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CATEGORY OF MIXED PLECTIC HODGE STRUCTURES*

KENICHI BANNAIT#§ KEI HAGIHARAS SHINICHI KOBAYASHIY, KAZUKI YAMADA®,
SHUJI YAMAMOTO'#8, AND SEIDAI YASUDAIIS

Abstract. The purpose of this article is to investigate the properties of the category of mixed
plectic Hodge structures defined by Nekovar and Scholl [NS1]. We give an equivalent description
of mixed plectic Hodge structures in terms of the weight and partial Hodge filtrations. We also
construct an explicit complex calculating the extension groups in this category.
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1. Introduction. Let g be an integer > 0. In a very insightful article [NS1],
Nekovai and Scholl introduced the category of mized g-plectic R-Hodge structures,
which is a generalization of the category MHSR of mixed R-Hodge structures originally
defined by Deligne [D1]. If we let G be the tannakian fundamental group of MHSg,
then the category of mixed g-plectic R-Hodge structures was defined in [NS1, §16] to
be the category Repg(GY) of finite R-representations of the pro-algebraic group G9.
The purpose of this article is to investigate some properties of the category Repy(G9).
In particular we give a description of objects in Repp(G7) in terms of the weight and
partial Hodge filtrations. We then give an explicit complex calculating the extension
groups in this category. This article arose as an attempt by the authors to understand
the beautiful theory proposed by Nekovar and Scholl.

The detailed content of this article is as follows. We will mainly deal with the
complex case, and will return to the real case at the end of the article. In §2, we
review the properties of mixed C-Hodge structures, and will review the construction
of the tannakian fundamental group Ge¢ of the category of mixed C-Hodge structures
MHSc. We will then give in Proposition 2.14 the following explicit description of
objects in the category Repe(GL):

PROPOSITION 1.1 (=Proposition 2.14). An object in Repg(GE) corresponds to a
triple

U= (UC7 {Up’q}a {t,u})7
where Ug is a finite dimensional C-vector space, {UP?} is a 2g-grading of Uc by
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C-linear subspaces

U(c: @ Up’q,

P,gELI

and t, for p = 1,...,g are C-linear automorphisms of Uc commutative with each
other, satisfying

(tu _ 1)(Up,q) C @ Urs
r,8€Z9
(rv,80)=(puv,quv) for v#pu
(russu) <(Pp>ap)
for any p = (p1,...,P9),9 = (q1,...,q9) € Z9, where the direct sum is over the
indices T = (11,...,7¢),8 = (S1,...,84) € Z9 satisfying v, = p,, 8, = q, for v # 1
and vy, < pu, Sp < Qu-

Let V = (Vo {W'} {F2}, {F;}) be a quadruple consisting of a finite dimensional
C-vector space Vg, a family of finite ascending filtrations W¢' for p = 1,...,g by C-
linear subspaces on V¢, and families of finite descending filtrations F}; and F; for
uw=1,...,g by C-linear subspaces on V. We say that V as above is a g-orthogonal
family of mized C-Hodge structures, if for any u, the quadruple (Ve, W', FJ,F;) is a
mixed C-Hodge structure, and for any p and v # p, the C-linear subspaces WV,
Fi've, FTVC with the weight and Hodge filtrations induced from WY, F;, F; are
mixed C-Hodge structures. We call the filtrations {W3'} the partial weight filtrations
and the filtrations {F;}{F;} the partial Hodge filtrations of V.

We denote by OF{ the category whose objects are g-orthogonal family of mixed
C-Hodge structures. A morphism in OF% is a C-linear homomorphism of underlying
C-vector spaces compatible with the partial weight and Hodge filtrations. The main
result of §3 is the following:

PRrROPOSITION 1.2 (=Corollary 3.11). For g > 0, we have an equivalence of
categories

Repe(G2) = OFY.

While writing this paper, Nekovar and Scholl released a new preprint [NS2], which
contains a result similar to Proposition 1.2.

Suppose V' = (Ve, {Wa'}, {F }, {F;}) is a g-orthogonal family of mixed C-Hodge
structures. We define the total weight filtration We of V' to be the finite ascending
filtration by C-linear subspaces of V¢ given by

WoVe= > (W, n---nWI)Ve.

n1+~~~+ng:n

The purpose of §4 is to give a characterization of a quadruple (Vc, We, {F}}, {F;})
which is constructed from OF{. In particular, we will give in Definition 4.18 the
definition of the category of mixed g-plectic C-Hodge structures MHS., whose objects

are the quadruple (V¢, We, {F}}, {F;}) satisfying certain conditions. We will then
show in Theorem 4.19 that we have an equivalence of categories as follows:

THEOREM 1.3 (=Theorem 4.19). We have an equivalence of categories

OFZ =~ MHS{.
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In §5, we will introduce the category of mixed g-plectic R-Hodge structures, and
show the corresponding results in the real case. We will then prove in Corollary 5.15
that an object in Repr(GY) may be given as a subquotient of exterior products of
objects in MHSg. The main result of §5 is Theorem 5.27, which gives an explicit
complex calculating the extension groups in Repg(G9).

2. Mixed Hodge structures. In this section, we will review the definition of
the category of mixed Hodge structures MHS¢ and the tannakian fundamental group
G associated to MHSc. We will then give an explicit description of objects in the
category Rep(GY) of finite dimensional C-representations of G¥, where GZ for an
integer g > 0 is the g-fold product of G¢.

2.1. Definition of the category of mixed plectic C-Hodge structures. In
this subsection, we first give the definitions of pure and mixed C-Hodge structures,
and review their properties.

DEFINITION 2.1 (pure C-Hodge structure). Let V¢ be a finite dimensional C-
vector space, and let F'® and F* De finite descending filtrations by C-linear subspaces

on Vg. We say that the triple V' := (Vi, F'*, F) is a pure C-Hodge structure of weight
n, if it satisfies

—n+1—p

Ve=FPVe @ F Ve (1)

for any p € Z. We call the filtrations F'® and F° the Hodge filtrations of V.

EXAMPLE 2.2. The Tate object C(n) := (Ve, F*,F"), which is a C-vector space
Ve = C, with the Hodge filtrations given by F~"V¢ = F_nV«; = Ve and F~ "V =

FﬁnHVC = 0 is an example of a pure C-Hodge structure of weight —2n.

It is known that pure C-Hodge structures may be described as follows.

LEMMA 2.3 ([D1] Proposition 1.2.5, Proposition 2.1.9). Let V¢ be a finite dimen-
sional C-vector space, and let F'* be a finite descending filtration by C-linear subspaces
on Vg. Then'V := (Vg, F*, F ) is a pure C-Hodge structure of weight n if and only if
we have

Ve= P (FPnF)VE, (2)

P,qE€EZL
p+q=n

where (F? N F)Ve := FPVe N FV.

Let V be a pure C-Hodge structure of weight n. The Hodge filtration may be
described in terms of this splitting as follows.

LEMMA 2.4. IfV is a pure C-Hodge structure of weight n, then for any p,q € Z,
we have

F'Ve= @ (F 0F)Vg, F'Ve= @ (F nF)Ve. (3)
R s

Proof. If r > p, then we have (F" ﬂfn_r)V(c C FPVg, and if r < p, then
n—r>n+1—p, hence (FFNFEF" We C Fn+17ch. The first equality follows from

Lemma 2.3 and (1). The second equality is proved in a similar manner. O
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The definition of mixed C-Hodge structures is given as follows.

DEFINITION 2.5 (mixed C-Hodge structure). Let Vi be a finite dimensional C-
vector space. Let W, be a finite ascending filtration by C-linear subspaces on V¢, and
let F* and I be finite descending filtrations by C-linear subspaces on V. We say
that the quadruple V = (VC,W.,F',F.) is a mized C-Hodge structure if, for each
n € 7Z, the structure induced by F'® and F° on Gr,VLVVC is a pure C-Hodge structure
of weight n.

ItV = (Vg, W, F*, F') is a mixed C-Hodge structure, then we call W, the weight
filtration and F'®, F° the Hodge filtrations of V. The Deligne splitting below gives a
generalization of (2) for mixed C-Hodge structures.

PROPOSITION 2.6 (Deligne splitting). Let V = (Vo, We, F*,F") be a mized C-
Hodge structure, and let
APV = (FP N Wy,)Ve N ((Fq NW,)Ve + Z(F‘” N Wn_j_l)vc> (4)
Jj=0

for pyqg € Z and n := p+ q. Then {APY(V)} gives a bigrading of Vi by C-linear
subspaces

Ve = P ar(v). (5)

p,q€EZ

Moreover, for n,p € Z, the weight and Hodge filtrations on V' satisfy

W.Ve= € A1), FPVe = @ A (V).
p,q€Z r,s€EZL
pt+q<n r>p

We call the bigrading {AP?(V')} of Vi given in Proposition 2.6 the Deligne split-
ting of the mixed C-Hodge structure V. The key ingredient for the proof of Proposition
2.6 is the following lemma.

LEMMA 2.7. Let V be a mized C-Hodge structure, and let {AP9(V)} be the
Deligne splitting of V' as in (4). Then for any p,q € Z and n := p + q, the canonical
surjection W, Ve — Gr,VLVVC induces a C-linear isomorphism

APV S (FP N FHGEY V.

Here, (FP N F)GrY Ve := FPGrW Ve nFIGr Y e,
Proof. See for example [PS, Lemma-Definition 3.4]. O
We may now prove Proposition 2.6 as follows.
Proof of Proposition 2.6. Let {AP4(V)} be the Deligne splitting of V. By Lemma

2.7, we have an isomorphism

P a1(v)= @ FPNFHG Ve

P,qE€Z D,qEZ
p+q=n prq=n



CATEGORY OF MIXED PLECTIC HODGE STRUCTURES 35

for any integer n € Z. By the definition of the weight filtration on mixed C-Hodge
structures, Gr,VLVV is a pure C-Hodge structure of weight n, hence we have

GV = @ (FP N FHGrY V.
pt+g=n

by Lemma 2.3. This shows that V¢ = @p,qGZ AP2(V) as desired. The statements for
the Hodge and weight filtrations follow from this result. O

REMARK 2.8. Exchanging the roles of F'® and F*, we define
ATNV) = (F' nW,)Ve N <(Fq NWu)Ve+» (F77 N Wn_j_l)vc>.
720

Then for any p,q € Z and n := p + g, the canonical surjection W, Vg — GIZVVC
induces a C-linear isomorphism

ANV = (Fn FHGrY Ve,

{A”%(V)} gives a bigrading of V¢, and we have for any n,p € Z

W.Ve= @ A", F'Ve= @ 4" w).
P,qEL r,s€Z
p+a<n r>p

We will use Proposition 2.6 and Remark 2.8 to prove the strictness with respect
to the weight and Hodge filtrations of morphism of mixed Hodge structures. We first
prepare some terminology.

DEFINITION 2.9. Suppose U and V are finite dimensional C-vector spaces with
C-linear subspaces WU C U and WV C V. We say that a C-linear homomorphism

a:U—=V

is compatible with W if «(WU) C WV, and that « is strict with respect to W if we
have

a(WU) = a(U)NWV.

We denote by MHS¢ the category of mixed C-Hodge structures. A morphism
«a : U — V in this category is a C-linear homomorphism « : Uz — V¢ of underlying
C-vector spaces compatible with the weight and Hodge filtrations. Then we have the
following.

PrROPOSITION 2.10. Let o : U — V be a morphism in MHS¢, and let S be a
subset of Z x Z. Then we have

al P AU) | =aic)n | @ AP(V) (6)

(p,9)€S (p,q)€S

and

al Y (FPaW,)Uc | =aUe)n | Y (FPnW,)Ve |- (7)
(p,n)€S (p,n)eS
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Statements (6) and (7) with F? replaced by F* and AP9 replaced by A" are also
true. In particular, « is strict with respect to the filtrations F* N We and F' nw..
Furthermore, if U and V are both pure C-Hodge structures of weight n, then we have

a((FPNF"Ue) = a(Uc) N (FPNF)Ve. (8)
Proof. Since a(AP1(U)) C AP4(V), assertion (6) follows from the fact that the

Deligne splitting gives a bigrading (5) of Uz and V¢. Equality (7) follows from the
fact that

(FPAW,)Uec = @ A™(U), (FPaW)Ve= @ A (V),
T>p, =
r+s<n r+s<n

and this proves the strictness of a with respect to F'* N W,. The strictness of o with
i o

respect to F' N W, follows from a parallel argument with AP+ replaced by A" The

assertion (8) for the pure case follows from (6), noting the fact that

APYU) = (FPNF"Ug, APV = (FPNF) Ve
if p+ ¢ = n and is zero otherwise. O

Using Proposition 2.10, one can prove that MHS¢ is an abelian category ([D1]
Théoréme 2.3.5). The following result will be used in the proof of Proposition 4.16.

