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CATEGORY OF MIXED PLECTIC HODGE STRUCTURES∗

KENICHI BANNAI†‡§ , KEI HAGIHARA‡§ , SHINICHI KOBAYASHI¶, KAZUKI YAMADA‡ ,
SHUJI YAMAMOTO†‡§ , AND SEIDAI YASUDA‖§

Abstract. The purpose of this article is to investigate the properties of the category of mixed
plectic Hodge structures defined by Nekovář and Scholl [NS1]. We give an equivalent description
of mixed plectic Hodge structures in terms of the weight and partial Hodge filtrations. We also
construct an explicit complex calculating the extension groups in this category.
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1. Introduction. Let g be an integer ≥ 0. In a very insightful article [NS1],
Nekovář and Scholl introduced the category of mixed g-plectic R-Hodge structures,
which is a generalization of the category MHSR of mixed R-Hodge structures originally
defined by Deligne [D1]. If we let G be the tannakian fundamental group of MHSR,
then the category of mixed g-plectic R-Hodge structures was defined in [NS1, §16] to
be the category RepR(Gg) of finite R-representations of the pro-algebraic group Gg.
The purpose of this article is to investigate some properties of the category RepR(Gg).
In particular we give a description of objects in RepR(Gg) in terms of the weight and
partial Hodge filtrations. We then give an explicit complex calculating the extension
groups in this category. This article arose as an attempt by the authors to understand
the beautiful theory proposed by Nekovář and Scholl.

The detailed content of this article is as follows. We will mainly deal with the
complex case, and will return to the real case at the end of the article. In §2, we
review the properties of mixed C-Hodge structures, and will review the construction
of the tannakian fundamental group GC of the category of mixed C-Hodge structures
MHSC. We will then give in Proposition 2.14 the following explicit description of
objects in the category RepC(Gg

C
):

Proposition 1.1 (=Proposition 2.14). An object in RepC(Gg
C
) corresponds to a

triple

U = (UC, {Up,q}, {tμ}),

where UC is a finite dimensional C-vector space, {Up,q} is a 2g-grading of UC by
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C-linear subspaces

UC =
⊕

p,q∈Zg

Up,q,

and tμ for μ = 1, . . . , g are C-linear automorphisms of UC commutative with each
other, satisfying

(tμ − 1)(Up,q) ⊂
⊕

r,s∈Z
g

(rν ,sν)=(pν ,qν) for ν �=μ
(rμ,sμ)<(pμ,qμ)

Ur,s

for any p = (p1, . . . , pg), q = (q1, . . . , qg) ∈ Zg, where the direct sum is over the
indices r = (r1, . . . , rg), s = (s1, . . . , sg) ∈ Zg satisfying rν = pν , sν = qν for ν �= μ
and rμ < pμ, sμ < qμ.

Let V = (VC, {Wμ
• }, {F •

μ}, {F
•
μ}) be a quadruple consisting of a finite dimensional

C-vector space VC, a family of finite ascending filtrations Wμ
• for μ = 1, . . . , g by C-

linear subspaces on VC, and families of finite descending filtrations F •
μ and F

•
μ for

μ = 1, . . . , g by C-linear subspaces on VC. We say that V as above is a g-orthogonal
family of mixed C-Hodge structures, if for any μ, the quadruple (VC,W

μ
• , F •

μ , F
•
μ) is a

mixed C-Hodge structure, and for any μ and ν �= μ, the C-linear subspaces Wμ
n VC,

Fm
μ VC, F

m

μ VC with the weight and Hodge filtrations induced from W ν
• , F

•
ν , F

•
ν are

mixed C-Hodge structures. We call the filtrations {Wμ
• } the partial weight filtrations

and the filtrations {F •
μ},{F

•
μ} the partial Hodge filtrations of V .

We denote by OFg
C
the category whose objects are g-orthogonal family of mixed

C-Hodge structures. A morphism in OFg
C
is a C-linear homomorphism of underlying

C-vector spaces compatible with the partial weight and Hodge filtrations. The main
result of §3 is the following:

Proposition 1.2 (=Corollary 3.11). For g ≥ 0, we have an equivalence of
categories

RepC(Gg
C
) ∼= OFg

C
.

While writing this paper, Nekovář and Scholl released a new preprint [NS2], which
contains a result similar to Proposition 1.2.

Suppose V = (VC, {Wμ
• }, {F •

μ}, {F
•
μ}) is a g-orthogonal family of mixed C-Hodge

structures. We define the total weight filtration W• of V to be the finite ascending
filtration by C-linear subspaces of VC given by

WnVC :=
∑

n1+···+ng=n

(W 1
n1

∩ · · · ∩W g
ng
)VC.

The purpose of §4 is to give a characterization of a quadruple (VC,W•, {F •
μ}, {F

•
μ})

which is constructed from OFg
C
. In particular, we will give in Definition 4.18 the

definition of the category of mixed g-plectic C-Hodge structures MHSg
C
, whose objects

are the quadruple (VC,W•, {F •
μ}, {F

•
μ}) satisfying certain conditions. We will then

show in Theorem 4.19 that we have an equivalence of categories as follows:

Theorem 1.3 (=Theorem 4.19). We have an equivalence of categories

OFg
C
∼= MHSg

C
.



CATEGORY OF MIXED PLECTIC HODGE STRUCTURES 33

In §5, we will introduce the category of mixed g-plectic R-Hodge structures, and
show the corresponding results in the real case. We will then prove in Corollary 5.15
that an object in RepR(Gg) may be given as a subquotient of exterior products of
objects in MHSR. The main result of §5 is Theorem 5.27, which gives an explicit
complex calculating the extension groups in RepR(Gg).

2. Mixed Hodge structures. In this section, we will review the definition of
the category of mixed Hodge structures MHSC and the tannakian fundamental group
GC associated to MHSC. We will then give an explicit description of objects in the
category RepC(Gg

C
) of finite dimensional C-representations of Gg

C
, where Gg

C
for an

integer g ≥ 0 is the g-fold product of GC.

2.1. Definition of the category of mixed plectic C-Hodge structures. In
this subsection, we first give the definitions of pure and mixed C-Hodge structures,
and review their properties.

Definition 2.1 (pure C-Hodge structure). Let VC be a finite dimensional C-
vector space, and let F • and F

•
be finite descending filtrations by C-linear subspaces

on VC. We say that the triple V := (VC, F
•, F

•
) is a pure C-Hodge structure of weight

n, if it satisfies

VC = F pVC ⊕ F
n+1−p

VC (1)

for any p ∈ Z. We call the filtrations F • and F
•
the Hodge filtrations of V .

Example 2.2. The Tate object C(n) := (VC, F
•, F

•
), which is a C-vector space

VC = C, with the Hodge filtrations given by F−nVC = F
−n

VC = VC and F−n+1VC =

F
−n+1

VC = 0 is an example of a pure C-Hodge structure of weight −2n.

It is known that pure C-Hodge structures may be described as follows.

Lemma 2.3 ([D1] Proposition 1.2.5, Proposition 2.1.9). Let VC be a finite dimen-
sional C-vector space, and let F • be a finite descending filtration by C-linear subspaces
on VC. Then V := (VC, F

•, F
•
) is a pure C-Hodge structure of weight n if and only if

we have

VC =
⊕
p,q∈Z

p+q=n

(F p ∩ F
q
)VC, (2)

where (F p ∩ F
q
)VC := F pVC ∩ F

q
VC.

Let V be a pure C-Hodge structure of weight n. The Hodge filtration may be
described in terms of this splitting as follows.

Lemma 2.4. If V is a pure C-Hodge structure of weight n, then for any p, q ∈ Z,
we have

F pVC =
⊕

r+s=n,
r≥p

(F r ∩ F
s
)VC, F

q
VC =

⊕
r+s=n,
s≥q

(F r ∩ F
s
)VC. (3)

Proof. If r ≥ p, then we have (F r ∩ F
n−r

)VC ⊂ F pVC, and if r < p, then

n− r ≥ n+1− p, hence (F r ∩F
n−r

)VC ⊂ F
n+1−p

VC. The first equality follows from
Lemma 2.3 and (1). The second equality is proved in a similar manner.
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The definition of mixed C-Hodge structures is given as follows.

Definition 2.5 (mixed C-Hodge structure). Let VC be a finite dimensional C-
vector space. Let W• be a finite ascending filtration by C-linear subspaces on VC, and
let F • and F

•
be finite descending filtrations by C-linear subspaces on VC. We say

that the quadruple V = (VC,W•, F •, F
•
) is a mixed C-Hodge structure if, for each

n ∈ Z, the structure induced by F • and F
•
on GrWn VC is a pure C-Hodge structure

of weight n.

If V = (VC,W•, F •, F
•
) is a mixed C-Hodge structure, then we call W• the weight

filtration and F •, F
•
the Hodge filtrations of V . The Deligne splitting below gives a

generalization of (2) for mixed C-Hodge structures.

Proposition 2.6 (Deligne splitting). Let V = (VC,W•, F •, F
•
) be a mixed C-

Hodge structure, and let

Ap,q(V ) := (F p ∩Wn)VC ∩
(
(F

q ∩Wn)VC +
∑
j≥0

(F
q−j ∩Wn−j−1)VC

)
(4)

for p, q ∈ Z and n := p + q. Then {Ap,q(V )} gives a bigrading of VC by C-linear
subspaces

VC =
⊕
p,q∈Z

Ap,q(V ). (5)

Moreover, for n, p ∈ Z, the weight and Hodge filtrations on V satisfy

WnVC =
⊕
p,q∈Z

p+q≤n

Ap,q(V ), F pVC =
⊕
r,s∈Z

r≥p

Ar,s(V ).

We call the bigrading {Ap,q(V )} of VC given in Proposition 2.6 the Deligne split-
ting of the mixed C-Hodge structure V . The key ingredient for the proof of Proposition
2.6 is the following lemma.

Lemma 2.7. Let V be a mixed C-Hodge structure, and let {Ap,q(V )} be the
Deligne splitting of V as in (4). Then for any p, q ∈ Z and n := p+ q, the canonical
surjection WnVC → GrWn VC induces a C-linear isomorphism

Ap,q(V )
∼=−→ (F p ∩ F

q
)GrWn VC.

Here, (F p ∩ F
q
)GrWn VC := F pGrWn VC ∩ F

q
GrWn VC.

Proof. See for example [PS, Lemma-Definition 3.4].

We may now prove Proposition 2.6 as follows.

Proof of Proposition 2.6. Let {Ap,q(V )} be the Deligne splitting of V . By Lemma
2.7, we have an isomorphism⊕

p,q∈Z

p+q=n

Ap,q(V )
∼=−→

⊕
p,q∈Z

p+q=n

(F p ∩ F
q
)GrWn VC
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for any integer n ∈ Z. By the definition of the weight filtration on mixed C-Hodge
structures, GrWn V is a pure C-Hodge structure of weight n, hence we have

GrWn VC =
⊕

p+q=n

(F p ∩ F
q
)GrWn VC.

by Lemma 2.3. This shows that VC =
⊕

p,q∈Z
Ap,q(V ) as desired. The statements for

the Hodge and weight filtrations follow from this result.

Remark 2.8. Exchanging the roles of F • and F
•
, we define

A
p,q

(V ) := (F
p ∩Wn)VC ∩

(
(F q ∩Wn)VC +

∑
j≥0

(F q−j ∩Wn−j−1)VC

)
.

Then for any p, q ∈ Z and n := p + q, the canonical surjection WnVC → GrWn VC

induces a C-linear isomorphism

A
p,q

(V )
∼=−→ (F

p ∩ F q)GrWn VC,

{Ap,q
(V )} gives a bigrading of VC, and we have for any n, p ∈ Z

WnVC =
⊕
p,q∈Z

p+q≤n

A
p,q

(V ), F
p
VC =

⊕
r,s∈Z

r≥p

A
r,s

(V ).

We will use Proposition 2.6 and Remark 2.8 to prove the strictness with respect
to the weight and Hodge filtrations of morphism of mixed Hodge structures. We first
prepare some terminology.

Definition 2.9. Suppose U and V are finite dimensional C-vector spaces with
C-linear subspaces WU ⊂ U and WV ⊂ V . We say that a C-linear homomorphism

α : U → V

is compatible with W if α(WU) ⊂ WV , and that α is strict with respect to W if we
have

α(WU) = α(U) ∩WV.

We denote by MHSC the category of mixed C-Hodge structures. A morphism
α : U → V in this category is a C-linear homomorphism α : UC → VC of underlying
C-vector spaces compatible with the weight and Hodge filtrations. Then we have the
following.

Proposition 2.10. Let α : U → V be a morphism in MHSC, and let S be a
subset of Z× Z. Then we have

α

⎛⎝ ⊕
(p,q)∈S

Ap,q(U)

⎞⎠ = α(UC) ∩
⎛⎝ ⊕

(p,q)∈S
Ap,q(V )

⎞⎠ (6)

and

α

⎛⎝ ∑
(p,n)∈S

(F p ∩Wn)UC

⎞⎠ = α(UC) ∩
⎛⎝ ∑

(p,n)∈S
(F p ∩Wn)VC

⎞⎠ . (7)
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Statements (6) and (7) with F p replaced by F
p
and Ap,q replaced by A

p,q
are also

true. In particular, α is strict with respect to the filtrations F • ∩ W• and F
• ∩ W•.

Furthermore, if U and V are both pure C-Hodge structures of weight n, then we have

α((F p ∩ F
q
)UC) = α(UC) ∩ (F p ∩ F

q
)VC. (8)

Proof. Since α(Ap,q(U)) ⊂ Ap,q(V ), assertion (6) follows from the fact that the
Deligne splitting gives a bigrading (5) of UC and VC. Equality (7) follows from the
fact that

(F p ∩Wn)UC =
⊕
r≥p,

r+s≤n

Ar,s(U), (F p ∩Wn)VC =
⊕
r≥p,

r+s≤n

Ar,s(V ),

and this proves the strictness of α with respect to F • ∩W•. The strictness of α with
respect to F

• ∩W• follows from a parallel argument with Ap,q replaced by A
p,q

. The
assertion (8) for the pure case follows from (6), noting the fact that

Ap,q(U) = (F p ∩ F
q
)UC, Ap,q(V ) = (F p ∩ F

q
)VC

if p+ q = n and is zero otherwise.

Using Proposition 2.10, one can prove that MHSC is an abelian category ([D1]
Théorème 2.3.5). The following result will be used in the proof of Proposition 4.16.

Corollary 2.11. Let V be a mixed C-Hodge structure. For any C-linear sub-
space UC of VC, the weight and Hodge filtrations on V induce the filtrations

WnUC := UC ∩WnVC, F pUC := UC ∩ F pVC, F
q
UC := UC ∩ F

q
VC

on UC. Suppose two C-linear subspaces UC and U ′
C
of VC with the induced filtrations

as above are mixed C-Hodge structures. Then UC +U ′
C
and UC ∩U ′

C
with the induced

filtrations are also mixed C-Hodge structures. Moreover, we have Wn(UC + U ′
C
) =

WnUC + WnU
′
C
, F p(UC + U ′

C
) = F pUC + F pU ′

C
, and F

q
(UC + U ′

C
) = F

q
UC + F

q
U ′
C

which by definition is equivalent to(
UC + U ′

C

) ∩WnVC = UC ∩WnVC + U ′
C ∩WnVC, (9)

(UC + U ′
C) ∩ F pVC = UC ∩ F pVC + U ′

C ∩ F pVC, (10)

(UC + U ′
C) ∩ F

q
VC = UC ∩ F

q
VC + U ′

C ∩ F
q
VC. (11)

Proof. The map UC ⊕ U ′
C
→ VC sending (u, u′) to u+ u′ is a morphism of mixed

C-Hodge structures, hence is strictly compatible with the filtrations W•, F • and F
•
.

This implies (9), (10) and (11), and we see that the image UC+U ′
C
is also a mixed C-

Hodge structure. The natural map UC → (UC +U ′
C
)/U ′

C
is also a morphism of mixed

C-Hodge structures, hence we see that the kernel UC ∩ U ′
C
is also a mixed C-Hodge

structure.

