̃1, . . . , g̃n−1. Since the unreduced

colored Gassner representation is the automorphism of H1(D̂c, P ) induced by β, the
result now immediately follows from Lemma 4.2. To prove the second assertion,
consider the long exact sequence of the pair (D̂c, ∂D̂c). Tensoring with ΛS , which is
flat over Λμ, we obtain the exact sequence

0→ ΛS ⊗Λμ
H1(D̂c)→ ΛS ⊗Λμ

H1(D̂c, ∂D̂c)→ ΛS ⊗Λμ
H0(∂D̂c).

Since both representations are induced by h̃β , the naturality of the long exact
sequence in homology implies that the homomorphism Φ induced by the inclu-
sion map (D̂c, ∅) → (D̂c, ∂D̂c) satisfies the required property. Since H0(∂D̂c) ∼=
Λμ/(tc1 · · · tcn − 1), passing to Q coefficients, Q ⊗Λμ

H0(∂D̂c) vanishes and the final
assertion follows.

Appendix A. A second proof of Theorem 1.1. This appendix contains an
alternative proof of Theorem 1.1 that was suggested to us by a kind referee. This
proof relies on articles of Morton [26] and Hartley [17] but has two notable advantages:
firstly it is much shorter than the one given in Section 3 and secondly it is more
geometrical in nature.

Alternative proof of Theorem 1.1. We work in the case μ = n for simplicity. Use
A to denote the simple closed curve ∂Dn, oriented with the clockwise orientation.
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View A ∪ β̂ as an (n + 1)-colored link, and use x to denote the variable of Δ
̂β∪A

corresponding to the component A. A theorem due to Morton [26, Theorem 1] relates
Δ

̂β∪A to the colored Gassner representation of β. Using our conventions, this result
reads as

Δ
̂β∪A(t

2
1, . . . , t

2
n, x

2) = g(det(x−1B(c,c)(β)− In−1)).

Consequently, we deduce that xn−1〈β〉g(det(x−1B(c,c)(β)− In−1)) is symmetric up to
a sign. We therefore obtain the following equation for a certain ε that remains to be
determined:

∇
̂β∪A(t1, . . . , tn, x) = εxn−1〈β〉g(det(x−1B(c,c)(β)− In−1)). (14)

We claim that (−1)n−1ε = 1. To achieve this, we compute the highest degree
monomial of ∇

̂β∪A(1, . . . , 1, x) in two different ways. On the one hand, if we set ti = 1

in the right hand side of (14), then the highest degree monomial in the resulting
expression is ε(−1)n−1xn−1. On the other hand, if we use λi to denote the linking

number of the i-th component of β̂ with the axis A, then an application of [17,
Equation 5.4] yields

∇
̂β∪A(1, . . . , 1, x) = ∇A(x)

n∏
i=1

(xλi − x−λi). (15)

Since A is an unknot, we have ∇A(x) = (x−x−1)−1, and since all the linking numbers
λi are positive, we know that

∑n
i=1 λi = n. We therefore deduce that the highest

degree monomial in (15) is xn−1. This proves the claim.
We now conclude the proof of the theorem by deducing the potential function ∇

̂β

from ∇
̂β∪A. To that end, we set x = 1 in (14), use the claim and apply Hartley’s

normalisation of the Torres formula [17, Equation 5.3] to obtain

∇
̂β(t1, . . . , tn) =

1

(t1 · · · tn − t−1
1 · · · t−1

n )
∇

̂β∪A(t1, . . . , tn, 1)

=
1

(t1 · · · tn − t−1
1 · · · t−1

n )
(−1)n−1〈β〉g(det(B(c,c)(β)− In−1).

This concludes the alternative proof of the theorem.
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[29] P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv. Math., 186:1 (2004),

pp. 58–116.
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