COROLLARY 2.11. Let V' be a mized C-Hodge structure. For any C-linear sub-
space Uc of Vi, the weight and Hodge filtrations on V' induce the filtrations

W,Uc = Uc N W, Ve, FPUe := Uc N FPVg, FlUc = Uc N F'V¢

on Uc. Suppose two C-linear subspaces Uc and U of Vi with the induced filtrations
as above are mived C-Hodge structures. Then Uc + Ul and Uc N U{ with the induced
filtrations are also mized C-Hodge structures. Moreover, we have Wy, (Uc + Uf.) =
W,Uc + W,UL, FP(Uc + UL) = FPUe + FPUL, and F'(Ue + UL) = F'Uc + F'UL
which by definition is equivalent to

(Uc + UE) N Wy, Ve = Uc N W, Ve + Ug N W, Ve, (9)
(U(c—‘rUé:)ﬂFpV(cZUcﬂFpVC+U({:ﬂFpVC7 (10)
(Uc +UL)NFVe =Uc NF'Ve + ULNF V. (11)

Proof. The map Uc @ Ui — V¢ sending (u,u’) to v+ ' is a morphism of mixed
C-Hodge structures, hence is strictly compatible with the filtrations W,, F'® and F.
This implies (9), (10) and (11), and we see that the image Uc + U is also a mixed C-
Hodge structure. The natural map Uc — (Uc + Uf)/U¢ is also a morphism of mixed
C-Hodge structures, hence we see that the kernel Uc N U( is also a mixed C-Hodge
structure. O

The category MHS¢ is known to be a neutral tannakian category with respect
to the natural tensor product and the fiber functor w : MHS¢ — Vecc obtained by
associating to V the C-vector space Grl¥ Vg = D, GrZVVc. If we denote by G¢ the
tannakian fundamental group of MHS¢, then G¢ is an affine group scheme over C.
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By the definition of the tannakian fundamental group, we have a natural equivalence
of categories

MHS¢ = Repe(Ge)

induced by the fiber functor w, where Rep¢(Ge) is the category of C-linear represen-
tations of G¢ on finite dimensional C-vector spaces.

2.2. The tannakian fundamental group of MHS¢. In this subsection, we
will review the construction of the tannakian fundamental group G¢ of the category
MHS¢, and give an explicit description of objects in Repe(Ge) = MHSc.

We denote by £, the free Lie algebra over C generated by symbols 7%/ for positive
integers 4, j with i+j < n. We define the degree of elements of £,, by deg(T%7) := i+7,
and denote by I,, the ideal of £,, generated by elements of degree larger than n. Then
u, := £, /I, is a nilpotent Lie algebra over C. The category Repgl(un) of nilpotent
representations of u,, form a neutral tannakian category over C, hence there exists
a simply connected unipotent algebraic group U, over C such that Repf(u,) =
Repe (Un).

Let S¢ := G,,, X Gy, be the product over C of the multiple group G,,, defined over
C. We give an action of S¢(C) on the Lie algebra u,, over C by

(z,y) - T = oy T, (12)

for any (z,y) € C* x C* = S¢(C), hence by functoriality an action of the algebraic
group Sc¢ on U,,. If we denote by U the projective limit of U,,, then S¢ acts on U, and
we let Ge := S¢ X U be the semi-direct product with respect to this action.

We will show that G¢ is the tannakian fundamental group of MHS¢. To compare
the categories Rep¢(Ge) and MHS¢, we give an explicit description of objects in
Repe(Ge).

PROPOSITION 2.12.  An object in Repe(Ge) corresponds to a triple U =
(U, {UP9},t), where Ug is a finite dimensional C-vector space, {UP-1} is a bigrading
of Uc by C-linear subspaces

Uec = v,

P,q€EL

and t is a C-linear automorphism of Uc satisfying

t-nwrnc g v (13)
r,SEZ
r<p, s<q

for any p,q € Z. The morphisms in Repe(Ge) correspond to C-linear homomorphisms
of underlying C-vector spaces compatible with the bigradings and commutative with t.

Proof. Suppose that U is a finite C-representation of the pro-algebraic group Gc.
Then Ug is a representation of both S¢ and U, and

UP?:={ueUc| (z,y) -u=zPyu for all (z,y) € Sc(C)}

gives a bigrading of Uc. If n is a sufficiently large natural number, then Uc is a
representation of U,,, hence it is also a representation of u,,. Hence we have a nilpotent
endomorphism 7%7 : Uz — Ug for any positive integers ¢, j. For any u € UP*4, we have
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(,y) - (T (uw) = ((z,y) - T ((z,y) - u) = 2P~ Y23 (T (u)), hence T"I restricted
to UP? gives a morphism

THI L gPa —y P—ha—7

If welet T := 37, i T%J, then T is again a nilpotent endomorphism of Ug, and
t := exp(T) satisfies (13) by construction. Hence (Ug, {UP?},t) satisfies the required
conditions. Conversely, suppose (Ug, {UP9},t) satisfies the conditions of the propo-
sition. Then we may define an action of S¢(C) on Uc by (z,y) - u = zPy%u for any
(z,y) € Sc(C) and u € UP?. Furthermore, if we let T := log(t) = log(1 + (¢t — 1)),

then T is an endomorphism of Ug satisfying

Trwryc v
r,sEZL
r<p,s<q

by (13). For positive integers i,5 > 0, we let 7%/ : Uz — Uc be the morphisms
given as the direct sum of morphisms UP*9 — UP~%97J induced from T, which gives a
representation of the Lie algebra u,, on Uc for a natural number n sufficiently large.
This shows that our representation gives a representation of u, on Ug, hence a repre-
sentation of the algebraic group U, on Ug. This combined with the action of S¢ gives
a representation of the algebraic group Gc = S¢ X U on Ug. The above construction

shows that a representation Ug of G¢ is equivalent to the triple (U, {UP},t), proving
our assertion. O

The category Repe(Ge) is known to be equivalent to the category of mixed C-
Hodge structures MHSc. We may define a functor ¢¢ : Repe(Ge) — MHSce by
associating to any object U in Repc(Ge) the object

oc(U) == (Ve,We, F*, F), (14)
where V¢ := Ug, the weight and Hodge filtrations are defined by

W.Ve = @ Ume
P,q€L
pF+q<n
for any n € Z, and
v o @), Ve (@ o)
r,s€EZL r,SEL
r>p s>q

for any integers p,q € Z.

ProOPOSITION 2.13 ([D3] Proposition 2.1). The functor pc in (14) gives an
equivalence of categories

Repe(Ge) = MHSc.

An quasi-inverse functor ¢ : MHSe — Repe(Ge) is given by associating to any
V' € MHS¢ the object

Ye(V) = (Uc, {UP},1) (15)
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in Rep¢(Ge), where

U(c = @GYZVV@
nez

Upr1 = (Fpﬁfq)GrmqVC for any p, g € Z, and the C-linear automorphism ¢ is defined
as follows: Let {AP4(V)} be the Deligne splitting of V' given in (4). By Lemma 2.7
we have an isomorphism

P ar(v) =S @ FEPnF)G) Ve = Gr) Ve,
p+g=n pra=n
hence isomorphism

pcC @ Ap,q(v) — Ug.

P:qEL
Similarly, by Remark 2.8, we have an isomorphism
pe: @ ANV = Ue.
P,q€Z

We denote by s the composition

—1 —
Ue s @@ ar1(v) =Ve = P A"(V) 2 Ue.
P,qEZL P,qEZ

Then it is known that s is unipotent, and ¢ is defined by

t:zﬁzé( 1/42 >(s—1)k. (16)

Then we may prove that ¥¢c o pc = id and ¢¢ o1pc ~ id. The isomorphism of functors
id ~ ¢¢ o ¢¢ is given by the composition

Ve =P ar(v) L PG ve — PG ve (17)
P,qEZ nez nez

for any object V' in MHS¢.

2.3. The category Repc(GZ). Recall that Ge denotes the tannakian fundamen-
tal group of MHS¢ with respect to w. Let g be an integer > 0. In [NS1, §16], Nekovar
and Scholl defined the category of mixed g-plectic C-Hodge structures to be the cat-
egory Repg(GZ) of finite dimensional C-linear representations of the g-fold product
Gl := Ge x --- x Ge. As a direct generalization of Proposition 2.12, we have the
following explicit description of objects in Rep(GY.).

PROPOSITION 2.14. A finite dimensional C-linear representation of G{. corre-
sponds to a triple U := (Uc, {UP9},{t,}), where U is a finite dimensional C-vector
space, {UP1} is a 2g-grading of Uc by C-linear subspaces

Ue= € v,

P,qELY
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and t, for p = 1,...,g are C-linear automorphisms of Uc commutative with each
other, satisfying

(t, — 1)(UP) C an U

r,s€79
(rv,80)=(pv,qv) for v#p
(T>80) <(Ppsqp)

for any p,q € 79, where the direct sum is over the indices r,s € 79 satisfying r, = p,,
Sy =qy forv# p and r, < pu, s, < qu. Morphisms in Repc(GZ.) correspond to C-
linear homomorphisms of underlying C-vector spaces compatible with the 2g-gradings
and commutes with t,,.

Proof. For eqch p = 1,...,g, let {U;*"%} be the bigrading and ¢, the C-linear
automorphism of Uc given by the action of the p-th component of GZ. For any
p.q € Z9, let UP9 := U N ---NUF*%. Our conditions on {UP9} and {t,}
correspond to the commutativity of the actions of the g components. O

The tensor product and the internal homomorphism in Repg(GY) are given as
follows. Suppose T' = (T¢,{T?9},{t,,}) and U = (Uc,{UP9},{t};}) are object in
Repe(GE). Then the tensor product 7' ® U is given by the triple

T®U = (Tc ®c Uc, {(T @ U)P9},{tu}), (18)

where Te ®¢ Ue is the usual tensor product over C,

(T ®U)PY = @ TP q ®c yr’a”

ro 11

2 L
P +P =p,q +q =q

for any p,q € Z9, and t, := tL ® tZ for p = 1,...,g9. The internal homomorphism
Hom(7,U) is given by the triple

Hom(T,U) = (Home(Tc, Uc), {Hom(T, U)P 9}, {t,}), (19)
where Homg (T¢, Ug) is the set of C-linear homomorphisms of T¢ to Ug,
Hom(T,U)P4 = {a € Home(Tt, Ug) | a(TP 7)) c UP+Pd+4 vp! ¢' € 79}

for any p,q € Z9, and t,, () := t/;oaot); " for any a € Home (T, Ug) and p = 1,..., g.

ExaMPLE 2.15 (Tate object). One of the simplest examples of an object in
Repe(G2) is the plectic Tate object

C1y) == (Ve {VP}{tu}),
where V¢ := C and the grading of V¢ is such that VP9 = 1 if
P=q= (Oa"'v_la""0)7

where —1 is at the pu-th component, and VP9 = 0 otherwise, and ¢, is the identity
map for pu=1,...,9. For any n € Z9, we let

C(n) = Q) C(1,)®™ = C(1)°" ® - @ C(1,)*".

p=1



CATEGORY OF MIXED PLECTIC HODGE STRUCTURES 41

REMARK 2.16. For any positive integer ¢ < g, the natural projection G& — Gf
of pro-algebraic groups mapping (w1, ..., Uy, Uyt1,-..,Ug) to (ur,...,u,) induces a
natural functor Repe(GF) — Repe(GY), and the category Repe(GF) is a full subcat-
egory of Repg(GE) with respect to this functor. On the level of objects, this functor
may be given by associating to any

U’ = (Ue, {UP 7'} {t,})

in Repe(GE) the object U = (U, {UP9},{t,}) in Repe(GE), where the bigrading is
defined by

UPa .= [7(P1Pu)-(a15,00)

if (puti,---,0g) = (Qus1,---,4q9) = (0,...,0) and UP? := 0 otherwise, and we let the
automorphisms ¢, be t, :=1t), for 1 <v < pand t,:=id for p <v < g.

REMARK 2.17. Let g1, g2 be integers > 0, and let T' = (T¢, {TP+%1 },{t,}) and
U = (Ug, {UP>%2},{t]}) be objects respectively in Repc(G¢') and Repe(G¢*). Then

the exterior product T'X U in Rep¢ (Q(gﬁ”) corresponds to the triple
TRU = (Tc ®c U, (TRU)PY,{t,}),
where Tt ®¢ Ug is the usual tensor product over C,
(TR U)PY = TPr9 @g UP29

with the convention that p; = (p1,...,Pg,), P2 = Pgi+1s---1DPg14g2)s A1 =
(q1,---1qg,), and gy = (qgr 41+ - -, dgi+g,) for any p = (p,),q = (gu) € 29792, and
t,, is the C-linear automorphism on 7¢ ®c¢ Uc given by t,, = tL @lforp=1,...,01
and t, =1®t);_, for p=g1+1,...,91 + ga.

3. Orthogonal families of mixed C-Hodge structures. Let G¢ be the tan-
nakian fundamental group of MHS¢ with respect to w. The purpose of this section is
to prove an equivalence of categories between the category Repc(G¥) and the category
of g-orthogonal family of mixed C-Hodge structures OFZ defined in Definition 3.8.

3.1. Categorical version of mixed C-Hodge structures. In this subsection,
we will give an iterated description of the category Repc(GZ), using the categorical
version of mixed Hodge structures. Using the result of Proposition 2.12 as an inspira-
tion, we first define the category of bigraded objects BG(/) for an abelian category
o as follows.

DEFINITION 3.1. We let BG(«) be the category whose objects consist of a
triple U = (B, {BP*%},t), where B is an object of o, {BP*?} is a bigrading of B by
subobjects in o7

B= EB BP,

P,q€EL

where BP'? = ( for all but finitely many (p,q) € Z2, and t is an automorphism of B
satisfying

t-1)(B"c P B
r,SEZL
r<p,s<q
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for any p,q € Z. The morphisms in BG(%7) are morphisms of underlying objects in
&/ compatible with the bigradings and commutative with t.

If o7 is the category of finite dimensional C-vector spaces Vecc, then Proposition
2.12 shows that BG(Vecc) is equivalent to the category Repe(Ge) of finite dimensional
C-representations of Gc.