The category MHSC is known to be a neutral tannakian category with respect
to the natural tensor product and the fiber functor ω : MHSC → VecC obtained by
associating to V the C-vector space GrW• VC :=

⊕
n GrWn VC. If we denote by GC the

tannakian fundamental group of MHSC, then GC is an affine group scheme over C.
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By the definition of the tannakian fundamental group, we have a natural equivalence
of categories

MHSC
∼=−→ RepC(GC)

induced by the fiber functor ω, where RepC(GC) is the category of C-linear represen-
tations of GC on finite dimensional C-vector spaces.

2.2. The tannakian fundamental group of MHSC. In this subsection, we
will review the construction of the tannakian fundamental group GC of the category
MHSC, and give an explicit description of objects in RepC(GC) ∼= MHSC.

We denote by Ln the free Lie algebra over C generated by symbols T i,j for positive
integers i, j with i+j ≤ n. We define the degree of elements of Ln by deg(T i,j) := i+j,
and denote by In the ideal of Ln generated by elements of degree larger than n. Then
un := Ln/In is a nilpotent Lie algebra over C. The category RepnilC (un) of nilpotent
representations of un form a neutral tannakian category over C, hence there exists
a simply connected unipotent algebraic group Un over C such that RepnilC (un) =
RepC(Un).

Let SC := Gm×Gm be the product over C of the multiple group Gm defined over
C. We give an action of SC(C) on the Lie algebra un over C by

(x, y) · T i,j := x−iy−jT i,j , (12)

for any (x, y) ∈ C× × C× = SC(C), hence by functoriality an action of the algebraic
group SC on Un. If we denote by U the projective limit of Un, then SC acts on U , and
we let GC := SC � U be the semi-direct product with respect to this action.

We will show that GC is the tannakian fundamental group of MHSC. To compare
the categories RepC(GC) and MHSC, we give an explicit description of objects in
RepC(GC).

Proposition 2.12. An object in RepC(GC) corresponds to a triple U =
(UC, {Up,q}, t), where UC is a finite dimensional C-vector space, {Up,q} is a bigrading
of UC by C-linear subspaces

UC =
⊕
p,q∈Z

Up,q,

and t is a C-linear automorphism of UC satisfying

(t− 1)(Up,q) ⊂
⊕
r,s∈Z

r<p, s<q

Ur,s (13)

for any p, q ∈ Z. The morphisms in RepC(GC) correspond to C-linear homomorphisms
of underlying C-vector spaces compatible with the bigradings and commutative with t.

Proof. Suppose that UC is a finite C-representation of the pro-algebraic group GC.
Then UC is a representation of both SC and U , and

Up,q := {u ∈ UC | (x, y) · u = xpyqu for all (x, y) ∈ SC(C)}
gives a bigrading of UC. If n is a sufficiently large natural number, then UC is a
representation of Un, hence it is also a representation of un. Hence we have a nilpotent
endomorphism T i,j : UC → UC for any positive integers i, j. For any u ∈ Up,q, we have
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(x, y) · (T i,j(u)) = ((x, y) · T i,j)((x, y) · u) = xp−iyq−j(T i,j(u)), hence T i,j restricted
to Up,q gives a morphism

T i,j : Up,q → Up−i,q−j .

If we let T :=
∑

i,j>0 T
i,j , then T is again a nilpotent endomorphism of UC, and

t := exp(T ) satisfies (13) by construction. Hence (UC, {Up,q}, t) satisfies the required
conditions. Conversely, suppose (UC, {Up,q}, t) satisfies the conditions of the propo-
sition. Then we may define an action of SC(C) on UC by (x, y) · u = xpyqu for any
(x, y) ∈ SC(C) and u ∈ Up,q. Furthermore, if we let T := log(t) = log(1 + (t − 1)),
then T is an endomorphism of UC satisfying

T (Up,q) ⊂
⊕
r,s∈Z

r<p,s<q

Ur,s

by (13). For positive integers i, j > 0, we let T i,j : UC → UC be the morphisms
given as the direct sum of morphisms Up,q → Up−i,q−j induced from T , which gives a
representation of the Lie algebra un on UC for a natural number n sufficiently large.
This shows that our representation gives a representation of un on UC, hence a repre-
sentation of the algebraic group Un on UC. This combined with the action of SC gives
a representation of the algebraic group GC = SC � U on UC. The above construction
shows that a representation UC of GC is equivalent to the triple (UC, {Up,q}, t), proving
our assertion.

The category RepC(GC) is known to be equivalent to the category of mixed C-
Hodge structures MHSC. We may define a functor ϕC : RepC(GC) → MHSC by
associating to any object U in RepC(GC) the object

ϕC(U) := (VC,W•, F •, F
•
), (14)

where VC := UC, the weight and Hodge filtrations are defined by

WnVC :=
⊕
p,q∈Z

p+q≤n

Up,q

for any n ∈ Z, and

F pVC := t

( ⊕
r,s∈Z

r≥p

Ur,s

)
, F

q
VC := t−1

( ⊕
r,s∈Z

s≥q

Ur,s

)

for any integers p, q ∈ Z.

Proposition 2.13 ([D3] Proposition 2.1). The functor ϕC in (14) gives an
equivalence of categories

RepC(GC) ∼= MHSC.

An quasi-inverse functor ψC : MHSC → RepC(GC) is given by associating to any
V ∈ MHSC the object

ψC(V ) := (UC, {Up,q}, t) (15)
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in RepC(GC), where

UC :=
⊕
n∈Z

GrWn VC,

Up,q = (F p∩F
q
)GrWp+qVC for any p, q ∈ Z, and the C-linear automorphism t is defined

as follows: Let {Ap,q(V )} be the Deligne splitting of V given in (4). By Lemma 2.7
we have an isomorphism⊕

p+q=n

Ap,q(V )
∼=−→

⊕
p+q=n

(F p ∩ F
q
)GrWn VC = GrWn VC,

hence isomorphism

ρC :
⊕
p,q∈Z

Ap,q(V ) → UC.

Similarly, by Remark 2.8, we have an isomorphism

ρC :
⊕
p,q∈Z

A
p,q

(V ) → UC.

We denote by s the composition

UC

ρ−1
C−→

⊕
p,q∈Z

Ap,q(V ) = VC =
⊕
p,q∈Z

A
p,q

(V )
ρ
C−→ UC.

Then it is known that s is unipotent, and t is defined by

t :=
√
s =

∞∑
k=0

(
1/2
k

)
(s− 1)k. (16)

Then we may prove that ψC ◦ϕC = id and ϕC ◦ψC  id. The isomorphism of functors
id  ϕC ◦ ψC is given by the composition

VC =
⊕
p,q∈Z

Ap,q(V )
ρC−→

⊕
n∈Z

GrWn VC

t−→
⊕
n∈Z

GrWn VC (17)

for any object V in MHSC.

2.3. The category RepC(Gg
C
). Recall that GC denotes the tannakian fundamen-

tal group of MHSC with respect to ω. Let g be an integer ≥ 0. In [NS1, §16], Nekovář
and Scholl defined the category of mixed g-plectic C-Hodge structures to be the cat-
egory RepC(Gg

C
) of finite dimensional C-linear representations of the g-fold product

Gg
C

:= GC × · · · × GC. As a direct generalization of Proposition 2.12, we have the
following explicit description of objects in RepC(Gg

C
).

Proposition 2.14. A finite dimensional C-linear representation of Gg
C

corre-
sponds to a triple U := (UC, {Up,q}, {tμ}), where UC is a finite dimensional C-vector
space, {Up,q} is a 2g-grading of UC by C-linear subspaces

UC =
⊕

p,q∈Zg

Up,q,
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and tμ for μ = 1, . . . , g are C-linear automorphisms of UC commutative with each
other, satisfying

(tμ − 1)(Up,q) ⊂
⊕

r,s∈Z
g

(rν ,sν)=(pν ,qν) for ν �=μ
(rμ,sμ)<(pμ,qμ)

Ur,s

for any p, q ∈ Zg, where the direct sum is over the indices r, s ∈ Zg satisfying rν = pν ,
sν = qν for ν �= μ and rμ < pμ, sμ < qμ. Morphisms in RepC(Gg

C
) correspond to C-

linear homomorphisms of underlying C-vector spaces compatible with the 2g-gradings
and commutes with tμ.

Proof. For eqch μ = 1, . . . , g, let {Upμ,qμ
μ } be the bigrading and tμ the C-linear

automorphism of UC given by the action of the μ-th component of Gg
C
. For any

p, q ∈ Zg, let Up,q := Up1,q1
1 ∩ · · · ∩ U

pg,qg
g . Our conditions on {Up,q} and {tμ}

correspond to the commutativity of the actions of the g components.

The tensor product and the internal homomorphism in RepC(Gg
C
) are given as

follows. Suppose T = (TC, {Tp,q}, {t′μ}) and U = (UC, {Up,q}, {t′′μ}) are object in
RepC(Gg

C
). Then the tensor product T ⊗ U is given by the triple

T ⊗ U = (TC ⊗C UC, {(T ⊗ U)p,q}, {tμ}), (18)

where TC ⊗C UC is the usual tensor product over C,

(T ⊗ U)p,q =
⊕

p′,q′,p′′,q′′∈Z
g

p′+p′′=p, q′+q′′=q

Tp′,q′ ⊗C Up′′,q′′

for any p, q ∈ Zg, and tμ := t′μ ⊗ t′′μ for μ = 1, . . . , g. The internal homomorphism
Hom(T, U) is given by the triple

Hom(T, U) = (HomC(TC, UC), {Hom(T, U)p,q}, {tμ}), (19)

where HomC(TC, UC) is the set of C-linear homomorphisms of TC to UC,

Hom(T, U)p,q =
{
α ∈ HomC(TC, UC) | α(Tp′,q′) ⊂ Up′+p,q′+q ∀p′, q′ ∈ Zg

}
for any p, q ∈ Zg, and tμ(α) := t′′μ◦α◦t′−1

μ for any α ∈ HomC(TC, UC) and μ = 1, . . . , g.

Example 2.15 (Tate object). One of the simplest examples of an object in
RepC(Gg

C
) is the plectic Tate object

C(1μ) := (VC, {V p,q}, {tμ}),
where VC := C and the grading of VC is such that V p,q = VC if

p = q = (0, . . . ,−1, . . . , 0),

where −1 is at the μ-th component, and V p,q = 0 otherwise, and tμ is the identity
map for μ = 1, . . . , g. For any n ∈ Zg, we let

C(n) :=
g⊗

μ=1

C(1μ)
⊗nμ = C(11)

⊗n1 ⊗ · · · ⊗ C(1g)
⊗ng .
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Remark 2.16. For any positive integer μ ≤ g, the natural projection Gg
C
→ Gμ

C

of pro-algebraic groups mapping (u1, . . . , uμ, uμ+1, . . . , ug) to (u1, . . . , uμ) induces a
natural functor RepC(Gμ

C
) → RepC(Gg

C
), and the category RepC(Gμ

C
) is a full subcat-

egory of RepC(Gg
C
) with respect to this functor. On the level of objects, this functor

may be given by associating to any

U ′ = (UC, {Up′,q′}, {t′ν})
in RepC(Gμ

C
) the object U = (UC, {Up,q}, {tν}) in RepC(Gg

C
), where the bigrading is

defined by

Up,q := U (p1,...,pμ),(q1,...,qμ)

if (pμ+1, . . . , pg) = (qμ+1, . . . , qg) = (0, . . . , 0) and Up,q := 0 otherwise, and we let the
automorphisms tν be tν := t′ν for 1 ≤ ν ≤ μ and tν := id for μ < ν ≤ g.

Remark 2.17. Let g1, g2 be integers > 0, and let T = (TC, {Tp1,q1}, {t′μ}) and
U = (UC, {Up2,q2}, {t′′μ}) be objects respectively in RepC(Gg1

C
) and RepC(Gg2

C
). Then

the exterior product T � U in RepC(Gg1+g2
C

) corresponds to the triple

T � U := (TC ⊗C UC, (T � U)p,q, {tμ}),
where TC ⊗C UC is the usual tensor product over C,

(T � U)p,q = Tp1,q1 ⊗C Up2,q2

with the convention that p1 := (p1, . . . , pg1),p2 := (pg1+1, . . . , pg1+g2), q1 :=
(q1, . . . , qg1), and q2 := (qg1+1, . . . , qg1+g2) for any p = (pμ), q = (qμ) ∈ Zg1+g2 , and
tμ is the C-linear automorphism on TC ⊗C UC given by tμ = t′μ ⊗ 1 for μ = 1, . . . , g1
and tμ = 1⊗ t′′μ−g1 for μ = g1 + 1, . . . , g1 + g2.

3. Orthogonal families of mixed C-Hodge structures. Let GC be the tan-
nakian fundamental group of MHSC with respect to ω. The purpose of this section is
to prove an equivalence of categories between the category RepC(Gg

C
) and the category

of g-orthogonal family of mixed C-Hodge structures OFg
C
defined in Definition 3.8.

3.1. Categorical version of mixed C-Hodge structures. In this subsection,
we will give an iterated description of the category RepC(Gg

C
), using the categorical

version of mixed Hodge structures. Using the result of Proposition 2.12 as an inspira-
tion, we first define the category of bigraded objects BG(A ) for an abelian category
A as follows.

Definition 3.1. We let BG(A ) be the category whose objects consist of a
triple U = (B, {Bp,q}, t), where B is an object of A , {Bp,q} is a bigrading of B by
subobjects in A

B =
⊕
p,q∈Z

Bp,q,

where Bp,q = 0 for all but finitely many (p, q) ∈ Z2, and t is an automorphism of B
satisfying

(t− 1)(Bp,q) ⊂
⊕
r,s∈Z

r<p,s<q

Br,s
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for any p, q ∈ Z. The morphisms in BG(A ) are morphisms of underlying objects in
A compatible with the bigradings and commutative with t.

If A is the category of finite dimensional C-vector spaces VecC, then Proposition
2.12 shows that BG(VecC) is equivalent to the category RepC(GC) of finite dimensional
C-representations of GC.

Proposition 3.2. For any integer g > 0, we have an isomorphism of categories

RepC(Gg
C
) = BG(RepC(Gg−1

C
)).

Proof. Let U = (UC, {Up,q}, {tμ}) be an object in RepC(Gg
C
). For p′ = (pμ), q

′ =
(qμ) ∈ Zg−1, if we let

Up′,q′ :=
⊕
p,q∈Z

U (p1,...,pg−1,p),(q1,...,qg−1,q)

and t′μ := tμ for μ = 1, . . . , g − 1, then the triple B := (UC, {Up′,q′}, {t′μ}) defines an
object in RepC(Gg−1

C
). For any p, q ∈ Z, if we let

Bp,q :=
⊕

p,q∈Z
g

pg=p,qg=q

Up,q,

(Bp,q)p
′,q′ := U (p1,...,pg−1,p),(q1,...,qg−1,q) for any p′, q′ ∈ Zg−1 and t′μ := tμ|Bp,q for

μ = 1, . . . , g − 1, then the triple Bp,q := (Bp,q, (Bp,q)p
′,q′ , {t′μ}) defines an ob-

ject in RepC(Gg−1
C

). If we let t := tg, then we see that the triple (B, {Bp,q}, t)
gives an object in BG(RepC(Gg−1

C
)). Conversely, let (B,Bp,q, t) be an object in

BG(RepC(Gg−1
C

)). Then B is an object in RepC(Gg−1
C

) hence is of the form B =

(UC, {Up′,q′}, {t′μ}). Since Bp,q is an object in RepC(Gg−1
C

), it is also of the form

Bp,q = (Up,q
C

, {(Up,q)p
′,q′}, {t′μ})). If we let

Up,q := (Upg,qg )(p1,...,pg−1),(q1,...,qg−1)

and tμ := t′μ for μ = 1, . . . , g − 1 and tg := t, then the triple (UC, {Up,q}, {tμ}) gives
an object in RepC(Gg

C
). The automorphism tg is commutative with t1, . . . , tg−1 since

t is a morphism in RepC(Gg−1
C

). The above constructions are inverse to each other,
hence we have the desired isomorphism of categories.

Definition 3.3. Let A be an object in A . Let W• be a finite ascending filtration
by subobjects of A, and let F • and F

•
be finite descending filtrations by subobjects

of A. We say that the quadruple V = (A,W•, F •, F
•
) is a mixed Hodge structure in

A , if for each n ∈ Z, the structure induced by F • and F
•
on GrWn A satisfies

GrWn A = F pGrWn A⊕ F
n+1−p

GrWn A

for any p ∈ Z.