PROPOSITION 3.2. For any integer g > 0, we have an isomorphism of categories

Repc(G2) = BG(Repe (G27)).

Proof. Let U = (Uc, {UP9},{t,}) be an object in Repc(GZ). For p’ = (pu),q" =
(qu) € 2971, if we let

yr e .— @ P19 =1:0),(q15-109—1,0)

P,q€Z

and t), :=t, for p=1,...,9 — 1, then the triple B := (Ug, {urha'}, {t},}) defines an
object in Rep¢ (Qgg_l). For any p,q € Z, if we let

BPa .— @ Ura,

p,geL’
Pg=P:499=—49
’ ’
(BPa)P 9 = U@1opg—1:p):(01,99-1,9) for any p’,q’ € 79! and t; := t,|pr.a for

pw = 1,...,9 — 1, then the triple BP? := (Bp’q7(Bp7q)p/’ql7{t;L}) defines an ob-
ject in Repe(GL™"). If we let t := t,, then we see that the triple (B,{BP9},t)
gives an object in BG(Repg(G% ")), Conversely, let (B, B”%,t) be an object in
BG(RepC(géfl)). Then B is an object in Repc(géfl) hence is of the form B =
(UC,{U”/’q/},{t’H}). Since B4 is an object in Repc(GS™"), it is also of the form
Bra = (UL, {(UPa)P '} {1/ })). If we let

UP9 .— (Upg;Q_q)(pl;“wpgfl):(QIwn;q!]fl)

and t, :=t, for y=1,...,9 — 1 and t, := ¢, then the triple (Uc, {UP9},{t,}) gives
an object in Rep(G¢). The automorphism ¢, is commutative with ¢q,...,t,_; since
t is a morphism in Rep(c(gqgfl). The above constructions are inverse to each other,
hence we have the desired isomorphism of categories. O

DEFINITION 3.3. Let A be an object in <. Let W, be a finite ascending filtration
by subobjects of A, and let F'® and F° be finite descending filtrations by subobjects
of A. We say that the quadruple V = (A4, W,, F',F.) is a mized Hodge structure in
o, if for each n € Z, the structure induced by F'® and F* on GrnWA satisfies

GWA=Frer A F T P A

for any p € Z.

Ifv = (A,W.,F',F.) is a mixed Hodge structure in <7, then we call W, the
weight filtration and F'®, F° the Hodge filtrations of V. We denote by MHS(/) the
category whose objects consist of mixed Hodge structures in &/ and whose morphisms
are morphisms of underlying objects in &/ compatible with the weight and Hodge
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filtrations. If o/ is the category Vecc of finite dimensional C-vector spaces, then we
have an isomorphism of categories MHS(Vece) = MHS¢.

As in the case of mixed C-Hodge structures, we have the Deligne splitting for
mixed Hodge structures in 7.

PROPOSITION 3.4 ([D3] §1.1). Let V = (A, W,, F*,F") be a mized Hodge struc-
ture in o/, and as in (4), we let

APV = (FP N W,)AN <(Fq NW,)A+ Z(Fq’j N Wn_j_l)A>
j=0

forp,qg € Z and n := p+ q. Then {AP91(V)} gives a bigrading of A by subobjects of
A,

A= ari(v). (20)

P,q€EL

Moreover, for n,p € Z, the weight and Hodge filtrations on V' satisfy

W,A=  Ar(v), FPA= @ A (V).
P,q€EZ r,s€ZL
p+g<n r>p

As in the case of mixed C-Hodge structures given in Remark 2.8, a similar state-
ment holds for A, where A" is defined by replacing the roles of F'® and F°. Asin
the case of mixed C-Hodge structures, the morphisms in MHS(/) are strictly com-
patible with the filtrations, and we may prove that MHS (%) is an abelian category.

We define the functor ¢ : BG(«/) — MHS(«/) by associating to any object
U = (B,{B"},t) in BG(«) the object

(p(U) = (A’ W.7F.7f )7
where A := B, the weight and Hodge filtrations are defined by

WA= @ B
P,qEL
p+q<n
for any n € Z and
FPA = t( b B“), FiA = t—1< P B“S)
r,SEZL r,sEZ

r>p s>q

for any integers p,q € Z. By [D3, Proposition 1.2 and Remark 1.3], we have the
following result.

PROPOSITION 3.5. The functor ¢ gives an equivalence of categories

¢ : BG(&) 2 MHS(«/).

We can define a quasi-inverse functor 4 as in (15).
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Next, for any integer g > 0, we inductively define the category MHS?(Vecc) by
MHS?(Vece) := Vece and MHS? (Vece) := MHS(MHS? ! (Vece)) for g > 0. Combin-
ing this result with Proposition 3.2, we have the following corollary.

COROLLARY 3.6. We have equivalences of categories

Repc(G2) = MHS(Repp (G4 1)) 2 - - - 2 MHS? (Vece). (21)

In §3.2, we will use this result to prove that Repc(GZ) is equivalent to the category
of g-orthogonal family of mixed C-Hodge structures.

3.2. Orthogonal families of mixed C-Hodge structures. In this subsection,
we will define the category of g-orthogonal family of mixed C-Hodge structures and
show that this category is equivalent to the category Repc(GZ). We first define the
category of multi-filtered C-vector spaces Fil’, (C).

DEFINITION 3.7. Let [ and m be non-negative integers. An object in the category
Fil!, (C) is a quadruple V = (Ve, {W}}, {F2 ) {F;}) consisting of a finite dimensional
C-vector space V¢, a family of finite ascending filtrations W for A = 1,...,1 by C-
linear subspaces on V¢, and families of finite descending filtrations F}} and F:L for
i = 1,...,m by C-linear subspaces on Vg. A morphism in Filin((C) is a C-linear
homomorphism compatible with W, F 1» and F;.

We define the notion of a g-orthogonal family of mixed C-Hodge structures as
follows.

DeFINITION 3.8 (Orthogonal Family). We say that an object
(Vc,{Wf}7{FJ},{F;}) in Filj(C) is a g-orthogonal family of mired C-Hodge
structures, if for any p, the quadruple (Vg, W¢', F' w B ;) is a mixed C-Hodge struc-
ture, and for any p and v # p, the C-linear subspaces W'V, F"Ve, F:VC with
the weight and Hodge filtrations induced from W(, F?, F : are mixed C-Hodge

structures. We denote by OFZ the full subcategory of FilJ(C) whose objects are
g-orthogonal family of mixed C-Hodge structures.

IV = (Vo, {We'} {Fs}, {F;}) is a g-orthogonal family of mixed C-Hodge struc-
tures, then we call {W{'} the weight filtrations and {F};}, {F;} the Hodge filtrations
of V. Note that OF¢ = MHSc.

Next, let MHSY (Vece) be as in Corollary 3.6. An object A in MHSY (Vecc) consists
of a finite dimensional C-vector space V¢ with additional structures. Then there exists
a natural functor

MHS?(Vece) — Fil¢(C) (22)

by associating to an object A its underlying C-vector space V¢, with the p-th weight
and Hodge filtrations given by the image of the p-th weight and Hodge filtrations
of MHSY(Vecc). More precisely, for any p = 1,..., g, there exists an object A* in

MHS*(Vecc) which underlies A, with the weight and Hodge filtrations W{', F bt F;

given by subobjects of A* in MHS" ! (Vecc). Then we define the filtrations W,
Fy, F; by C-linear subspaces on V¢ to be the filtrations given as the images of the

subobjects W', F, F; of A",
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REMARK 3.9. Combining (22) with the functor in Corollary 3.6, we have a functor
¢t : Repe(GE) — Filg(C). (23)

By definition, this functor associates to an object U = (Uc, {UP'?}, {t,}) in Repc(GZ)
the object V == (Ve, {W&'}, {F3}, {F,,}), where V¢ := U,

Wive:= € Ur9
p.q€Z’
Putqus<n

for any n € Z and

FPVg = tu< ey U"’s>, Fy Ve = t;l( D U’“’S)

r,s€Z9
"'AZP Sp >q
for any integers p,q € Z. This shows that the functor (23) is defined independently
of the ordering of the index p = 1,...,g, hence if V = (VC,{W.”L{F;},{F;}) €
Filf(C) is an object in the essential image of the functor (22), then the object V' =

(V@{W.“/}, £t {F;,}) given by a reordering y/ = o(u) of the index for some
bijection o : {1,...,9} = {1,..., g} is also in the essential image of (22).

THEOREM 3.10. For any integer g > 0, the functor (22) gives an isomorphism
of categories

MHS? (Vece) = OFZ. (24)

Proof. The statement is trivial for g = 0. Assume g > 0, and let A be an object in
MHS? (Vece), and let V = (Ve, {W3'}, {F2}, {F,}) be the image of A in FilJ(C) with
respect to the functor (22). Then by construction, for any u = 1,..., g, the quadruple
(Ve, W', F J,F;) is a mixed C-Hodge structure. Furthermore, for any index v < p,
the C-linear subspaces W)'Vc, FIVc, FZVC with the weight and Hodge filtrations
induced from WY, F7, F; are mixed C-Hodge structures. Remark 3.9 shows that
since we may reorder the index of the filtrations, hence by reordering the filtrations,
we see that the C-linear subspaces Wi'Ve, FPVe, F ZV(C with the weight and Hodge
filtrations induced from W}, F?, F; are mixed C-Hodge structures even for the case
v > p. This shows that V is an object in OFZ, hence we see that the functor (22)
induces the functor (24).

Conversely, let V = (VC,{W.H},{FJ},{F;}) Ee an object in OFZ. Then for
p=1,...,g, the C-linear subspaces WiV¢, F/Vc, FiV(c with the weight and Hodge
filtrations induced from WY, F7, F; for v # p are mixed C-Hodge structures, hence
the decomposition

Gl Ve = Fra Ve o B PGV Ve
is also a decomposition of mixed C-Hodge structures. This shows that V' gives an
object in MHSY(Vecc). The above constructions are inverse to each other, hence we
have the isomorphism of categories (24) as desired. O
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By combining Corollary 3.6 and Theorem 3.10, we have the following.

COROLLARY 3.11. For g > 0, the functor ¢ of (23) gives an equivalence of
categories

¢ : Repe(GE) = OFZ. (25)

We denote by ¢ the quasi-inverse functor of pf obtained as the composition of
the inverse functor of (24) with the quasi-inverse functor of (21).

4. Mixed plectic C-Hodge structures. The main result of this section is
Proposition 4.17, which characterizes g-orthogonal families in terms of the total weight
filtration instead of the partial weight filtrations. First we will define the notion of
a mixed weak g-plectic C-Hodge structure as an object in F il;((C) having the plectic
Hodge decomposition and good systems of representatives of the decomposition. A
mixed g-plectic C-Hodge structure will be defined to be a mixed weak g-plectic C-
Hodge structure satisfying certain compatibility of filtrations. Then we will see that
there is an isomorphism between the category OF{ of g-orthogonal families of mixed
C-Hodge structures and the category MHS{. of mixed g-plectic C-Hodge structures.

4.1. Mixed weak plectic C-Hodge structures. In this subsection, we will
define the category .#{ of mixed weak g-plectic C-Hodge structures. In what follows,
for any index n = (n,) € Z9, we let |n| := ny + --- + ny. Furthermore, for r =
(rp),p = (pu) € 29, we say that r > pif r, > p, forany p=1,...,9.

For non-negative integers [ and m, we let Filﬁn((C) be the category of multi-filtered
C-vector spaces defined in Definition 3.7. For an object V = (Ve, {W2}, {F2}, {F;})
in Fillg((C) and a subset I C {1,...,g}, we define the plectic filtrations F;,F; and
the total filtrations Fg,Fy on Ve associated to {F2} and {F;} with respect to I by

FPVe = (\F2Ven (\Fy' Ve,  FiVe=()F/Ven () FrVe (26)
néEI vel peEI vel

for any p = (p,) € Z9, and

FPVe:= > FRV, FiVe:= Y Five (27)

PEZ?, |p|=p PEZ?, |p|=p

for any p € Z. Note that there are natural inclusions F? Ve — F Ilp IVC and f?V@ —
Fllplvc. We will often omit the subscript of the notation when I = (). For example,
FpV(C = FgV(C
We first define the notion of a pure weak g-plectic C-Hodge structure.
DEFINITION 4.1 (pure weak plectic C-Hodge structure). Let n be an integer. A
pure weak g-plectic C-Hodge structure of weight n is an object V' = (V¢, {F2}, {F;})
in Filg((C) satisfying

Five= P  (FInF)k (28)

r,s€Z9
r>p, rtsl=n

forany pe Z9 and I C {1,...,g}.



CATEGORY OF MIXED PLECTIC HODGE STRUCTURES 47

Note that since F; and F; are finite filtrations, we have F¥Ve = V¢ for any p
whose components are sufficiently small. Hence (28) implies that we have

Vo= @ (FPnF)Ve. (29)

p,q€L?
Ip+aql=n

REMARK 4.2. For any subset I C {1,...,g} we have F; = F$., where I¢ :=
{I,...,9} \ I is the complement of I in {1,...,g}. In particular, the equation (28)
for I¢ implies that

Five= @ (FnF)V (30)

r,8€Z9
s>q, |r+s|=n

REMARK 4.3. Let V be a pure weak g-plectic C-Hodge structure of weight n,
and consider p,q € Z9 such that |p +q| > n. If welet r := |[p+q| —n > 0 and
ry = (r,0,...,0) € Z9, then we have |p 4+ q — 71| = n. Since p — r; < p and
q — 71 < g, we have

(FPNF)VeC (FP ™ nFH)Ven(FPNF] ™)V

for any subset I C {1,...,¢}. By (29), the right hand side is {0}, hence we have the
equality

(FFNF])Ve = {0}. (31)
REMARK 4.4. Let V be a pure weak g-plectic C-Hodge structure of weight n

and I C {1,...,g} a subset. Then the total Hodge filtrations F} and F7 on Ve with
respect to I are given by

FiVe= Y FiVe= P (FinF)wk,

Ipl=p Ir|>p
|[r+s|=n
—n+1-p -—=q =1 -8
Fym "Ve= ) Five= @ FinF)Ve= P FinF
lg|=n+1-p IS‘IZJZZTFP | Ii\<‘p
rTT+8|=—n rT+8|=—n

for any p € Z. Hence by (29), we have Ve = F]V¢ @F?+17PVC. By (1), we see that
(e, Fﬂf;) is a pure C-Hodge structure of weight n in the usual sense.

We next define the notion of mixed weak plectic C-Hodge structures. One subtlty
is that for an object V = (Vc, W, {F2}, {F;}) in Fil;((C), there are two natural

“plectic” filtraions on Grrvlv Ve, which in general do not coincide. More precisely, the
natural inclusion

(W NF?)WVe /(W t NFP)Ve C () PG Ven [ F Gl Ve (32)
ne&I vel
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is not in general an equality (see Example 4.7 below). In what follows, we adopt the
left hand side and let

F2GrY Ve = (W, N F2) Ve /(W,,_1 N FP?)Vg,

_ — . 33
FiGt" Ve := (W, NF)Ve/Wn1 NFHVe (33)

forany I C {1,...,g}.

DEFINITION 4.5 (mixed weak plectic C-Hodge structure). A mized weak g-plectic
C-Hodge structure is an object V. = (Ve, W,, {F2}, {F;}) in Fil;((C) satisfying the
following conditions for any subset I C {1,...,g}:

(ay) For any n € Z and p € Z9, we have

FPGr/Ve= @  (FinF)Gr) Ve, (34)
r,s€Z9
r>p, |r+s|=n
where (F5 N F7)GrY Ve := F7GrY Ve N FGeY Ve
(br) The object V; := (Vi, Ws, F, Fy) in Fil}(C) is a mixed C-Hodge structure
in the usual sense.
(¢;) For any p,q € Z9 and n := |p + q|, we have

(F2NWo+FiNW)NWo1)Ve © (FRAW,_1)Ve+ > (F7 I 0W,_ -0 Ve.
j>0
We denote by ¢ C Fil;((C) the full subcategory of mixed weak g-plectic C-Hodge
structures. If V' = (V, W, {2}, {F;}) is a mixed weak g-plectic C-Hodge structure,
then we call W, the weight filtration, F;; and F; the partial Hodge filtrations, F§ and
F; the plectic Hodge filtrations with respect to I, and F} and F; the total Hodge
filtrations with respect to I of V.

Due to Remark 4.4, we will view a pure weak g-plectic C-Hodge structure V' of
weight n as a mixed weak g-plectic C-Hodge structure by taking the weight filtration
to satisfy W,,_1 V¢ := {0} and W, V¢ := V.

REMARK 4.6. Let V = (V¢, W, {F2}, {F;}) be an object in Fil;((C). Then, we

have natural inclusions

(WuNFOVeD Y. (WanFP)VE,

PEZI, |pl=p
(35)
(Wa NF)WVe/Woot NFOVED Y FPGr) Ve
PEZI, |pl=p
for any I C {1,...,g}, which are not equalities in general. In what follows, we let

FPGrl Ve = (W,, 0 FP)Ve /(W1 N FP) Ve
and similarly for F?Gr,vlv Ve.
ExXAMPLE 4.7. We note that the definition of a mixed weak g-plectic C-Hodge

structure is in general strictly stronger than the condition that for any n € Z, the
triple Gr)V'V = (Gt Vg, {F2 ), {F;}) is a pure weak g-plectic C-Hodge structure of
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weight n. Consider the case when g = 2 and let Vi := Ceg @ Ce_4 with the filtrations
defined by

0 n < —5,
WpVe:=qCey n=—4,...,—1,
Ve n >0,
Ve p1<0, Ve p2 <0,
FPVe=F{'Ve:={Cey p1 =0, and F*Vo=F5Ve:={Cleo+e_4) p2=0,
0 p1 >0, 0 p2 > 0.

Then we have Gr}Y Ve = Ceg and FOGr/ Ve = FYGr’ Ve = Ceg, which shows that
(FO N F9)Grl' Ve = Cey. However, since FOOVe .= (FO N FY)Ve = {0}, we have
FOOGY Ve = {0}, hence

FOOGY Ve € (FOn E)Grd Ve.

One can show that for V = (Vo, W,, {F?, F3},{F;,Fy}) defined as above, Gr'V'V is
a pure weak 2-plectic C-Hodge structure of weight n for any n € Z, but V does not
satisfy (34).

In the next subsection, we will see that (32) and (35) are actually equalities for
objects in Z¢.
PROPOSITION 4.8. A mized C-Hodge structure in the usual sense is a mized weak

L-plectic C-Hodge structure. In particular, the category ¢ is equal to the category
MHS¢ of mized C-Hodge structures.

Proof. By definition, an object in ///Cl is a mixed C-Hodge structure in the usual
sense. Conversely, consider an object V' in MHS¢. Then (a;) holds by Lemma 2.4
and (by) holds by definition. We prove (cy). Let p,q € Z and n := p + q. We prove
by induction on £ > 0 that

k .
WaaVe C(FP AW )Ve+ Y (F" nWasjo)Ve + WaseaVe. (36)
j=0

Suppose w € W,,_1V¢. Since Gr,‘filV is a pure C-Hodge structure of weight n — 1,
we have a splitting

G Ve = FPGrY Ve o FIGeY g,

hence w is of the form w = wug + vo + w1 for some ug € (FP N Wyo1)Ve, vy €
(Fq NW,—1)Ve and wy € W,,_o V¢, which proves (36) for kK = 0. Suppose (36) is true
for an integer k > 0. Then any element w € W,,_1 V¢ is of the form

k

W = Uk +Zvj + W41
Jj=0

for some up € (FP N Wy_1)Ve, v; € (Fq_j N Wn_j—1)Ve, and wi41 € Wh_k_2Ve.
Since Grmkﬁv is a pure C-Hodge structure of weight n — k — 2, we have a splitting

G, Ve = FPGrY, Ve @ F G, Ve,
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hence wyy1 is of the form wy41 = uﬁﬁ_l + Vpy1 + wiyo for some “24—1 e (FP N

Wi—i—2)Ve, vpsr € (F " A Wi_i_2)Ve and wpso € Wy_j_3Ve. Then ujpyy =

up +uj, € (FPNW,_1)Vc, and we see that

k1 k1 ,
W = U1 + ZU]‘ + Wito € (FPNW—1)Ve + Z(Fq_j N Wn,j,l)VC + Wh—r_3Vc.
j=0 j=0

By induction, (36) is true for any k > 0. Since W,,_,_2Ve = {0} for k sufficiently
large, we have

(FPAW,4+F W, ) "Wy_1)Ve € W1 Ve C (FPmWn,l)VCJrZ(F"‘jmWn,j,l)VQ
Jj=>0

which proves condition (c;) for I = (). Since the quadruple (V, W, F', F*)is also a
mixed C-Hodge structure, condition (c¢y) for I = {1} also holds. O

4.2. The plectic Deligne splitting. In this subsection, we will prove Propo-
sition 4.10, which is a plectic version of the Deligne splitting for objects in .Zg. We
will first define the plectic version of the bigradings AP*¢ and At

DEFINITION 4.9. Let V = (Vg, W, {F2},{F}}) be an object in Fil}(C). For any
Ic{l,....g}, p,q € Z% and n:=|p + q|, we put

APYY) = (FP N W,)Ve N ((F}’ NWa)Ve+ > (F7'n Wn_|j|_1)V@). (37)
j>0
We denote by
pr: APIV) = (FPNF)GrlY Ve (38)

the C-linear homomorphism induced by the natural surjection W,, Ve — Gr,VLVVC.
Note that when g = 1, the subspaces (37) coincide with (4) in Proposition 2.6.

PROPOSITION 4.10. Let V' be an object in Fil}]((C). Consider the conditions (ar ),
(br), (cr) in Definition 4.5.

(1) (br) implies that pr is injective.

(2) (cr) is equivalent to that pr is surjective.

(3) (ar), (br), and (cr) together imply that we have

W.Ve= @ APV, FPVe= P A7°(V),  (39)
p,qeZ? r,s€Z9
[p+ql<n r>p

for anyn € Z and p € Z9, and in particular

Vo= AP (40)
P,qE€ZI

(4) If V is an object in AE, then for any I C {1,...,g}, pr is an isomorphism
and the equalities (39) and (40) hold.
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Proof. (1) Let p = |p|, ¢ := |q|, and AYY(V) = AP9(V;) for V; :=
(Ve, W, FI',F;) Since we have a commutative diagram

APUY) —— (F? N FHCY Ve

1

APU(V) —— (F N F1)Gr)) Ve,

the assertion follows from Lemma 2.7.

(2) Assume condition (c;) and consider an element £ € (F¥ N FHGW Ve, Let
u e (FP NW,)Ve and v € (F] NW,)Ve be elements lifting €. Then since u — v = 0
(mod W,,_1), we have

u—ve ((FZI) n Wn +f(II n Wn) N Wn—l)V(C-

By condition (cg), there exist ug € (F7 NW,,_1)V¢ and v; € (F}Fj N Wi_ij1-1)Ve
for 5 > 0 such that

uU—vV=1Uuy+ g Vj-

If we let € = u—ug = U+ 550 Ui, then we have e AP9(V)and £ = ¢ (mod W, ),
hence this proves that p; is surjective as desired.

Conversely assume py is surjective. An element w € (F? N'W, + F; N W,) N
W,—1)Ve may be written in the form w = w — v, with v € (FY nNW,)V¢, v €
(F? NW)Ve and w € W,,_1Ve. If we let £ = v = v (mod W,,_1), then £ is an
clement in (F? N F})GrY Ve. Since pr is surjective, there exists ug € AP4(V) such
that up = ¢ (mod W,,_1), where by (37), we have uy € (F¥ NW,,)V¢ and uy is of the

form

uozvo—i—g wj

j=0

for vy € (f?ﬁWn)VC and w; € (7}1730W —1j1-1)Ve. Since ug = u (mod W,,_1) and
vo = v (mod W, _1), we have ug = u—wp and vy = v+w; for some wg, w; € W,,_1V¢.
Note that wy = u —ug € (F® N W,_1)Ve and wy; = vg — v € (Fj N W,,_1)Ve. Then
we have

w=u—v=wy+w + g wj,
j=0

hence w € (FPNW,,_1)Ve + (F; NW,_1)Ve + Zj>0(F(Il_j MWy _jj|—1)Vc as desired.
(3) We prove by induction on n that -

(FPnW)Ve= & AT(V). (41)

r,s€Z9,r>p
[r+s|<n

If n is sufficiently small so that W, Ve = {0}, then the statement is trivially true.
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Next suppose that (41) is true for n — 1. We have a commutative diagram

00— B scz9,r5p AT (V) ——> B sc29, r5p AT (V) ——>= B 5c29, r5p AT (V) ——0
Ir+sl<n1 Ir+sl<n [rts|=n

lg i "

0 ——— (FPNW,_1)Ve ———— (FPnNW, ) Vg ————— = FPGrlV Vg ———— 0,

where the left and middle vertical arrows are the sum of the natural inclusions. The
left vertical arrow is an isomorphism by the induction hypothesis, and the right vertical
arrow is an isomorphism by (1),(2), and condition (ay). This shows that the central
vertical arrow is also an isomorphism, hence by induction, (41) is true for any n € Z.
This proves our assertion, noting that W,, Ve = Vi for n sufficiently large and F¥Ve =
Ve for p sufficiently small.

(4) Follows from (1), (2), and (3). O

Let V be an object in .ZZ. Then by Proposition 4.10, p; is an isomorphism
and the equalities (39) and (40) hold for any I C {1,...,g}. We call the 2g-grading
{AP9(V)} of Vi the plectic Deligne splitting of V with respect to I.

For an object V' = (Vc, We, {F} }, {F;}) in Fil;((C) and n € Z, we define an object
W,V (resp. GrV'V) in Fil;((C) to be the quadruple consisting of the C-vector space
W, Ve (resp. GrlV'Ve) and the filtrations induced from those of V. We often regard

GrZV V' as an object in Filg((C) by forgetting the weight filtration. Then we obtain
additive functors

il 1 W .l 10
Wy, Fil, (C) — Fil (C) and Gr,, : Fil (C) — Fil (C). (42)

COROLLARY 4.11. Let V be an object in .#g. Then for any n € Z, the plectic
(resp. total) Hodge filtrations of W,,V and Gr,VLVV coincide with the filtrations induced
from the plectic (resp. total) Hodge filtrations of V. In particular, W,V is also an
object in ME, and GryV s a pure weak g-plectic C-Hodge structure of weight n.