If V = (A,W•, F •, F
•
) is a mixed Hodge structure in A , then we call W• the

weight filtration and F •, F
•
the Hodge filtrations of V . We denote by MHS(A ) the

category whose objects consist of mixed Hodge structures in A and whose morphisms
are morphisms of underlying objects in A compatible with the weight and Hodge
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filtrations. If A is the category VecC of finite dimensional C-vector spaces, then we
have an isomorphism of categories MHS(VecC) = MHSC.

As in the case of mixed C-Hodge structures, we have the Deligne splitting for
mixed Hodge structures in A .

Proposition 3.4 ([D3] §1.1). Let V = (A,W•, F •, F
•
) be a mixed Hodge struc-

ture in A , and as in (4), we let

Ap,q(V ) := (F p ∩Wn)A ∩
(
(F

q ∩Wn)A+
∑
j≥0

(F
q−j ∩Wn−j−1)A

)

for p, q ∈ Z and n := p + q. Then {Ap,q(V )} gives a bigrading of A by subobjects of
A ,

A =
⊕
p,q∈Z

Ap,q(V ). (20)

Moreover, for n, p ∈ Z, the weight and Hodge filtrations on V satisfy

WnA =
⊕
p,q∈Z

p+q≤n

Ap,q(V ), F pA =
⊕
r,s∈Z

r≥p

Ar,s(V ).

As in the case of mixed C-Hodge structures given in Remark 2.8, a similar state-
ment holds for A

p,q
, where A

p,q
is defined by replacing the roles of F • and F

•
. As in

the case of mixed C-Hodge structures, the morphisms in MHS(A ) are strictly com-
patible with the filtrations, and we may prove that MHS(A ) is an abelian category.

We define the functor ϕ : BG(A ) → MHS(A ) by associating to any object
U = (B, {Bp,q}, t) in BG(A ) the object

ϕ(U) := (A,W•, F •, F
•
),

where A := B, the weight and Hodge filtrations are defined by

WnA :=
⊕
p,q∈Z

p+q≤n

Bp,q

for any n ∈ Z and

F pA := t

( ⊕
r,s∈Z

r≥p

Br,s

)
, F

q
A := t−1

( ⊕
r,s∈Z

s≥q

Br,s

)

for any integers p, q ∈ Z. By [D3, Proposition 1.2 and Remark 1.3], we have the
following result.

Proposition 3.5. The functor ϕ gives an equivalence of categories

ϕ : BG(A ) ∼= MHS(A ).

We can define a quasi-inverse functor ψ as in (15).
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Next, for any integer g ≥ 0, we inductively define the category MHSg(VecC) by
MHS0(VecC) := VecC and MHSg(VecC) := MHS(MHSg−1(VecC)) for g > 0. Combin-
ing this result with Proposition 3.2, we have the following corollary.

Corollary 3.6. We have equivalences of categories

RepC(Gg
C
) ∼= MHS(RepC(Gg−1

C
)) ∼= · · · ∼= MHSg(VecC). (21)

In §3.2, we will use this result to prove that RepC(Gg
C
) is equivalent to the category

of g-orthogonal family of mixed C-Hodge structures.

3.2. Orthogonal families of mixed C-Hodge structures. In this subsection,
we will define the category of g-orthogonal family of mixed C-Hodge structures and
show that this category is equivalent to the category RepC(Gg

C
). We first define the

category of multi-filtered C-vector spaces Fillm(C).

Definition 3.7. Let l and m be non-negative integers. An object in the category
Fillm(C) is a quadruple V = (VC, {Wλ

• }, {F •
μ}, {F

•
μ}) consisting of a finite dimensional

C-vector space VC, a family of finite ascending filtrations Wλ
• for λ = 1, . . . , l by C-

linear subspaces on VC, and families of finite descending filtrations F •
μ and F

•
μ for

μ = 1, . . . ,m by C-linear subspaces on VC. A morphism in Fillm(C) is a C-linear
homomorphism compatible with Wλ

• , F
•
μ , and F

•
μ.

We define the notion of a g-orthogonal family of mixed C-Hodge structures as
follows.

Definition 3.8 (Orthogonal Family). We say that an object

(VC, {Wμ
• }, {F •

μ}, {F
•
μ}) in Filgg(C) is a g-orthogonal family of mixed C-Hodge

structures, if for any μ, the quadruple (VC,W
μ
• , F •

μ , F
•
μ) is a mixed C-Hodge struc-

ture, and for any μ and ν �= μ, the C-linear subspaces Wμ
n VC, F

m
μ VC, F

m

μ VC with

the weight and Hodge filtrations induced from W ν
• , F •

ν , F
•
ν are mixed C-Hodge

structures. We denote by OFg
C

the full subcategory of Filgg(C) whose objects are
g-orthogonal family of mixed C-Hodge structures.

If V = (VC, {Wμ
• }, {F •

μ}, {F
•
μ}) is a g-orthogonal family of mixed C-Hodge struc-

tures, then we call {Wμ
• } the weight filtrations and {F •

μ}, {F
•
μ} the Hodge filtrations

of V . Note that OF1
C = MHSC.

Next, let MHSg(VecC) be as in Corollary 3.6. An object A in MHSg(VecC) consists
of a finite dimensional C-vector space VC with additional structures. Then there exists
a natural functor

MHSg(VecC) → Filgg(C) (22)

by associating to an object A its underlying C-vector space VC, with the μ-th weight
and Hodge filtrations given by the image of the μ-th weight and Hodge filtrations
of MHSg(VecC). More precisely, for any μ = 1, . . . , g, there exists an object Aμ in

MHSμ(VecC) which underlies A, with the weight and Hodge filtrations Wμ
• , F •

μ , F
•
μ

given by subobjects of Aμ in MHSμ−1(VecC). Then we define the filtrations Wμ
• ,

F •
μ , F

•
μ by C-linear subspaces on VC to be the filtrations given as the images of the

subobjects Wμ
• , F •

μ , F
•
μ of Aμ.
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Remark 3.9. Combining (22) with the functor in Corollary 3.6, we have a functor

ϕg
C
: RepC(Gg

C
) → Filgg(C). (23)

By definition, this functor associates to an object U = (UC, {Up,q}, {tμ}) in RepC(Gg
C
)

the object V := (VC, {Wμ
• }, {F •

μ}, {F
•
μ}), where VC := UC,

Wμ
n VC :=

⊕
p,q∈Z

g

pμ+qμ≤n

Up,q

for any n ∈ Z and

F p
μVC := tμ

( ⊕
r,s∈Z

g

rμ≥p

Ur,s

)
, F

q

μVC := t−1
μ

( ⊕
r,s∈Z

g

sμ≥q

Ur,s

)

for any integers p, q ∈ Z. This shows that the functor (23) is defined independently

of the ordering of the index μ = 1, . . . , g, hence if V = (VC, {Wμ
• }, {F •

μ}, {F
•
μ}) ∈

Filgg(C) is an object in the essential image of the functor (22), then the object V ′ =

(VC, {Wμ′
• }, {F •

μ′}, {F
•
μ′}) given by a reordering μ′ = σ(μ) of the index for some

bijection σ : {1, . . . , g} → {1, . . . , g} is also in the essential image of (22).

Theorem 3.10. For any integer g ≥ 0, the functor (22) gives an isomorphism
of categories

MHSg(VecC)
∼=−→ OFg

C
. (24)

Proof. The statement is trivial for g = 0. Assume g > 0, and let A be an object in
MHSg(VecC), and let V = (VC, {Wμ

• }, {F •
μ}, {F

•
μ}) be the image of A in Filgg(C) with

respect to the functor (22). Then by construction, for any μ = 1, . . . , g, the quadruple

(VC,W
μ
• , F •

μ , F
•
μ) is a mixed C-Hodge structure. Furthermore, for any index ν < μ,

the C-linear subspaces Wμ
n VC, F p

μVC, F
p

μVC with the weight and Hodge filtrations

induced from W ν
• , F

•
ν , F

•
ν are mixed C-Hodge structures. Remark 3.9 shows that

since we may reorder the index of the filtrations, hence by reordering the filtrations,
we see that the C-linear subspaces Wμ

n VC, F
p
μVC, F

p

μVC with the weight and Hodge

filtrations induced from W ν
• , F

•
ν , F

•
ν are mixed C-Hodge structures even for the case

ν > μ. This shows that V is an object in OFg
C
, hence we see that the functor (22)

induces the functor (24).

Conversely, let V = (VC, {Wμ
• }, {F •

μ}, {F
•
μ}) be an object in OFg

C
. Then for

μ = 1, . . . , g, the C-linear subspaces Wμ
n VC, F

p
μVC, F

p

μVC with the weight and Hodge

filtrations induced from W ν
• , F

•
ν , F

•
ν for ν �= μ are mixed C-Hodge structures, hence

the decomposition

GrW
μ

n VC = F p
μGrW

μ

n VC ⊕ F
n+1−p

μ GrW
μ

n VC

is also a decomposition of mixed C-Hodge structures. This shows that V gives an
object in MHSg(VecC). The above constructions are inverse to each other, hence we
have the isomorphism of categories (24) as desired.
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By combining Corollary 3.6 and Theorem 3.10, we have the following.

Corollary 3.11. For g ≥ 0, the functor ϕg
C

of (23) gives an equivalence of
categories

ϕg
C
: RepC(Gg

C
) ∼= OFg

C
. (25)

We denote by ψg
C
the quasi-inverse functor of ϕg

C
obtained as the composition of

the inverse functor of (24) with the quasi-inverse functor of (21).

4. Mixed plectic C-Hodge structures. The main result of this section is
Proposition 4.17, which characterizes g-orthogonal families in terms of the total weight
filtration instead of the partial weight filtrations. First we will define the notion of
a mixed weak g-plectic C-Hodge structure as an object in Fil1g(C) having the plectic
Hodge decomposition and good systems of representatives of the decomposition. A
mixed g-plectic C-Hodge structure will be defined to be a mixed weak g-plectic C-
Hodge structure satisfying certain compatibility of filtrations. Then we will see that
there is an isomorphism between the category OFg

C
of g-orthogonal families of mixed

C-Hodge structures and the category MHSg
C
of mixed g-plectic C-Hodge structures.

4.1. Mixed weak plectic C-Hodge structures. In this subsection, we will
define the category M g

C
of mixed weak g-plectic C-Hodge structures. In what follows,

for any index n = (nμ) ∈ Zg, we let |n| := n1 + · · · + ng. Furthermore, for r =
(rμ),p = (pμ) ∈ Zg, we say that r ≥ p if rμ ≥ pμ for any μ = 1, . . . , g.

For non-negative integers l and m, we let Fillm(C) be the category of multi-filtered

C-vector spaces defined in Definition 3.7. For an object V = (VC, {Wλ
• }, {F •

μ}, {F
•
μ})

in Fillg(C) and a subset I ⊂ {1, . . . , g}, we define the plectic filtrations F •
I ,F

•
I and

the total filtrations F •
I , F

•
I on VC associated to {F •

μ} and {F •
μ} with respect to I by

F p
I VC :=

⋂
μ �∈I

F pμ
μ VC ∩

⋂
ν∈I

F
pν

ν VC, F
p

I VC :=
⋂
μ �∈I

F
pμ

μ VC ∩
⋂
ν∈I

F pν
ν VC (26)

for any p = (pμ) ∈ Zg, and

F p
I VC :=

∑
p∈Z

g, |p|=p

F p
I VC, F

p

IVC :=
∑

p∈Z
g, |p|=p

F
p

I VC (27)

for any p ∈ Z. Note that there are natural inclusions F p
I VC ↪→ F

|p|
I VC and F

p

I VC ↪→
F

|p|
I VC. We will often omit the subscript of the notation when I = ∅. For example,

F pVC := F p
∅VC.

We first define the notion of a pure weak g-plectic C-Hodge structure.

Definition 4.1 (pure weak plectic C-Hodge structure). Let n be an integer. A

pure weak g-plectic C-Hodge structure of weight n is an object V = (VC, {F •
μ}, {F

•
μ})

in Fil0g(C) satisfying

F p
I VC =

⊕
r,s∈Z

g

r≥p, |r+s|=n

(F r
I ∩ F

s

I)VC (28)

for any p ∈ Zg and I ⊂ {1, . . . , g}.
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Note that since F •
μ and F

•
μ are finite filtrations, we have F p

I VC = VC for any p
whose components are sufficiently small. Hence (28) implies that we have

VC =
⊕

p,q∈Z
g

|p+q|=n

(F p
I ∩ F

q

I )VC. (29)

Remark 4.2. For any subset I ⊂ {1, . . . , g} we have F
•
I = F •

Ic , where Ic :=
{I, . . . , g} \ I is the complement of I in {1, . . . , g}. In particular, the equation (28)
for Ic implies that

F
q

IVC =
⊕

r,s∈Z
g

s≥q, |r+s|=n

(F r
I ∩ F

s

I)VC. (30)

Remark 4.3. Let V be a pure weak g-plectic C-Hodge structure of weight n,
and consider p, q ∈ Zg such that |p + q| > n. If we let r := |p + q| − n > 0 and
r1 := (r, 0, . . . , 0) ∈ Zg, then we have |p + q − r1| = n. Since p − r1 < p and
q − r1 < q, we have

(F p
I ∩ F

q

I )VC ⊂ (F p−r1

I ∩ F
q

I )VC ∩ (F p
I ∩ F

q−r1

I )VC

for any subset I ⊂ {1, . . . , g}. By (29), the right hand side is {0}, hence we have the
equality

(F p
I ∩ F

q

I )VC = {0}. (31)

Remark 4.4. Let V be a pure weak g-plectic C-Hodge structure of weight n
and I ⊂ {1, . . . , g} a subset. Then the total Hodge filtrations F •

I and F
•
I on VC with

respect to I are given by

F p
I VC =

∑
|p|=p

F p
I VC =

⊕
|r|≥p

|r+s|=n

(F r
I ∩ F

s

I)VC,

F
n+1−p

I VC =
∑

|q|=n+1−p

F
q

IVC =
⊕

|s|≥n+1−p
|r+s|=n

(F r
I ∩ F

s

I)VC =
⊕
|r|<p

|r+s|=n

(F r
I ∩ F

s

I)VC

for any p ∈ Z. Hence by (29), we have VC = F p
I VC ⊕ F

n+1−p

I VC. By (1), we see that

(VC, F
•
I , F

•
I) is a pure C-Hodge structure of weight n in the usual sense.

We next define the notion of mixed weak plectic C-Hodge structures. One subtlty
is that for an object V = (VC,W•, {F •

μ}, {F
•
μ}) in Fil1g(C), there are two natural

“plectic” filtraions on GrWn VC, which in general do not coincide. More precisely, the
natural inclusion

(Wn ∩ F p
I )VC/(Wn−1 ∩ F p

I )VC ⊂
⋂
μ �∈I

F pμ
μ GrWn VC ∩

⋂
ν∈I

F
pν

ν GrWn VC (32)
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is not in general an equality (see Example 4.7 below). In what follows, we adopt the
left hand side and let

F p
IGrWn VC := (Wn ∩ F p

I )VC/(Wn−1 ∩ F p
I )VC,

F
q

IGrWn VC := (Wn ∩ F
q

I )VC/(Wn−1 ∩ F
q

I )VC

(33)

for any I ⊂ {1, . . . , g}.
Definition 4.5 (mixed weak plectic C-Hodge structure). A mixed weak g-plectic

C-Hodge structure is an object V = (VC,W•, {F •
μ}, {F

•
μ}) in Fil1g(C) satisfying the

following conditions for any subset I ⊂ {1, . . . , g}:
(aI) For any n ∈ Z and p ∈ Zg, we have

F p
IGrWn VC =

⊕
r,s∈Z

g

r≥p, |r+s|=n

(F r
I ∩ F

s

I)GrWn VC, (34)

where (F r
I ∩ F

s

I)GrWn VC := F r
IGrWn VC ∩ F

s

IGrWn VC.

(bI) The object VI := (VC,W•, F •
I , F

•
I) in Fil11(C) is a mixed C-Hodge structure

in the usual sense.
(cI) For any p, q ∈ Zg and n := |p+ q|, we have

((F p
I ∩Wn+F

q

I∩Wn)∩Wn−1)VC ⊂ (F p
I ∩Wn−1)VC+

∑
j≥0

(F
q−j

I ∩Wn−|j|−1)VC.

We denote by M g
C
⊂ Fil1g(C) the full subcategory of mixed weak g-plectic C-Hodge

structures. If V = (VC,W•, {F •
μ}, {F

•
μ}) is a mixed weak g-plectic C-Hodge structure,

then we call W• the weight filtration, F •
μ and F

•
μ the partial Hodge filtrations, F •

I and

F
•
I the plectic Hodge filtrations with respect to I, and F •

I and F
•
I the total Hodge

filtrations with respect to I of V .

Due to Remark 4.4, we will view a pure weak g-plectic C-Hodge structure V of
weight n as a mixed weak g-plectic C-Hodge structure by taking the weight filtration
to satisfy Wn−1VC := {0} and WnVC := VC.

Remark 4.6. Let V = (VC,W•, {F •
μ}, {F

•
μ}) be an object in Fil1g(C). Then, we

have natural inclusions

(Wn ∩ F p
I )VC ⊃

∑
p∈Zg, |p|=p

(Wn ∩ F p
I )VC,

(Wn ∩ F p
I )VC/(Wn−1 ∩ F p

I )VC ⊃
∑

p∈Zg, |p|=p

F p
IGrWn VC

(35)

for any I ⊂ {1, . . . , g}, which are not equalities in general. In what follows, we let

F p
I GrWn VC := (Wn ∩ F p

I )VC/(Wn−1 ∩ F p
I )VC

and similarly for F
p

IGrWn VC.

Example 4.7. We note that the definition of a mixed weak g-plectic C-Hodge
structure is in general strictly stronger than the condition that for any n ∈ Z, the
triple GrWn V := (GrWn VC, {F •

μ}, {F
•
μ}) is a pure weak g-plectic C-Hodge structure of



CATEGORY OF MIXED PLECTIC HODGE STRUCTURES 49

weight n. Consider the case when g = 2 and let VC := Ce0⊕Ce−4 with the filtrations
defined by

WnVC :=

⎧⎪⎨
⎪⎩
0 n ≤ −5,
Ce−4 n = −4, . . . ,−1,
VC n ≥ 0,

F p1
1 VC = F

p1
1 VC :=

⎧⎪⎨
⎪⎩
VC p1 < 0,

Ce0 p1 = 0,

0 p1 > 0,

and F p2
2 VC = F

p2
2 VC :=

⎧⎪⎨
⎪⎩
VC p2 < 0,

C(e0 + e−4) p2 = 0,

0 p2 > 0.

Then we have GrW0 VC = Ce0 and F 0
1GrW0 VC = F 0

2GrW0 VC = Ce0, which shows that

(F 0
1 ∩ F 0

2 )GrW0 VC = Ce0. However, since F (0,0)VC := (F 0
1 ∩ F 0

2 )VC = {0}, we have

F (0,0)GrW0 VC = {0}, hence

F (0,0)GrW0 VC � (F 0
1 ∩ F 0

2 )GrW0 VC.

One can show that for V = (VC,W•, {F •
1 , F

•
2 }, {F

•
1, F

•
2}) defined as above, GrWn V is

a pure weak 2-plectic C-Hodge structure of weight n for any n ∈ Z, but V does not
satisfy (34).

In the next subsection, we will see that (32) and (35) are actually equalities for
objects in M g

C
.

Proposition 4.8. A mixed C-Hodge structure in the usual sense is a mixed weak
1-plectic C-Hodge structure. In particular, the category M 1

C
is equal to the category

MHSC of mixed C-Hodge structures.

Proof. By definition, an object in M 1
C
is a mixed C-Hodge structure in the usual

sense. Conversely, consider an object V in MHSC. Then (aI) holds by Lemma 2.4
and (bI) holds by definition. We prove (cI). Let p, q ∈ Z and n := p + q. We prove
by induction on k ≥ 0 that

Wn−1VC ⊂ (F p ∩Wn−1)VC +

k∑
j=0

(F
q−j ∩Wn−j−1)VC +Wn−k−2VC. (36)

Suppose w ∈ Wn−1VC. Since GrWn−1V is a pure C-Hodge structure of weight n − 1,
we have a splitting

GrWn−1VC = F pGrWn−1VC ⊕ F
q
GrWn−1VC,

hence w is of the form w = u0 + v0 + w1 for some u0 ∈ (F p ∩ Wn−1)VC, v0 ∈
(F

q ∩Wn−1)VC and w1 ∈ Wn−2VC, which proves (36) for k = 0. Suppose (36) is true
for an integer k ≥ 0. Then any element w ∈ Wn−1VC is of the form

w = uk +

k∑
j=0

vj + wk+1

for some uk ∈ (F p ∩ Wn−1)VC, vj ∈ (F
q−j ∩ Wn−j−1)VC, and wk+1 ∈ Wn−k−2VC.

Since GrWn−k−2V is a pure C-Hodge structure of weight n− k− 2, we have a splitting

GrWn−k−2VC = F pGrWn−k−2VC ⊕ F
q−k−1

GrWn−k−2VC,
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hence wk+1 is of the form wk+1 = u′
k+1 + vk+1 + wk+2 for some u′

k+1 ∈ (F p ∩
Wn−k−2)VC, vk+1 ∈ (F

q−k−1 ∩ Wn−k−2)VC and wk+2 ∈ Wn−k−3VC. Then uk+1 :=
uk + u′

k+1 ∈ (F p ∩Wn−1)VC, and we see that

w = uk+1 +

k+1∑
j=0

vj + wk+2 ∈ (F p ∩Wn−1)VC +

k+1∑
j=0

(F
q−j ∩Wn−j−1)VC +Wn−k−3VC.

By induction, (36) is true for any k ≥ 0. Since Wn−k−2VC = {0} for k sufficiently
large, we have

((F p∩Wn+F
q∩Wn)∩Wn−1)VC ⊂ Wn−1VC ⊂ (F p∩Wn−1)VC+

∑
j≥0

(F
q−j∩Wn−j−1)VC,

which proves condition (cI) for I = ∅. Since the quadruple (VC,W•, F
•
, F •) is also a

mixed C-Hodge structure, condition (cI) for I = {1} also holds.

4.2. The plectic Deligne splitting. In this subsection, we will prove Propo-
sition 4.10, which is a plectic version of the Deligne splitting for objects in M g

C
. We

will first define the plectic version of the bigradings Ap,q and A
p,q

.

Definition 4.9. Let V = (VC,W•, {F •
μ}, {F

•
μ}) be an object in Fil1g(C). For any

I ⊂ {1, . . . , g}, p, q ∈ Zg, and n := |p+ q|, we put

Ap,q
I (V ) := (F p

I ∩Wn)VC ∩
(
(F

q

I ∩Wn)VC +
∑
j≥0

(F
q−j

I ∩Wn−|j|−1)VC

)
. (37)

We denote by

ρI : Ap,q
I (V ) → (F p

I ∩ F
q

I )GrWn VC (38)

the C-linear homomorphism induced by the natural surjection WnVC → GrWn VC.

Note that when g = 1, the subspaces (37) coincide with (4) in Proposition 2.6.

Proposition 4.10. Let V be an object in Fil1g(C). Consider the conditions (aI),
(bI), (cI) in Definition 4.5.

(1) (bI) implies that ρI is injective.
(2) (cI) is equivalent to that ρI is surjective.
(3) (aI), (bI), and (cI) together imply that we have

WnVC =
⊕

p,q∈Z
g

|p+q|≤n

Ap,q
I (V ), F p

I VC =
⊕

r,s∈Z
g

r≥p

Ar,s
I (V ), (39)

for any n ∈ Z and p ∈ Zg, and in particular

VC =
⊕

p,q∈Zg

Ap,q
I (V ). (40)

(4) If V is an object in M g
C
, then for any I ⊂ {1, . . . , g}, ρI is an isomorphism

and the equalities (39) and (40) hold.
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Proof. (1) Let p := |p|, q := |q|, and Ap,q
I (V ) := Ap,q(VI) for VI :=

(VC,W•, F •
I , F

•
I). Since we have a commutative diagram

Ap,q
I (V ) ��
��

��

(F p
I ∩ F

q

I )GrWn VC
��

��
Ap,q

I (V ) �� (F p
I ∩ F

q

I)GrWn VC,

the assertion follows from Lemma 2.7.
(2) Assume condition (cI) and consider an element ξ ∈ (F p

I ∩ F
q

I )GrWn VC. Let

u ∈ (F p
I ∩Wn)VC and v ∈ (F

q

I ∩Wn)VC be elements lifting ξ. Then since u− v ≡ 0
(mod Wn−1), we have

u− v ∈ ((F p
I ∩Wn + F

q

I ∩Wn) ∩Wn−1)VC.

By condition (cI), there exist u0 ∈ (F p
I ∩ Wn−1)VC and vj ∈ (F

q−j

I ∩ Wn−|j|−1)VC

for j ≥ 0 such that

u− v = u0 +
∑
j≥0

vj .

If we let ξ̃ := u−u0 = v+
∑

j≥0 vj , then we have ξ̃ ∈ Ap,q
I (V ) and ξ̃ ≡ ξ (mod Wn−1),

hence this proves that ρI is surjective as desired.
Conversely assume ρI is surjective. An element w ∈ ((F p

I ∩ Wn + F
q

I ∩ Wn) ∩
Wn−1)VC may be written in the form w = u − v, with u ∈ (F p

I ∩ Wn)VC, v ∈
(F

q

I ∩ Wn)VC and w ∈ Wn−1VC. If we let ξ ≡ u ≡ v (mod Wn−1), then ξ is an
element in (F p

I ∩ F
q

I )GrWn VC. Since ρI is surjective, there exists u0 ∈ Ap,q
I (V ) such

that u0 ≡ ξ (mod Wn−1), where by (37), we have u0 ∈ (F p
I ∩Wn)VC and u0 is of the

form

u0 = v0 +
∑
j≥0

wj

for v0 ∈ (F
q

I ∩Wn)VC and wj ∈ (F
q−j

I ∩Wn−|j|−1)VC. Since u0 ≡ u (mod Wn−1) and
v0 ≡ v (mod Wn−1), we have u0 = u−w0 and v0 = v+w1 for some w0, w1 ∈ Wn−1VC.
Note that w0 = u − u0 ∈ (F p

I ∩Wn−1)VC and w1 = v0 − v ∈ (F
q

I ∩Wn−1)VC. Then
we have

w = u− v = w0 + w1 +
∑
j≥0

wj ,

hence w ∈ (F p
I ∩Wn−1)VC+(F

q

I ∩Wn−1)VC+
∑

j≥0(F
q−j

I ∩Wn−|j|−1)VC as desired.
(3) We prove by induction on n that

(F p
I ∩Wn)VC =

⊕
r,s∈Z

g, r≥p
|r+s|≤n

Ar,s
I (V ). (41)

If n is sufficiently small so that WnVC = {0}, then the statement is trivially true.
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Next suppose that (41) is true for n− 1. We have a commutative diagram

0 �� ⊕
r,s∈Z

g, r≥p
|r+s|≤n−1

Ar,s
I (V ) ��

∼=

��

⊕
r,s∈Z

g, r≥p
|r+s|≤n

Ar,s
I (V ) ��

��

⊕
r,s∈Z

g, r≥p
|r+s|=n

Ar,s
I (V ) ��

∼=

��

0

0 �� (F p
I ∩ Wn−1)VC

�� (F p
I ∩ Wn)VC

�� F p
I GrWn VC

�� 0,

where the left and middle vertical arrows are the sum of the natural inclusions. The
left vertical arrow is an isomorphism by the induction hypothesis, and the right vertical
arrow is an isomorphism by (1),(2), and condition (aI). This shows that the central
vertical arrow is also an isomorphism, hence by induction, (41) is true for any n ∈ Z.
This proves our assertion, noting that WnVC = VC for n sufficiently large and F p

I VC =
VC for p sufficiently small.

(4) Follows from (1), (2), and (3).

Let V be an object in M g
C
. Then by Proposition 4.10, ρI is an isomorphism

and the equalities (39) and (40) hold for any I ⊂ {1, . . . , g}. We call the 2g-grading
{Ap,q

I (V )} of VC the plectic Deligne splitting of V with respect to I.

For an object V = (VC,W•, {F •
μ}, {F

•
μ}) in Fil1g(C) and n ∈ Z, we define an object

WnV (resp. GrWn V ) in Fil1g(C) to be the quadruple consisting of the C-vector space
WnVC (resp. GrWn VC) and the filtrations induced from those of V . We often regard
GrWn V as an object in Fil0g(C) by forgetting the weight filtration. Then we obtain
additive functors

Wn : Fil1g(C) → Fil1g(C) and GrWn : Fil1g(C) → Fil0g(C). (42)

Corollary 4.11. Let V be an object in M g
C
. Then for any n ∈ Z, the plectic

(resp. total) Hodge filtrations of WnV and GrWn V coincide with the filtrations induced
from the plectic (resp. total) Hodge filtrations of V . In particular, WnV is also an
object in M g

C
, and GrWn V is a pure weak g-plectic C-Hodge structure of weight n.

Proof. By the direct decompositions (39), the natural inclusions (32) and (35) are
actually equalities. Then the conditions (aI), (bI), (cI) for WnV and GrWn V follow
from those for V .

Corollary 4.12. Let α : U → V be a morphism in M g
C
. For any subsets

S ⊂ Zg × Zg and I ⊂ {1, . . . , g}, we have

α

⎛⎝ ⊕
(p,q)∈S

Ap,q
I (U)

⎞⎠ = α(UC) ∩
⎛⎝ ⊕

(p,q)∈S
Ap,q

I (V )

⎞⎠ . (43)

In particular, if S ′ is a subset of Zg × Z, then we have

α

⎛⎝ ∑
(p,n)∈S′

(F p
I ∩Wn)UC

⎞⎠ = α(UC) ∩
⎛⎝ ∑

(p,n)∈S′
(F p

I ∩Wn)VC

⎞⎠ . (44)

In particular, α is strict with respect to the filtration (F •
I ∩W•).
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Proof. Since α(Ap,q
I (U)) ⊂ Ap,q

I (V ), the equality (43) follows from the fact that
Ap,q

I gives 2g-gradings (37) of UC and VC. Since we have by Proposition 4.10

(F p
I ∩Wn)UC =

⊕
r,s∈Z

g

r≥p, |r+s|≤n

Ar,s
I (U)

for any p ∈ Zg and n ∈ Z, the equality (44) follows from equality (43) for

S :=
⋃

(p,n)∈S′
{(r, s) ∈ Zg × Zg | r ≥ p, |r + s| ≤ n}.

4.3. Plectic Hodge decomposition of orthogonal families. Let g be a
positive integer. We define a functor T g

C
: Filgg(C) → Fil1g(C) by taking the total

filtration of {Wμ
• }. Namely, for an object V = (VC, {Wμ

• }, {F •
μ}, {F

•
μ}), we have

T g
C
(V ) = (VC,W•, {F •

μ}, {F
•
μ}) with

WnVC :=
∑

n1+···+ng=n

(W 1
n1

∩ · · · ∩W g
ng
)VC. (45)

The purpose of this subsection is to prove the following proposition.

Proposition 4.13. Let V be an object in OFg
C
. Then the quadruple T g

C
(V ) is an

object in M g
C
.

Let V be an object in OFg
C
and I ⊂ {1, . . . , g} a subset. For each μ = 1, . . . , g,

we define

Ap,q
I,μ(V ) :=

⎧⎪⎪⎨
⎪⎪⎩
(F p

μ ∩Wμ
p+q)VC ∩

(
(F

q
μ ∩Wμ

p+q)VC +
∑

j≥0(F
q−j
μ ∩Wμ

p+q−j−1)VC

)
, μ �∈ I,(

(F p
μ ∩Wμ

p+q)VC +
∑

j≥0(F
q−j
μ ∩Wμ

p+q−j−1)VC

)
∩ (F

q
μ ∩Wμ

p+q)VC, μ ∈ I,

(46)

that is the Deligne splitting of the mixed C-Hodge structure (VC,W
μ
• , F •

μ , F
•
μ). By

Proposition 2.10 and Corollary 2.11, the C-vector space Ap,q
I,μ(V ) with ν-th filtrations

for ν �= μ is an object in OFg−1
C

, and we have Ar,s
I,ν ◦ Ap,q

I,μ(V ) = Ar,s
I,ν(V ) ∩ Ap,q

I,μ(V ).
Hence we have the direct decompositions

Wμ
n VC =

⊕
p,q∈Z

g

pμ+qμ≤n

Ap1,q1
I,1 (V ) ∩ · · · ∩A

pg,qg
I,g (V ), (47)

F p
μVC =

⊕
r,s∈Z

g

rμ≥p

Ar1,s1
I,1 (V ) ∩ · · · ∩A

rg,sg
I,g (V ), μ �∈ I, (48)

F
p

μVC =
⊕

r,s∈Z
g

rμ≥p

Ar1,s1
I,1 (V ) ∩ · · · ∩A

rg,sg
I,g (V ), μ ∈ I. (49)

Then Proposition 4.13 follows from the following propositions.