Proof. By the direct decompositions (39), the natural inclusions (32) and (35) are
actually equalities. Then the conditions (a;), (br), (c;) for W,V and Gr})' V follow
from those for V. O

COROLLARY 4.12. Let o : U — V be a morphism in AE. For any subsets
SCZ9%xZ9 and I C{l,...,g}, we have

ol P APV | =aUo)n| D APV ). (43)
(p.9)eS (p.9)eS
In particular, if 8' is a subset of Z9 x Z, then we have
al Yo (FPnW,)Uc | =ale)n| > (FEaw)Ve|. (44)
(p,n)eS’ (p,n)ES’

In particular, o is strict with respect to the filtration (F7 N W,).
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Proof. Since a(AY9(U)) c AP9(V), the equality (43) follows from the fact that
AP gives 2g-gradings (37) of Uc and V. Since we have by Proposition 4.10

(FPnW)Ue= @ A7)
r,s€Z9
r>p,|r+s[<n

for any p € Z9 and n € Z, the equality (44) follows from equality (43) for

S = U {(r,s) €Z? xZ | r > p,|r + s| <n}.
(p,n)es’

0

4.3. Plectic Hodge decomposition of orthogonal families. Let g be a

positive integer. We define a functor T¢ : Filj(C) — Fil;((C) by taking the total

filtration of {W¢'}. Namely, for an object V = (V@{W.“},{FJ},{F;}), we have
TE(V) = (Ve, W, {F2},{F,}) with

WoVei= > (Wy ne--nWIHVe. (45)

ni
ni+-+ng=n

The purpose of this subsection is to prove the following proposition.
PROPOSITION 4.13. Let V' be an object in OFL. Then the quadruple TZ(V) is an
object in ME.

Let V be an object in OF% and I C {1,...,g} a subset. For each p =1,...,g,
we define

- (F;T: n W:+q)Vc n ((FZ N W:Jrq)VC + ijo(fz_j N W£+q—j—l)vc>7 1% % 1,
AI:M(V) = ) _
((F}f AW Ve +350(Fi7 N W;ﬂ,j,l)vc) NEF,NWE Ve, pel,
(46)
that is the Deligne splitting of the mixed C-Hodge structure (Vg, W.”,F,:,F;). By
Proposition 2.10 and Corollary 2.11, the C-vector space A7 (V) with v-th filtrations
for v # pu is an object in OF% ™", and we have AL 0 ATH(V) = AP (V) N APL(V).
Hence we have the direct decompositions

WiVe= @ AP (V)n---nAft (), (47)

p,q€L?
Putqus<n

FPVe= €D A (V)n---nAp(V), pél, (48)
r,s€Z9
TP

FoVe= @ A7 (V)n---n AP (V), pel (49)

r,8s€Z9
T;LZP

Then Proposition 4.13 follows from the following propositions.

PROPOSITION 4.14. Let (V@,{W.‘L},{F;},{F;}) be an object in OFL. Then
TE(V) satisfies the condition (ar) of Definition 4.5. That is, for anyn € Z, p,q € 79,
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and I C {1,...,9}, we have

FPGr)Ve= @ (FInF;)Gr) Ve (50)

r,s€Z9
r>p, |r+s|=n

Proof. For simplicity, we assume I = (). We prove the statement by induction on
g. The statement for g = 1 is Lemma 2.4. Suppose the statement is true for objects
in OF(“[Jfl. By Lemma 2.4, we have

P  (ErnF)Gr) Ve = FroGo) Ve, (51)
Tg,89€L
Tg>Pg, Tg+sg=m
By Corollary, 2.11 (F,° N F;")erg Ve is an object in OF%71 with respect to W7,
F?, and F: forv=1,...,9g—1, and (51) is an isomorphism in OF«gfl. If we denote
by W/ the filtration given by (45) for p =1,...,g — 1, the induction implies

b (F" nF° )G}, (Frs NF, )Gy Ve
r szt
T‘/ZP,, |T‘/+s/|:n—m (52)
= PP G (Frs nF)Ge V.

Note that by Corollary 2.11, W/ _ V¢ with the filtration induced from W¢, F3, and

F, is a mixed C-Hodge structure. Then

0 W, GW'Ve oW, GV Ve = G GV Ve =0
is an exact sequence of pure C-Hodge structures, hence by (8), we have
(Ero nF )Gl Gl Ve
= (FyonNF, W), _ )G Ve/(Fye NF AW, _,, 1)Gr, Vo (53)
> Gl (Frs N F,") GV,

n—m

which is an isomorphism in OF%_1 with respect to We', Fy, and F; forp=1,...,9—1.
Then by (51), (52), and (53), we obtain

P Fr G, FroGe Ve

meZ
~ P D @ FaFe, el v 6
meZ szt rg,8g€L

' >p', v 4s'|=n—m Tg2Pg, TgFsg=m

Since FPVe and W/'Ve can be written as direct sums of A7 (V) N --- N
AL9%(V) as in (47) and (48), the left hand side of (54) is isomorphic to
FPGrYVe. On the other hand, by (47), (48), and (49), we have an isomorphism

D,z GrmmGrang Ve = GrVe in OF{. Hence the right hand side of (54) is iso-

morphic to @ sezs  (F" NF* )G Ve. O

r>p, |r+s|=n
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PROPOSITION 4.15. Let (Ve, {We'}, {F2},{F}) be an object in OFL. Then

TY(V) satisfies the condition (br) of Definition 4.5. In other words, (Ve, We, Fp, F7)
is a mized C-Hodge structure for any subset I C {1,...,g}.

Proof. By Proposition 4.14, we have

FPGr¥ve = B (FInF)G) Ve,

r,s€Z9
7|>p, [r+s|=n
=1 —=8 -8
FlGeVve = P (FrLnFL)G) Ve = P (FinF)Gr) Ve
r,s€Z9 r,s€Z9
7|>q, |r+s|=n |s|>g, |r+s|=n

for any p,q,n € Z. Hence we obtain Gr)' Ve = FFGrlV Ve @ Fr i

sired. O

Gr Ve as de-

PROPOSITION 4.16. Let V' be an object in OFZ and I C {1,...,g} a subset. Then
we have

AP (V)N n AR (V) = API(TE(V)) (55)
for any p,q € Z9. Moreover, the homomorphism
pr s APUTL(V)) > (FF A FDGY Ve
is an isomorphism, where n := |p + q|.

Proof. For simplicity we assume I = (). We prove by induction on g. The
statement for g = 1 follows by definition. Suppose the statement is true for g — 1,
and let {AP9 (TEH(V))} for indices p’ := (p1,...,py—1) and @' := (q1,...,qy—1) be
the plectic Deligne splitting for the quadruple (Vc, We, {F};}, {F;}), where W/ is the
filtration defined from the filtrations W¢' for u = 1,...,g—1, and the family {F;} and
{f;} are for the indices p =1,...,¢9 — 1. Then for n' := |p’ + ¢'| and n, := py + ¢4,
we have

APRB(V) 0 AP (V) = APd (Tg_l(V)) N APs%5 (V)

by the induction hypothesis. Note that by definition, Ap/’q/(Téfl(V)) NAL % (V) is
equal to
(F" A W},)Ve ((F NWVe+ Y (F 7 Wy, 1%)
J'>0

N(FPs NWE Ve ((F‘“ NWIWVe+ > (Fy~ 7o Wi _]q_l)vc).
]g>0

Hence we have
APTEH V) N Ageto (V) © (F? 0 W) Ve (56)

Let U be the mixed C-Hodge structure on Ug = (F NWi Ve + 3 jiso(F q = N
W, _j71—1)Ve with filtrations induced from W, Fy, and F - Applying Proposition
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2.10 to the natural inclusion U — V', we have

((F AWVe+ SO F T AWl 1)VC>

j'>0

((qu ng V(C + Z % Jg ﬂWg ]ql)VC>
Jg=0
= <(Fq NW Ve + Z q - Nw,, —1§'- 1)V<C> (F ngwvgg)VC
j’>0

+ Z(F NWVe+ S FE T AWl 1)%) NEE AW Ve
7g=>0 7j’'>0

By (9), (10), we have
<(F"/ AW )Ve+
j’'>0

— ——=a—(3',0
= F Wy nWENVe+ S FTY AWl nWE Ve

j’'>0

F* 7 n W;L,,,jq,l)vc) N(FY NWE Ve

and

Z((F AWVe+ S (FT T AWl 1)VC) Fr 7 nws . )V

3g=>0 3’>0
=> (F* qug AW, NWa ;. _1)Ve
jg>0
+ Z Z 7 3’ ﬂqu —Jg ﬂW// L 1mWn _Jg_l)VC,
§/>0,>0
hence we see that both are subsets of
FIOW)Ve+ Y (F7 AW, jj-1)Ve. (57)

j=0

This and (56), we have an inclusion

APPT (VY (- AP (V) = AP (T2 (V) N A9 (V) € APYTE(V)).  (58)
By Proposition 4.15 and Proposition 4.10 (1), the homomorphism

p: APYTLV)) — (FPNFH)GrY Ve
is injective. Then we obtain
Ve= @@ AP (V)N nAFPH (V) P APUTL(V)) — @ (FPnF)Gr,) Ve
p.q€LI P.q€zI P.q€LI

(59)
By Proposition 4.14, we have

@ (Fp ﬁ?q)GI‘E/V(C = @GI‘TVLVV(}

P,qELI
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Since V¢ and @, 5, Cr)Y Vi have the same dimension, (59) is an isomorphism. Hence
(58) and p are isomorphisms for any p, q € Z9, as desired. O

Let V be an object in OFZ and I C {1,...,g}. By Proposition 4.14 and Propo-
sition 4.15, TZ(V) satisfies (a;) and (by) in Definition 4.5. Moreover, by Proposition
4.16 and Proposition 4.10 (2), TZ(V) satisfies (c7). Hence we completed the proof of
Proposition 4.13.

4.4. Mixed plectic C-Hodge structures. In the previous subsection, we have
seen that the functor T¢ induces the functor T : OF{ — .#¢. In this subsection we
will characterize the essential image of OFZ by T¢.

For I C {1,...,g}, we define a functor P} : Fil;(@) — FilJ(C) by sending V =
(Ve, We, {F2} {F,}) to PY(V) := (Ve, (W}, {F2}, {F,,}) with

WirVe = Y APIUV). (60)

p,q€Z?
P +qu <n

The goal of this subsection is to prove the following proposition.

PROPOSITION 4.17.

(1) We have P} o TE(U) = U and T¢ o P{(V) =V for any object U in OFL, V
in AE, and any subset I C {1,...,g}.

(2) Let V be an object in AE. Then V lies in the essential image of OFL by T¢
if and only if P{(V) = PJ(V) for any I and J.

According to Proposition 4.17, we define the category of mixed g-plectic C-Hodge
structures as follows.

DEFINITION 4.18. We define the category of mixed g-plectic C-Hodge structures
MHS?. to be the full subcategory of .Z¢ consisting of objects V satisfying WEhiVe =
W Ve for any I,J C {1,...,g9}, p=1,....g, and n € Z. This says that the object
P2(V) := P}(V) is independent of I. We let WtV := W, #V¢ for mixed g-plectic
C-Hodge structures.

Combining Corollary 3.11 and Proposition 4.17, we obtain the following theorem.

THEOREM 4.19. There are equivalences of categories

P ¢
Repe(G%) =——= OFY, MHSY. (61)
v I

Moreover T and PZ are isomorphisms of categories.

We may define tensor products and internal homomorphisms in MHS. as follows.
Suppose U = (U, W*, {F3},{F}}) and V = (Ve,W*,{F2},{F,}) are objects in
MHS. Then we define the tensor product U ® V' to be the quadruple

UV = (Uc®c Ve, We, {Fr} {F}}), (62)
where the weight filtration is given by

Wo(Ue @c Vo)=Y WaUc @c W, Ve

ni1+n2=n
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for any n € Z and the partial Hodge filtrations are given by

Fi(Uc®cVe) =y FiUc®c FVe,
pP1+p2=p
(Uc ®c Vo) : Z Fq1 Uc ®c F Ve
q1+492=q

for any p,q € Z and p = 1,...,9. Next we define the internal homomorphism
Hom(U, V') to be the quadruple

Hom(U, V) := (Home(Ug, Vo), We, {Ft}. {F},}), (63)
where the weight filtration are given by
W, (Home (Uc, Vo)) := {a € Hom¢ (Uc, Vi) | Vm € Z  a(W,,Uc) C Win Ve }
for any n € Z and the partial Hodge filtrations are given by

Fﬁ(HOmc(Uc,Vc)) = {Oz S HOmc(U ) ‘ Ym € Z a(F Uc ) C Fm“’Vc}
F! (Home (Ue, Ve)) := {a € Home(Ue, Ve) [Vm € Z o(F, Uc) C F, "V}

12

for any p,q € Z and p = 1,...,g. Then one can see that the tensor products and
internal homomorphisms in MHS{. are compatible with those in Repg(GE) via the
equivalences (61). In particular we obtain the following corollary.

COROLLARY 4.20. The category MHSY. is a neutral tannakian category over C
with respect to the fiber functor
% MHS{ — Vecc (64)
associating to V = (Vo, We, {F3 }, {f;}) the C-vector space

Gr‘,’v1 -~-GrYVgV<c = @ G .. -GrZQVc.

In order to prove Proposition 4.17, we prepare some results concerning the pure
case.

DEFINITION 4.21 (pure plectic C-Hodge structure). Let n be an integer. A pure
g-plectic C-Hodge structure of weight n is a pure weak g-plectic C-Hodge structure
(Definition 4.1) which is a mixed g-plectic C-Hodge structure (Definition 4.18) via the
weight filtration given by W,,_1 Vg := {0} and W, V¢ := V¢.