Proposition 4.14. Let (VC, {Wμ
• }, {F •

μ}, {F
•
μ}) be an object in OFg

C
. Then

T g
C
(V ) satisfies the condition (aI) of Definition 4.5. That is, for any n ∈ Z, p, q ∈ Zg,
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and I ⊂ {1, . . . , g}, we have

F p
IGrWn VC =

⊕
r,s∈Z

g

r≥p, |r+s|=n

(F r
I ∩ F

s

I)GrWn VC. (50)

Proof. For simplicity, we assume I = ∅. We prove the statement by induction on
g. The statement for g = 1 is Lemma 2.4. Suppose the statement is true for objects
in OFg−1

C
. By Lemma 2.4, we have⊕

rg,sg∈Z

rg≥pg, rg+sg=m

(F rg
g ∩ F

sg
g )GrW

g

m VC

∼=−→ F pg
g GrW

g

m VC. (51)

By Corollary, 2.11 (F
rg
g ∩ F

sg
g )GrW

g

m VC is an object in OFg−1
C

with respect to W ν
• ,

F •
ν , and F

•
ν for ν = 1, . . . , g − 1, and (51) is an isomorphism in OFg−1

C
. If we denote

by W ′
• the filtration given by (45) for μ = 1, . . . , g − 1, the induction implies⊕

r′,s′∈Z
g−1

r′≥p′, |r′+s′|=n−m

(F r′ ∩ F
s′
)GrW

′
n−m(F rg

g ∩ F
sg
g )GrW

g

m VC

∼=−→ F p′GrW
′

n−m(F rg
g ∩ F

sg
g )GrW

g

m VC.

(52)

Note that by Corollary 2.11, W ′
n−mVC with the filtration induced from W g

• , F •
g , and

F
•
g is a mixed C-Hodge structure. Then

0 → W ′
n−m−1GrW

g

m VC → W ′
n−mGrW

g

m VC → GrW
′

n−mGrW
g

m VC → 0

is an exact sequence of pure C-Hodge structures, hence by (8), we have

(F rg
g ∩ F

sg
g )GrW

′
n−mGrW

g

m VC

∼= (F rg
g ∩ F

sg
g ∩W ′

n−m)GrW
g

m VC/(F
rg
g ∩ F

sg
g ∩W ′

n−m−1)GrW
g

m VC

∼= GrW
′

n−m(F rg
g ∩ F

sg
g )GrW

g

m VC,

(53)

which is an isomorphism in OFg−1
C

with respect toWμ
• , F •

μ , and F
•
μ for μ = 1, . . . , g−1.

Then by (51), (52), and (53), we obtain⊕
m∈Z

F p′GrW
′

n−mF pg
g GrW

g

m VC

∼=
⊕
m∈Z

⊕
r′,s′∈Z

g−1

r′≥p′, |r′+s′|=n−m

⊕
rg,sg∈Z

rg≥pg, rg+sg=m

(F r ∩ F
s
)GrW

′
n−mGrW

g

m VC.
(54)

Since F p
μVC and Wμ

l VC can be written as direct sums of Ap1,q1
1 (V ) ∩ · · · ∩

A
pg,qg
g (V ) as in (47) and (48), the left hand side of (54) is isomorphic to

F pGrWn VC. On the other hand, by (47), (48), and (49), we have an isomorphism⊕
m∈Z

GrW
′

n−mGrW
g

m VC

∼=−→ GrWn VC in OFg
C
. Hence the right hand side of (54) is iso-

morphic to
⊕

r,s∈Z
g

r≥p, |r+s|=n

(F r ∩ F
s
)GrWn VC.
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Proposition 4.15. Let (VC, {Wμ
• }, {F •

μ}, {F
•
μ}) be an object in OFg

C
. Then

T g
C
(V ) satisfies the condition (bI) of Definition 4.5. In other words, (VC,W•, F •

I , F
•
I)

is a mixed C-Hodge structure for any subset I ⊂ {1, . . . , g}.
Proof. By Proposition 4.14, we have

F p
I GrWn VC

∼=
⊕

r,s∈Z
g

|r|≥p, |r+s|=n

(F r
I ∩ F

s

I)GrWn VC,

F
q

IGrWn VC
∼=

⊕
r,s∈Z

g

|r|≥q, |r+s|=n

(F r
Ic ∩ F

s

Ic)GrWn VC =
⊕

r,s∈Z
g

|s|≥q, |r+s|=n

(F r
I ∩ F

s

I)GrWn VC

for any p, q, n ∈ Z. Hence we obtain GrWn VC = F p
I GrWn VC ⊕ F

n−p+1

I GrWn VC as de-
sired.

Proposition 4.16. Let V be an object in OFg
C
and I ⊂ {1, . . . , g} a subset. Then

we have

Ap1,q1
I,1 (V ) ∩ · · · ∩A

pg,qg
I,g (V ) = Ap,q

I (T g
C
(V )) (55)

for any p, q ∈ Zg. Moreover, the homomorphism

ρI : Ap,q
I (T g

C
(V )) → (F p

I ∩ F
q

I )GrWn VC

is an isomorphism, where n := |p+ q|.
Proof. For simplicity we assume I = ∅. We prove by induction on g. The

statement for g = 1 follows by definition. Suppose the statement is true for g − 1,

and let {Ap′,q′(T g−1
C

(V ))} for indices p′ := (p1, . . . , pg−1) and q′ := (q1, . . . , qg−1) be

the plectic Deligne splitting for the quadruple (VC,W
′
•, {F •

μ}, {F
•
μ}), where W ′

• is the
filtration defined from the filtrations Wμ

• for μ = 1, . . . , g−1, and the family {F •
μ} and

{F •
μ} are for the indices μ = 1, . . . , g − 1. Then for n′ := |p′ + q′| and ng := pg + qg,

we have

Ap1,q1
1 (V ) ∩ · · · ∩Apg,qg

g (V ) = Ap′,q′(T g−1
C

(V )) ∩Apg,qg
g (V )

by the induction hypothesis. Note that by definition, Ap′,q′(T g−1
C

(V )) ∩A
pg,qg
g (V ) is

equal to

(F p′ ∩W ′
n′)VC ∩

(
(F

q′ ∩W ′
n′)VC +

∑
j′≥0

(F
q′−j′ ∩W ′

n′−|j′|−1)VC

)

∩ (F pg
g ∩W g

ng
)VC ∩

(
(F

qg
g ∩W g

ng
)VC +

∑
jg≥0

(F
qg−jg
g ∩W g

ng−jg−1)VC

)
.

Hence we have

Ap′,q′(T g−1
C

(V )) ∩Apg,qg
g (V ) ⊂ (F p ∩Wn)VC. (56)

Let U be the mixed C-Hodge structure on UC = (F
q′ ∩ W ′

n′)VC +
∑

j′≥0(F
q′−j′ ∩

W ′
n′−|j′|−1)VC with filtrations induced from W g

• , F •
g , and F

•
g. Applying Proposition
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2.10 to the natural inclusion U ↪→ V , we have(
(F

q′ ∩W ′
n′)VC +

∑
j′≥0

(F
q′−j′ ∩W ′

n′−|j′|−1)VC

)

∩
(
(F

qg
g ∩W g

ng
)VC +

∑
jg≥0

(F
qg−jg
g ∩W g

ng−jg−1)VC

)

=

(
(F

q′ ∩W ′
n′)VC +

∑
j′≥0

(F
q′−j′ ∩W ′

n′−|j′|−1)VC

)
∩ (F

qg
g ∩W g

ng
)VC

+
∑
jg≥0

(
(F

q′ ∩W ′
n′)VC +

∑
j′≥0

(F
q′−j′ ∩W ′

n′−|j′|−1)VC

)
∩ (F

qg−jg
g ∩W g

ng−jg−1)VC.

By (9), (10), we have

(
(F

q′ ∩W ′
n′)VC +

∑
j′≥0

(F
q′−j′ ∩W ′

n′−|j′|−1)VC

)
∩ (F

qg
g ∩W g

ng
)VC

= (F
q ∩W ′

n′ ∩W g
ng

)VC +
∑
j′≥0

(F
q−(j′,0) ∩W ′

n′−|j′|−1 ∩W g
ng

)VC

and∑
jg≥0

(
(F

q′ ∩W ′
n′)VC +

∑
j′≥0

(F
q′−j′ ∩W ′

n′−|j′|−1)VC

)
∩ (F

qg−jg
g ∩W g

ng−jg−1)VC

=
∑
jg≥0

(F
q′ ∩ F

qg−jg
g ∩W ′

n′ ∩W g
ng−jg−1)VC

+
∑
j′≥0

∑
jg≥0

(F
q−j′ ∩ F

qg−jg
g ∩W ′

n′−|j′|−1 ∩W g
ng−jg−1)VC,

hence we see that both are subsets of

(F
q ∩Wn)VC +

∑
j≥0

(F
q−j ∩Wn−|j|−1)VC. (57)

This and (56), we have an inclusion

Ap1,q1
1 (V ) ∩ · · · ∩Apg,qg

g (V ) = Ap′,q′(T g−1
C

(V )) ∩Apg,qg
g (V ) ⊂ Ap,q(T g

C
(V )). (58)

By Proposition 4.15 and Proposition 4.10 (1), the homomorphism

ρ : Ap,q(T g
C
(V )) → (F p ∩ F

q
)GrWn VC

is injective. Then we obtain

VC =
⊕

p,q∈Zg

Ap1,q1
1 (V ) ∩ · · · ∩A

pg,qg
g (V ) ↪→

⊕
p,q∈Zg

Ap,q(T g
C
(V )) ↪→

⊕
p,q∈Zg

(F p ∩ F
q
)GrWn VC.

(59)
By Proposition 4.14, we have⊕

p,q∈Zg

(F p ∩ F
q
)GrWn VC =

⊕
n

GrWn VC.
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Since VC and
⊕

n∈Z
GrWn VC have the same dimension, (59) is an isomorphism. Hence

(58) and ρ are isomorphisms for any p, q ∈ Zg, as desired.

Let V be an object in OFg
C
and I ⊂ {1, . . . , g}. By Proposition 4.14 and Propo-

sition 4.15, T g
C
(V ) satisfies (aI) and (bI) in Definition 4.5. Moreover, by Proposition

4.16 and Proposition 4.10 (2), T g
C
(V ) satisfies (cI). Hence we completed the proof of

Proposition 4.13.

4.4. Mixed plectic C-Hodge structures. In the previous subsection, we have
seen that the functor T g

C
induces the functor T g

C
: OFg

C
→ M g

C
. In this subsection we

will characterize the essential image of OFg
C
by T g

C
.

For I ⊂ {1, . . . , g}, we define a functor P g
I : Fil1g(C) → Filgg(C) by sending V =

(VC,W•, {F •
μ}, {F

•
μ}) to P g

I (V ) := (VC, {W I,μ
• }, {F •

μ}, {F
•
μ}) with

W I,μ
n VC :=

∑
p,q∈Z

g

pμ+qμ≤n

Ap,q
I (V ). (60)

The goal of this subsection is to prove the following proposition.

Proposition 4.17.

(1) We have P g
I ◦ T g

C
(U) = U and T g

C
◦ P g

I (V ) = V for any object U in OFg
C
, V

in M g
C
, and any subset I ⊂ {1, . . . , g}.

(2) Let V be an object in M g
C
. Then V lies in the essential image of OFg

C
by T g

C

if and only if P g
I (V ) = P g

J (V ) for any I and J .

According to Proposition 4.17, we define the category of mixed g-plectic C-Hodge
structures as follows.

Definition 4.18. We define the category of mixed g-plectic C-Hodge structures
MHSg

C
to be the full subcategory of M g

C
consisting of objects V satisfying W I,μ

n VC =
W J,μ

n VC for any I, J ⊂ {1, . . . , g}, μ = 1, . . . .g, and n ∈ Z. This says that the object
P g
C
(V ) := P g

I (V ) is independent of I. We let Wμ
n VC := W I,μ

n VC for mixed g-plectic
C-Hodge structures.

Combining Corollary 3.11 and Proposition 4.17, we obtain the following theorem.

Theorem 4.19. There are equivalences of categories

RepC(Gg
C
)

ϕg
C ��

OFg
C

ψg
C

��
T g
C ��

MHSg
C
.

P g
C

�� (61)

Moreover T g
C
and P g

C
are isomorphisms of categories.

We may define tensor products and internal homomorphisms in MHSg
C
as follows.

Suppose U = (UC,W
•, {F •

μ}, {F
•
μ}) and V = (VC,W

•, {F •
μ}, {F

•
μ}) are objects in

MHSg
C
. Then we define the tensor product U ⊗ V to be the quadruple

U ⊗ V = (UC ⊗C VC,W•, {F •
μ}, {F

•
μ}), (62)

where the weight filtration is given by

Wn(UC ⊗C VC) :=
∑

n1+n2=n

Wn1UC ⊗C Wn2VC
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for any n ∈ Z and the partial Hodge filtrations are given by

F p
μ(UC ⊗C VC) :=

∑
p1+p2=p

F p1
μ UC ⊗C F p2

μ VC,

F
q

μ(UC ⊗C VC) :=
∑

q1+q2=q

F
q1
μ UC ⊗C F

q2
μ VC

for any p, q ∈ Z and μ = 1, . . . , g. Next we define the internal homomorphism
Hom(U, V ) to be the quadruple

Hom(U, V ) := (HomC(UC, VC),W•, {F •
μ}, {F

•
μ}), (63)

where the weight filtration are given by

Wn(HomC(UC, VC)) := {α ∈ HomC(UC, VC) | ∀m ∈ Z α(WmUC) ⊂ Wm+nVC}
for any n ∈ Z and the partial Hodge filtrations are given by

F p
μ(HomC(UC, VC)) := {α ∈ HomC(UC, VC) | ∀m ∈ Z α(Fm

μ UC) ⊂ Fm+p
μ VC}

F
q

μ(HomC(UC, VC)) := {α ∈ HomC(UC, VC) | ∀m ∈ Z α(F
m

μ UC) ⊂ F
m+q

μ VC}
for any p, q ∈ Z and μ = 1, . . . , g. Then one can see that the tensor products and
internal homomorphisms in MHSg

C
are compatible with those in RepC(Gg

C
) via the

equivalences (61). In particular we obtain the following corollary.

Corollary 4.20. The category MHSg
C
is a neutral tannakian category over C

with respect to the fiber functor

ωg
C
: MHSg

C
→ VecC (64)

associating to V = (VC,W•, {F •
μ}, {F

•
μ}) the C-vector space

GrW
1

• · · ·GrW
g

• VC :=
⊕

n1,...,ng∈Z

GrW
1

n1
· · ·GrW

g

ng
VC.

In order to prove Proposition 4.17, we prepare some results concerning the pure
case.

Definition 4.21 (pure plectic C-Hodge structure). Let n be an integer. A pure
g-plectic C-Hodge structure of weight n is a pure weak g-plectic C-Hodge structure
(Definition 4.1) which is a mixed g-plectic C-Hodge structure (Definition 4.18) via the
weight filtration given by Wn−1VC := {0} and WnVC := VC.

Note that, for a pure weak g-plectic C-Hodge structure V of weight n, the partial
weight filtrations on VC are given by

W I,μ
m VC :=

⊕
p,q∈Z

g,|p+q|=n
pμ+qμ≤m

(F p
I ∩ F

q

I )VC. (65)

Lemma 4.22. Let V be an object in MHSg
C
. Then for any n ∈ Z, WnV is also

an object in MHSg
C
, and GrWn V is a pure g-plectic C-Hodge structure of weight n.
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Proof. By Corollary 4.11, WnV is an object in M g
C

and GrWn V is a pure weak
C-Hodge structure of weight n. By Corollary 4.12, we have⊕

p,q∈Z
g

pμ+qμ≤m

Ap,q
I (WnV ) = WnVC ∩

( ⊕
p,q∈Z

g

pμ+qμ≤m

Ap,q
I (V )

)
(66)

and ⊕
p,q∈Z

g

pμ+qμ≤m

Ap,q
I (GrWn V ) =

( ⊕
p,q∈Z

g

pμ+qμ≤m

Ap,q
I (WnV )

)
/

( ⊕
p,q∈Z

g

pμ+qμ≤m

Ap,q
I (Wn−1V )

)
(67)

for any m ∈ Z, μ = 1, . . . , g, and I ⊂ {1, . . . , g}. Since W I,μ
m VC =

⊕
p,q∈Z

g

pμ+qμ≤m

Ap,q
I (V )

is independent of I, (66) and hence (67) are also independent of I.

Example 4.23. For n = (nμ) ∈ Zg, let C(n) = (VC, {V p,q}, {tμ}) be the plectic
Tate object of Example 2.15. Then the object in MHSg

C
which is equivalent to C(n)

via the above equivalence of categories, which we again denote by C(n), may be given
by

C(n) = (VC,W•, {F •
μ}, {F

•
μ}),

where VC := C is a C-vector space of dimension one, the weight filtrations on VC is
given by W−2|n|−1VC = 0, W−2|n|VC = VC, and the partial Hodge filtrations on VC

are given by

F−nμ
μ VC = F

−nμ

μ VC = VC, F−nμ+1
μ VC = F

−nμ+1

μ VC = {0}
for μ = 1, . . . , g. The object C(n) is a pure g-plectic C-Hodge structure of weight
−2|n|.

Lemma 4.24. Let n be an integer, and let V be a pure g-plectic C-Hodge structure
of weight n. Then P g

C
(V ) is an object in OFg

C
.

Proof. We will show that for any ν �= μ, the C-linear subspaces Wμ
l VC, F

l
μVC,

and F
l

μVC with the ν-th filtrations are mixed C-Hodge structure. First, for Wμ
l VC,

we have

GrW
ν

m Wμ
l VC

∼=
⊕

p,q∈Z
g,|p+q|=n

pν+qν=m
pμ+qμ≤l

(F p
I ∩ F

q

I )VC

for any I, and

F p
νGrW

ν

m Wμ
l VC

∼=
⊕

r,s∈Z
g,|r+s|=n

rν≥p, rν+sν=m
rμ+sμ≤l

(F r ∩ F
s
)VC,

F
q

νGrW
ν

m Wμ
l VC

∼=
⊕

r,s∈Z
g,|r+s|=n

rν≥q, rν+sν=m
rμ+sμ≤l

(F r
{ν} ∩ F

s

{ν})VC =
⊕

r,s∈Z
g,|r+s|=n

sν≥q, rν+sν=m
rμ+sμ≤l

(F r ∩ F
s
)VC.
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This shows that we have a splitting

GrW
ν

m Wμ
l VC = F p

νGrW
ν

m Wμ
l VC ⊕ F

m+1−p

ν GrW
ν

m Wμ
l VC

for any p, q ∈ Z. Hence we see that Wμ
l VC with the ν-th filtrations is a mixed C-Hodge

structure as desired. Similarly, for F l
μVC, we have

GrW
ν

m F l
μVC

∼=
⊕

p,q∈Z
g, |p+q|=n

pν+qν=m
pμ≥l

(F p
I ∩ F

q

I )VC

for any I �� μ, and

F p
νGrW

ν

m F l
μVC

∼=
⊕

r,s∈Z
g, |r+s|=n

rν≥p, rν+sν=m
rμ≥l

(F r ∩ F
s
)VC,

F
q

νGrW
ν

m F l
μVC

∼=
⊕

r,s∈Z
g, |r+s|=n

rν≥q, rν+sν=m
rμ≥l

(F r
{ν} ∩ F

s

{ν})VC
∼=

⊕
r,s∈Z

g, |r+s|=n
sν≥q, rν+sν=m

rμ≥l

(F r ∩ F
s
)VC.

Hence we see that F I
μVC with ν-th filtrations is a mixed C-Hodge structure. The

assertion for F
l

μVC follows from the same argument.

Next we will review some facts concerning the extension of mixed Hodge structures
with respect to strict morphisms. We first define exactness of a sequence in Fil11(C)
and recall Lemma 4.26 which asserts that mixed C-Hodge structures are closed under
the extension in Fil11(C).

Definition 4.25.

(1) A morphism α : U → V in Fil11(C) is said to be strict if α is strictly compatible

with the filtrations F • ∩W• and F
• ∩W•.

(2) A sequence

0 → T
α−→ U

β−→ V → 0

in Fil11(C) is said to be exact if the sequence of underlying C-vector space is
exact and α and β are strict.

Lemma 4.26 ([H1] Lemma 8.1.4 or [PS] Criterion 3.10). Let

0 → T → U → V → 0

be an exact sequence in Fil11(C). If T and V are mixed C-Hodge structures, then U is
also a mixed C-Hodge structures.

Remark 4.27. The strict compatibility with the filtrations W•, F •, and F
•
is

not sufficient to prove Lemma 4.26. Note that by Proposition 2.10, a morphism of
mixed C-Hodge structures is automatically strict in the sense of Definition 4.25.

Proof of Proposition 4.17. (1) follows from Proposition 4.16 and Proposition 4.10.

Then it is enough to show that for any object V = (VC,W•, {F •
μ}, {F

•
μ}) in MHSg

C
,
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the object P g
C
(V ) = (VC, {Wμ

• }, {F •
μ}, {F

•
μ}) lies in OFg

C
. Here Wμ

• denotes W I,μ
• ,

which is independent of I. First we show that (Wn ∩ F l
μ)VC with ν-th filtrations is

a mixed C-Hodge structure for any μ �= ν and n, l ∈ Z by induction on n. This is
true for n sufficiently small. Assume (Wn−1 ∩ F l

μ)VC with ν-th filtrations is a mixed
C-Hodge structure. We have a short exact sequence of C-vector spaces

0 → (Wn−1 ∩ F l
μ)VC → (Wn ∩ F l

μ)VC → F l
μGrWn VC → 0. (68)

Since W•, F •
μ , W

ν
• , and F •

ν can be written as direct sums of Ap,q(V ), the sequence

(68) is strictly compatible with F •
ν ∩W ν

• . Similarly, since W•, F •
μ , W

ν
• , and F

•
ν can

be written as direct sums of Ap,q
{ν}(V ), the sequence (68) is strictly compatible with

F
•
ν ∩ W ν

• . Moreover F l
μGrWn VC with ν-th filtrations is a mixed C-Hodge structure

by Lemma 4.22 and Lemma 4.24. Hence (Wn ∩ F l
μ)VC with ν-th filtrations is also a

mixed C-Hodge structure by Lemma 4.26. Since WnVC = VC for n sufficiently large,
we see that F l

μVC with ν-th filtrations is again a mixed C-Hodge structure as desired.

The claims for Wμ
l VC and F

l

μVC may be proved in a similar fashion.

Example 4.28. We note that MHSg
C
is strictly smaller than M g

C
for any g > 1.

For example, consider the case when g = 2 and let VC := Ce0 ⊕ Ce−4 with the
filtrations defined by

WnVC :=

⎧⎪⎨⎪⎩
0 n ≤ −5,

Ce−4 n = −4, . . . ,−1,

VC n ≥ 0,

F p1

1 VC = F
p1

1 VC :=

⎧⎪⎨⎪⎩
VC p1 ≤ 0,

Ce−4 p1 = 1,

0 p1 ≥ 2,

F p2

2 VC :=

⎧⎪⎨⎪⎩
VC p2 ≤ −3,

C(e0 + ie−4) p2 = −2,−1, 0,

0 p2 ≥ 1,

and F
p2

2 VC :=

⎧⎪⎨⎪⎩
VC p2 ≤ −3,

C(e0 − ie−4) p2 = −2,−1, 0,

0 p2 ≥ 1.

Then one can show that V = (VC,W•, {F •
1 , F

•
2 }, {F

•
1, F

•
2}) defined as above is an

object in M 2
C
. However, since W ∅,1

0 VC = C(e0 + ie−4) and W
{2},1
0 VC = C(e0 − ie−4),

this V is not an object in MHS2C.

5. Mixed plectic R-Hodge structures and the calculation of extension
groups. Let G be the tannakian fundamental group of the category of mixed R-
Hodge structures MHSR, and for any integer g ≥ 0, consider the category RepR(Gg)
of finite representations of Gg. In this section, we consider the real version of the
theory discussed in the previous sections, and will calculate the extension groups in
the category RepR(Gg). In particular, we will define a functor Λ•, which associates to
a complex U• in RepR(Gg) a complex of R-vector spaces. We will prove in Theorem
5.27 that Λ•(U•) calculates the extension groups ExtmRep

R
(Gg)(R(0), U

•) of U• by R(0)
in RepR(Gg).
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5.1. Mixed plectic R-Hodge structures. Let g be an integer ≥ 0. In this
subsection, we first give an explicit description of the category RepR(Gg). We then
define the categories MHSg

R
of mixed g-plectic R-Hodge structures and OFg

R
of g-

orthogonal families of mixed R-Hodge structures.

Proposition 5.1. An object RepR(Gg) uniquely corresponds to a triple U :=
(UR, {Up,q}, {tμ}), where UR is a finite dimensional R-vector space, {Up,q} is a 2g-
grading of UC := UR ⊗R C by C-linear subspaces

UC =
⊕

p,q∈Zg

Up,q

such that Up,q = Uq,p for any p, q ∈ Zg, and tμ for μ = 1, . . . , g are C-linear
automorphisms of UC commutative with each other, satisfying tμ = t−1

μ and

(tμ − 1)(Up,q) ⊂
⊕

r,s∈Z
g

(rν ,sν)=(pν ,qν) for ν �=μ
(rμ,sμ)<(pμ,qμ)

Ur,s

for any p, q ∈ Zg. A morphism in RepR(Gg) uniquely corresponds to an R-linear
homomorphism of underlying R-vector spaces compatible with the 2g-gradings and
commutes with tμ.

Proof. Our assertion follows the proof of Corollary 3.11, noting that the com-
patibility of the structures for each μ corresponds to the fact that the action of each
component of G on the representation is commutative.

Example 5.2 (Tate object). The plectic Tate object in RepR(Gg) is given by
R(1μ) := (VR, {V p,q}, {tμ}), where VR := (2πi)R ⊂ C and the grading of VR⊗RC = C
is the one-dimensional C-vector space whose sole non-trivial index is at

p, q = (0, . . . ,−1, . . . , 0)

where −1 is at the μ-th component, and tμ is the identity map for μ = 1, . . . , g. For
any n ∈ Zg, we let

R(n) :=
g⊗

μ=1

R(1μ)
⊗nμ = R(11)

⊗n1 ⊗ · · · ⊗ R(1g)
⊗ng .

Definition 5.3 (orthogonal family of mixed R-Hodge structures). Let V =
(VR, {Wμ

• }, {F •
μ}) be a triple consisting of a finite dimensional R-vector space VR, a

family of finite ascending filtrations Wμ
• by R-linear subspaces on VR for μ = 1, . . . , g,

and a family of finite descending filtrations F •
μ by C-linear subspaces on VC := VR⊗RC

for μ = 1, . . . , g. We again denote by Wμ
• the filtration on VC defined by Wμ

n VC :=

Wμ
n VR ⊗R C. Let F

•
μ be the filtration on VC given by the complex conjugate of F •

μ .
Then V is called an g-orthogonal family of mixed R-Hodge structures if the quadruple
(VC, {Wμ

• }, {F •
μ}, {F

•
μ}) is an g-orthogonal family of mixed C-Hodge structures.

A morphism of g-orthogonal families of mixed R-Hodge structures is an R-linear
homomorphism of the underlying R-vector spaces compatible with Wμ

• and F •
μ .

We denote the category of g-orthogonal families of mixed R-Hodge structures by
OFg

R
.
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Definition 5.4 (mixed plectic R-Hodge structure). Let V = (VR,W•, {F •
μ}) be a

triple consisting of a finite dimensional R-vector space VR, a finite ascending filtration
W• by R-linear subspaces on VR, and a family of finite descending filtrations F •

μ by
C-linear subspaces on VC := VR ⊗R C for μ = 1, . . . , g. We again denote by W• the
filtration on VC defined by WnVC := WnVR⊗RC. Let F

•
μ the filtration on VC given by

the complex conjugate of F •
μ . Then V is called a mixed g-plectic R-Hodge structure

if the quadruple (VC,W•, {F •
μ}, {F

•
μ}) is a mixed g-plectic C-Hodge structure.

A morphism of mixed g-plectic R-Hodge structures is an R-linear homomorphism
of the underlying R-vector spaces compatible with W• and F •

μ .
We denote the category of mixed g-plectic R-Hodge structures by MHSg

R
.

A real structure on a C-vector space VC is an anti-linear involution σ : VC → VC.
Then one can regard an object in RepR(Gg) (resp. OFg

R
, MHSg

R
) as a pair of an object

in RepC(Gg
C
) (resp. OFg

C
, MHSg

C
) and a real structure, in the following sense.

Lemma 5.5.

(1) The category RepR(Gg) is naturally equivalent to the category ˜RepR(Gg) con-
sisting of pairs (U, σ), where U = (UC, {Up,q}, {tμ}) is an object in RepC(Gg

C
),

and σ is a real structure on UC satisfying σ(Up,q) = Uq,p for any p, q ∈ Zg

and σ ◦ tμ ◦ σ = t−1
μ for any μ = 1, . . . , g.

(2) The category OFg
R
is naturally equivalent to the category ÕFg

R
consisting of

pairs (V, σ), where V = (VC, {Wμ
• }, {F •

μ}, {F
•
μ}) is an object in OFg

C
, and σ

is a real structure on VC satisfying σ(Wμ
n VC) = Wμ

n VC and σ(F p
μVC) = F

p

μVC

for any μ = 1, . . . , g and n, p ∈ Z.

(3) The category MHSg
R
is naturally equivalent to the category M̃HSg

R
consisting

of pairs (V, σ), where V = (VC,W•, {F •
μ}, {F

•
μ}) is an object in MHSg

C
, and σ

is a real structure on VC satisfying σ(WnVC) = WnVC and σ(F p
μVC) = F

p

μVC

for any μ = 1, . . . , g and n, p ∈ Z.

Proof. The lemma immediately follows from the fact that a real structure σ
on VC uniquely corresponds to an R-linear subspace VR ⊂ VC such that the natural
homomorphism VR ⊗R C → VC is an isomorphism, by taking the fixed part of σ.

Let (V, σ) be an object in ÕFg
R
. Since each Wμ

• is stable under σ, it induces a

real structure Gr(σ) of GrW
1

• · · ·GrW
g

• VC.

Lemma 5.6. The associations

ϕ̃g
R
(U, σ) := (ϕg

C
(U), σ), ψ̃g

R
(V, σ) := (ψg

C
(V ),Gr(σ)),

T̃ g
R
(V, σ) := (T g

C
(V ), σ), P̃ g

R
(V, σ) := (P g

C
(V ), σ)

define functors

˜RepR(Gg)
ϕ̃g

R ��
ÕFg

R

ψ̃g
R

��
T̃ g
R ��

M̃HSg
R
,

P̃ g
R

��

which are equivalences of categories. Moreover T̃ g
R
and P̃ g

R
are isomorphisms of cate-

gories.

Proof. By using Theorem 4.19, one can check straightforwardly.
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By Lemma 5.5 and Lemma 5.6, we obtain the following theorem.

Theorem 5.7. There are equivalences of categories

RepR(Gg)
ϕg

R ��
OFg

R
ψg

R

��
T g
R ��

MHSg
R
,

P g
R

�� (69)

where the functors ϕg
R
, ψg

R
, T g

R
, and P g

R
are induced from the functors ϕ̃g

R
, ψ̃g

R
, T̃ g

R
,

and P̃ g
R
respectively. Moreover T g

R
and P g

R
are isomorphisms of categories.