Note that, for a pure weak g-plectic C-Hodge structure V' of weight n, the partial
weight filtrations on V¢ are given by

WLtV = B FNF)L. (65)

p,q€Z? ,|p+q|=n
Putaqu <m

LEMMA 4.22. Let V be an object in MHS.. Then for any n € Z, W,V is also
an object in MHSY., and Gr,VLVV is a pure g-plectic C-Hodge structure of weight n.
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Proof. By Corollary 4.11, W,V is an object in .#Z¢ and Gr,VZVV is a pure weak
C-Hodge structure of weight n. By Corollary 4.12, we have

P A?’q(WnV)—WnVCﬂ< b Aﬁ’ﬂ(V)) (66)

p,q€Z? p,q€Z?
Putqu<m Putqu<m
and
) w a4 P.q
@ aretvi=( @ arww)( @ Arnan) @
p,q€Z? p,q€L? p,q€L?
putqu<m Putqu<m Putqu<m

foranym € Z, p=1,...,g9,and I C {1,...,g}. Since WLHtVe =@ pqgeze ATUV)
putqusm
is independent of I, (66) and hence (67) are also independent of I. O
EXAMPLE 4.23. For n = (n,) € Z9, let C(n) = (Vc, {VP9},{t,}) be the plectic
Tate object of Example 2.15. Then the object in MHS{. which is equivalent to C(n)
via the above equivalence of categories, which we again denote by C(n), may be given
by

C(n) = (VC7 W, {F;:}a {F;})7

where V¢ := C is a C-vector space of dimension one, the weight filtrations on V¢ is
given by W_sn—1Ve = 0, W_gn Vo = Ve, and the partial Hodge filtrations on V¢
are given by

EVe =T, " Ve = Ve, F e =F, Ve = {0)

for 4 = 1,...,9. The object C(n) is a pure g-plectic C-Hodge structure of weight
—2|n|.

LEMMA 4.24. Letn be an integer, and let V' be a pure g-plectic C-Hodge structure
of weight n. Then PZ(V') is an object in OFZ.

Proof. We will show that for any v # pu, the C-linear subspaces W/*V¢, F, ZLVC,
and FLVC with the v-th filtrations are mixed C-Hodge structure. First, for W/'V¢,
we have

GV WiV = b (FPNF)Ve
P,q€LY |p+ql=n
Pvt+qu=m
Putaqu<l
for any I, and
FPCrl¥ WhiVe = P FNF)L,

r,s€29,|r+s|=n
Ty 2P, Ty S, =m

ru+s, <l
FlaW ' wive = T NFy = "NF°
o WiV = & (F7,, NFy,)Ve = & (FTNF)Ve.
r,s€29,|r+s|=n r,s€Z9,|r+s|=n
Ty 24, Ty tsy=m $u,2>q, Ty tsy=m

ru+s, <l ruts, <l
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This shows that we have a splitting
Gl WiVe = FPGeW Wi Ve e T PG W W e

for any p, ¢ € Z. Hence we see that W/*V with the v-th filtrations is a mixed C-Hodge
structure as desired. Similarly, for F’ ,lLVC, we have

Gry Fl Vg = P (FPNF)Ve

pP,q€Z?, |pt+q|=n
put+q=m

for any I # u, and

FPGr) FlVe = &y (F" NF°)V,

r,s€ZY, |r+s|=n
TL2>p, TS, =m

>l
749 WY il r s r ~ °
F,Gr) FlVg = Ph (F7,y NFy,) Ve = D (F"NF)Ve.
r,8€Z9, |r+s|=n r,8€Z9, |r+s|=n
ry2q, Tyt+s,=m Su2>q, TytsL,=m
>l ru>l

Hence we see that F JVC with v-th filtrations is a mixed C-Hodge structure. The
. —l
assertion for V¢ follows from the same argument. O
Next we will review some facts concerning the extension of mixed Hodge structures
with respect to strict morphisms. We first define exactness of a sequence in Fil}(C)

and recall Lemma 4.26 which asserts that mixed C-Hodge structures are closed under
the extension in Filj(C).

DEFINITION 4.25.

(1) A morphism a : U — V in Fil} (C) is said to be strict if o is strictly compatible
with the filtrations F* N W, and F' N W,.

(2) A sequence

0TS U v o0

in Fil% (C) is said to be ezact if the sequence of underlying C-vector space is
exact and « and (3 are strict.

LEMMA 4.26 ([H1] Lemma 8.1.4 or [PS] Criterion 3.10). Let
0—=T—=U—=V—=0

be an eract sequence in Fil;(C). If T and V are mizved C-Hodge structures, then U is
also a mized C-Hodge structures.

REMARK 4.27. The strict compatibility with the filtrations W,, F'®, and Fis
not sufficient to prove Lemma 4.26. Note that by Proposition 2.10, a morphism of
mixed C-Hodge structures is automatically strict in the sense of Definition 4.25.

Proof of Proposition 4.17. (1) follows from Proposition 4.16 and Proposition 4.10.
Then it is enough to show that for any object V = (V¢, We, {F}, {F;}) in MHSZ,,
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the object PZ(V) = (Vo, {Wa'}, {Fy}, {F;}) lies in OF%. Here W& denotes Wi,
which is independent of I. First we show that (W, N F},)Ve with v-th filtrations is
a mixed C-Hodge structure for any p # v and n,l € Z by induction on n. This is
true for n sufficiently small. Assume (W,_1 N F L)V@ with v-th filtrations is a mixed
C-Hodge structure. We have a short exact sequence of C-vector spaces

0= (Wao1 NF)Ve = (W, N FL) Ve — F,Gr) Ve — 0. (68)
Since We, F7, WY

(68) is strictly compatible with F73 N W', Similarly, since We, F, W, and F' can
be written as direct sums of A?{”V%(V), the sequence (68) is strictly compatible with
f: N W¢. Moreover F }LGrZV Ve with v-th filtrations is a mixed C-Hodge structure
by Lemma 4.22 and Lemma 4.24. Hence (W, N F},)Vc with v-th filtrations is also a
mixed C-Hodge structure by Lemma 4.26. Since W, V¢ = Vi for n sufficiently large,
we see that F| fLVC with v-th filtrations is again a mixed C-Hodge structure as desired.

and F? can be written as direct sums of AP*9(V), the sequence

The claims for W/'V¢ and FLVC may be proved in a similar fashion. O

EXAMPLE 4.28. We note that MHSY. is strictly smaller than .#¢ for any g > 1.
For example, consider the case when g = 2 and let Vg := Cey & Ce_, with the
filtrations defined by

0 n < —5,
WVei=¢Ce_y n=-4,...,—1,
Ve n >0,
V(C D1 S Oa
Fflv(c = F?IVC = (Ce,4 pP1 = 1,
0 P1 Z 27
V(C P2 = 737
FP?*Ve = ¢ Cleg +ie_4) pa = —2,—1,0,
0 D2 Z 17
V(C P2 < _3,
and FZ;VC =< C(eg —ie_y) p2=-2,-1,0,
0 p2 > 1.

Then one can show that V = (Vo, W, {Fr, F3},{F},F5}) defined as above is an
object in .Z#. However, since Woﬂ’lV(c = C(eg +ie_4) and WéQ}’lVC = C(eg —ie_4),
this V' is not an object in MHSZ..

5. Mixed plectic R-Hodge structures and the calculation of extension
groups. Let G be the tannakian fundamental group of the category of mixed R-
Hodge structures MHSg, and for any integer g > 0, consider the category Repg(GY)
of finite representations of G9. In this section, we consider the real version of the
theory discussed in the previous sections, and will calculate the extension groups in
the category Repg(GY). In particular, we will define a functor A®, which associates to
a complex U® in Repp(GY) a complex of R-vector spaces. We will prove in Theorem
5.27 that A®(U*®) calculates the extension groups Extg,, gs)(R(0), U®) of U* by R(0)
in Repg(G9).
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5.1. Mixed plectic R-Hodge structures. Let g be an integer > 0. In this
subsection, we first give an explicit description of the category Repp(GY?). We then
define the categories MHSY, of mixed g-plectic R-Hodge structures and OFg of g-
orthogonal families of mixed R-Hodge structures.

PROPOSITION 5.1. An object Repr(GY) uniquely corresponds to a triple U :=
(Ur,{UP9},{t,}), where Ug is a finite dimensional R-vector space, {UP9} is a 2g-
grading of Uc := Ur ®@r C by C-linear subspaces

Uc= P Ure

P,qELI

such that UP9 = UTP for any p,q € 79, and t, for p = 1,...,g9 are C-linear
automorphisms of Uc commutative with each other, satisfying t,, = t;l and

(t, — 1)(UP9) C b une

r,8s€Z9
(1v,50)=(pv,qv) for v#pu
(rs8u) <(Ppap)

for any p,q € Z9. A morphism in Repp(GY) uniquely corresponds to an R-linear
homomorphism of underlying R-vector spaces compatible with the 2g-gradings and
commutes with t,,.

Proof. Our assertion follows the proof of Corollary 3.11, noting that the com-
patibility of the structures for each p corresponds to the fact that the action of each
component of G on the representation is commutative. O

EXAMPLE 5.2 (Tate object). The plectic Tate object in Repy(GY) is given by
R(1,) := (V&,{VP9},{t,}), where Vg := (2mi)R C C and the grading of Ve @ C = C
is the one-dimensional C-vector space whose sole non-trivial index is at

p,g=(0,...,—1,...,0)

where —1 is at the p-th component, and ¢, is the identity map for 4 =1,...,g. For
any n € Z9, we let

R(n) = @R(L,)%" = R(1L)" - @ R(1,) ™",

p=1

DEFINITION 5.3 (orthogonal family of mixed R-Hodge structures). Let V =
(Vie, {Wa'}, {F2}) be a triple consisting of a finite dimensional R-vector space Vg, a
family of finite ascending filtrations W¢' by R-linear subspaces on Vg for u=1,...,¢,
and a family of finite descending filtrations F}? by C-linear subspaces on V¢ := Vg @rC
for p =1,...,9. We again denote by W' the filtration on V¢ defined by WAV :=
WHVR ®@r C. Let F; be the filtration on V¢ given by the complex conjugate of F7.
Then V is called an g-orthogonal family of mized R-Hodge structures if the quadruple
(Ve, AW {Fe}, {F;}) is an g-orthogonal family of mixed C-Hodge structures.

A morphism of g-orthogonal families of mixed R-Hodge structures is an R-linear
homomorphism of the underlying R-vector spaces compatible with W' and F, -

We denote the category of g-orthogonal families of mixed R-Hodge structures by
OF%.
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DEFINITION 5.4 (mixed plectic R-Hodge structure). Let V = (Vg, We,{F}}) be a
triple consisting of a finite dimensional R-vector space Vi, a finite ascending filtration
W, by R-linear subspaces on Vg, and a family of finite descending filtrations F; by
C-linear subspaces on Vg := Ve ®r C for p =1,...,¢9. We again denote by W, the
filtration on V¢ defined by W, Vg := W, Ve g C. Let F:L the filtration on V¢ given by
the complex conjugate of F?. Then V is called a mized g-plectic R-Hodge structure
if the quadruple (Vc, We, {F2}, {F;}) is a mixed g-plectic C-Hodge structure.

A morphism of mixed g-plectic R-Hodge structures is an R-linear homomorphism
of the underlying R-vector spaces compatible with W and F};.

We denote the category of mixed g-plectic R-Hodge structures by MHSY,.

A real structure on a C-vector space V¢ is an anti-linear involution o : Ve — V.
Then one can regard an object in Repg (G7) (resp. OFf, MHSY,) as a pair of an object
in Repc(GE) (resp. OFZ, MHSY.) and a real structure, in the following sense.

LEMMA 5.5.

(1) The category Repr(GY) is naturally equivalent to the category Repgr(G9) con-
sisting of pairs (U, o), where U = (Ug, {UP9},{t,}) is an object in Repc(GL.),
and o is a real structure on Uc satisfying o(UP2) = UTP for any p,q € Z9
andcrotﬂoazt;1 foranyu=1,...,g.

(2) The category OF%, is naturally equivalent to the category 6\/]5‘]% consisting of
pairs (V,0), where V.= (Ve {W'}, {F}}, {F;}) is an object in OFY, and o
is a real structure on Vg satisfying o(WHEVe) = WHEVe and U(FﬁV@) = FZV(C
foranypu=1,...,9 and n,p € Z.

(3) The category MHSY, is naturally equivalent to the category MHSY consisting
of pairs (V, o), where V.= (Vc, We, {F }, {F;}) is an object in MHSY., and o
is a real structure on V¢ satisfying o(W,,Ve) = W, Ve and a(FlfV(c) = FZVC
foranypu=1,...,9 and n,p € Z.

Proof. The lemma immediately follows from the fact that a real structure o

on Vg uniquely corresponds to an R-linear subspace Vg C V¢ such that the natural
homomorphism Vg ®g C — V¢ is an isomorphism, by taking the fixed part of o. O

Let (V,0) be an object in (i:‘/ﬂ% Since each W' is stable under o, it induces a
real structure Gr(o) of Ger1 N 7

LEMMA 5.6. The associations

Repg(G9) = OF}, MHS{,

i P

which are equivalences of categories. Moreover Ty and PJ are isomorphisms of cate-
gories.

Proof. By using Theorem 4.19, one can check straightforwardly. O
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By Lemma 5.5 and Lemma 5.6, we obtain the following theorem.

THEOREM 5.7. There are equivalences of categories

<Pg Tg
Repg (G9) == OF% —> MHSY, (69)
o B

where the functors ©%, V3, T, and P§ are induced from the functors &3, Jﬂg{, fﬂg,

and P§ respectively. Moreover T} and P§ are isomorphisms of categories.

We define the tensor products and internal homomorphisms in OFf, and MHSf,
in a similar fashion to OF% and MHS{. Then one can see that they are compatible
with tensor products and internal homomorphism in Repp(G?) via the equivalences
(69). In particular we have the following corollary.

COROLLARY 5.8. The category MHSY, is a neutral tannakian category over R
with the fiber functor

wik + MHS, — Vecg (70)

associating to V = (Vg, We,{F3}) the R-vector space

GI’.VVl -~-GergV]R = EB GrZZl ~~oGrTVL‘;gVR.

N1y, NgEL

5.2. Representations of products of affine group schemes. In this sub-
section, we will prove Theorem 5.10 concerning a property of the representations of
products of affine group schemes, and as a corollary, we show in Corollary 5.15 that
any object in Repp(GY) is isomorphic to a subquotient of a g-fold exterior product of
objects in Repg(G). This result will be used later in the proof of Theorem 5.27.

Let H be an affine group scheme over a field k. We let A := k(H) be the affine
coordinate ring of H so that H = Spec A. Then A is a commutative k-algebra, and
the group scheme structure on H is equivalent to the comultiplication, counit, and
inversion maps

A:A— ARy A, e: A=k, 1 A— A
which are homomorphisms of k-algebras satisfying

(id®A)oA=(A®id)® A, (e®id)oA=(id®e)o A =id,
mo(t®id)oA=mo(id®i)oA=jioe,

where i : kK — A is the inclusion giving the k-algebra structure of A and m : A ®y
A — A is the multiplication. A commutative k-algebra A with the above additional
structures is called a commutative k-Hopf algebra (or a k-bialgebra in [DM]).

In what follows, all unmarked tensor products ® are tensor products ®j over
the field k. For a k-vector space V, an A-comodule structure on V is a k-linear
homomorphism ¢ : V' — V ® A such that the composite

VAVveALS yoray
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is the identity map and
(id®A)o¢p = (¢p®@id) o ¢.

By [DM, Proposition 2.2], there exists a one-to-one correspondence between A-
comodule structures on V and k-linear representations of H on V. In what follows, a
representation will always signify a k-linear representation on a k-vector space.

For the special case U := A with the comodule structure

A:U—-URA

induced from the multiplication of A, the corresponding representation of H on U is
called the regular representation of H. The regular representation U of H is faithful;
in other words, Ker(H — GLy) = {1}.

Consider affine group schemes H; and Hs over a field k, and let Ay := k(H1) and
Ay := k(Hz2) be the affine coordinate rings of H; and Ha. For representations U; and
U, of H1 and Ho, we denote by Uy X Us the exterior product of Uy and Uy, which is a
representation of Hy X Hs := Spec (A1 ® As) corresponding to the A; @ As-comodule
structure

U @ Us 22222 (U, © A1) @ (Us @ As) 2= (U @ Us) @ (A1 ® As)

on U; ® Us. Then we have the following.

LEMMA 5.9. Let Hi and Hso be affine group schemes over k, and suppose Uy
and Uy are reqular representations of H1 and Hy. Then U := Uy K Us is the reqular
representation of Hy X Hs.

Proof. Let Ay := k(H1) and Ay := k(H2). Then the multiplication of H; X Hs
corresponds to the map of k-algebras

A1 ® Ay 21822 (4, © A) © (A2 ® As) = (A1 ® A2) ® (A © Ag).

If we let Uy := A and Us := As, then the above map becomes

Uy @ Uz 22222 (U, © A1) © (Us ® 42) 2 (U, © Us) ® (A ® 4z),
which by the definition of the exterior product is exactly the A; ® As-comodule
structure on Uy ® Us giving the exterior product Uy X Us. O

In what follows, a finite representation of H will signify a k-linear representation
of H on a finite dimensional k-vector space. Let Rep,(H) be the category of finite
representations of 7. The purpose of this subsection is to prove the following result.

THEOREM 5.10. For p=1,...,g, let H, be an affine group scheme over k. If V
is a finite representation of Hi x --- X Hgy, then V is isomorphic to a subquotient of
an object of the form Vi X --- XV, for some finite representations V,, of H,.

We say that an affine group scheme H over k is an algebraic group, if the affine
coordinate ring A := k(H) is finitely generated as an algebra over k. We will first prove
Proposition 5.13, which is a particular case of Theorem 5.10 when H,, are algebraic
groups. The following result characterizes algebraic groups.

PRrROPOSITION 5.11 ([DM] Corollary 2.5). Suppose H is an affine group scheme.
Then H is an algebraic group if and only if there exists a finite faithful representation

of H.
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We say that a finite representation W of H is a tensor generator of Rep,(H), if
every object V in Rep,(H) is isomorphic to a subquotient of Py (W, W") for some
polynomial Py (X,Y) € N[X,Y]. Note that if Py (X,Y) = meeN A XY™ €
N[X, Y], then

Py(W,WY) = G (Wem @ wYer)@omn,

m,n>0
Proposition 5.13 will be proved using the following result.

PROPOSITION 5.12 ([DM] Proposition 2.20(b)). Suppose H is an algebraic group.
If W is a finite faithful representation of H, then W is a tensor generator of Repy(H).
Conversely, any tensor generator of Rep,(H) is a finite faithful representation of H.

PROPOSITION 5.13. Foru=1,...,g, let H, be an affine algebraic group over k.
If V is a finite representation of Hi X --- X Hy, then V' is isomorphic to a subquotient
of an object of the form Vi X --- WV, for some finite representations V,, of H,.

Proof. Let U, be the regular representations of #,. Then by Lemma 5.9, U :=
Ui - KU, is the regular representation of # := H; x --- x H4. By [DM, Corollary
2.4], U is the directed union U = (J, U® of finite subrepresentations U of H. Since
U is regular and is in particular faithful, we have

Ker(H — GLy) = (| Ker(H — GLy~) = {1}.

Since H is Noetherian as a topological space, we have Ker(H — GLy«) = {1} for
some . Hence U is a finite dimensional faithful representation of H. Let {w(}; be
a k-basis of U*. Since U* C U = U; X --- X U,, we may write w® as a finite sum
w® = >, aingl’]) @ ® wéw) for a;; € k and wff’]) € U,. By [DM, Proposition
2.3], there exists a finite representation W, C U, of H,, containing {wff’ﬂ)}i,j. Then
W :=W; .. -KW, is a finite representation of #, which is faithful since it contains
U® by construction. Hence by Proposition 5.12, W is a tensor generator of Repy (H).
By definition of the tensor generator, there exists Py (X,Y) € N[X, Y] such that V is
isomorphic to a subquotient of Py (W, WV). Since

Py(W,WY) = Py (Wi R---RW,, WYR---RW)Y) C Py (W1, WY)R---KPy (W, W),

if we let V}, := Py(W,, Wl)’), then we see that V is isomorphic to a subquotient of
Vi XV, as desired. O

The following result will be used to reduce the proof of Theorem 5.10 to the case
of algebraic groups.

LEMMA 5.14 ([DM] Proposition 2.6). Let A be a commutative k-Hopf algebra.
Every finite subset of A is contained in a commutative k-Hopf subalgebra that is finitely
generated as a commutative k-algebra.

Proof of Theorem 5.10. Suppose V' is a finite representation of H; x --- X H,.
Let A, := k(H,) for p = 1,...,g. Then the representation V is given by some
A1 ® - ® Ag-comodule structure

PV oaVRA R --®A) (71)
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on V. Let {v(}; be a k-basis of V. Then ¢(v(¥)) may be written as a finite sum

s =T o @ (Z AP g g agzxm)

J k

for some aff’j’k) € A,. By Lemma 5.14, there exists a Hopf subalgebra A, of A, con-
taining {afj’j’k)}i’j,k which is finitely generated as a k-algebra. Then H, := Spec A},
is an algebraic group over k which is a quotient group scheme of H,,. By construction,

the comodule structure (71) on V' induces the comodule structure
P:V=2VRAIR 1A,

hence V' is a representation of the algebraic group H} x --- x H;. By Proposition
5.13, V is isomorphic to a subquotient of an object of the form V; X--- XV, for some
finite representations V,, of ’H;L Since 'H;L is a quotient of H,, the representation V),
may also be regarded as representation of H,. Hence Vi,...,V} satisfy the desired
property of our assertion. O

We now return to the case of mixed R-Hodge structures. Let G be the tannakian
fundamental group of the category of mixed R-Hodge structures MHSg, and for any
integer g > 0, consider the category Repg(GY) of finite representations of G9. Note
that the category Repg(GP) is the category Vecg of finite dimensional R-vector spaces.
For g > 0, the category Repg(GY) is equivalent to the g-fold Deligne tensor product
of Repr(G) over R. Recall that the Deligne tensor product o/ X2 of k-linear abelian
categories &/ and & over a field k is a k-linear abelian category with a k-bilinear
functor

X:o x B— o XA

right exact in each variable, characterized by the property that for any k-linear abelian
category ¢, the induced functor

Rex[o/ K B, €] — Rexp |/ x B, €]

gives an equivalence of categories, where Rex[«/ K %, €] denotes the category of right
exact k-linear functors from &7 X% to ¢, and Rexy;j [« x %, €| denotes the category
of k-bilinear functors &/ x 4 — % which are right exact in each variable.

Since MHSp is a tannakian category, it satisfies condition [D2, (2.12.1)]. Hence
by [D2, Proposition 5.13 (i)], the Deligne tensor products of MHSg over R exist. A
group scheme may be regarded as a groupoid whose class of objects consists of a
single element, hence is transitive as a groupoid. Then by [D2, 5.18], there exists a
natural equivalence of categories Repg(G9) = Repg(G) X - - - K Repr(G), which gives
the equivalence of categories

Repr(GY) = Repr(G) X - - - X Repr(G) =2 MHSg X - - - X MHSR.

Hence as a corollary of Theorem 5.10, we have the following.

COROLLARY 5.15. Let V be an object in Repg(G9). Then V is isomorphic to a
subquotient of Vi K --- RV, for some objects Vi,...,Vy in Repg(G).
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5.3. The functor A®. In this subsection, we will define the functor A®. In what
follows, for any abelian category <7, we denote by (<) the category of bounded
complexes in 7. We denote its homotopy and derived categories by .#°(</) and
Db (H).

Let U = (Ur,{UP9},{t,}) be an object in Repp(G?). For each integer p =
1,...,9, we let

AUy = @ ure ALU) =  vre (72)
p,qeL? p,qeL?
Pp=qu=0 Pu>qp<0

DEFINITION 5.16. For any non-negative integer ;1 < ¢, note that we have a
natural decomposition G9 = G* x GI~H of pro-algebraic groups. By taking the fixed
part with respect to the action of G97#, we have a functor

I, : Repr(GY) — Repr(GH).

On the level of objects, this functor may be described by associating to any object U
in Repp(GY) the R-vector space

(U ={ue A ,(U)N---NAU) [T=u,(t,—Du=0(u<v<g)}

with the induced 2u-grading and C-linear automorphism ¢, for v = 1,..., u, giving
an object in Repg(GH).

The functor I';, : Repp(G9) — Repp(G#) defines a functor

Ly %b(RePR(gg)) - %b(RQPR(g#))
from the category of complexes of Repg(G9) to that of Repr(G*). Let T and U® be
complexes in ¢°(Repg(G?)). We let Hom®(7®,U*®) be the complex

Hom"(T*,U*) := [ [ Hom(T", U™™")

€T
given by the internal homomorphisms in Repy(G9), whose differential is defined by
d"({}) = A{di o f1 = (-1)" [ o di}

for any {f'} € Hom"(T*®,U®)g. Then we have the following.

LEMMA 5.17. For any m € Z, we have

H™(Fo(Hom®(T*, U*))) = Hom s (rep, (go)) (T, U [m]).-

Proof. An element f € Hom™(T*,U®)r = [], o, Hom(T™, U™*")r defines an
R-linear homomorphism f : Ty — Ug[m] if and only if f is an m-cocycle. Such an f
preserves the grading if and only if f € Hom™(7®,U*)%°, and commutes with ¢, if
and only if ¢,(f) = f in Hom™(T*,U*®)c. Finally, the map of complexes induced by

f is homotopic to zero if and only if f is a coboundary. O

In order to study the functor 'y, we first define a series of exact functors A1+ "Ms
as follows.
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DEFINITION 5.18. Let (my,...,my) € {0,1}9. We define the functor A" :
Repr(GY) — Vecg by associating to any U € Repp(GY) the R-vector space

A (U) = {v € A (U) N NAZ(U) | (=)™ -+ (—tg) ™00 = v},
where A (U) are defined as in (72).

LEMMA 5.19. The functors A™-™9 are exact.

Proof. By definition, the functor A} N --- N Ay" is exact, hence the functor
Amio™ g left exact. Suppose we have a surjective map 7' — U in Repy(G?). For
v e Amme(U) ¢ AP (U) N - N Ag? (U), take a lift u € AT(T)N--- N Ay (T).
Then

W= (e ()™ () 2
is again a lift of v satisfying v’ € A™t™9(T). O

Suppose U is an object in Repp(G9). Then A®*(U) gives a g-tuple complex,
with the p-th differential given by

EXAMPLE 5.20. For g = 2, the double complex A**(U) for U in Repg(G?) is
given by

ARO(1) B A1)

tzll thI

ALy S AL D).