We define the tensor products and internal homomorphisms in OFg
R
and MHSg

R

in a similar fashion to OFg
C
and MHSg

C
. Then one can see that they are compatible

with tensor products and internal homomorphism in RepR(Gg) via the equivalences
(69). In particular we have the following corollary.

Corollary 5.8. The category MHSg
R

is a neutral tannakian category over R
with the fiber functor

ωg
R
: MHSg

R
→ VecR (70)

associating to V = (VR,W•, {F •
μ}) the R-vector space

GrW
1

• · · ·GrW
g

• VR :=
⊕

n1,...,ng∈Z

GrW
1

n1
· · ·GrW

g

ng
VR.

5.2. Representations of products of affine group schemes. In this sub-
section, we will prove Theorem 5.10 concerning a property of the representations of
products of affine group schemes, and as a corollary, we show in Corollary 5.15 that
any object in RepR(Gg) is isomorphic to a subquotient of a g-fold exterior product of
objects in RepR(G). This result will be used later in the proof of Theorem 5.27.

Let H be an affine group scheme over a field k. We let A := k(H) be the affine
coordinate ring of H so that H = SpecA. Then A is a commutative k-algebra, and
the group scheme structure on H is equivalent to the comultiplication, counit, and
inversion maps

Δ : A → A⊗k A, ε : A → k, ι : A → A

which are homomorphisms of k-algebras satisfying

(id⊗Δ) ◦Δ = (Δ⊗ id)⊗Δ, (ε⊗ id) ◦Δ = (id⊗ ε) ◦Δ = id,

m ◦ (ι⊗ id) ◦Δ = m ◦ (id⊗ ι) ◦Δ = i ◦ ε,

where i : k → A is the inclusion giving the k-algebra structure of A and m : A ⊗k

A → A is the multiplication. A commutative k-algebra A with the above additional
structures is called a commutative k-Hopf algebra (or a k-bialgebra in [DM]).

In what follows, all unmarked tensor products ⊗ are tensor products ⊗k over
the field k. For a k-vector space V , an A-comodule structure on V is a k-linear
homomorphism φ : V → V ⊗A such that the composite

V
φ−→ V ⊗A

id⊗ε−−−→ V ⊗ k ∼= V
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is the identity map and

(id⊗Δ) ◦ φ = (φ⊗ id) ◦ φ.
By [DM, Proposition 2.2], there exists a one-to-one correspondence between A-
comodule structures on V and k-linear representations of H on V . In what follows, a
representation will always signify a k-linear representation on a k-vector space.

For the special case U := A with the comodule structure

Δ : U → U ⊗A

induced from the multiplication of H, the corresponding representation of H on U is
called the regular representation of H. The regular representation U of H is faithful;
in other words, Ker(H → GLU ) = {1}.

Consider affine group schemes H1 and H2 over a field k, and let A1 := k(H1) and
A2 := k(H2) be the affine coordinate rings of H1 and H2. For representations U1 and
U2 of H1 and H2, we denote by U1�U2 the exterior product of U1 and U2, which is a
representation of H1 ×H2 := Spec (A1 ⊗A2) corresponding to the A1 ⊗A2-comodule
structure

U1 ⊗ U2
φ1⊗φ2−−−−→ (U1 ⊗A1)⊗ (U2 ⊗A2) ∼= (U1 ⊗ U2)⊗ (A1 ⊗A2)

on U1 ⊗ U2. Then we have the following.

Lemma 5.9. Let H1 and H2 be affine group schemes over k, and suppose U1

and U2 are regular representations of H1 and H2. Then U := U1 � U2 is the regular
representation of H1 ×H2.

Proof. Let A1 := k(H1) and A2 := k(H2). Then the multiplication of H1 × H2

corresponds to the map of k-algebras

A1 ⊗A2
Δ1⊗Δ2−−−−−→ (A1 ⊗A1)⊗ (A2 ⊗A2) ∼= (A1 ⊗A2)⊗ (A1 ⊗A2).

If we let U1 := A1 and U2 := A2, then the above map becomes

U1 ⊗ U2
Δ1⊗Δ2−−−−−→ (U1 ⊗A1)⊗ (U2 ⊗A2) ∼= (U1 ⊗ U2)⊗ (A1 ⊗A2),

which by the definition of the exterior product is exactly the A1 ⊗ A2-comodule
structure on U1 ⊗ U2 giving the exterior product U1 � U2.

In what follows, a finite representation of H will signify a k-linear representation
of H on a finite dimensional k-vector space. Let Repk(H) be the category of finite
representations of H. The purpose of this subsection is to prove the following result.

Theorem 5.10. For μ = 1, . . . , g, let Hμ be an affine group scheme over k. If V
is a finite representation of H1 × · · · × Hg, then V is isomorphic to a subquotient of
an object of the form V1 � · · ·� Vg for some finite representations Vμ of Hμ.

We say that an affine group scheme H over k is an algebraic group, if the affine
coordinate ring A := k(H) is finitely generated as an algebra over k. We will first prove
Proposition 5.13, which is a particular case of Theorem 5.10 when Hμ are algebraic
groups. The following result characterizes algebraic groups.

Proposition 5.11 ([DM] Corollary 2.5). Suppose H is an affine group scheme.
Then H is an algebraic group if and only if there exists a finite faithful representation
of H.
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We say that a finite representation W of H is a tensor generator of Repk(H), if
every object V in Repk(H) is isomorphic to a subquotient of PV (W,W∨) for some
polynomial PV (X,Y ) ∈ N[X,Y ]. Note that if PV (X,Y ) =

∑
m,n∈N

amnX
mY n ∈

N[X,Y ], then

PV (W,W∨) :=
⊕

m,n≥0

(W⊗m ⊗W∨⊗n)⊕amn .

Proposition 5.13 will be proved using the following result.

Proposition 5.12 ([DM] Proposition 2.20(b)). Suppose H is an algebraic group.
If W is a finite faithful representation of H, then W is a tensor generator of Repk(H).
Conversely, any tensor generator of Repk(H) is a finite faithful representation of H.

Proposition 5.13. For μ = 1, . . . , g, let Hμ be an affine algebraic group over k.
If V is a finite representation of H1×· · ·×Hg, then V is isomorphic to a subquotient
of an object of the form V1 � · · ·� Vg for some finite representations Vμ of Hμ.

Proof. Let Uμ be the regular representations of Hμ. Then by Lemma 5.9, U :=
U1 � · · ·�Ug is the regular representation of H := H1 × · · · ×Hg. By [DM, Corollary
2.4], U is the directed union U =

⋃
α Uα of finite subrepresentations Uα of H. Since

U is regular and is in particular faithful, we have

Ker(H → GLU ) =
⋂
α

Ker(H → GLUα) = {1}.

Since H is Noetherian as a topological space, we have Ker(H → GLUα) = {1} for
some α. Hence Uα is a finite dimensional faithful representation of H. Let {w(i)}i be
a k-basis of Uα. Since Uα ⊂ U = U1 � · · · � Ug, we may write w(i) as a finite sum

w(i) =
∑

j aijw
(i,j)
1 ⊗ · · · ⊗ w

(i,j)
g for aij ∈ k and w

(i,j)
μ ∈ Uμ. By [DM, Proposition

2.3], there exists a finite representation Wμ ⊂ Uμ of Hμ containing {w(i,j)
μ }i,j . Then

W := W1 � · · ·�Wg is a finite representation of H, which is faithful since it contains
Uα by construction. Hence by Proposition 5.12, W is a tensor generator of Repk(H).
By definition of the tensor generator, there exists PV (X,Y ) ∈ N[X,Y ] such that V is
isomorphic to a subquotient of PV (W,W∨). Since

PV (W,W∨) = PV (W1�· · ·�Wg,W
∨
1 �· · ·�W∨

g ) ⊂ PV (W1,W
∨
1 )�· · ·�PV (Wg,W

∨
g ),

if we let Vμ := PV (Wμ,W
∨
μ ), then we see that V is isomorphic to a subquotient of

V1 � · · ·� Vg as desired.

The following result will be used to reduce the proof of Theorem 5.10 to the case
of algebraic groups.

Lemma 5.14 ([DM] Proposition 2.6). Let A be a commutative k-Hopf algebra.
Every finite subset of A is contained in a commutative k-Hopf subalgebra that is finitely
generated as a commutative k-algebra.

Proof of Theorem 5.10. Suppose V is a finite representation of H1 × · · · × Hg.
Let Aμ := k(Hμ) for μ = 1, . . . , g. Then the representation V is given by some
A1 ⊗ · · · ⊗Ag-comodule structure

φ : V → V ⊗ (A1 ⊗ · · · ⊗Ag) (71)
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on V . Let {v(i)}i be a k-basis of V . Then φ(v(i)) may be written as a finite sum

φ(v(i)) =
∑
j

v(j) ⊗
(∑

k

a
(i,j,k)
1 ⊗ · · · ⊗ a(i,j,k)g

)

for some a
(i,j,k)
μ ∈ Aμ. By Lemma 5.14, there exists a Hopf subalgebra A′

μ of Aμ con-

taining {a(i,j,k)μ }i,j,k which is finitely generated as a k-algebra. Then H′
μ := SpecA′

μ

is an algebraic group over k which is a quotient group scheme of Hμ. By construction,
the comodule structure (71) on V induces the comodule structure

φ : V → V ⊗ (A′
1 ⊗ · · · ⊗A′

g),

hence V is a representation of the algebraic group H′
1 × · · · × H′

g. By Proposition
5.13, V is isomorphic to a subquotient of an object of the form V1 � · · ·�Vg for some
finite representations Vμ of H′

μ. Since H′
μ is a quotient of Hμ, the representation Vμ

may also be regarded as representation of Hμ. Hence V1, . . . , Vg satisfy the desired
property of our assertion.

We now return to the case of mixed R-Hodge structures. Let G be the tannakian
fundamental group of the category of mixed R-Hodge structures MHSR, and for any
integer g ≥ 0, consider the category RepR(Gg) of finite representations of Gg. Note
that the category RepR(G0) is the category VecR of finite dimensional R-vector spaces.
For g > 0, the category RepR(Gg) is equivalent to the g-fold Deligne tensor product
of RepR(G) over R. Recall that the Deligne tensor product A �B of k-linear abelian
categories A and B over a field k is a k-linear abelian category with a k-bilinear
functor

� : A × B → A � B

right exact in each variable, characterized by the property that for any k-linear abelian
category C , the induced functor

Rex[A � B,C ] → Rexbil[A × B,C ]

gives an equivalence of categories, where Rex[A �B,C ] denotes the category of right
exact k-linear functors from A �B to C , and Rexbil[A ×B,C ] denotes the category
of k-bilinear functors A × B → C which are right exact in each variable.

Since MHSR is a tannakian category, it satisfies condition [D2, (2.12.1)]. Hence
by [D2, Proposition 5.13 (i)], the Deligne tensor products of MHSR over R exist. A
group scheme may be regarded as a groupoid whose class of objects consists of a
single element, hence is transitive as a groupoid. Then by [D2, 5.18], there exists a
natural equivalence of categories RepR(Gg) ∼= RepR(G) � · · · � RepR(G), which gives
the equivalence of categories

RepR(Gg) ∼= RepR(G)� · · ·� RepR(G) ∼= MHSR � · · ·�MHSR.

Hence as a corollary of Theorem 5.10, we have the following.

Corollary 5.15. Let V be an object in RepR(Gg). Then V is isomorphic to a
subquotient of V1 � · · ·� Vg for some objects V1, . . . , Vg in RepR(G).
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5.3. The functor Λ•. In this subsection, we will define the functor Λ•. In what
follows, for any abelian category A , we denote by C b(A ) the category of bounded
complexes in A . We denote its homotopy and derived categories by K b(A ) and
Db(A ).

Let U = (UR, {Up,q}, {tμ}) be an object in RepR(Gg). For each integer μ =
1, . . . , g, we let

A0
μ(U) :=

⊕
p,q∈Z

g

pμ=qμ=0

Up,q, A1
μ(U) :=

⊕
p,q∈Z

g

pμ,qμ<0

Up,q. (72)

Definition 5.16. For any non-negative integer μ ≤ g, note that we have a
natural decomposition Gg = Gμ × Gg−μ of pro-algebraic groups. By taking the fixed
part with respect to the action of Gg−μ, we have a functor

Γμ : RepR(Gg) → RepR(Gμ).

On the level of objects, this functor may be described by associating to any object U
in RepR(Gg) the R-vector space

Γμ(U)R :=
{
u ∈ A0

μ+1(U) ∩ · · · ∩ A0
g(U) | u = u, (tν − 1)u = 0 (μ < ν ≤ g)

}
with the induced 2μ-grading and C-linear automorphism tν for ν = 1, . . . , μ, giving
an object in RepR(Gμ).

The functor Γμ : RepR(Gg) → RepR(Gμ) defines a functor

Γμ : C b(RepR(Gg)) → C b(RepR(Gμ))

from the category of complexes of RepR(Gg) to that of RepR(Gμ). Let T • and U• be
complexes in C b(RepR(Gg)). We let Hom•(T •, U•) be the complex

Homn(T •, U•) :=
∏
i∈Z

Hom(T i, U i+n)

given by the internal homomorphisms in RepR(Gg), whose differential is defined by

dn({f i}) := {di+1
U ◦ f i − (−1)nf i+1 ◦ diT }

for any {f i} ∈ Homn(T •, U•)R. Then we have the following.

Lemma 5.17. For any m ∈ Z, we have

Hm(Γ0(Hom•(T •, U•))) = HomK b(Rep
R
(Gg))(T

•, U•[m]).

Proof. An element f ∈ Homm(T •, U•)R =
∏

n∈Z
Hom(Tn, Um+n)R defines an

R-linear homomorphism f : T •
R
→ U•

R
[m] if and only if f is an m-cocycle. Such an f

preserves the grading if and only if f ∈ Homm(T •, U•)0,0, and commutes with tμ if
and only if tμ(f) = f in Homm(T •, U•)C. Finally, the map of complexes induced by
f is homotopic to zero if and only if f is a coboundary.

In order to study the functor Γ0, we first define a series of exact functors Am1,...,mg

as follows.
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Definition 5.18. Let (m1, . . . ,mg) ∈ {0, 1}g. We define the functor Am1,...,mg :
RepR(Gg) → VecR by associating to any U ∈ RepR(Gg) the R-vector space

Am1,...,mg (U) :=
{
v ∈ Am1

1 (U) ∩ · · · ∩ Amg
g (U) | (−t1)

m1 · · · (−tg)
mgv = v

}
,

where Amμ
μ (U) are defined as in (72).

Lemma 5.19. The functors Am1,...,mg are exact.

Proof. By definition, the functor Am1
1 ∩ · · · ∩ Amg

g is exact, hence the functor
Am1,...,mg is left exact. Suppose we have a surjective map T → U in RepR(Gg). For
v ∈ Am1,...,mg (U) ⊂ Am1

1 (U) ∩ · · · ∩ Amg
g (U), take a lift u ∈ Am1

1 (T ) ∩ · · · ∩ Amg
g (T ).

Then

u′ := (u+ (−t1)
m1 · · · (−tg)

mgu)/2

is again a lift of v satisfying u′ ∈ Am1,...,mg (T ).

Suppose U is an object in RepR(Gg). Then A•,...,•(U) gives a g-tuple complex,
with the μ-th differential given by

∂
m1,...,mμ−1,0,mμ+1,...,mg
μ : Am1,...,mμ−1,0,mμ+1,...,mg (U)

tμ−1 �� Am1,...,mμ−1,1,mμ+1,...,mg (U).

Example 5.20. For g = 2, the double complex A•,•(U) for U in RepR(G2) is
given by

A0,0(U)

t2−1

��

t1−1 �� A1,0(U)

t2−1

��
A0,1(U)

t1−1 �� A1,1(U).

If U• is a complex in C b(RepR(Gg)), then A•,...,•(U•) becomes a (g + 1)-tuple
complex, with the (g + 1)-st differential being the differential induced from that of
U•. Let h be an integer > 0. For any h-tuple complex U•,...,•, we define the total
complex Tot•(U•,...,•) to be the complex whose m-th term is given by

Totm(U•,...,•) :=
⊕

(m1,...,mh)∈Z
h

m1+···+mh=m

Um1,...,mh

and whose m-th differential dm : Totm(U•,...,•) → Totm+1(U•,...,•) is given by

dm :=
∑

(m1,...,mh)∈Z
h

m1+···+mh=m

∂m1
1 + (−1)m1∂m2

2 + · · ·+ (−1)m1+···+mh−1∂mh

h ,

where ∂
mμ
μ is the partial differential on Um1,...,mh .