If U® is a complex in €°(Repg(G7)), then A*+*(U*®) becomes a (g + 1)-tuple
complex, with the (¢ + 1)-st differential being the differential induced from that of
U®. Let h be an integer > 0. For any h-tuple complex U®~® we define the total
complex Tot®(U**) to be the complex whose m-th term is given by

TOtm(U."“7.) = @ Um17...,mh

(ma ,.4.,'m;L)EZh
my+-tmp=m

and whose m-th differential d™ : Tot™ (U®*) — Tot™ 1 (U**) is given by

d"m" = Z 8;”1 + (_1)m1a;n2 4+t (_1)77%1-&-”-&-7%7182%7

(mi,...,mp)€EL"
mi+-tmp=m

where 9, is the partial differential on U™,

DEFINITION 5.21. We define the functor A® : €° (Repr(GY)) — €° (Vecg) by
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LEMMA 5.22. If U* — V* is a quasi-isomorphism in €°(Repg(G?)), then
A (U®) — A*(V®) is a quasi-isomorphism of complexes of R-vector spaces.

Proof. This follows from Lemma 5.19, which states that A™1» "9 are exact
functors. O

We will use the functor A® to calculate the functor I'y. We will define interme-
diate functors B and C which will be used to relate the functors A® and I'g. Let
(ma,...,my) € {0,1}9. For p=0,...,g, we inductively define the functors

By Repy(G9) = Veea, G < Repg(G%) — Vecs

as follows. For pu = g, we let By'"""™(U) := A™™a(U) and Cy" 7" (U) = 0.

For an integer p > 0, if BlT_ﬁi""m““ is defined, we define the functors for p by

mi,...,m,0 tuy1—1 my,...,my,1
By (U) 1= Ker (Bt (U) 22 iy ™ (u))

and
C"Ll’“'vmu (U) -— Coker (Bm1 ..... mWO(U) ML) Bml ..... m}L,l(U))
" : .
Note that we have
To(U) = Bo(U) := Ker (B?(U) LN B}(U)) : (73)

EXAMPLE 5.23. The R-vector spaces By, """ (U) and C,""" """ (U) for g = 2

fit into the following diagram, whose horizontal and vertical sequences are exact.
0 0

t1—1

0 —Do(U) —= BY(U) —2—= BL(V) Co(U7) 0

t1—1

By (U) —— By°(U)
to—1 to—1
By (U) 2= B (U)

t1—1

Cl(U) —=Ci(U)

0 0.
Note that By (U) = A™™2(U) in this case.

Again, if U® is a complex in €°(Repg(G?)), then Bi-*(U®) and Cy*(U*®)
becomes (1 + 1)-tuple complexes with the (u+ 1)-st differential being the differential
induced from that of U®. We have an exact sequence of complexes

0 —— Tot* (BY* (U*)) — Tot* (BY;7*(U*)) —— Tot*(Co*(U*))[=1] — 0.
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Note that we have
Lo(U®) = Tot* (Bo(U*)), A*(U®) = Tot*(Bg*(U*)) (75)

by (73), the definition of the functor B§*, and Definition 5.21.

5.4. The vanishing of classes. The main goal of this subsection is to prove
Proposition 5.24.

PROPOSITION 5.24. Let p = 0,...,9 and my,...,m, € {0,1}. For any U® €
€°(Repg(GY)), we have

: m(Amy,...,my o\ _
s:Ul’HBV‘H (C“ (V )) 0

for any m € 7Z, where the direct limit is over quasi-isomorphisms s : U® — V*°.

We will give the proof of Proposition 5.24 at the end of this subsection. The main
idea of the proof is to reduce the statement to Lemma 5.26, which is the case when
U is a single object in Repp(GY) given as a quotient of an exterior product T X T” of
objects T and T” in Repg(G*). In order to prove Lemma 5.26, we will first prove that
the functor A™t-"™r preserves exterior products.

LEMMA 5.25. Let T and T’ be objects in Repr(G") and Repr(G) respectively.
The natural injection

AT (T) G AT (T') =5 A (T R T)

18 an isomorphism.

Proof. Let w := Z}Icv=1 up @ vy € A™bmutt (T RT') for some uy, € (A" N---N
A )N(T) and vy, € A" (T"). Then

g = (u + (—t)™ -+ (=1,) ™ ) /2 and = i(ug — (—t)™ - (—4,) ") /2
are elements in A" (T), and

vy, = (vg + (=)™ Ty) /2 and vy = i(vg — (=) Ty) /2
are elements in A™#+1(71"). Then we see that

N

w=(w+ (—t)™ - ()W) /2 =Y (uf ® ), — uf ® vy)
k=1

is an element in A"t ™u(T) @g A™u+1(T") as desired. O
We will now prove Lemma 5.26.

LEMMA 5.26. Let R be an object in Repg(G#*Y). For any & € C,' """ (R), there
exists an injection R — S in Repg(GHT1) such that the image of € in C,' """ (S) is
zero.

Proof. By Theorem 5.10, we can reduce to the case when R = (T'X® T")/N,
where T, T" are objects respectively in Repg(G*), Repg(G) and N is a subobject of

TRT'. We let € be an element of Bfﬁ’l""m‘“l(R) = Ami-mul(R) representing €.
By definition of the functor C;"""""™* | it is sufficient to show that there exists an
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injection R < S in Repp(G#T) such that ¢ is in the image of tu+1 — 1 on S. Since
the functor A™>~™w! i exact, we have a surjection

AT (T @ Al(T’) o~ Aml’“"m"’l(T X T/) — Aml""’m”’l(R)v (76)

where the first isomorphism is given by Lemma 5.25. Hence there exists an element

k=1

mapping by (76) to £&. We let § = (Sgr, {SP},{t,}) be an object in Repp(G )

given as an extension

0 R S PN, TRR(0) — 0,

whose underlying R-vector space is the direct sum

N
Sk := Re & @ (T BR(0))e,
k=1
the 2(p + 1)-grading and the C-linear automorphisms t1,...,t, on Sc are also given
by the direct sum, and the C-linear automorphism ¢,41 is given by ¢,4; (= id® ¢
when restricted to R¢ and
N
tyrr(we,. .., wy) = (w1,...,wN +Zwk®uk
k=1

for any (wi,...,wy) in @szl(T X R(0))¢c = @i\;l Tc, where Z;iiﬂwk ® u}] is the
image of Zivzl wy, ®u), by the surjection (T'®{T")c — Rc. We show that £, 11 = t;ulrl
from the fact that ¢(u},) = —uj, since u} € A'(T’). Then S defined as above is an

object in Repg(GHT1). If we let

P=

= (u1>"'7UN)€ (TX”R(O))CCS(B

ES
Il

1

then n € A™1-":0(S) by construction, and we have

N
(tus1 — 1)y Zuk®uk
k=1

This shows that the class of £ in C,""""7""*(S) is zero as desired. O

Suppose U is an object in Repg(G#*!). Then by Remark 2.16, we may view

U as an object in Repp(GY). Since t,49,...,t, for U is the identity map, we have
B;ni,l..qmli%»l(U) — Aml,...,m“+1 (U), hence

t

mi,...,my _ M., My, pt1—1 Ty My
c, (U) = Coker (A ‘U) = A L)

in this case. Now we are ready to prove Proposition 5.24.
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Proof of Proposition 5.24. It is sufficient to show that for any U® € €°(Repg(G9))
and m-cocycle & € C,,"" " (U™), there exists a quasi-isomorphism s : U® — V*® such
that s(¢) is zero in C;"""™* (V™). Let R := I',,41(U™), which is a mixed (u + 1)-
plectic R-Hodge structure of Definition 5.16. Then by definition, we have

Bml ..... My41 (Um) _ A’rrLl,.A.,'rrLMJrl (R),
which shows that
C;nla“'vmu (Um) _ C;nl,...,m“ (R)

By Lemma 5.26, there exists an injection ¢ : R < S in Repg(G#*!) such that the
image of ¢ in ;""" (S) is zero, which we also view as an injection in Repg(GY).

Then we have a commutative diagram

R * g

p

Un = (U™ & S)/R

in Repp(GY), where r is the natural inclusion and the quotient (U™ ®S)/R is taken by
the injection (r, —) : R < U™®S. Note that the image of £ in C;;"" """ (U™ ®S)/R)
is zero. We let V® be the complex obtained from U*® by replacing U™ by (U™ @ S)/R
and U™! by (U™t ¢ S)/R, with the differential induced by d} @ id : U™ & S —
U™+l @ S. Now we have an exact sequence of complexes

Um— 1 Um— 1 0

0——0

(d,0)

0— R ymg s (U™ ®S)/R—>0

id d®id
0—>RU ymilg s o (UmH ¢ §)/R—>0

d®0

Um+2 Um+2 0

0——0

9

in which the left vertical complex is acyclic and the middle vertical complex is quasi-
isomorphic to U®. Hence the right vertical complex V'® is quasi-isomorphic to U® with
respect to the natural inclusion U® < V®. Then the complex V'*® satisfies the desired
assertion. O

5.5. The calculation of the extension groups. The purpose of this subsec-
tion is to prove Theorem 5.27, which calculates the extension groups in Repg(GY) in
terms of the functor A®.
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THEOREM 5.27. For any object U® in €° (Repg(G?)) and m € Z, there exists a
canonical isomorphism

Ext., go) (R(0),U%) = H™ (A (U*)).
Proof. By (74), we have a distinguished triangle

Tot®(Bgy*(U*®)) — Tot* (B} 1*(U*®)) — Tot® (Cy* (U*)) [-1]

in % (Repp(G9)) for p=0,...,g — 1. By Proposition 5.24 we have

lim H"™ (Tot* (C3* (V*))) =0
Ue—Vve

where the direct limit is over quasi-isomorphisms s : U®* — V°. Hence we have an

isomorphism

limg H™(Tot®(By*(V*))) —— lm H"™(Tot*(B7"(V*),
Uue—Vve Uue—Vve

since direct limit preserves exactness. By (75), we have by induction an isomorphism
lim  H™(To(V*) —— lim H™(A%(V*)). (77)
Ue—Vve Ue—Vve
By Lemma 5.22, the map
H™(A* (U®)) — lim H™(A*(V?)) (78)
Ue—Vve

is an isomorphism. On the other hand, we have

EthepR(gg) (R(O)’ U.) = Hom@”(RepR(gg)) (R(O)a u* [m])

= lim Homyt(repy(go)) (R(0), V°[m]) = lim H™ (To(V*)), (79)
Uue—Ve Uue—Vve

where the last isomorphism is Lemma 5.17. Hence the composition of isomorphisms
(77), (78), and (79) gives our assertion. O

EXAMPLE 5.28. Let n € Z9. When R(n) is the plectic Tate object of Example
5.2, then we have by (72)

0 n,#0 0 n,<0
A"(R(n)) = e AL(R(n)) = ="
(R () {R "y M) =y S0
In particular, if n = (n,...,n) for some n € Z, then we have
R n=0, m=(0,...,0),

A™(R(n)) =< 27)YR n>0, m=(1,...,1),

0 otherwise.
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Then all of the differentials of the complex A®~*(R(n)) are zero maps, hence Theo-
rem 5.27 shows that we have
R n=0
Exty R(0),R(n)) = ’
KtRep, (g0) (R(0), R(n)) {0 otherwise,
(2mi)™R n >0,

Ext? R(0),R =
x RepR(gg)( (0),R(n)) {0 otherwise,

and Extre, (go)(R(0),R(n)) =0 for m # 0, g.

COROLLARY 5.29. For an object U® in €° (Repg(GY)), there exists a spectral
sequence

B = Ext,, gs) (R(0), H" (U*)) = Bxtit" o) (R(0),U*), (80)

which degenerates at Egy 1.

Proof. Let Ind(Repg(GY)) be the ind-category of Repgr(GY) (See [KS] Definition
6.1.1). By [St] Theorem 2.2, Ind(Repg(G¥Y)) is an abelian category with enough in-
jectives and the canonical fully faithful functor Repr(G9) — Ind(Repr(GY)) is exact,
since Repg (GY) is essentially small. Then for an object U® in 6 (Repg(GY)), we have
a spectral sequence

B = Extlha(Repy(go)) (R(0), H™ (U®) [=n]) = Ext{} i key oy (R(0),U®)

associated to the canonical filtration on U® (See [D1] 1.4.5 and 1.4.6). By renumbering
this gives

Ey"" = Exting(repy(ge)) (R(0), H" (U®)) = EXt}ZI&{epm(gg)) (R(0),U*®).
Since Repg(GY) is noetherian, 2° (Repg(GY)) — 2° (Ind(Repg(GY))) is fully faithful
by [H2] Proposition 2.2. Hence, when U* is lying in % (Repg(G7)) we obtain the

spectral sequence (80). By Theorem 5.27 we have Extg,, (gs) (R(0), H" (U®)) = 0
for m > g, hence (80) degenerates at Fg ;. O

COROLLARY 5.30. Let Un,...,U, be objects in Repr(G). Then there exists a
canonical isomorphism

P Q B g R0).U.) > Extiny go) (RO), U1 H - KT,),
(m1,...,mg)€ZI 1<p<g
M4 —m

for each m € Z. In particular, we have a canonical isomorphism

Q) Extiep, () (R(0),U,) — Extf., o) (R(0),U1 K- R U,).

1<p<g

Proof. By Lemma 5.25 we have
AmesMa (U R - R/Ug) = A™ (Ur) ®r -+ - Qr A™9 (Uy) .

Since every R-module is flat, we have an isomorphism. This proves our assertion. O
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