Definition 5.21. We define the functor Λ• : C b (RepR(Gg)) → C b (VecR) by

Λ• (U•) := Tot• (A•,...,• (U•)) .
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Lemma 5.22. If U• → V • is a quasi-isomorphism in C b(RepR(Gg)), then
Λ•(U•) → Λ•(V •) is a quasi-isomorphism of complexes of R-vector spaces.

Proof. This follows from Lemma 5.19, which states that Am1,...,mg are exact
functors.

We will use the functor Λ• to calculate the functor Γ0. We will define interme-
diate functors B and C which will be used to relate the functors Λ• and Γ0. Let
(m1, . . . ,mg) ∈ {0, 1}g. For μ = 0, . . . , g, we inductively define the functors

Bm1,...,mμ
μ : RepR(Gg) → VecR, Cm1,...,mμ

μ : RepR(Gg) → VecR

as follows. For μ = g, we let Bm1,...,mg
g (U) := Am1,...,mg (U) and Cm1,...,mg

g (U) := 0.
For an integer μ ≥ 0, if Bm1,...,mμ+1

μ+1 is defined, we define the functors for μ by

Bm1,...,mμ
μ (U) := Ker

(
Bm1,...,mμ,0
μ+1 (U)

tμ+1−1−−−−−→ Bm1,...,mμ,1
μ+1 (U)

)
and

Cm1,...,mμ
μ (U) := Coker

(
Bm1,...,mμ,0
μ+1 (U)

tμ+1−1−−−−−→ Bm1,...,mμ,1
μ+1 (U)

)
.

Note that we have

Γ0(U) = B0(U) := Ker
(
B0
1(U)

t1−1−−−→ B1
1(U)

)
. (73)

Example 5.23. The R-vector spaces Bm1,...,mμ
μ (U) and Cm1,...,mμ

μ (U) for g = 2
fit into the following diagram, whose horizontal and vertical sequences are exact.

0

��

0

��
0 �� Γ0(U) �� B0

1(U)

��

t1−1 �� B1
1(U)

��

�� C0(U) �� 0

B0,0
2 (U)

t2−1

��

t1−1 �� B1,0
2 (U)

t2−1

��
B0,1
2 (U)

��

t1−1 �� B1,1
2 (U)

��
C0
1(U)

��

t1−1 �� C1
1(U)

��
0 0.

Note that Bm1,m2

2 (U) = Am1,m2(U) in this case.

Again, if U• is a complex in C b(RepR(Gg)), then B•,...,•
μ (U•) and C•,...,•

μ (U•)
becomes (μ+1)-tuple complexes with the (μ+1)-st differential being the differential
induced from that of U•. We have an exact sequence of complexes

0 �� Tot•(B•,...,•
μ (U•)) �� Tot•(B•,...,•

μ+1 (U•)) �� Tot•(C•,...,•μ (U•))[−1] �� 0.

(74)
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Note that we have

Γ0(U
•) = Tot•(B0(U

•)), Λ•(U•) = Tot•(B•,...,•
g (U•)) (75)

by (73), the definition of the functor B•,...,•
g , and Definition 5.21.

5.4. The vanishing of classes. The main goal of this subsection is to prove
Proposition 5.24.

Proposition 5.24. Let μ = 0, . . . , g and m1, . . . ,mμ ∈ {0, 1}. For any U• ∈
C b(RepR(Gg)), we have

lim
s:U•→V •

Hm(Cm1,...,mμ
μ (V •)) = 0

for any m ∈ Z, where the direct limit is over quasi-isomorphisms s : U• → V •.

We will give the proof of Proposition 5.24 at the end of this subsection. The main
idea of the proof is to reduce the statement to Lemma 5.26, which is the case when
U is a single object in RepR(Gg) given as a quotient of an exterior product T � T ′ of
objects T and T ′ in RepR(Gμ). In order to prove Lemma 5.26, we will first prove that
the functor Am1,...,mμ preserves exterior products.

Lemma 5.25. Let T and T ′ be objects in RepR(Gμ) and RepR(G) respectively.
The natural injection

Am1,...,mμ(T )⊗R Amμ+1(T ′) → Am1,...,mμ+1(T � T ′)

is an isomorphism.

Proof. Let w :=
∑N

k=1 uk ⊗ vk ∈ Am1,...,mμ+1(T � T ′) for some uk ∈ (Am1
1 ∩ · · · ∩

Amμ
μ )(T ) and vk ∈ Amμ+1

1 (T ′). Then

u′
k := (uk + (−t1)

m1 · · · (−tμ)
mμuk)/2 and u′′

k := i(uk − (−t1)
m1 · · · (−tμ)

mμuk)/2

are elements in Am1,...,mμ(T ), and

v′k := (vk + (−t)mμ+1vk)/2 and v′′k := i(vk − (−t)mμ+1vk)/2

are elements in Amμ+1(T ′). Then we see that

w = (w + (−t1)
m1 · · · (−tμ+1)

mμ+1w)/2 =

N∑
k=1

(u′
k ⊗ v′k − u′′

k ⊗ v′′k )

is an element in Am1,...,mμ(T )⊗R Amμ+1(T ′) as desired.

We will now prove Lemma 5.26.

Lemma 5.26. Let R be an object in RepR(Gμ+1). For any ξ ∈ Cm1,...,mμ
μ (R), there

exists an injection R ↪→ S in RepR(Gμ+1) such that the image of ξ in Cm1,...,mμ
μ (S) is

zero.

Proof. By Theorem 5.10, we can reduce to the case when R = (T � T ′)/N ,
where T , T ′ are objects respectively in RepR(Gμ), RepR(G) and N is a subobject of

T � T ′. We let ξ̃ be an element of Bm1,...,mμ,1
μ+1 (R) = Am1,...,mμ,1(R) representing ξ.

By definition of the functor Cm1,...,mμ
μ , it is sufficient to show that there exists an
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injection R ↪→ S in RepR(Gμ+1) such that ξ̃ is in the image of tμ+1 − 1 on S. Since
the functor Am1,...,mμ,1 is exact, we have a surjection

Am1,...,mμ(T )⊗R A1(T ′) ∼= Am1,...,mμ,1(T � T ′) → Am1,...,mμ,1(R), (76)

where the first isomorphism is given by Lemma 5.25. Hence there exists an element

N∑
k=1

uk ⊗ u′
k ∈ Am1,...,mμ(T )⊗R A1(T ′) ⊂ TC ⊗C T ′

C

mapping by (76) to ξ̃. We let S = (SR, {Sp,q}, {tμ}) be an object in RepR(Gμ+1)
given as an extension

0 −−−−→ R −−−−→ S −−−−→ ⊕N
k=1 T � R(0) −−−−→ 0,

whose underlying R-vector space is the direct sum

SR := RR ⊕
N⊕

k=1

(T � R(0))R,

the 2(μ+ 1)-grading and the C-linear automorphisms t1, . . . , tμ on SC are also given
by the direct sum, and the C-linear automorphism tμ+1 is given by tμ+1 := id ⊗ t
when restricted to RC and

tμ+1(w1, . . . , wN ) := (w1, . . . , wN ) +

N∑
k=1

[wk ⊗ u′
k]

for any (w1, . . . , wN ) in
⊕N

k=1(T � R(0))C =
⊕N

k=1 TC, where
∑N

k=1[wk ⊗ u′
k] is the

image of
∑N

k=1 wk ⊗u′
k by the surjection (T �T ′)C → RC. We show that tμ+1 = t−1

μ+1

from the fact that t(u′
k) = −u′

k since u′
k ∈ A1(T ′). Then S defined as above is an

object in RepR(Gμ+1). If we let

η := (u1, . . . , uN ) ∈
N⊕

k=1

(T � R(0))C ⊂ SC,

then η ∈ Am1,...,mμ,0(S) by construction, and we have

(tμ+1 − 1)η =

N∑
k=1

[uk ⊗ u′
k] = ξ̃.

This shows that the class of ξ in Cm1,...,mμ
μ (S) is zero as desired.

Suppose U is an object in RepR(Gμ+1). Then by Remark 2.16, we may view
U as an object in RepR(Gg). Since tμ+2, . . . , tg for U is the identity map, we have
Bm1,...,mμ+1

μ+1 (U) = Am1,...,mμ+1(U), hence

Cm1,...,mμ
μ (U) = Coker

(Am1,...,mμ,0(U)
tμ+1−1−−−−−→ Am1,...,mμ,1(U)

)
in this case. Now we are ready to prove Proposition 5.24.
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Proof of Proposition 5.24. It is sufficient to show that for any U• ∈ C b(RepR(Gg))
and m-cocycle ξ ∈ Cm1,...,mμ

μ (Um), there exists a quasi-isomorphism s : U• → V • such
that s(ξ) is zero in Cm1,...,mμ

μ (V m). Let R := Γμ+1(U
m), which is a mixed (μ + 1)-

plectic R-Hodge structure of Definition 5.16. Then by definition, we have

Bm1,...,mμ+1

μ+1 (Um) = Am1,...,mμ+1(R),

which shows that

Cm1,...,mμ
μ (Um) = Cm1,...,mμ

μ (R).

By Lemma 5.26, there exists an injection ι : R ↪→ S in RepR(Gμ+1) such that the
image of ξ in Cm1,...,mμ

μ (S) is zero, which we also view as an injection in RepR(Gg).
Then we have a commutative diagram

R � � ι ��� �

r

��

S� �

��
Um � � �� (Um ⊕ S)/R

in RepR(Gg), where r is the natural inclusion and the quotient (Um⊕S)/R is taken by
the injection (r,−ι) : R ↪→ Um⊕S. Note that the image of ξ in Cm1,...,mμ

μ ((Um⊕S)/R)
is zero. We let V • be the complex obtained from U• by replacing Um by (Um⊕S)/R
and Um+1 by (Um+1 ⊕ S)/R, with the differential induced by dmU ⊕ id : Um ⊕ S →
Um+1 ⊕ S. Now we have an exact sequence of complexes

�� �� ��
0 �� 0

��

�� Um−1

(d,0)

��

id �� Um−1

��

�� 0

0 �� R

id

��

(r,−ι) �� Um ⊕ S ��

d⊕id

��

(Um ⊕ S)/R

��

�� 0

0 �� R

��

(r,−ι) �� Um+1 ⊕ S

d⊕0

��

�� (Um+1 ⊕ S)/R

��

�� 0

0 �� 0

��

�� Um+2

��

id �� Um+2

��

�� 0

,

in which the left vertical complex is acyclic and the middle vertical complex is quasi-
isomorphic to U•. Hence the right vertical complex V • is quasi-isomorphic to U• with
respect to the natural inclusion U• ↪→ V •. Then the complex V • satisfies the desired
assertion.

5.5. The calculation of the extension groups. The purpose of this subsec-
tion is to prove Theorem 5.27, which calculates the extension groups in RepR(Gg) in
terms of the functor Λ•.
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Theorem 5.27. For any object U• in C b (RepR(Gg)) and m ∈ Z, there exists a
canonical isomorphism

ExtmRep
R
(Gg) (R(0), U

•) → Hm (Λ• (U•)) .

Proof. By (74), we have a distinguished triangle

Tot•(B•,...,•
μ (U•)) �� Tot•(B•,...,•

μ+1 (U•)) �� Tot•
(C•,...,•

μ (U•)
)
[−1]

in K b (RepR(Gg)) for μ = 0, . . . , g − 1. By Proposition 5.24 we have

lim−→
U•→V •

Hn
(
Tot•

(C•...•
μ (V •)

))
= 0,

where the direct limit is over quasi-isomorphisms s : U• → V •. Hence we have an
isomorphism

lim−→
U•→V •

Hm(Tot•(B•,...,•
μ (V •)))

∼= �� lim−→
U•→V •

Hm(Tot•(B•,...,•
μ+1 (V •))),

since direct limit preserves exactness. By (75), we have by induction an isomorphism

lim−→
U•→V •

Hm(Γ0(V
•))

∼= �� lim−→
U•→V •

Hm(Λ•(V •)). (77)

By Lemma 5.22, the map

Hm (Λ• (U•)) �� lim−→
U•→V •

Hm (Λ• (V •)) (78)

is an isomorphism. On the other hand, we have

ExtmRep
R
(Gg) (R(0), U

•) := HomDb(Rep
R
(Gg)) (R(0), U

•[m])

= lim−→
U•→V •

HomK b(Rep
R
(Gg)) (R(0), V

•[m]) ∼= lim−→
U•→V •

Hm (Γ0(V
•)) , (79)

where the last isomorphism is Lemma 5.17. Hence the composition of isomorphisms
(77), (78), and (79) gives our assertion.

Example 5.28. Let n ∈ Zg. When R(n) is the plectic Tate object of Example
5.2, then we have by (72)

A0
μ(R(n)) =

{
0 nμ �= 0,

R nμ = 0,
A1

μ(R(n)) =

{
0 nμ ≤ 0,

R nμ > 0.

In particular, if n = (n, . . . , n) for some n ∈ Z, then we have

Am(R(n)) =

⎧⎪⎨⎪⎩
R n = 0, m = (0, . . . , 0),

(2πi)ngR n > 0, m = (1, . . . , 1),

0 otherwise.
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Then all of the differentials of the complex A•,...,•(R(n)) are zero maps, hence Theo-
rem 5.27 shows that we have

Ext0Rep
R
(Gg)(R(0),R(n)) =

{
R n = 0,

0 otherwise,

ExtgRep
R
(Gg)(R(0),R(n)) =

{
(2πi)ngR n > 0,

0 otherwise,

and ExtmRep
R
(Gg)(R(0),R(n)) = 0 for m �= 0, g.

Corollary 5.29. For an object U• in C b (RepR(Gg)), there exists a spectral
sequence

Em,n
2 = ExtmRep

R
(Gg) (R(0), H

n (U•)) ⇒ Extm+n
Rep

R
(Gg) (R(0), U

•) , (80)

which degenerates at Eg+1.

Proof. Let Ind(RepR(Gg)) be the ind-category of RepR(Gg) (See [KS] Definition
6.1.1). By [St] Theorem 2.2, Ind(RepR(Gg)) is an abelian category with enough in-
jectives and the canonical fully faithful functor RepR(Gg) → Ind(RepR(Gg)) is exact,
since RepR(Gg) is essentially small. Then for an object U• in C b (RepR(Gg)), we have
a spectral sequence

Em,n
1 = ExtmInd(Rep

R
(Gg)) (R(0), H

n (U•) [−n]) ⇒ Extm+n
Ind(Rep

R
(Gg)) (R(0), U

•)

associated to the canonical filtration on U• (See [D1] 1.4.5 and 1.4.6). By renumbering
this gives

Em,n
2 = ExtmInd(Rep

R
(Gg)) (R(0), H

n (U•)) ⇒ Extm+n
Ind(Rep

R
(Gg)) (R(0), U

•) .

Since RepR(Gg) is noetherian, Db (RepR(Gg)) → Db (Ind(RepR(Gg))) is fully faithful
by [H2] Proposition 2.2. Hence, when U• is lying in C b (RepR(Gg)) we obtain the
spectral sequence (80). By Theorem 5.27 we have ExtmRep

R
(Gg) (R(0), H

n (U•)) = 0
for m > g, hence (80) degenerates at Eg+1.

Corollary 5.30. Let U1, . . . , Ug be objects in RepR(G). Then there exists a
canonical isomorphism⊕

(m1,...,mg)∈Z
g

m1+···+mg=m

⊗
1≤μ≤g

Ext
mμ

Rep
R
(G) (R(0), Uμ) → ExtmRep

R
(Gg) (R(0), U1 � · · ·� Ug) ,

for each m ∈ Z. In particular, we have a canonical isomorphism⊗
1≤μ≤g

Ext1Rep
R
(G) (R(0), Uμ) → ExtgRep

R
(Gg) (R(0), U1 � · · ·� Ug) .

Proof. By Lemma 5.25 we have

Am1,...,mg (U1 � · · ·� Ug) = Am1 (U1)⊗R · · · ⊗R Amg (Ug) .

Since every R-module is flat, we have an isomorphism. This proves our assertion.
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